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Introduction.

For a natural number $N\geqq 3$ , let $E$ denote the generic elliptic curve with
level $N$ structure in characteristic $p(pxN)$ , cf. \S 1. $E$ is an elliptic curve
defined over the field, $K$, of elliptic modular functions of level $N$ in charac-
teristic $p$ (cf. Igusa [4]). We are interested in the group, $E(K)$ , of K-rational
points of $E$ , which is finitely generated by Mordell-Weil theorem. By the
definition of $E,$ $E(K)$ contains the group, $E_{N}$ , of points of $E$ of order (divid-

ing) $N$, and it can be shown that

$E(K)_{tor}=E_{N}$ .
Moreover we proved in our previous work [12] (cited as [EMS]) that, if the
characteristic $p$ is zero, then $E(K)$ itself is finite and therefore

$E(K)=E_{N}\cong(Z/NZ)^{2}$ .

One might expect that the same would hold in the case $p>0$ , which is known
to be true for $N=3$ . However this is not true in general as we explain
below for $N=4$ .

We recall that, as to the rank of the group of rational points of an elliptic
curve defined over a global field, there is a famous conjecture of Birch,
Swinnerton-Dyer and Tate relating the rank with the zeta function of the
elliptic curve (cf. Tate [13]). In our case, assuming that the constant field
$k$ of $K$ is a finite field containing a primitive N-th root of unity, we see that
the zeta function of $E$ over $K$ is essentially equal to the Hecke Polynomial
of level $N$ and of weight 3, cf. [EMS], Appendix. In particular, we get an
uPper bound for the rank of $E(K)$ :

$*$ Some results in this paper were reported at “U. S.-Japan Seminar on Modern
Methods in Number Theory”, Tokyo, Aug. 30-Sept. 5, 1971, under the title “Rational
points of Jacobi’s quartic curve $y^{2}=(1-\sigma^{2}x^{2})(1-x^{2}/\sigma^{2})$ over $k(\sigma)$ ”.
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rank $E(K)\leqq\frac{(N-3)}{3N}\mu(N)$ , $\mu(N)=\frac{1}{2}N^{3}$
$\prod_{l|N,prime}(1-\frac{1}{l^{2}}$).

The purpose of this paper is to study tbe first non-trivial case $N=4$

more closely. We have (cf. [EMS] p. 56-57):

THEOREM. Assume $N=4$ . Then
i) $E(K)_{tor}=E_{4}$ and rank $E(K)\leqq 2$ .

ii) If $P\equiv 1$ mod 4, then $E(K)=E_{4}$ .
The conjecture of Birch, Swinnerton-Dyer and Tate suggests:

CONJECTURE. If $p\equiv 3$ mod 4, then rank $E(K)=2$ .
We shall prove a special case of this conjecture:

THEOREM. If $P=3$ , then rank $E(K)=2$ .
We can also state these results as follows. Let $B_{p}$ denote the elliptic

modular surface of level 4 in characteristic $p\neq 2$ ; it is the Kodaira-N\’eron
model of $E$ over $K$ [EMS]. The surface $B_{0}$ is a $K3$ surface with Picard
number $\rho(B_{0})=20$ (and Betti number $b_{2}=22$), and $B_{p}$ is a reduction of $B_{0}$

mod $p$ . Then we have

$\rho(B_{p})=\{2220$

for $P\equiv 1$ mod 4,

for $p=3$ ,

and, conjecturally, $\rho(B_{p})=22$ for all $p\equiv 3$ mod 4.
The contents of this paper are as follows. In \S 1, we recall the definition

of elliptic curves with level $N$ structure, and in \S 2 and \S 3, we consider the
special cases $N=2$ and 4. In particular, we shall explicitly construct the
universal family of elliptic curves with level 4 structure in \S 3. The generic
elliptic curve $E$ in this case is given by the Legendre cubic

$Y^{2}=X(X-1)(X-\lambda)$ , $\lambda=\frac{1}{4}(\sigma+\frac{1}{\sigma})^{2}$ ,

or by the Jacobi quartic

$y^{2}=(1-\sigma^{2}x^{2})(1-x^{2}/\sigma^{2})$ ,

both defined over $K=k(\sigma),$ $\sigma$ being a variable over a field $k$ . After discuss-
ing the relation of our problem to the theory of surfaces in \S 4, we prove
the above theorems in \S 5. Our proof of the second theorem (for $p=3$) is
rather computational, and we think that there should be a theoretical proof
which clarifies the meaning of the aPpearance of rational points of infinite
order on the generic elliptic curve with level $N$ structure in certain charac-
teristic $p$ .
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\S 1. Elliptic curves with level $N$ structure.

Let $E$ be an elliptic curve, $i$ . $e$ . an abelian variety of dimension one, defined
over a field $k$ . For each natural number $N$ relatively prime to the charac-
teristic of $k$ , the group, $E_{N}$ , of points of order $N$ of $E$ is a product of 2
cyclic groups of order $N$. There is a natural skew-symmetric pairing $e_{N}$ of
$E_{N}$ with itself (Weil [14]). It follows that, if all points of order $N$ are k-
rational, then $k$ contains a primitive N-th root of unity.

In the following, we fix once for all a primitive N-th root of unity, $\zeta$ , in
$k;(k, \zeta)$ can be called a level $N$ structure on $k$ . An elliptic curve with level
$N$ structure is, by definition, a triple $(E, r, s)$ consisting of an elliptic curve
$E$ together with an ordered basis $r,$ $s$ of $E_{N}$ such that $ e_{N}(r, s)=\zeta$ . We say
that $(E, r, s)$ is defined over $k$ if $E,$ $r,$ $s$ are all dePned over $k$ . Two such
triples $(E, r, s)$ and $(E^{\prime}, r^{\prime}, s^{\prime})$ are called isomorphic if there is an isomorphism
of $E$ onto $E^{\prime}$ mapping $r,$ $s$ to $r^{\prime},$

$s^{\prime}$ . An elliptic curve with level $N$ structure
has no non-trivial automorphism if $N\geqq 3$ . Therefore, given an elliptic curve
$E$ and $N\geqq 3$ , there exist

$\mu(N)=\frac{1}{2}N^{3}$
$\prod_{l|N,prime}(1\frac{1}{l^{2}})$

$(N\geqq 3)$

distinct level $N$ structures on $E$ up to isomorphism.
Finally it is known that, for $N\geqq 3$ , there exists a universal family of

ellipt\’ic curves with level $N$ structure parametrized by an affine curve, whose
function field $K$ is the field of elliptic modular functions of level $N$ in the
sense of Igusa [4] (cf. Igusa [5], Deligne [1], Mumford [9]). We call the
generic member of this universal family the generic elliptic curve with level
$N$ structure, which is an elliptic curve defined over $K$. For the case $N=4$ ,

we shall explicitly construct the universal family in \S 3.

\S 2. Level 2 structures.

Let $k$ be a field of characteristic $\neq 2$ and let $E$ be an elliptic curve with
origin $0$ . We denote by $[u]$ the divisor corresponding to a point $u$ of $E$.
Then a divisor $\sum m_{i}[u_{i}]$ is a principal divisor if and only if $\sum m_{i}=0$ and
$\sum m_{i}u_{i}=0$ (Abel’s theorem). Moreover if a principal divisor is k-rational, it
is the divisor of a function defined over $k$ .

Now let $(E, v, w)$ be a level 2 structure on $E$, defined over $k$ (cf. Igusa
[4] p. 454-455). Then there exists a unique function $X$ on $E$ (defined over k)

such that

(2.1) $(X)=2[v]-2[0]$ , $X(w)=1$ .
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gf we put

\langle 2.2) $\lambda=\lambda(E, v, w)=X(v+w)$ ,

then $\lambda\neq 0,1,$ $\infty$ and we have
$\}(2.3)$ $(X-1)=2[w]-2[0]$ , $(X-\lambda)=2[v+w]-2[0]$ .
On the other hand, there is a function $Y$ on $E$ (defined over k) such that

$((2.4)$ $(Y)=[v]+[w]+[v+w]-3[0]$ .
Hence we have

\langle 2.5) $cY^{2}=X(X-1)(X-\lambda)$ ,

with some constant $c\in k,$ $c\neq 0$ . (Note that $c$ may not be a square in $k.$) The
map

$u\leftrightarrow(X(u), Y(u),$ $1$)

defines an imbedding of $E$ into $P^{2}$ , the image being the non-singular cubic
curve (2.5) considered in $P^{2}$ . The origin $0$ is mapped to the (unique) point
at infinity $(0,1,0)$ , and the points of order 2 $v,$ $w$ and $v+w$ of $E$ are maPped
respectively to the points with coordinates

(X, $Y$ ) $=(O, 0),$ $(1,0),$ $(\lambda, 0)$ .
The inversion and translations by points of order 2 of $E$ are represented as
follows in the coordinates $X,$ $Y$ :

$|\langle 2.6$) $X(-u)=X(u)$ , $Y(-u)=-Y(u)$ ;

(2.7) $\left\{\begin{array}{l}X(u+v)=\lambda/X(u), Y(u+v)=-\lambda Y(u)/X(u)^{2}.\cdot\\ X(u+w)=(X(u)-\lambda)/(X(u)-1), Y(u+w)=(\lambda-1)Y(u)/(X(u)-1)^{2}.\cdot\\ X(u+v+w)=\lambda(X(u)-1)/(X(u)-\lambda),Y(u+v+w)=-\lambda(\lambda-1)Y(u)/(X(u)-\lambda)^{2}.\end{array}\right.$

We can prove these formulas simply by checking that both sides have the
same divisor considered as functions of $u\in E$ and that they have the same
value at a suitable point.

\S 3., Level 4 structures.

Now we consider a level 4 structure $(E, r, s)$ defined over $k$ . (We implicitly
assume that $k$ is a field of characteristic $\neq 2$ , given with a fixed primitive

4-th root of unity $i=\sqrt{-1}\in k$ and that $e_{4}(r, s)=i$ , cf. \S 1.) The ”underlying”
level 2 structure $(E, 2r, 2s)$ of $(E, r, s)$ determines a unique function $X$ on $E$

and some function $Y$, unique up to constants, satisfying (2.1), $\cdots$ , (2.7) (with

$v=2r$ and $w=2s$). We claim that $Y$ can be uniquely normalized so that we
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have $c=1$ in (2.5). In fact, putting $u=r$ in (2.6) and $(2.7)_{1}$ , we get $X(-r)=$
$X(r),$ $ X(r)^{2}=\lambda$ . Hence, by (2.5), we have

$cY(r)^{2}=X(r)(X(r)-1)(X(r)-\lambda)$

$=\{iX(r)(X(r)-1)\}^{2}$

Since, by assumption, $X(r)$ and $Y(r)$ are (non-zero) elements in $k$ , it follows
that $c$ is a square in $k$ . Therefore, replacing $Y$ by $\sqrt{c}Y$, we can take $c=1$

in (2.5), $i$ . $e$ . we get the Legendre normal form of $E$ :

(3.1) $Y^{2}=X(X-1)(X-\lambda)$ .

The function $Y$ on $E$ is unique up to sign and we can uniquely normalize it
by the condition:

(3.2) $Y(r)=iX(r)(X(r)-1)$ .
Summarizing, we have proved

PROPOSITION 1. Let $(E, r, s)$ be an elliptjc curve with level 4 structure $de-$

$fi\eta ed$ over a field $k$ . Then there exists a unique pair of functions $X,$ $Y$ on $E$,

defined over $k$ , giving an isomorPhism of $E$ onto the non-singular cubic $(3.1)l$

and satisfying (2.1), $\cdots$ , (2.7) and (3.2) with $v=2r,$ $w=2s$ and $\lambda=X(2r+2s)$ .
We shall define the “level 4 invariant” or the ”modulus” of a level 4

structure $(E, r, s)$ by

(3.3) $\sigma=\sigma(E, r, s)=X(r)+i(X(s)-1)$ .
PROPOSITION 2. Given a level 2 structure $(E, v, w)$ , there exist exactly four

level 4 structures which have $(E, v, w)$ as the underlying level 2 structure; if
$(E, r, s)$ is one of them, the other are given by

$(E, r, s+2r)$ , $(E, r+2s, s)$ , $(E, r+2s, s+2r)$ .
Moreouer, if we put $\sigma=\sigma(E, r, s)$ , then we have

(3.4) $\sigma(E, r, s+2r)=1/\sigma$ , $\sigma(E, r+2s, s)=-1/\sigma$ ,

$\sigma(E, r+2s, s+2r)=-\sigma$ .

PROOF. For a given $(v, w)$ , there are 16 pairs $(r, s)$ of points of order 4
such that $2r=v$ and $2s=w$ , and half of them satisfy the condition $e_{4}(r, s)=i$ .
Clearly, if $(r, s)$ is a solution with $e_{4}(r, s)=i$ , other solutions are given by
$(r, s+2r);(r+2s, s),$ $(r+2s, s+2r)$ , and their ”inverse” $(-r, -s)$ , etc. Since
$(E, r, s)$ and $(E, -r, -s)$ are isomorphic level 4 structures, this proves the
first assertion. To prove the second assertion, note that we can use the
same function $X$ on $E$ to define $\sigma$ . Putting $\alpha=X(r)$ and $\beta=X(s)$ , we see
from (2.7) (with $v=2r,$ $w=2s$) that
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\langle 3.5) $\alpha^{2}=\lambda$ , $(\beta-1)^{2}=1-\lambda$ ;

$ X(r+2s)=(\alpha-\lambda)/(\alpha-1)=-\alpha$ ,

$X(s+2r)-1=\lambda/\beta-1=-(\beta-1)$ .
Now (3.4) follows from the definition (3.3), $q$ . $e$ . $d$ .

PROPOSITION 3. The invariants $\sigma=\sigma(E, r, s)$ and $\lambda=\lambda(E, 2r, 2s)$ are related
by the formula:
(3.6) $\lambda=\frac{1}{4}(\sigma+\frac{1}{\sigma})^{2}$ .

In particular, $\sigma$ is different from $0,$ $\pm 1,$ $\pm i,$ $\infty$ .
PROOF. With the notations in the above proof, we have $\lambda=\alpha^{2}$ and

$’(3.7)$ $\sigma=\alpha+i(\beta-1)$ , $\frac{1}{\sigma}=\alpha-i(\beta-1)$ ,

hence the formula. The last assertion follows from $\lambda\neq 0,1,$ $\infty$ , $q$ . $e$ . $d$ .
PROPOSITION 4. Let $(E, r, s)$ be an elliptic curve with level 4 structure de-

fined over $k$ , and set $\sigma=\sigma(E, r, s)$ . Then the coordinates of $r,$ $s$ are given by

(3.8) $\left\{\begin{array}{l}r=((\sigma^{2}+1)/2\sigma, i(\sigma^{2}+1)(\sigma-1)^{2}/4\sigma^{2}) ,\\s=((\sigma+i)^{2}/2i\sigma, \epsilon(\sigma^{2}-1)(\sigma+i)^{2}/4\sigma^{2}),\end{array}\right.$

the sign $\epsilon=\pm 1$ being determined by the condition $e_{4}(r, s)=i$ .
PROOF. Putting $\alpha=X(r)$ and $\beta=X(s)$ as before, we get

$\alpha=\frac{1}{2}(\sigma+\frac{1}{\sigma})$ and $\beta-1=\frac{1}{2i}(\sigma-\frac{1}{\sigma})$ ,

from (3.7). Then $Y(r)$ is given by (3.2), while we have from (3.1) and (3.5):

$Y(s)^{2}=\beta(\beta-1)(\beta-\lambda)=\{\beta(\beta-1)\}^{2}$

hence $Y(s)=\pm\beta(\beta-1)$ , in which the sign $\pm$ is determined by the condition
$e_{4}(r, s)=i$ , $q$ . $e$ . $d$ .

Note that points of $E$ of exact order 4 other than $\pm r$ and $\pm s$ are easily
computed by the addition theorem on $E$ (or by (2.6), (2.7)), and their coordinates
are as follows:

$(-(\sigma^{2}+1)/2\sigma, \pm i(\sigma^{2}+1)(\sigma+1)^{2}/4\sigma^{2})$ ,

$\mathfrak{i}(3.9)$ $(-(\sigma-i)^{2}/2i\sigma, \pm(\sigma^{2}-1)(\sigma-i)^{2}/4\sigma^{2})$ ,

$((\sigma^{2}+1)/2, \pm(\sigma^{4}-1)/4\sigma),$ $((\sigma^{2}+1)/2\sigma^{2}, \pm(\sigma^{4}-1)/4\sigma^{3})$ .
Therefore we see that the smallest field of definition of an elliptic curve with
level 4 structure $(E, r, s)$ is given by $F(\sqrt{-1}, \sigma(E, r, s))$ where $F$ is the prime
field in a field of definition of $E$ .
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Following Igusa’s treatment of the absolute invariant [4], we can state
PROPOSITION 5. Let $(E, r, s)$ and $(E^{\prime}, r^{\prime}, s^{\prime})$ be two elliptic curves with levet

4 structure. Then
i) $(E, r, s)$ and $(E^{\prime}, r^{\prime}, s^{\prime})$ are isomorphic if and only if $\sigma(E, r, s)=\sigma(E^{\prime}, r^{\prime}, s^{\prime})$ .

ii) If $(E^{\prime}, t, s^{\prime})$ is a specialization of $(E, r, s),$ $\sigma(E^{\prime}, r^{\prime}, s^{\prime})$ is the unique$\cdot$

specialization of $\sigma(E, r, s)$ over this sPecialization
PROOF. i) Since the only if part is clear, we prove the if part. Assume

$\sigma(E, r, s)=\sigma(E^{\prime}, r^{\prime}, s^{\prime})$ . Then two structures have the same $\lambda$ by (3.6); hence
both $E$ and $E^{\prime}$ are isomorphic to the same cubic (3.1) with the origin $(0,1,0)*$

If we identify $E,$ $E^{\prime}$ with the cubic, then Proposition 4 implies that
$r=r^{\prime}$ and $s=\pm s^{\prime}$

Since $e_{4}(r, s)=i=e_{4}(r^{\prime}, s^{\prime})$ , we must have $s=s^{\prime}$ , proving i).
ii) By the uniqueness of the function $X$ on $E$ , determined by a level 2

structure $(E, 2r, 2s)$ , it follows that the similar function $X^{\prime}$ on $E^{\prime}$ is the unique:
specialization of $X$ over the given specialization. Therefore

$\sigma(E, r, s)=X(r)+i(X(s)-1)$

is uniquely specialized to $\sigma(E^{\prime}, r^{\prime}, s^{\prime})$ , $q$ . $e$ . $d$ .
$\infty ROLLARY$ . The sign $\epsilon$ of $Y(s)$ in PropOsitiOn4(3.8) is independent of

individual level 4 structure.
Now we are ready to write down the universal family of elliptic curves

with level 4 structure over $k$ . We take a variable, $\tilde{\sigma}$ , over $k$ and consider
the affine curve $\Delta^{\prime}$ :

(3.10) $\Delta^{\prime}=P^{1}-\{0, \pm 1, \pm i, \infty\}$ .
Let $B^{\prime}$ denote the subvariety of $P^{2}\times\Delta^{\prime}$ dePned by the equation:

(3.11) $Y^{2}Z=X(X-Z)(X-\tilde{\lambda}Z)$ ,

where (X, $Y,$ $Z$ ) is the homogeneous coordinates of $P^{2}$ and $\lambda=(1/4)(\sigma+\sigma^{-1})^{2}$.
Let $\Phi^{\prime}$ denote the restriction to $B^{\prime}$ of the projection $P^{2}\times\Delta^{\prime}\rightarrow\Delta^{\prime}$ . Define the
sections $\tilde{o},\tilde{r}$ , and $\tilde{s}$ of $\Phi^{\prime}$ : $B^{\prime}\rightarrow\Delta^{\prime}$ by $\tilde{o}=(0,1,0)$ and by the formulas (3.8)

with $\sigma$ replaced by $\tilde{\sigma}$ . Summarizing the above arguments and noting that a
level 4 structure admits no non-trivial automorphism, we have proved

THEOREM 1. The fibre system $\Phi^{\prime}$ : $B^{\prime}\rightarrow\Delta^{\prime}$ , together with sections $\tilde{r},$ $s\sim of$

order 4, is the universal family of elliptic curves with level 4 $s$tructure.
REMARK. 1) Note that $B^{\prime}$ is a non-singular quasi-projective surface and

that both $B^{\prime}$ and $\Delta^{\prime}$ can be defined over $F(i)$ , the prime field $F$ adjoined by

1) As in [4], we can allow unequal characteristic specialization in ii), provided

that we fix $i=\sqrt{-1}$ in a compatible way in the fields under consideration.
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$i=\sqrt{-1}$

2) We also remark that the function field of the base curve $\Delta^{\prime},$ $k(\tilde{\sigma})$ , is
the field of elliptic modular functions of level 4 as defined by Igusa [4], cf.
p. 467-468.

3) Actually we can see that the fine moduli scheme of elliptic curves
with level 4 structure exists and is given by the affine scheme:

$M=SpecZ[\sqrt{-1},\tilde{\sigma}, 1/2\tilde{\sigma}(\tilde{\sigma}^{4}-1)]$ ,

cf. Igusa [5], Deligne [1], Mumford [9] Ch. 7. For each field $k$ with a primi-
tive 4-th root of unity, our curve $\Delta^{\prime}$ is obtained as $M\bigotimes_{Z[i]}k$ .

\S 4. Elliptic modular surface of level 4.

Let $k$ be a field of characteristic $p\neq 2$ containing a primitive 4-th root
of unity $i=\sqrt{-1}$, and let $\sigma$ be a variable over $k$ (instead of $\tilde{\sigma}$ of \S 3). We
put $K=k(\sigma)$ . Consider the elliptic curve

(4.1) $E:Y^{2}=X(X-1)(X-\lambda)$ , $\lambda=(1/4)(\sigma+1/\sigma)^{2}$ ,

over $K;E$ is nothing but the generic fibre of the universal family $\Phi^{\prime}$ : $ B^{\prime}\rightarrow$

$\Delta^{\prime}$ of elliptic curves with level 4 structure, discussed in \S 3. We denote by
$E(K)$ the group of K-rational points of $E$. Then it is clear that we have

(4.2) $E(K)\supset E_{4}=the$ group of points of $E$ of order 4,

cf. Proposition 4 of \S 3.
We mention here another normal form of $E$ known as Jacobi quartic

(cf. [3]):

(4.3) $C:y^{2}=(1-\sigma^{2}x^{2})(1-x^{2}/\sigma^{2})$ .
Actually the curve $C$ has a singular point at infinity and it is transformed
to the non-singular cubic $E$ by the birational transformation (over $K$):

(4.4) $X=\frac{\sigma^{2}+1}{2\sigma^{2}}$ . $\frac{x-\sigma}{x-1/\sigma}$ , $Y=\frac{\sigma^{4}-1}{4\sigma^{3}}$ . $\frac{y}{(x-1/\sigma)^{2}}$

On Jacobi quartic $C$, the points of order 4 have simple coordinates; their x-
coordinates are just

$\pm\sigma,$ $\pm 1/\sigma,$ $0,$ $\pm 1,$ $\pm i,$ $\infty$ , (cf. (3.8), (3.9)).

Sometimes it is easier to find K-rational points of $C$ than that of $E$ ; in fact,

this was how we first found K-rational points of infinite order in the case
$p=3$ (cf. \S 5).

Now we consider the Kodaira-N\’eron model of the elliptic curve $E$ over
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the function field $K=k(\sigma)$ , cf. [7], [10]. It is a non-singular projective sur-
face, $B$, defined over $k$ obtained as a compactification of the quasi-projective
surface $B^{\prime}$ . Moreover $B$ has a natural projection $\Phi;B\rightarrow P^{1}$ , which is an
extension of $\Phi^{\prime}$ : $B^{\prime}\rightarrow\Delta^{\prime}$ . Putting $\Sigma=P^{1}-\Delta^{\prime}=\{0, \pm 1, \pm i, \infty\}$ (cf. (3.10)), we
consider the singular fibre $C_{v}=\Phi^{-1}(v)$ over $ v\in\Sigma$ ;

(4.5) $ B=B^{\prime}\cup(UC_{v})v\in\Sigma$

PROPOSITION 6. Each singular fibre $C_{v}(v\in\Sigma)$ is compOsed of 4 non-singular
rational curves $\Theta_{v,i}(i=0,1,2,3)$ intersecting like $\#,$ $i$ . $e$ . it is of tyPe $I_{4}$ in
Kodaira’s notation [7] p. 604 (or of $tyPeb_{4}$ in N\’eron’s notation [10] p. 124).
Moreover each curve $\Theta_{v,i}$ in $B$ is defined over $K$.

PROOF. The absolute invariant $j$ of our elliptic curve $E$ is given as fol-
lows (cf. [4] p. 455):

\langle 4.6) $j=2^{8}(\lambda^{2}-\lambda+1)^{3}/\lambda^{2}(\lambda-1)^{2}=2^{4}(1+14\sigma^{4}+\sigma^{8})^{3}/\sigma^{4}(\sigma^{4}-1)^{4}$

Therefore each point $v$ of $\Sigma$ is a pole of order 4 of $j$ , and the singular fibre
$C_{v}$ is either of type $I_{4}$ or $I_{4}^{*}$ ( $=c5_{4}$ in [10]). On the other hand, the torsion
subgroup of $E(K)$ contains the group $E_{4}$ of points of order 4 (4.2), which
excludes the possibility of $I_{4}^{*}$ (cf. [EMS], Remark 1.10). Of course, we could
prove this directly without using (4.2), but our proof applies also for general
level $N$ case ([EMS] Appendix). The last assertion follows from the explicit
construction of $C_{v}$ (cf. [10], III-10), $q$ . $e$ . $d$ .

COROLLARY. The torsion subgroup of $E(K)$ is equal to $E_{4}$ .
THEOREM 2. Assume $k=C$. Then the algebraic surface $B$ is a $K3$ surface,

biholomorphic (over $P^{1}$ ) to the elliptic modular surface of level 4, $B(4)$ , in the
sense of $[EMS]$ (see p. 38 and p. 50). In particular, the first and second Betti
numbers of $B$ are given by

(4.7) $b_{1}=0$ , $b_{2}=22$ .
PROOF. We denote by $c_{2},$ $p_{g}$ and $q$ respectively the Euler number, the

geometric genus and the irregularity of $B$ . Then, applying theorems of
Kodaira [7] \S 12, we have

$c_{2}=12(p_{g}-q+1)=24$ and $q=0$ .
This implies $p_{g}=1,$ $b_{1}=2q=0,$ $b_{2}=c_{2}+2b_{1}-2=22$ and also the triviality of
the canonical bundle of $B$ . Therefore $B$ is a $K3$ surface. On the other hand,

let $E^{\prime}$ denote the generic fibre of $B(4)$ over $P^{1}$ . $E^{\prime}$ is an elliptic curve de-
fined over the field, $K^{\prime}$ , of elliptic modular functions of level 4 and we have
$E^{\prime}(K^{\prime})=E_{4}^{\prime}$ by [EMS] Theorem 5.5. Then there is an isomorphism of $K=C(\sigma)$

onto $K^{\prime}$ (over $C$), sending the element $j\in K$ of (4.6) to $12^{3}$-times ordinary

elliptic modular function (of level 1) $j(z)$ . When we identify $K$ with $K^{\prime}$ , both
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$E$ and $E^{\prime}$ have the same absolute invariant $j$ , and hence they are isomorphic
over some extension of $K$. Since we know that both $E(K)$ and $E^{\prime}(K)$ con-
tain all points of order 4, the isomorphism of $E$ onto $E^{\prime}$ is unique and de-
fined over $K$, cf. \S 3. By the uniqueness of $Kodaira- N\acute{e}ron$ model, the elliptic
surfaces $B$ and $B(4)$ are biholomorphic over $P^{1}$ , $q$ . $e$ . $d$ .

COROLLARY. If $k$ is a field of characteristic $0$ , then

$E(K)=E_{4}$ .
Going back to general case, we shall call the surface $B$ in characteristic

$p\neq 2$ the elliptic modular surface of level 4 in characteristic $p$ (defined over $k$),

and write $B=B_{p}$ if necessary. Now, for a non-singular algebraic surface $V$

in an arbitrary characteristic, Igusa [6] defined its Betti numbers $b_{\nu}(V)$ and
proved the inequality:

(4.8) $\rho(V)\leqq b_{2}(V)$ ,

$\rho(V)$ being the Picard number of $V$ . In our case, by a similar argument to
the proof of Theorem 2, we have (cf. [11] p. 20)

(4.9) $b_{1}(B_{p})=0$ , $b_{2}(B_{p})=22$ .
Another way to prove (4.9) is to reduce it to (4.7) by observing first that the
surface $B_{p}$ is obtained as reduction mod $p$ of the corresponding surface $B_{0}$

in characteristic $0$ and that Igusa’s Betti numbers are the same as those
defined by means of l-adic cohomology (cf. [2] 3.8).

On the other hand, the Picard number of $B_{p}$ is given by the formula (cf.

[EMS] Corollary 1.5):

(4.10) $\rho(B_{p})=rankE(K)+20$ ,

since there are 6 singular fibres of type $I_{4}$ . Combining (4.10) with (4.8) and
(4.9), we get

PROPOSITION 7. The rank of $E(K)$ is at most 2.
We note that, if $p=0$ , we can use the stronger inequality $\rho\leqq b_{2}-2p_{g}$

instead of (4.8), implying the finiteness of the group $E(K)$ . Note also that
the above argument can be applied to the case of any level $N\geqq 3$ , giving the
upper bound of the rank of $E(K)$ stated in the introduction.

\S 5. The group $E(K)$ in the case $p>0$ .
We use the same notations as in \S 4, except that we now assume $k$ is the

finite field $F_{q}$ , where

\langle 5.1) $q=p$ or $p^{2}$

according as $p\equiv 1$ mod4 (case a) $orp\equiv 3$ mod4 (case b). In this case, $B=B_{p}$
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is a non-singular projective surface defined over $F_{q}$ and its zeta function is
given by

(5.2) $\zeta(B, T)=1/(1-T)\cdot(1-qT)^{20}H_{3,q}(T)\cdot(1-q^{2}T)$ ,

where $H_{3,q}(T)$ is the polynomial

(5.3) $H_{3,q}(T)=\left\{\begin{array}{ll}(1-\pi^{2}T)(1-\pi^{\prime 2}T) & (case a) ,\\(1-qT)^{2} & (case b) ,\end{array}\right.$

associated with the Hecke polynomial of level 4 and of weight 3. (Here $\pi_{r}$

$\pi^{\prime}$ are integers of $Z[i]$ such that $p=\pi\pi^{\prime},$ $\pi\equiv 1$ mod $2i.$) We proved this
result in [EMS], Appendix (esp. p. 56-57), where we made use of some results
explained in the previous section. We note that the zeta function $Z_{B}(s)$ of
the elliptic curve $E$ defined over the function field $K=F_{q}(\sigma)$ , as defined in
[15], p. 142, is equal to the main part of the zeta function of $B$ :

(5.4) $Z_{E}(s)=H_{3,q}(q^{-S})$ .
We recall here the conjecture of Birch and Swinnerton-Dyer on the rank

of the group of rational points of an elliptic curve defined over a global
field, and the conjecture of Tate on the Picard number of a surface defined
over a finite field, cf. [13]. In our notations, their conjectures are:

$(5.5)^{*2)}$ rank E $(K)=order$ of zero of $Z_{E}(s)$ at $s=1$ ,

$(5.6)^{*}$ $\rho(B)=order$ of pole of $\zeta(B, T)$ at $T=q^{-1}$ .
Hence, in our case, these two conjectures are equivalent by (4.10), (5.2) andi
(5.4) and they claim:

$(5.7)^{*}$ rank $E(K)=\left\{\begin{array}{l}0,\\\rho(B)=\{\end{array}\right.$

2,

20 (case a),

22 (case b).

Moreover, the formula (4.10) implies the validity of these conjectures in (case
a). In view of Corollary to Proposition 6, we have

THEOREM 3. Assume $P\equiv 1$ mod 4. Then
i) The group $E(K)$ of K-rational pOints of the generic $ellip\hslash c$ curve $E$ witk

level 4 structure in characteristic $p$ consists exactly of points of order 4 of $E$ .
ii) The Picard number of the elliPtic modular surface of level 4 in charac-

teristic $p$ is equal to 20.
(Note that in the above theorem we may replace the constant field $F_{p}$ by ams
arbitrary field $k$ of the same characteristic, as we can see by a standardi
argument.)

For the remaining (case b), we restate (5.7):

2) *marked to indicate that these are conjectures !
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CONJECTURE. If $p\equiv 3$ mod 4, then

(5.8) rank $E(K)=2$ and $\rho(B)=22$ .
The rest of this section is devoted to the proof of this conjecture in the

special case $p=3$ . First the quotient group $E(K)/2E(K)$ is a finite group of
type (2, $\cdots$ , 2), $i$ . $e$ . a vector space over $F_{2}=Z/2Z$, whose dimension is $2+rank$

$E(K)$ , because $E(K)$ contains the group $E_{2}$ of points of order 2. Therefore
(5.8) is equivalent to

(5.9) $\dim_{F_{2}}E(K)/2E(K)=4$ ,

the inequality $\leqq$ being true by Proposition 7. Next, for any element $\alpha$ of
the multiplicative group $K^{\times}$ of the field $K$, we denote by cl $(\alpha)$ the class of
$\alpha$ modulo the subgroup $(K^{\times})^{2}$ of squares in $K^{\times}$ . The following lemma is a
crucial point in the proof of the so-called weak Mordell-Weil theorem (cf. [8]

Chapter 16):

LEMMA. Let $\varphi$ denote the map of $E(K)$ into the group $K^{\times}/(K^{x})^{2}\oplus K^{\times}/(K^{x})^{a}$

defined by

$\varphi(u)=$ ($c1(X(u))$ , cl $(X(u)-1)$) , $u=(X(u), Y(u))\in E(K).3)$

Then the map $\varphi$ induces an injective homomorphism:

(5.10) $E(K)/2E(K)CK^{\times}/(K^{x})^{2}\oplus K^{\times}/(K^{\times})^{2}$ .
PROPOSITION 8. Assume $p=3$ . Then the following points $u$ and $v$ are K-

rational points of $E$ :

$u=(\sigma^{2}, \sigma^{2}-1)$ ,
(5.11)

$v=$ $((1-i)(\sigma-i) , (1+i)(\sigma+1)(\sigma-i)(\sigma-1+i)/\sigma)$ .
Letting $r,$ $s$ denote the p0ints of order 4 of $E$ given by (3.8), the four points $u$ ,
$v,$ $\gamma$ and $s$ induce a basis of $E(K)/2E(K)$ over $F_{2}=Z/2Z$.

PROOF. The first assertion can be verified by computation. To prove
the second assertion, we form the table:

$-|\underline{X(u)}|\underline{X(u)-1}--$

$\underline{u}|\underline{\sigma^{2}}|\underline{\sigma^{2}-1}$

$\frac{v}{}\frac{r}{s}|^{\frac{(1-i)(\sigma-i)}{}}\frac{(\sigma^{2}+1)/2\sigma}{(\sigma+i)^{2}/2i\sigma}|^{\frac{(1-i)(\sigma+1)}{(\sigma-1)/2\sigma}}2\frac{2}{(\sigma-1)/2i\sigma}$

Suppose there is $a_{\alpha^{=}}^{\tau}relation$ :

3) When $X(u)=0,1$ or $\infty$ , the definition of $\varphi(u)$ must be suitably modified.
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$n_{1}u+n_{2}v+n_{3}r+n_{4}s\equiv 0$ mod $2E(K)$ .
By the above lemma (5.10), this is equivalent to

\langle 5.12) $\left\{\begin{array}{l}(\sigma^{2})^{n_{1}}\{(1-i)(\sigma-i)\}^{n_{2}}\{(\sigma^{2}+1)/2\sigma\}^{n_{3}}\{(\sigma+i)^{2}/2i\sigma\}^{n_{4}}\in(K^{\times})^{2} ,\\(\sigma^{2}-1)^{n_{1}}\{(1-i)(\sigma+1)\}^{n_{2}}\{(\sigma-1)^{2}/2\sigma\}^{n_{3}}\{(\sigma^{2}-1)/2i\sigma\}^{n_{4}}\in(K^{x})^{2}.\end{array}\right.$

Since $K=k(\sigma)$ is the quotient field of the polynomial ring $k[\sigma]$ (a UFD), it
follows from (5.12) that

$n_{1}\equiv n_{2}\equiv n_{3}\equiv n_{4}\equiv 0$ mod 2.

This completes the proof (cf. (5.9)), $q$ . $e$ . $d$ .
Actually the hardest part was to find K-rational points $u,$ $v$ . It is likely

that these $u,$ $v,$ $r$ and $s$ generate the whole group $E(K)$ . At any rate, we
obtain

THEOREM 4. Assume $p=3$ . Then the group $E(K)$ of K-rational points of
the generic elliptic curve $E$ with level 4 structure in characteristic 3 is an infinite
group of rank 2, whose torsion subgroup consists of points of order 4, $i$ . $e$ .

$E(K)\cong Z\oplus Z\oplus Z/4Z\oplus Z/4Z$ .
REMARK. Let $N$ be a natural number divisible by 4 and let $K_{N}$ denote

the field of elliptic modular functions of level $N$ in characteristic $p(p/rN)$ ,

cf. [4]. We have
$K_{N}\supset K_{4}=K=k(\sigma)\supset K_{2}=k(\lambda)$ .

It follows from the results of \S 3 that the generic elliptic curve with level $N$

structure is again given by the Legendre cubic

$E:Y^{2}=X(X-1)(X-\lambda)$ ,

considered now over the field $K_{N}$ . We have

$E(K_{N})\supset E(K_{4})\supset E(K_{2})=E_{2}$ ,

the last equality being a result of Igusa [4] p. 463. (It can also be proved
by the method used in \S 4.) Therefore Theorem 4 implies the following
partial result for higher level case:

COROLLARY. Let $N$ be a natural number divisible by 4 and not divisible by
3. Then the group of $K_{N}$-rational Points of the generic elliptic curve with level
$N$ structure in characteristic 3 is an infinite group of rank $\geqq 2$ .

We close this paper by raising a question. What is the true meaning of
rational points of infinite order on the generic elliptic curve with level $N$

structure in certain characteristic $p$ ?
Department of Mathematics

University of Tokyo
Hongo, Bunkyo-ku

Tokyo, Japan
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Added in proof. Recently we have proved the conjecture in \S 5 (5.8) for
all prime number $p$ such that $p\equiv 3mod4$ . The method of the proof is
different from that of \S 5, and depends on the fact that our surface B (elliptic

modular surface of level 4) is a Kummer surface. This result will be pub-
lished in “ Algebraic cycles on certain K3 surfaces in characteristic p ” (in
preparation).
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