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Introduction.

For a natural number N=3, let E denote the generic elliptic curve with
level N structure in characteristic p (p+ N), c¢f. §1. E is an elliptic curve
defined over the field, K, of elliptic modular functions of level N in charac-
teristic p (cf. Igusa [4]). We are interested in the group, E(K), of K-rational
points of E, which is finitely generated by Mordell-Weil theorem. By the
definition of E, E(K) contains the group, Ey, of points of E of order (divid-
ing) N, and it can be shown that

E(K)tor = EN .

Moreover we proved in our previous work [12] (cited as [EMS]) that, if the
characteristic p is zero, then E(K) itself is finite and therefore

E(K)=Ey=(Z/NZ).

One might expect that the same would hold in the case p >0, which is known
to be true for N=3. However this is not true in general as we explain
below for N=4.

We recall that, as to the rank of the group of rational points of an elliptic
curve defined over a global field, there is a famous conjecture of Birch,
Swinnerton-Dyer and Tate relating the rank with the zeta function of the
elliptic curve (cf. Tate [13]). In our case, assuming that the constant field
k of K is a finite field containing a primitive N-th root of unity, we see that
the zeta function of E over K is essentially equal to the Hecke polynomial
of level N and of weight 3, cf. [EMS], Appendix. In particular, we get an
upper bound for the rank of E(K):

* Some results in this paper were reported at “U.S.-Japan Seminar on Modern
Methods in Number Theory”, Tokyo, Aug. 30-Sept. 5, 1971, under the title “Rational
points of Jacobi’s quartic curve y%= (1—o0%x%) (1—x2%/06%) over k(o)”.
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(N—=3) N 1
rank B(K) S g p(N),  p(N)=—5N*TI (1——5).

prime

The purpose of this paper is to study the first non-trivial case N=4
more closely. We have (cf. [EMS] p. 56-57):

THEOREM. Assume N=4. Then

i) E(K)tor=E, and rank E(K) < 2.

ii) If p=1 mod4, then E(K)=E,.

The conjecture of Birch, Swinnerton-Dyer and Tate suggests:

CONJECTURE. If p=3 mod4, then rank E(K)=2.

We shall prove a special case of this conjecture:

THEOREM. If p=3, then rank E(K)=2.

We can also state these results as follows. Let B, denote the elliptic
modular surface of level 4 in characteristic p#2; it is the Kodaira-Néron
model of E over K [EMS]. The surface B, is a K3 surface with Picard
number p(B,)=20 (and Betti number b,=22), and B, is a reduction of B,
mod p. Then we have

20 for p=1 mod4,

p(By) =
? 22 for p=3,

and, conjecturally, p(B,)=22 for all p=3 mod 4. 4

The contents of this paper are as follows. In §1, we recall the definition
of elliptic curves with level N structure, and in §2 and § 3, we consider the
special cases N=2 and 4. In particular, we shall explicitly construct the
universal family of elliptic curves with level 4 structure in §3. The generic
elliptic curve E in this case is given by the Legendre cubic

Vie X(X-1D(X-2), i=—(ott),

or by the Jacobi quartic
y=1-0a’x*)(1—x*/0?),

both defined over K=~k(o), ¢ being a variable over a field k. After discuss-
ing the relation of our problem to the theory of surfaces in §4, we prove
the above theorems in §5. Our proof of the second theorem (for p=3) is
rather computational, and we think that there should be a theoretical proof
which clarifies the meaning of the appearance of rational points of infinite
order on the generic elliptic curve with level N structure in certain charac-
teristic p.
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§1. Elliptic curves with level N structure.

Let E be an elliptic curve, i. e. an abelian variety of dimension one, defined
over a field 2. For each natural number N relatively prime to the charac-
teristic of k, the group, Ey, of points of order N of E is a product of 2
cyclic groups of order N. There is a natural skew-symmetric pairing ey of
Ey with itself (Weil [14]). It follows that, if all points of order N are k-
rational, then % contains a primitive N-th root of unity.

In the following, we fix once for all a primitive N-th root of unity, ¢, in
k; (k C) can be called a level N structure on k. An elliptic curve with level
N structure is, by definition, a triple (E, r, s) consisting of an elliptic curve
E together with an ordered basis 7, s of Ey such that ex(r, s)=¢. We say
that (E,7,s) is defined over k if E,r, s are all defined over k. Two such
triples (E, 7, s) and (F’, v/, s’) are called isomorphic if there is an isomorphism
of E onto E' mapping 7, s to 7/, s’. An elliptic curve with level N structure

has no non-trivial automorphism if N=3. Therefore, given an elliptic curve
E and N=3, there exist

ﬂ(N>=%N3lgv (1—) w=3
prime
distinct level N structures on E up to isomorphism.

Finally it is known that, for N=3, there exists a universal family of
elliptic curves with level N structure parametrized by an affine curve, whose
function field K is the field of elliptic modular functions of level N in the
sense of Igusa (cf. Igusa [6], Deligne [1], Mumford [9]). We call the
generic member of this universal family the generic elliptic curve with level
N structure, which is an elliptic curve defined over K. For the case N=4,
we shall explicitly construct the universal family in § 3.

§2. Level 2 structures.

Let k£ be a field of characteristic #+2 and let E be an elliptic curve with
origin 0. We denote by [%] the divisor corresponding to a point u of E.
Then a divisor 3Ym;[u;] is a principal divisor if and only if Xm;=0 and
S m;u; =0 (Abel’'s theorem). Moreover if a principal divisor is k-rational, it
is the divisor of a function defined over k.

Now let (E, v, w) be a level 2 structure on E, defined over k (cf. Igusa
[4] p. 454-455). Then there exists a unique function X on E (defined over k)
such that

{2.1) (X)=2[v]—2[0], Xw)=1.
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If we put

(2.2) A=A(E, v, w)= X(v+w),

then 1+#0, 1, o and we have

(2.3) (X—=1)=2[w]—2[0], (X—)=2[v+w]—2[0].

‘On the other hand, there is a function Y on E (defined over k) such that
(2.4) ' (Y)=[v]+[w]+Lv+w]—3[o].

Hence we have

€2.5) cY?=X(X—1)(X—-2),

with some constant ¢k, ¢+ 0. (Note that ¢ may not be a square in k) The
map
u— (X(u), Y(u), 1)

«defines an imbedding of E into P? the image being the non-singular cubic
curve (2.5) considered in P2 The origin o is mapped to the (unique) point
at infinity (0, 1, 0), and the points of order 2 v, w and v+w of E are mapped
respectively to the points with coordinates

(X, Y)=(0,0), (1,0), (1 0).

The inversion and translations by points of order 2 of E are represented as
follows in the coordinates X, Y :

{2.6) X(—w)=Xw), Y(—w)=—-Yu);
- X(u4v)=2/X(w), Y(utv)=-—-2Y(w)/X(u);
@27 1 Xu+w)=Xw—D/(Xw-1), Yut+w)=Q@-DYw)/( X(u)—1)*;
- X(u+v+w)=AXw)—1)/(X(w)—2), Y(utv+w)=—22—DY(u)/(X(u)—4)".

‘We can prove these formulas simply by checking that both sides have the
same divisor considered as functions of u € E and that they have the same
value at a suitable point.

§3. Level 4 structures.

Now we consider a level 4 structure (FE, 7, s) defined over k. (We implicitly
assume that 2 is a field of characteristic #2, given with a fixed primitive
4-th root of unity i=+/—1 €k and that e,(r, s)=1, cf. §1.) The “underlying”
level 2 structure (E, 27, 2s) of (E, r, s) determines a unique function X on E
and some function Y, unique up to constants, satisfying [2.1), -+, (2.7) (with
v=2r and w=2s). We claim that Y can be uniquely normalized so that we
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have ¢=1 in (2.5). In fact, putting u=7 in (2.6) and (2.7),, we get X(—r)=
X(), X(r)*=2. Hence, by (2.5), we have

cY(r)* = X(r)(X(r)—1)(X(r)—2)
= {{X(")(X(")—D}*.

Since; by assumption, X(r) and Y(r) are (non-zero) elements in k2, it follows
that ¢ is a square in k. Therefore, replacing Y by +/¢Y, we can take c=1
in (2.5), i.e. we get the Legendre normal form of E:

(3.1 Vi = X(X—1)(X—-2).

The function Y on E is unique up to sign and we can uniquely normalize it
by the condition :

(3.2) Y(r) =1 X(r(X()—1).

Summarizing, we have proved
PROPOSITION 1. Let . (E, 7, s) be an elliptic curve with level 4 structure de-
Jfined over a field k. Then there exists a unique pair of functions X, Y on E,
defined over k, giving an isomorphism of E onto the non-singular cubic (3.1)
and satisfying (2.1), -, (2.7) and (3.2) with v=2r, w=2s and 1= X(2r+2s).
We shall define the “level 4 invariant” or the “modulus” of a level 4
structure (E, 7, s) by '

(3.3) oc=0(E, r, s)= X(r)+i(X(s)—1).

PROPOSITION 2. Given a level 2 structure (E, v, w), there exist exactly four
level 4 structures which have (E, v, w) as the underlying level 2 structure; if
(E, v, s) is one of them, the other. are given by

(E, r, s+27), (E, r+2s, s), (E, r+2s, s+2r).

Moreover, if we put o =0(E, r, s), then we have

(34) o(E,r,s+2r)=1/0, o(E, r+2s,s)=—1/0,
o(E, r+2s, s+2r)=—o. |

PrOOF. For a given (v, w), there are 16 pairs (7, s) of points of order 4
such that 2»=v and 2s=w, and half of them satisfy the condition e,(r, s)=1.
Clearly, if (r, s) is a solution with e,(r, s)=1, other solutions are given by
(r, s+2r); (r+2s,s), (r+2s, s+2r), and their “inverse” (—r7, —s), etc. Since:
(E,1,s) and (E, —r, —s) are isomorphic level 4 structures, this proves the
first assertion. To prove the second assertion, note that we can use the
same function X on E to define o. Putting a= X(r) and f= X(s), we see
from (2.7) (with v=2r, w=2s) that
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{3.5) at=21, (B—1)?>=1—-2;
Xr+2s)=(a—A)/(a—1)=—a,
X(s+2r—1=2/—1=—(—1).

Now follows from the definition [3.3), gq.e.d.
PROPOSITION 3. The invariants ¢ =o(E, v, s) and A= A(E, 2r, 2s) are related
by the formula:

@6) 1= (ot5).

In particular, o is different from 0, +1, —+1i, oo,
PrOOF. With the notations in the above proof, we have 2=a? and

3.7) o=atilf-1), ==a—if-1),

hence the formula. The last assertion follows from 2+0, 1, oo, q.e.d.
PROPOSITION 4. Let (E, 7, s) be an elliptic curve with level 4 structure de-
fined over k, and set 6 =0(E, r,s). Then the coordinates of v, s are given by

r={_0%+1)/20, (6*+1)c—1)*/40?),
(3.8) {

s =((o+1)%/2i0, e(o®—1)(oc+i)?/40?),

the sign e= =1 being determined by the condition e/r, s)—1.
PROOF. Putting a= X(») and 3= X(s) as before, we get

) e b
from (3.7). Then Y(#) is given by while we have from [(3.1] and (3.5):
Y(s)*=p(B—1(—2)={p(—1)}",

hence Y(s)= +£p(8—1), in which the sign + is determined by the condition
e, r,s)=1, q.e.d.

Note that points of F of exact order 4 other than +7 and =s are easily
computed by the addition theorem on E (or by (2.6), (2.7)), and their coordinates
.are as follows:

(—(*+1)/20, +i(o*+1)(0+1)*/40%),
(3.9) (—(0—1)*/210, £(0*—1)0—1)"/407),
(0®+1)/2, +(o*—1)/40), (6*+1)/20°% £(0'—1)/40%).
Therefore we see that the smallest field of definition of an elliptic curve with

level 4 structure (E, 7, s) is given by F(v/ —1, o(E, r, s)) where F is the prime
field in a field of definition of E.
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Following Igusa’s treatment of the absolute invariant [4], we can state

PROPOSITION 5. Let (E, r,s) and (E’, v/, s’) be two elliptic curves with level
4 structure. Then

i) (E,r, s)and (E', v/, s’y are isomorphic if and only if o(E, r, s)=c(E’, v/, s’).

iy If (E',r',s") is a specialization of (E,r,s), o(E/, v, s’) is the unique

specialization of o(E, r, s) over this specialization.”

PROOF. i) Since the only if part is clear, we prove the if part. Assume
o(E, r,s)=a(E’, ', s’). Then two structures have the same A by [3.6); hence
both E and E’ are isomorphic to the same cubic[(3.1) with the origin (0, 1, 0).
If we identify E, E’ with the cubic, then [Proposition 4] implies that

r=rvr’ and s=+s’,

Since e,(r, s)=i=¢,(r’, s’), we must have s=s’, proving i).

ii) By the uniqueness of the function X on E, determined by a level 2
structure (E, 2r, 2s), it follows that the similar function X’ on E’ is the unique:
specialization of X over the given specialization. Therefore

o(E, r, s) = X(r)+i#X(s)—1)

is uniquely specialized to o(E’, 7/, s’), q.e.d.

COROLLARY. The sign ¢ of Y(s) in Proposition 4 is independent of
individual level 4 structure.

Now we are ready to write down the universal family of elliptic curves
with level 4 structure over k. We take a variable, 4, over 2 and consider
the affine curve 4’:

(3.10) 4'=P*— {0, +1, +1i, oo} .
Let B’ denote the subvariety of P?*X 4’ defined by the equation:
3.11) Y:Z=X(X—2ZXX—iZ),

where (X, Y, Z) is the homogeneous coordinates of P? and 1= (1/4)G+5 1)
Let @’ denote the restriction to B’ of the projection P*x 4’— 4’. Define the
sections J, #, and § of @' : B — 4’ by 6=(0,1,0) and by the formulas [(3.8)
with ¢ replaced by . Summarizing the above arguments and noting that a
level 4 structure admits no non-trivial automorphism, we have proved
THEOREM 1. The fibre system @': B’— 4’, together with sections #, § of
order 4, is the universal family of elliptic curves with level 4 structure.
REMARK. 1) Note that B’ is a non-singular quasi-projective surface and

that both B’ and 4’ can be defined over F(i), the prime field F adjoined by

1) As in [4], we can allow unequal characteristic specialization in ii), provided

that we fix i=+'—1 in a compatible way in the fields under consideration.
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i=+—1.
2) We also remark that the function field of the base curve 4/, k(3), is

the field of elliptic modular functions of level 4 as defined by Igusa [4], cf.
p. 467-468.

3) Actually we can see that the fine moduli scheme of elliptic curves
with level 4 structure exists and is given by the affine scheme:
M =Spec Z[V—1, 4, 1/24(5*—1)],

cf. Igusa [5], Deligne [1], Mumford Ch.7. For each field k with a primi-

tive 4-th root of unity, our curve 4’ is obtained as M ;®]k'
T

§ 4. Elliptic modular surface of level 4.

Let & be a field of characteristic p + 2 containing a primitive 4-th root
of unity i=+/—1, and let ¢ be a variable over % (instead of & of §3). We

put K=~k(s). Consider the elliptic curve
4.1) E: Vi=X(X—-1)(X—-A4), A=1/4)(e+1/0)?,

over K; E is nothing but the generic fibre of the universal family @’: B'—
4’ of elliptic curves with level 4 structure, discussed in §3. We denote by
E(K) the group of K-rational points of E. Then it is clear that we have

4.2) E(K)>DE,=the group of points of E of order 4,
cf. of §3.

We mention here another normal form of E known as Jacobi quartic

(cf. 3D:
4.3) C: y*=0—-o%x)(1—x%/0?).

Actually the curve C has a singular point at infinity and it is transformed
to the non-singular cubic E by the birational transformation (over K):

_ o4l | x—o _o-1 3
“.4) X= 20°* x—1/c ’ Y= 40°® (x—1/0)% *

On Jacobi quartic C, the points of order 4 have simple coordinates; their x-
coordinates are just

+0, +1/0, 0, £1, +i, oo,  (cf. [3.8) (3.9)).

Sometimes it is easier to find K-rational points of C than that of E; in fact,
this was how we first found K-rational points of infinite order in the case
p=3 (cf. §5).

Now we consider the Kodaira-Néron model of the elliptic curve E over
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the function field K= k(o), cf. [7], [10]. It is a non-singular projective sur-
face, B, defined over %k obtained as a compactification of the quasi-projective
surface B’. Moreover B has a natural projection @: B— P!, which is an
extension of @’: B'’—4’. Putting 3 =P'—4'={0, 1, +1, oo} (cf. [3.10)), we
consider the singular fibre C,=® *(v) over ve X':

(4.5) B=PB"\J( LéC,,).

PROPOSITION 6. Each singular fibre C, (v € X) is composed of 4 non-singular
rational curves 6,; (i=0,1,2,3) intersecting like §, i.e. it is of type I, in
Kodaira’s notation [7] p. 604 (or of type b, in Néron’s notation [10] p. 124).
Moreover each curve O, in B is defined over K.

PROOF. The absolute invariant j of our elliptic curve E is given as fol-

lows (cf. p. 455):
(4.6) J=25(2— 24+ 1%/ 2%(A—1) = 2"(1+ 140"+ 08)* /a*(o*—1)*.

Therefore each point v of 2 is a pole of order 4 of j, and the singular fibre
C, is either of type I, or I¥ (=c¢5, in [10]). On the other hand, the torsion
subgroup of E(K) contains the group E, of points of order 4 (4.2), which
excludes the possibility of /¥ (cf. [EMS], Remark 1.10). Of course, we could
prove this directly without using (4.2), but our proof applies also for general
level N case ((EMS] Appendix). The last assertion follows from the explicit
construction of C, (cf. [10], I1I-10), q.e.d.

COROLLARY. The torsion subgroup of E(K) is equal to E,.

THEOREM 2. Assume k= C. Then the algebraic surface B is a K3 surface,
biholomorphic (over PY) to the elliptic modular surface of level 4, B(4), in the
sense of [EMS] (see p. 38 and p. 50). In particular, the first and second Betti
numbers of B are given by

4.7) b,=0, b,=22.

PrOOF. We denote by ¢, p, and ¢ respectively the Euler number, the
geometric genus and the irregularity of B. Then, applying theorems of
Kodaira § 12, we have

¢, =12(p,—q+1)=24 and qg=0.

This implies p,=1, b;=2¢=0, b,=c,+2b,—2=22 and also the triviality of
the canonical bundle of B. Therefore B is a K3 surface. On the other hand,
let E’ denote the generic fibre of B(4) over P'. E’ is an elliptic curve de-
fined over the field, K, of elliptic modular functions of level 4 and we have
E'(K')=E} by [EMS] Theorem 5.5. Then there is an isomorphism of K=C(o)
onto K’ (over C), sending the element j< K of (4.6) to 12°-times ordinary
elliptic modular function (of level 1) j(z). When we identify K with K’, both
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E and E’ have the same absolute invariant j, and hence they are isomorphic
over some extension of K. Since we know that both E(K) and E'(K) con-
tain all points of order 4, the isomorphism of E onto E’ is unique and de-
fined over K, cf. §3. By the uniqueness of Kodaira-Néron model, the elliptic
surfaces B and B(4) are biholomorphic over P!, q.e.d.

COROLLARY. If k is a field of characteristic 0, then

E(K)=E,.
Going back to general case, we shall call the surface B in characteristic
D+ 2 the elliptic modular surface of level 4 in characteristic p (defined over k),
and write B= B, if necessary. Now, for a non-singular algebraic surface V

in an arbitrary characteristic, Igusa [6] defined its Betti numbers b,(V) and
proved the inequality:

4.8) p(V)=0bV),

o(V) being the Picard number of V. In our case, by a similar argument to
the proof of we have (cf. [1I] p. 20)

(4.9) bi(B,)=0, b (B,)=22.

Another way to prove is to reduce it to[4.7) by observing first that the
surface B, is obtained as reduction mod p of the corresponding surface B,
in characteristic 0 and that Igusa’s Betti numbers are the same as those
defined by means of [-adic cohomology (cf. 3.8).

On the other hand, the Picard number of B, is given by the formula (cf.
[EMS] Corollary 1.5):

(4.10) o(B,) = rank E(K)+20,

since there are 6 singular fibres of type I,. Combining with and
(4.9), we get

PROPOSITION 7. The rank of E(K) is at most 2.

We note that, if p=0, we can use the stronger inequality p=b,—2p,
instead of implying the finiteness of the group E(K). Note also that
the above argument can be applied to the case of any level N= 3, giving the
upper bound of the rank of E(K) stated in the introduction.

§5. The group E(K) in the case p>0.

We use the same notations as in §4, except that we now assume £ is the
finite field F,, where

(5.1) g=p or P

according as p=1 mod 4 (case a) or p=3 mod 4 (case b). In this case, B=B,
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is a non-singular projective surface defined over F, and its zeta function is
given by

(5.2) LB, T)=1/1—T)-(1—qT)*H, ((T)-(1—¢°T),
where H; (T) is the polynomial

A—=T)Y1—r"?T) (case a),
(1—qT)? (case b),

associated with the Hecke polynomial of level 4 and of weight 3. (Here =,
n’ are integers of Z[i] such that p=zr/, r=1 mod 2i.) We proved this
result in [EMS’], Appendix (esp. p. 56-57), where we made use of some results
explained in the previous section. We note that the zeta function Zz(s) of
the elliptic curve E defined over the function field K= Fy (o), as defined in
[15], p. 142, is equal to the main part of the zeta function of B:

(54) Zg(s)=Hy,q(q7") .

(5.3) H, (T)=

We recall here the conjecture of Birch and Swinnerton-Dyer on the rank
of the group of rational points of an elliptic curve defined over a globak
field, and the conjecture of Tate on the Picard number of a surface defined
over a finite field, cf. [13]. In our notations, their conjectures are:

(5.5)*» rank E(K)=order of zero of Zg(s) at s=1,
(5.6)* o(B)=order of pole of {(B,T) at T=q*.

Hence, in our case, these two conjectures are equivalent by [(4.10), and
and they claim:

0, 20 (case a),
(B.7* rank E(K)= o(B) = {
2, 22 (case b).
Moreover, the formula implies the validity of these conjectures in (case
a). In view of [Corollary] to [Proposition 6, we have
THEOREM 3. Assume p=1 mod4. Then
i) The group E(K) of K-rational points of the generic elliptic curve E with
level 4 structure in characteristic p consists exactly of points of order 4 of E.
ii) The Picard number of the elliptic modular surface of level 4 in charac-
teristic p is equal to 20.
(Note that in the above theorem we may replace the constant field F, by am
arbitrary field 2 of the same characteristic, as we can see by a standard
argument.)
For the remaining (case b), we restate (5.7):

2) * marked to indicate that these are conjectures!
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CONJECTURE. If p=3 mod4, then
(5.8) rank E(K)=2 and o(B)=22.

The rest of this section is devoted to the proof of this conjecture in the
special case p=3. First the quotient group E(K)/2E(K) is a finite group of
type (2, --+, 2), i.e. a vector space over F,= Z/2Z, whose dimension is 2-+rank

E(K), because E(K) contains the group E, of points of order 2. Therefore
is equivalent to

(5.9) dimr, E(K)/2E(K)=4,

the inequality < being true by Next, for any element a of
the multiplicative group K* of the field K, we denote by cl(a) the class of

a modulo the subgroup (K*)? of squares in K*. The following lemma is a

crucial point in the proof of the so-called weak Mordell-Weil theorem (cf.
Chapter 16):

LEMMA. Let ¢ denote the map of E(K) into the group K*/(K*)>*PK*/(K*)*
defined by

o(u)=(cl (X(w)), cl(X(w)—1)), u=(Xw), Y(u)e E(K).”
Then the map ¢ induces an injective homomorphism:
(5.10) E(K)/2E(K) G K*/(K*)*® K™ /(K*)*.

PROPOSITION 8. Assume p=23. Then the following points u and v are K-
rational points of E:

U= (0'2, 02—1) ’
v=(1A—i)e—1), A+i)o+1)(o—i)o—1+1)/0).

Letting r, s denote the points of order 4 of E given by (3.8), the four points u,
v, ¥ and s induce a basis of E(K)/2E(K) over F,=Z/2Z.

ProoOF. The first assertion can be verified by computation. To prove
the second assertion, we form the table:

(5.11)

X(u) X(uw)—1
. u 02 | - 0'2‘—,17 7
v | —ie—i) (1—i)o+1)
| (D)2 | (6—1)Y2
s | (otiyy2io (e =1)/2%c

Suppose there is aXrelation:

3) When X(u)=0, I or oo, the definition of ¢(x) must be suitably modified.
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nu+nv+n,r+n,s=0 mod 2E(K).
By the above lemma this is equivalent to
(e®" {1 —=1)(o—D)}"2{(a*+1)/20} "3 {(a +1)*/2i0} " & (K *)?,
(@* =) {1 =)o+ 1)} "2{(o6—1)*/20} "s{(0®—1)/2ig} ™ € (K*)*.

Since K= k(o) is the quotient field of the polynomial ring k[¢] (a UFD), it
follows from (5.12) that
n=En=n=n,=0 mod 2.
This completes the proof (cf. [(5.9), q.e.d.
Actually the hardest part was to find K-rational points u, v. It is likely

that these u, v, » and s generate the whole group E(K). At any rate, we
obtain

THEOREM 4. Assume p=3. Then the group E(K) of K-rational points of
the generic elliptic curve E with level 4 structure in characteristic 3 ts an infinite
group of rank 2, whose torsion subgroup consists of points of order 4, i.e.

EK)=ZDZDZ/AZD Z/AZ .

REMARK. Let N be a natural number divisible by 4 and let Ky denote
the field of elliptic modular functions of level N in characteristic p (p+ N),

cf. [4]. We have

(5.12)

KyDK,=K=Fk0)DK,=k(4).

It follows from the results of § 3 that the generic elliptic curve with level N
structure is again given by the Legendre cubic

E: YVi=X(X-1XX-2),
considered now over the field Ky. We have
E(Ky) DE(K)DE(K,)=E,,

the last equality being a result of Igusa [4] p. 463. (It can also be proved
by the method used in §4.) Therefore [Theorem 4 implies the following
partial result for higher level case:

COROLLARY. Let N be a natural number divisible by 4 and not diwisible by
3. Then the group of Ky-rational points of the generic elliptic curve with level
N structure in characteristic 3 is an infinite group of rank =2.

We close this paper by raising a question. What is the true meaning of
rational points of infinite order on the generic elliptic curve with level N

structure in certain characteristic p?
Department of Mathematics

University of Tokyo
Hongo, Bunkyo-ku
Tokyo, Japan
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Added in proof. Recently we have proved the conjecture in §5 for
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