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\S 1. Introduction.

The present paper is intended to be the first of a series of papers aimed
at dealing with a spectral and scattering theory for some partial differential
operators by application of the so-called abstract stationary method. We
take the attitude of studying problems in operator-theoretical terms as far
as possible and then handling differential operators by applying the obtained
results.

Some problems considered in the mathematical theory of scattering are:
i) to investigate the structure of the absolutely continuous spectrum of a
perturbed operator; ii) to prove the existence and the completeness of wave
operators; iii) to establish the discreteness, as defined in \S 5, of the singular
spectrum; and iv) to construct eigenfunction expansions. Among many works
concerning these problems we only mention a work of Ikebe in 1960 ([5])

and a group of more recent works on the abstract stationary method1) ([11],

[9], [14]). In [5] Ikebe treated the Schr\"odinger operator $-\Delta+q(x)$ by the
integral equation method under the main assumption that $q(x)=O(|x|^{-\delta})$ ,
$\delta>2$ , as $|x|\rightarrow\infty$ . With the aid of a theorem of Kato [7] concerning the
growth property of the solution of $-\Delta u+qu=\lambda u$ , he solved $i$ ) $-iv$) with a
sharper result that there is no singular continuous spectrum except for non-
positive eigenvalues. (The method was later applied to exterior problems in
[17], [6], etc.) On the other hand, it was shown in [11] etc. that problems
i) and ii) (and iv) partly) can be handled by the abstract stationary method.
In particular, it was shown by Kato [9] that problems i) and ii) for Schr\"od-
inger operators can be solved for $\delta>1$ and that the sharper result as Ikebe’s
holds for $\delta>5/4$ . Some more results were announced in [14].

Recently, S. Agmon investigated the spectral problem of differential
operators by a new method based on a weighted elliptic estimate and an-

1) For an overall exposition of the scattering theory with an extensive list of
literatures, the reader is referred to Kato [10].
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nounced that problems i), ii) and iv) can be solved for self-adjoint elliptic
operators of an arbitrary order (i) and iii) in [1] and iv) in a lecture at the
Mathematics Research Institute, Oberwolfach, 1971). The main assumption is
that all the coefficients approach to constants with the order $O(|x|^{-\delta}),$ $\delta>1$ ,
$|x|\rightarrow\infty$ . Stimulated by Agmon’s work, the present author tried to study
problem iii) in the framework of the operator-theoretical approach.

One purpose of the present paper is to present the results thus obtained
with a detailed proof. In this respect the main part is \S 5 and the main
theorem is Theorem 5.21. Another purpose of the paper is to give a refor-
mulation of the abstract stationary method with special regards to the fol-
lowing points: a) the attention is restricted to the so-called smooth pertur-
bation; and b) the discussion is based on a new form of assumptions (espe-

cially Assumption 3.3) which makes the applicability of the results broader.
It is our intention to give a relatively quick proof in the generality broad
enough for many applications. There are also some new elements in the
method of proof. \S 3 and \S 4 will be devoted for the latter purpose. They

also provide materials necessary in \S 5.
Applications to self-adjoint operators will be given in a subsequent paper

\langle $[15]$ ), where a relatively easy check of the assumptions introduced in this
paper will be performed. $ln$ this way we will obtain the result equivalent
to Agmon’s as far as problems i) and iii) are concerned. We shall leave
problem iv) to a later investigation. However, it may be mentioned that the
perturbed spectral representation $F_{\pm}$ constructed in \S \S 3 and 4 (cf. Theorem
3.11) takes over, at least partly, the role of eigenfunction expansions2). For
instance, problem ii) can be solved with the aid of $F_{\pm}$ (cf. Theorems 3.12 and
3.13).

In Agmon’s work (and in some of others) the principle of limiting absorp-

tion or something similar plays a decisive role. In our approach this $prin\rightarrow$

ciple is somewhat hidden behind the existence of the boundary values of the
resolvents or some related operator valued functions. To explain how the
usual form of the principle is derived, we shall make a short comment in
1] 6.1.

In \S 6.2 a remark will be made on the scattering matrix.
Finally, we mention that another abstract stationary theory for scatter-

ing has been developed by Birman and others and applied to various partial
differential operators (see [2] and references quoted there). They are mostly

concerned with problems i) and ii) and use conditions involving the trace
class to ensure the existence of boundary values. It seems that Birman’s

2) In the respect that $F_{\pm}$ are constructed first our approach is somewhat related
to works of Rejto [16], Howland [4], and Goldstein [3].
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theory can be aPplied to a wider type of differential operators with, however,
more stringent conditions on the decay of perturbing coefficients.

\S 2. Preliminaries.

2.1. Notations. The following notations will be used throughout the
present paper.

$\mathfrak{H},$ $\mathfrak{K},$ $\mathfrak{C},$ $\cdots$ denote Hilbert spaces. If required for clarity, we will distin-
guish norms and inner products in various spaces by the subscript like $\Vert u\Vert_{\Re}$ ,
$(u, v)_{\mathfrak{C}}$ . When no distinction is necessary, we simply write $\Vert u\Vert,$ $(u, v)$ , etc. for
various spaces.

All operators appearing in this paper are assumed to be linear and densely
defined unless otherwise stated. The domain and the range of an operator
$A$ are denoted by $\mathfrak{D}(A)$ and $\Re(A)$ , respectively. $\mathfrak{N}(A)=\{u\in \mathfrak{D}(A)| Au=0\}$ is
the null space of $A$ . The resolvent set of $A$ is denoted by $\rho(A)$ and the
resolvent by $R(\zeta;A)=(A-\zeta)^{-1}$ . The closure of a closable operator $A$ is
denoted by $[A]^{a}$ . For simplicity of the exposition we agree that a statement
containing $[A]^{a}$ includes implicitly the assertion that $A$ is closable.

$B(\mathfrak{H}, \mathfrak{K})$ stands for the Banach space of all bounded linear operators on
$\mathfrak{H}$ to $\mathfrak{K}$ and $B_{\infty}(\mathfrak{H}, \mathfrak{K})$ the subspace of $B(\mathfrak{H}, \mathfrak{K})$ consisting of all compact opera-
tors in $B(\mathfrak{H}, \mathfrak{K})$ .

Let $I$ be a Borel subset of $R^{1}=(-\infty, \infty)$ . For a Hilbert space $\mathfrak{C}$ the
Hilbert space of all strongly measurable $\mathfrak{C}$ -valued functions with square inte-
grable norm is denoted by $L^{2}(I;\mathfrak{C})$ . Here, the measure in $I$ is understood to
be the Lebesgue measure.

Let $I$ be an open set in $R^{1}$ and let $I^{\prime}\subset Ibe$ a Borel set. For brevity we
agree to write $I^{\prime}\Subset I$ when the closure $I^{\prime a}$ of $I^{\prime}$ is a compact subset of $I$.

2.2. Factorization scheme. We will always deal with two self-adjoint
operators $H_{1}$ and $H_{2}$ . Among a few ways of expressing $H_{2}$ as a perturbation
of $H_{1}$ the so-called factorization scheme due to Kato [8] is rather inclusive
and convenient. It will be formulated below in a form suitable for our
purpose.

Let $H_{1}$ and $H_{2}$ be self-adjoint operators in a Hilbert space $\mathfrak{H}$. For brevity
we put $R_{j}(\zeta)=R(\zeta;H_{j}),$ $\zeta\in\rho(H_{j})$ . We consider the situation formally ex-
pressed as $H_{2}=H_{1}+A^{*}CB=H_{1}+B^{*}C^{*}A$ .

ASSUMPTION 2.1. $A$ and $B$ are closed operators from $\mathfrak{H}$ to another Hil-
bert space $\mathfrak{K}$ . Furthermore, $C\in B(\mathfrak{K})$ .

ASSUMPTION 2.2. $\mathfrak{D}(A)\supset \mathfrak{D}(H_{1}),$ $\mathfrak{D}(B)\supset \mathfrak{D}(H_{1})$ .
From these assumptions it follows that

$AR_{1}(\zeta)\in B(\mathfrak{H}, \mathfrak{K})$ , $BR_{1}(\zeta)\in B(\mathfrak{H}, \mathfrak{K})$ ,
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so that $BR_{1}(\zeta)A^{*}$ is densely defined. One easily sees that

\langle 2.1) $[BR_{1}(\zeta)A^{*}]^{a}\subset B[R_{1}(\zeta)A^{*}]^{a}=B(AR_{1}(\overline{\zeta}))^{*}$ ,

all the members being closed operators. (When one member of the above
relation is a bounded operator, the inclusion is replaced by the equality.)

ASSUMPTION 2.3. $[BR_{1}(\zeta)A^{*}]^{a}\in B(\mathfrak{K})$ for one or equivalently all $\zeta\in p(H_{1})^{3)}$ .
We introduce the following notations:

(2.2) $Q_{1}(\zeta)=C[BR_{1}(\zeta)A^{*}]^{a}\in B(\mathfrak{K})$ , $\zeta\in\rho(H_{1})$ ;

(2.3) $G_{1}(\zeta)=1+Q_{1}(\zeta)\in B(\mathfrak{K})$ .
ASSUMPTION 2.4. For every $\zeta\in\rho(H_{1})\cap\rho(H_{2})$ the inverse $G_{1}(\zeta)^{-1}$ of $G_{1}(\zeta)$

exists and belongs to $B(\mathfrak{K})$ . Furthermore

\langle 2.4) $R_{2}(\zeta)=R_{1}(\zeta)-[R_{1}(\zeta)A^{*}]^{a}G_{1}(\zeta)^{-1}CBR_{1}(\zeta)$

holds for every $\zeta\in\rho(H_{1})\cap\rho(H_{2})$ .
DEFINITION 2.5. When $H_{1},$ $H_{2},$ $A,$ $B$ , and $C$ satisfy Assumptions2.1-2.4,

we write

\langle 2.5) $H_{2}\sim H_{1}+A^{*}CB\sim H_{1}+B^{*}C^{*}A$ .
The following two propositions are proved along the line given in Kato

[8].

PROPOSITION 2.6. Let $\zeta\in\rho(H_{1})$ . Then, $G_{1}(\zeta)^{-1}$ exists as an oPerator in
$B(\mathfrak{K})$ if and only if $\zeta\in\rho(H_{2})$ .

PROPOSITION 2.7. SuppOse that $H_{2}\sim H_{1}+A^{*}CB\sim H_{1}+B^{*}C^{*}A$ and put

(2.6) $Q_{2}(\zeta)=C[BR_{2}(\zeta)A^{*}]^{a}\in B(\mathfrak{K})$ , $\zeta\in\rho(H_{2})$ ,

(2.7) $G_{2}(\zeta)=1-Q_{2}(\zeta)\in B(\mathfrak{K})$ .
Then, we have

(2.8) $G_{2}(\zeta)=G_{1}(\zeta)^{-1}$

(2.9) $CBR_{2}(\zeta)=G_{1}(\zeta)^{-1}CBR_{1}(\zeta)$ ,

(2.10) $[R_{2}(\zeta)A^{*}]^{a}=[R_{1}(\zeta)A^{*}]^{a}G_{1}(\zeta)^{-1}$

for $\zeta\in\rho(H_{1})\cap\rho(H_{2})$ . Furthermore

$H_{1}\sim H_{2}-A^{*}CB\sim H_{2}-B^{*}C^{*}A$ .
2.3. Perturbation given by quadratic forms. The scheme given in \S 2.2

is realized if $H_{1}$ and $H_{2}$ are linked through sesqui-linear forms associated
with them. We now discuss such a situation. It is useful not only in appli-

3) According to the agreement made in \S 2. 1, this assumption includes the require-
ment that $BR_{1}(\zeta)A^{*}$ is closable.
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cations but in some part of the abstract approach.

Let $H_{j}=\int_{-\infty}^{\infty}E_{j}(d\lambda),$ $j=1,2$ , where $E_{j}$ is the spectral measure associated

with $H_{j}$ , and put

(2.11) $|H_{j}|^{\alpha}=\int_{-\infty}^{\infty}|\lambda|^{\alpha}E_{j}(d\lambda)$ , sgn $H_{j}=\int_{-\infty}^{\infty}sgn\lambda E_{j}(d\lambda)$ .

DEFINITION 2.8. For any $\theta,$ $0\leqq\theta\leqq 1/2$ , and $j=1,2$ the sesqui-linear form
$h_{j}^{(\theta)}$ on $\mathfrak{D}(|H_{j}|^{\theta})\times \mathfrak{D}(|H_{j}|^{1-\theta})$ is defined by

(2.12) $h\varphi^{)}[u, v]=(sgnH_{j}\cdot|H_{j}|^{\theta}u, |H_{j}|^{1-\theta}v)$ ,

$u\in \mathfrak{D}(|H_{j}|^{\theta}),$ $v\in \mathfrak{D}(|H_{j}|^{1-\theta})$ .
THEOREM 2.9. SuPpose that there exists $\theta,$ $0\leqq\theta\leqq 1/2$ , such that

(2.13) $\mathfrak{D}(|H_{1}|^{1-\theta})=\mathfrak{D}(|H_{2}|^{1-\theta})\equiv \mathfrak{D}_{1-\theta}$ .
Put $\mathfrak{D}_{\theta}=\mathfrak{D}(|H_{1}|^{\theta})=\mathfrak{D}(|H_{2}|^{\theta})^{4)}$ . Let $\mathfrak{K},$ $A,$ $B$ , and $C$ be as in AssumPtion 2.1 and
assume that

(2.14) $\mathfrak{D}(A)\supset \mathfrak{D}_{1-\theta}$ , $\mathfrak{D}(B)\supset \mathfrak{D}_{\theta}$ ,

(2.15) $h\wp[u, v]=h_{1}^{(\theta)}[u, v]+(CBu, Av)$ , $u\in \mathfrak{D}_{\theta},$ $v\in \mathfrak{D}_{1-\theta}$ .
Then, $H_{2}\sim H_{1}+A^{*}CB\sim H_{1}+B^{*}C^{*}A$ in the sense of Definition 2.5.

EXAMPLE 2.10. If $\theta=1/2$ and $H_{j}$ are bounded from below, then $h_{j}^{(1/2)}$ is
precisely the quadratic form associated with $H_{j}$ in the sense of Friedrichs.
If $\theta=0$ , then we have $\mathfrak{D}(A)\supset \mathfrak{D}(H_{1}),$ $B\in B(\mathfrak{H}, \mathfrak{K}),$ $\mathfrak{D}(H_{2})=\mathfrak{D}(H_{1})$ , and $H_{2}=$

$H_{1}+B^{*}C^{*}A$ . Only these two values of $\theta$ may be of practical interest.
But no additional complication will be introduced by considering other values
of $\theta$ simultaneously.

PROOF OF THEOREM 2.9. Assumption 2.2 is obviously satisfied. Put

$|R_{1}(\zeta)|=\int|\lambda-\zeta|^{-1}E_{1}(d\lambda)$ and $ W(\zeta)=\int\exp$ ( $-i$ arg $(\lambda-\zeta)$) $E_{1}(d\lambda)$ . Then

(2.16) $BR_{1}(\zeta)A^{*}=B|R_{1}(\zeta)|^{\theta}W(\zeta)|R_{1}(\zeta)|^{1-\theta}A^{*}$

$\subset B|R_{1}(\zeta)|^{\theta}W(\zeta)(A|R_{1}(\zeta)|^{1-\theta})^{*}\in B(\mathfrak{K})$ ,

whence follows Assumption 2.3. Note that $[BR_{2}(\zeta)A^{*}]^{a}\in B(\mathfrak{K})$ is obtained
similarly.

Assumption 2.4 will be verified by the following succession of lemmas.
LEMMA 2.11. Let $u=[R_{1}(\zeta)A^{*}]^{a}w,$ $w\in \mathfrak{K}$ . Then, $u\in \mathfrak{D}_{\theta}$ and

(2.17) $(hi^{\theta)}-\zeta)[u, v]=(w, Av)$ for any $v\in \mathfrak{D}_{1-\theta}$ .
PROOF. Factorizing $R_{1}(\zeta)$ as in (2.16), we see readily that $u\in \mathfrak{D}_{\theta}$ . If

4) The second equality follows from (2.13) by means of interpolation.
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$v\in \mathfrak{D}(H_{1}),$ $(h_{1}^{(\theta)}-\zeta)[u, v]=(u, (H_{1}-\overline{\zeta})v)=(w, Av)$ so that (2.17) holds. For a
general $v\in \mathfrak{D}_{1-\theta},$ $(2.17)$ is proved by the limit procedure. In fact, it suffices
to write (2.17) for $v_{n}=E_{1}([-n, n])v\in \mathfrak{D}(H_{1})$ and note that $Av_{n}=A|R_{1}(\zeta)|^{1-\theta}$ .
$|H_{1}-\zeta|^{1-\theta}v_{n}\rightarrow Av$ .

LEMMA 2.12. $G_{1}(\zeta)$ is one-to-one for every $\zeta\in\rho(H_{1})\cap p(H_{2})$ .
PROOF. Suppose $G_{1}(\zeta)w=w+Q_{1}(\zeta)w=0,$ $w\in \mathfrak{K}$ , and put $u=[R_{1}(\zeta)A^{*}]^{a}w$ .

From Lemma 2.11 and the relation $w=-Q_{1}(\zeta)w=-CBu$ it follows that
$(h_{1}^{(\theta)}-\zeta)[u, v]=-(CBu, Av)$ and hence $(h_{2}^{(g)}-\zeta)[u, v]=0$ for all $v\in \mathfrak{D}_{1-\theta}$ . This
implies that $u\in \mathfrak{D}(H_{2})$ and $(H_{2}-\zeta)u=0$ . Since $\zeta\in p(H_{2})$ , we must have $u=0$

and hence $w=-CBu=0$ . $q$ . $e$ . $d$ .
LEMMA 2.13. For every $\zeta\in p(H_{1})\cap p(H_{2})$ we have

(2.18) $R_{1}(\zeta)=R_{2}(\zeta)+[R_{1}(\zeta)A^{*}]^{a}CBR_{2}(\zeta)$ ,

(2.19) $CBR_{1}(\zeta)=G_{1}(\zeta)CBR_{2}(\zeta)$ ,

(2.20) $G_{1}(\zeta)(1-C[BR_{2}(\zeta)A^{*}]^{a})=1$ .
PROOF. Let $u,$ $v\in \mathfrak{H}$ and put $u^{\prime}=R_{2}(\zeta)u$ . Then,

(2.21) $(R_{1}(\zeta)u, v)=((H_{2}-\zeta)u^{\prime}, R_{1}(\overline{\zeta})v)$

$=(h_{1}^{(\theta)}-\zeta)[u^{\prime}, R_{1}(\overline{\zeta})v]+(CBu^{\prime}, AR_{1}(\overline{\zeta})v)$

$=(u^{\prime}, v)+([R_{1}(\zeta)A^{*}]^{a}CBu^{\prime}, v)$ ,

from which (2.18) follows. By inserting $v=B^{*}w,$ $w\in \mathfrak{D}(B^{*})$ , into (2.21) and
noting that $w$ ranges over a dense subset of $\mathfrak{K}$ , we see immediately that
$BR_{1}(\zeta)=BR_{2}(\zeta)+[BR_{1}(\zeta)A^{*}]^{a}CBR_{2}(\zeta)$ . Multiplying by $C$ from the left and
recalling (2.3), we get (2.19). Finally, we multiply (2.19) by $A^{*}$ from the right.
Then (2.20) follows after a simple manipulation. $q$ . $e$ . $d$ .

Completion of the proof of Theorem 2.9. The existence of $G_{1}(\zeta)^{-1}\in B(\mathfrak{K})$

follows from Lemma 2.12 and (2.20). Then (2.19) implies $CBR_{2}(\zeta)=$

$G_{1}(\zeta)^{-1}CBR_{1}(\zeta)$ . (2.4) is proved by inserting this into (2.18). $q$ . $e$ . $d$ .

\S 3. Perturbation of spectral representations and construction
of wave operators.

3.1. Assumptions. In order to formulate main theorems, we will intro-
duce several assumptions. We first write down all the assumptions and make
some comments afterwards (cf. Remark 3.6, Proposition 3.7).

Let $H_{j}=\int\lambda E_{j}(d\lambda),$ $j=1,2$ , be self-adjoint in $\mathfrak{H}$ and let $\mathfrak{K},$ $A,$ $B$ and $C$

satisfy Assumption 2.1. Let $I$ be a non-empty open set in $R^{1}$ . Since we
want to discuss the problem in a form localized with respect to the spectral
parameter, our attention will be restricted to the spectral Properties of the
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operators $E_{j}(I)H_{j}$ . The set $I$ will be fixed throughout the entire discussion.
ASSUMPTION 3.1. $H_{2}\sim H_{1}+A^{*}CB\sim H_{1}+B^{*}C^{*}A$ in the sense of Definition

2.5.
ASSUMPTION 3.2. There exist a Hilbert space $\mathfrak{C}$ and a unitary operator

$F$ from $E_{1}(I)\mathfrak{H}$ onto $L^{2}(I;\mathfrak{C})$ such that for every Borel set $I^{\prime}\subset I$ one has
$FE_{1}(I^{\prime})F^{-1}=\chi_{I^{\prime}}.$ , where $\chi_{I^{\prime}}$ . stands for the operator of multiplication by the
characteristic function $\chi_{I^{\prime}}$ of $I^{\prime}$ ( $i$ . $e$ . $(x_{I^{\prime}}\cdot u)(\lambda)=\chi_{I^{\prime}}(\lambda)u(\lambda)a$ . $e$ . in $I$ ).

ASSUMPTION 3.3. There exist $B(\mathfrak{K}, \mathfrak{C})$ -valued functions $T(\lambda;A)$ and $T(\lambda;B)$ ,
$\lambda\in I$, on $I$ such that: i) $T(\cdot ; A)$ and $T(\cdot ; B)$ are locally H\"older continuous
in $I$ with respect to the operator norm; and ii) there exist dense subsets
$\mathfrak{D}\subset \mathfrak{D}(A^{*})$ and $\mathfrak{D}^{\prime}\subset \mathfrak{D}(B^{*})$ such that for any $u\in \mathfrak{D}$ and $v\in \mathfrak{D}^{\prime}$ one has

(3.1) $T(\lambda;A)u=(FE_{1}(I)A^{*}u)(\lambda)$ $a$ . $e$ . in $I$ ,

(3.2) $T(\lambda;B)v=(FE_{1}(I)B^{*}v)(\lambda)$ $a$ . $e$ . in $I$ .

ASSUMPTION 3.4. For one or equivalently all $\zeta\in\rho(H_{1})$

(3.3) either $BR_{1}(\zeta)\in B_{\infty}(\mathfrak{K})$ or $AR_{1}(\zeta)\in B_{\infty}(\mathfrak{K})$ .
ASSUMPTION 3.5. The subspace generated by { $E_{j}(I^{\prime})A^{*}u|u\in \mathfrak{D}(A^{*}),$

$I^{\prime}$ is
a Borel subset of $I$ } is dense in $E_{j}(I)\mathfrak{H},$ $j=1,2$ .

REMARK 3.6. Since we are concerned mostly with applications to dif-
ferential operators, we assumed from the outset that $H_{1}$ has a nice spectral
representation in $I$ (Assumption 3.2). Assumption 3.2 implies in particular
that $H_{1}$ is absolutely continuous in $I$. If $\mathfrak{H}$ is separable, it is equivalent $to\backslash $

assuming that $H_{1}$ is absolutely continuous in $I$ with constant multiplicity. In
a separable case $\mathfrak{C}$ and $F$ are determined uniquely, up to the unitary equi-
valence for $\mathfrak{C}$ and up to a decomposable unitary operator in $L^{2}(I;\mathfrak{C})$ for $F$.
However, we need to single out one particular $\mathfrak{C}$ and $F$ to state Assumption
3.3.

Assumptions 3.3 and 3.4 are our main assumptions. Assumption 3.3, a
prototype of which was introduced in [13], plays an essential role in aPpli-
cation and allows the coefficients of perturbing differential operator to decay

as slow as $O(|x|^{-(1+\epsilon)}),$ $\epsilon>0$ . In Assumption 3.4, a relative compactness of
the perturbation, the appearance of the only one factor $A$ or $B$ of the pertur-
bation allows the perturbing differential operator to have the same order as
the unperturbed one. Assumption 3.5 was introduced to exclude the subspace
where the perturbation has no effects.

PROPOSITION 3.7. Let Assumptions2.2,3.2 and 3.3 be satisfied. If $I^{\prime}\Subset I$,
then $[E_{1}(I^{\prime})A^{*}]^{a}\in B(\mathfrak{K}, \mathfrak{H})$ and

(3.4) $\chi_{I^{\prime}}(\lambda)T(\lambda;A)u=(F[E_{1}(I^{\prime})A^{*}]^{a}u)(\lambda)$ , $a$ . $e.$ ,

for any $u\in \mathfrak{K}$ . Similar statement holds for $B$ , too. Furthermore, (3.1) and ( $ 3.2\rangle$,
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hold for any $u\in \mathfrak{D}(A^{*})$ and $v\in \mathfrak{D}(B^{*})$ .
COROLLARY 3.8. $T(\lambda;A)$ and $T(\lambda;B)$ are unique and are independent of

the choice of $\mathfrak{D}$ and $\mathfrak{D}^{\prime}$ .
PROOF OF PROPOSITION 3.7. $[E_{1}(I^{\prime})A^{*}]^{a}\in B(\mathfrak{K}, \mathfrak{H})$ follows from Assumption

2.2 at once. Next let $u\in \mathfrak{K}$ and let $u_{n}\in \mathfrak{D},$ $u_{n}\rightarrow u$ . (3.1) and Assumption 3.2
show that

$\chi_{I^{\prime}}(\lambda)T(\lambda;A)u_{n}=(FE_{1}(I^{\prime})A^{*}u_{n})(\lambda)=(F[E_{1}(I^{\prime})A^{*}]^{a}u_{n})(\lambda)$ , $a$ . $e$ .
(3.4) follows from this by letting $ n\rightarrow\infty$ (along with a suitable subsequence,
if necessary). Other assertions are checked easily. $q$ . $e$ . $d$ .

3.2. Theorems. Several familiar conclusions in the scattering theory can
be derived from the assumptions made in \S 3.1. These are summarized in
the following theorems, of which the first two are of preliminary nature.
The following notations will be $used^{5)}$ :

$\Pi\pm=\{\zeta|{\rm Im}\zeta\approx<0\}$ , $\Pi_{I}^{\pm}=\Pi^{\pm}\cup I$ .

THEOREM 3.9. The $B(\mathfrak{K})$ -valued function $G_{1}$ ; $\Pi^{\pm}\rightarrow B(\mathfrak{K})$ can be extended
uniquely to a locally Holder continuous $B(\mathfrak{K})$ -valued function $G_{1\pm};$ $\Pi_{I}^{\pm}\rightarrow B(\mathfrak{K})$ .
In particular, for every $\lambda\in I$ the boundary value

$\lim_{\downarrow 0}G_{1}(\lambda\pm i\epsilon)=G_{1\pm}(\lambda)$

exists with respect to the operatOr norm.
THEOREM 3.10. Let

(3.5) $e_{\pm}=$ { $\lambda\in I|G_{1\pm}(\lambda)$ is not one-to-one}.

Then, $e_{\pm}$ is a closed set with the (one-dimensional) Lebesgue measure $0$ . If
$\lambda\in I-e_{\pm}$ , then $G_{1\pm}(\lambda)^{-1}\in B(\mathfrak{K})$ . The $B(\mathfrak{K})$ -valued function $G_{2}$ : $\Pi^{\pm}\rightarrow B(\mathfrak{K})$ can
be extended uniquely to a locally Holder continuous $B(\mathfrak{K})$ -valued function $G_{2\pm}:$

$\Pi_{I-e_{\pm}}^{\pm}\rightarrow B(\mathfrak{K})$ . $G_{2\pm}$ is the inverse of $G_{1\pm}$ . In particular, for every $\lambda\in I-e_{\pm}$ the
boundary value

$\lim_{10}G_{2}(\lambda\pm i\epsilon)=G_{2\pm}(\lambda)$

exists with respect to the operat0r norm and it satisfies $G_{2\pm}(\lambda)=G_{1\pm}(\lambda)^{-1}$ .
In the sequel when we want to refer to the extension of $Q_{j},$ $j=1,2$ , or

other operator valued functions, we will use the notation similar to $G_{1\pm}$ with-
out any comment. Thus, for instance $G_{1\pm}(\lambda)=1+Q_{1\pm}(\lambda)$ . Usually in the
literature the notation $G_{1\pm}$ is used only for the boundary values $G_{1\pm}(\lambda)$ (more

often denoted by $G_{1}(\lambda\pm i0))$ . In this paper, however, $G_{1\pm}(\zeta)$ will be used also

5) Here and in what follows, whenever the double sign $\pm,$ $\mp appear$ in an asser-
tion or a formula, we tacitly agree that two statements or formulae are asserted to
hold, the one for the upper signs taken throughout and the other for the lower signs.
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for non-real $\zeta$ . Thus $G_{1\pm}(\zeta)=G_{1}(\zeta)$ if ${\rm Im}\zeta\neq 0$ .
Let us now put

(3.6) $e=e_{+}\cup e_{-}$

and state our main theorems.
THEOREM 3.11. Let Assumpti0ns 3.1-3.5 be satisfied and let $G_{2\pm}$ and $e$ be

as above. Then, there exists a uniquely determined unitary operat0r $F_{\pm}$ from
$E_{2}(I-e)\mathfrak{H}$ onto $L^{2}(I;\mathfrak{C})$ such that for every Borel set $I^{\prime}\subset I-e$ and every $ u\in$

$\mathfrak{D}(A^{*})$ one has

(3.7) $(F_{\pm}E_{2}(I^{f})A^{*}u)(\lambda)=x_{I^{\prime}}(\lambda)T(\lambda;A)G_{2\pm}(\lambda)u$ $a$ . $e$ . in $I$ .
Furthermore, $F_{\pm}$ satisfies $F_{\pm}E_{2}(I^{\prime})F_{\pm}^{-1}=\chi_{I^{\prime}}$ . for every Borel set $I^{\prime}\subset I-e$ .

THEOREM 3.12. Let $W_{\pm}=W_{\pm}(H_{2}, H_{1} ; I)=F_{\pm}^{*}F$. Then, $W_{\pm}$ is a unitary
operator from $E_{1}(I)\mathfrak{H}$ onto $E_{2}(I-e)\mathfrak{H}$ and satisfies the intertwining relation $H_{2}W_{\pm}$

$=W_{\pm}H_{1}$ on $E_{1}(I)\mathfrak{H}$. The operator $S=S(H_{2}, H_{1} ; I)=WIW_{-}$ is a unitary operator
in $E_{1}(I)\mathfrak{H}$ which commutes with $H_{1}$ .

THEOREM 3.13. Let Assumptions 3.1-3.5 be satisfied and let $W_{\pm}=W_{\pm}(H_{2}$ ,
$H_{1}$ ; $I$ ) be as constructed in Theorem 3.12. Let $\phi$ be a real valued Borel mea-
surable function on I such that

(3.8) $\int_{0}^{\infty}|\int_{I}f(\lambda)e^{-it\phi(\lambda)- i\xi\lambda}d\lambda|^{2}d\xi\rightarrow 0$ , $ t\rightarrow\infty$ ,

for any $f\in L^{2}(I)$ . Then, for any $u\in E_{1}(I)\mathfrak{H}$ the limit in the next formula exists
and

(3.9) $\lim_{t\rightarrow\pm\infty}e^{it\phi(H_{2})}e^{-it\phi(H_{1})}u=W_{\pm}u$ , $u\in E_{1}(I)\mathfrak{H}$ .

$W_{\pm}$ are called wave operat0rs (associated with $I$ ) and $S$ the scattering
operaior. Theorem 3.13 shows that the so-called invariance Principle for wave
operators holds. It also ensures that $W_{\pm}$ and hence $F_{\pm}$ do not depend on
the choice of $A,$ $B$ , and $C$ so long as they satisfy Assumptions 3.1-3.5.

3.3. Example. The following example of a Sturm-Liouville operator in
$R^{1}$ will be used occasionally for the purpose of illustration and motivation.
However, the results to be derived on the spectral properties of this operator

is well-known. Applications to partial differential operators will be given in
subsequent publications (see [15]).

EXAMPLE 3.14. Let $\mathfrak{H}=L^{2}=L^{2}(R^{1})$ and let

$L_{s}^{2}=L_{s}^{2}(R^{1})=\{u|(1+|x|^{2})^{s/2}u(x)\in L^{2}\}$ ,

$H_{s}^{1}=H_{s}^{1}(R^{1})=\{u\in L_{s}^{2}|u^{\prime}\in L_{s}^{2}\}$ ,

where $u^{\prime}=du/dx$ is taken in the sense of distribution and $s$ is a real number.
We write $H^{1}=H_{0}^{1}$ . Put
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$h_{1}[u, v]=\int_{-\infty}^{\infty}u^{\prime}\overline{v}^{\prime}dx$ , $u,$ $v\in H^{1}$

$h_{2}[u, v]=h_{1}[u, v]+\int_{-\infty}^{\infty}(pu^{\prime}\overline{v}^{\prime}+qu\overline{v})dx$ ,

where $p$ and $q$ are real bounded measurable functions such that i) $ 1+p(x)\geqq$

$c_{1}>0$ ; ii) max $\{|p(x)|, |q(x)|\}\leqq c_{2}(1+|x|^{2})^{-\delta/2}$ with $c_{2}>0,$ $\delta>1$ . $h_{2}$ correspond $ss$

to the Sturm-Liouville operator $-((1+p)u^{\prime})^{\prime}+qu$ .
In this example one has $\theta=1/2$ and $\mathfrak{D}_{1/2}=H^{1}$ . We write $p(x)=$

$c_{1}(x)(1+|x|^{2})^{-\delta/2}$ and $q(x)=c_{2}(x)(1+|x|^{2})^{-\delta/2},$ $c_{j}\in L^{\infty}(R^{1})$ . Let $\mathfrak{K}=L^{2}\oplus L^{2}$ and“
Put $Au=Bu=\{(1+|x|^{2})^{-\delta/4}u^{\prime}, (1+|x|^{2})^{-\delta/4}u\}$ , $C\{u_{1}, u_{2}\}=\{c_{1}u_{1}, c_{2}u_{2}\}$ , $where\triangleleft$

$\mathfrak{D}(A)=\mathfrak{D}(B)=\{u\in L^{2}|u^{\prime}\in L_{-\delta/2}^{2}\}$ .
We take $I=(O, \infty)$ and $\mathfrak{C}=C^{2}$ , the two-dimensional unitary space. De-

noting by $\mathcal{F}$ the one-dimensional Fourier transform and writing for brevity
$\nu(x)=(1+|x|^{2})^{1/2}$ , explicit forms of $F$ and $T(\lambda;A)$ can be written as follows:

$(Fu)(\lambda)=2^{-1/2}\lambda^{-1\prime 4}\{(\mathcal{F}u)(\lambda^{1/2}), (\mathcal{F}u)(-\lambda^{1/2})\}\in L^{2}((0, \infty);C^{2})$ ,

$T(\lambda;A)u=(F(\nu^{-\delta/2}u)^{\prime})(\lambda)+(F\nu^{-\delta/2}u)(\lambda)$

$=2^{-1/2}\lambda^{-1/4}\{(\mathcal{F}(\nu^{-\delta/2}u)^{\prime})(\lambda^{1/2}), (\mathcal{F}(\nu^{-\delta/2}u)^{\prime})(-\lambda^{1/2})\}+\cdots$

$=2^{-1/2}\lambda^{-1/4}\{(1+i\lambda^{1/2})(\mathcal{F}\nu^{-\delta/2}u)(\lambda^{1/2}), (1-i\lambda^{1/2})(\mathcal{F}\nu^{-\delta/2}u)(-\lambda^{1/2})\}$ .
Note that, since $\delta>1/2,$ $(\mathcal{F}\nu^{-\delta/2}u)(\xi)$ is a H\"older continuous function. Thus,.
Assumptions 5.2 and 5.3 are verified. Other assumptions being checke $(L$

immediately, we can apply theorems in \S 3.2 to this problem.

\S 4. Proof of Theorems 3.9–3.13.

Proofs of Theorems 3.9-3.13 were given essentially, but somewhat scat-
tered, in [9], [11], and [13]. Partly for the convenience of later reference $\cdot$

we give the proof of Theorems 3.9-3.12 in a form adapted to the present
setting. Principal changes are as follows: there are various simplifications
owing to the fact that we are concerned only with the smooth perturbation;
an iteration is needed in the proof of Theorem 3.10 because our compactness
assumption (Assumption 3.4) is weaker than those in earlier Papers; the
method of proof of the surjectivity of $F_{\pm}$ seems to be new. Since Theorem
3.13 as well as its proof will not be referred to later, we omit the proof of
Theorem 3.13, which is similar to (but somewhat simpler than) the proof of
Theorem 7.1 of [11].

4.1. Proof of Theorems 3.9 and 3.10.
PROPOSITION 4.1. Let $X$ and $Y$ be operat0rs each of which is equal to-

either $A$ or B. Let $f$ be a bounded Borel measurable complex valued function
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’on I and let $I^{\prime}\Subset I$. Then,

\langle 4.1) $[Yf(H_{1})E_{1}(I^{\prime})X^{*}]^{a}=\int_{I}f(\lambda)T(\lambda;Y)^{*}T(\lambda;X)d\lambda$ ,

where the integral on the right side is the Bochner integral in $B(\mathfrak{K})$ .
PROOF. Because of the continuity of T-operators the Bochner integral

on the right side of (4.1) exists. We denote it by $K$. Let $u\in \mathfrak{D}(X^{*}),$ $v\in \mathfrak{D}(Y^{*})$ ,
and $[a, \lambda]\subset I$, where $a$ lies left to $I^{\prime}$ . Then, by virtue of Assumption 3.2 and
Proposition3.7 we have

(4.2) $(E_{1}([a, \lambda])X^{*}u, Y^{*}v)=\int_{a}^{\lambda}(T(\mu;X)u, T(\mu;Y)v)d\mu$

and hence by differentiation

(4.3) $(d/d\lambda)(E_{1}[a, \lambda]X^{*}u, Y^{*}v)=(T(\lambda;Y)^{*}T(\lambda;X)u, v)$ , $a$ . $e$ .

Since $H_{1}$ is absolutely continuous in $I$, it follows from (4.3) that
$(Yf(H_{1})E_{1}(I^{\prime})X^{*}u, v)=(Ku, v)$ . This proves (4.1) because $u$ and $v$ range over
dense subsets. $q$ . $e$ . $d$ .

Among operators $T(\lambda;Y)^{*}T(\lambda;X)$ the following two are most frequently
used and are denoted by the special notations:

$|(4.4)$ $M_{1}(\lambda)=T(\lambda;A)^{*}T(\lambda;A)$ , $\lambda\in I$ ,

(4.5) $\tilde{M}_{1}(\lambda)=T(\lambda;B)^{*}T(\lambda;A)$ , $\lambda\in I$ .
PROOF OF THEOREM 3.9. It suffices to verify the assertion with $\Pi_{I}\pm$ re-

placed by $\Pi_{I}^{\pm},$ $=\Pi^{\pm}\cup I^{\prime},$ $I^{\prime}\Subset I$. Put $J=R^{1}-I^{\prime}$ .
By the resolvent equation we get

$Q_{1}(\zeta)=Q_{1}(i)+(\zeta-i)\{K_{1}(\zeta)+K_{2}(\zeta)\}$ ,

where
$K_{1}(\zeta)=CBR_{1}(\zeta)E_{1}(J)[R_{1}(i)A^{*}]^{a}$

$=\{CBR_{1}(i)E_{1}(J)+(\zeta-i)CBR_{1}(i)R_{1}(\zeta)E_{1}(J)\}[R_{1}(i)A^{*}]^{a}$

$K_{2}(\zeta)=CBR_{1}(\zeta)E_{1}(I^{\prime})[R_{1}(i)A^{*}]^{a}$

$=c\int_{I^{\prime}}(\overline{\mu-}\zeta)\overline{(\mu-i})^{-\tilde{M}_{1}(\mu)d\mu}1$

(cf. Proposition 4.1 and (4.5)). Since $\tilde{M}_{1}$ is H\"older continuous, $K_{2}(\zeta)$ can be
extended to $\Pi_{I^{\prime}}\pm$ as required in the theorem (Privalov’s theorem), while $K_{1}(\zeta)$

has an analytic extension to $\Pi+\cup I^{\prime}\cup\Pi^{-}$ . $q$ . $e$ . $d$ .
PROOF OF THEOREM 3.10. As before we obtain

(4.6) $G_{1}(\zeta)=G_{1}(i)\{1+K(\zeta)\}$ ,

$K(\zeta)=(\zeta-i)G_{1}(i)^{-1}CBR_{1}(\zeta)[R_{1}(i)A^{*}]^{a}$ $\zeta\in\Pi^{\pm}$
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$K(\zeta)$ has the following properties: i) $K(\zeta)$ is holomorphic in $\Pi\pm as$ can be $\cdot$

seen by writing $BR_{1}(\zeta)=BR_{1}(i)+(\zeta-i)BR_{1}(i)R_{1}(\zeta)$ ; ii) $K:\Pi^{\pm}\rightarrow B(\mathfrak{K})$ can be
extended to a continuous function $K_{\pm}:$ $\Pi_{I}^{\pm}\rightarrow B(\mathfrak{K})$ , because $K(\zeta)=G_{1}(i)^{-1}G_{1}(\zeta)$ .
$-1$ ; iii) $K(\zeta)\in B_{\infty}(\mathfrak{K})$ if $\zeta\in\Pi^{\pm}$ (Assumption 3.4); and iv) $1+K(\zeta)$ is invertible
in $B(\mathfrak{K})$ if $\zeta\in\Pi^{\pm}$ . It follows from $i$ ) $-iv$) (cf. Lemma 6.2 of [12]) that $e_{\pm}^{\prime}=$

{ $\lambda\in I|1+K_{\pm}(\lambda)$ is not one-to-one} is a closed set with the (one-dimensional)
Lebesgue measure $0$ . However, $e_{\pm}^{\prime}=e_{\pm}$ because (4.6) remains true for the
boundary values $G_{1\pm}(\lambda)$ etc. Furthermore, the complete continuity of $K_{\pm}(\lambda)$

implies $G_{1\pm}(\lambda)^{-1}\in B(\mathfrak{K}),$ $\lambda\in I-e_{\pm}$ . Other assertions are direct consequences
of the continuity of the inverse in $B(\mathfrak{K})$ . $q$ . $e.d$ .

For later use we add the following remark. Since $K_{\pm}(\lambda)\in B_{\infty}(\mathfrak{K})$ , it fol-
lows from (4.6) that dim $\mathfrak{N}(G_{1\pm}(\lambda))=\dim \mathfrak{N}(G_{1\pm}(\lambda)^{*})$ . In particular, $\lambda_{0}\in e_{\pm}$ if
and only if $G_{1\pm}(\lambda_{0})^{*}$ is not one-to-one.

4.2. Proof of Theorems 3.11 and 3.12. Theorem 3.12 is an immediate
consequence of Theorem 3.11.

In order to prove Theorem 3.11, we introduce a perturbed form of T-
operator as follows:

(4.7) $T_{\pm}(\lambda;A)=T(\lambda;A)G_{2\pm}(\lambda)\in B(\mathfrak{K}, \mathfrak{C})$ , $\lambda\in I-e$ .
It is clear that $T_{\pm}(\lambda;A)$ is a locally H\"older continuous $B(\mathfrak{K}, \mathfrak{C})$ -valued $func\sim$

tion on $I-e$ .
PROPOSITION 4.2. i) For every $\lambda\in I-e$ we have

(4.8) $T_{+}(\lambda;A)^{*}T_{+}(\lambda;A)=T_{-}(\lambda;A)^{*}T_{-}(\lambda;A)\equiv M_{2}(\lambda)$ .

ii) Let $f$ be as in PropOsitiOn4.1 and let $I^{\prime}\Subset I-e$ . Then,

(4.9) $[Af(H_{2})E_{2}(I^{\prime})A^{*}]^{a}=\int_{I},f(\lambda)M_{2}(\lambda)d\lambda$ .

PROOF. For any $\lambda\in R^{1}$ and $\epsilon>0$ put

(4.10) $\delta_{e}(H_{j}-\lambda)=(2\pi i)^{-1}\{R_{j}(\lambda+i\epsilon)-R_{j}(\lambda-i\epsilon)\}$ , $i=1,2$ .
For brevity we write $\zeta=\lambda\pm i\epsilon$ . (The following arguments are valid for $\zeta=$

$\lambda+i\epsilon$ as well as for $\zeta=\lambda-i\epsilon.$) Let $u,$ $v\in \mathfrak{D}(A^{*})$ . Then, by the resolvent
equation and (2.10) we get

(4.11) $(\delta_{\epsilon}(H_{2}-\lambda)A^{*}u, A^{*}v)=\pi^{-1}\epsilon(R_{2}(\zeta)A^{*}u, R_{2}(\zeta)A^{*}v)$

$=\pi^{-1}\epsilon([R_{1}(\zeta)A^{*}]^{a}G_{2}(\zeta)u, [R_{1}(\zeta)A^{*}]^{a}G_{2}(\zeta)v)$

$=([A\delta_{\epsilon}(H_{1}-\lambda)A^{*}]^{a}G_{2}(\zeta)u, G_{2}(\zeta)v)$ .
Let $I^{\prime}$ and $I^{\prime\prime}$ be intervals such that $I^{\prime\prime}\Subset I^{\prime}\Subset I-e$ and let $\lambda\in\overline{I}^{\prime\prime}.$] $1Put$

$J=R^{1}-I^{\prime}$ . Then, Proposition 4.1 implies that
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(4.12) $[A\delta_{\text{\’{e}}}(H_{1}-\lambda)A^{*}]^{a}=\frac{\epsilon}{\pi}\int_{I},\frac{1}{(\mu-\lambda)^{2}+\epsilon^{2}}M_{1}(\mu)d\mu$

$+[AE_{1}(J)\delta_{\epsilon}(H_{1}-\lambda)A^{*}]^{a}$ .
As $\epsilon\downarrow 0$ the second term on the right side tends to $0$ uniformly for $\lambda\in I^{\prime\prime}$ .
Applying the well-known result concerning the boundary value of integrals
of Poisson type to the first term, we therefore see that

(4.13) $\lim_{\downarrow 0}[A\delta_{\epsilon}(H_{1}-\lambda)A^{*}]^{a}=M_{1}(\lambda)$

uniformly for $\lambda\in I^{\prime\prime}$ . Since $G_{2}(\lambda\pm i\epsilon)$ also converge uniformly, the right side
of (4.11) converges uniformly for $\lambda\in I^{\prime\prime}$ . Thus, letting $\epsilon\downarrow 0$ in (4.11) we get

(4.14) $\frac{d}{d\lambda}(E_{2}([a, \lambda))A^{*}u,$ $A^{*}v$) $=(M_{1}(\lambda)G_{2\pm}(\lambda)u, G_{2\pm}(\lambda)v)$

$=(T_{\pm}(\lambda;A)^{*}T_{\pm}(\lambda;A)u, v)$ , $a$ . $e$ . in $I-e$ .
(4.8) follows from this and the continuity of $T_{\pm}(\lambda;A)$ .

The uniform convergence mentioned above yields in particular the
boundedness of $(A\delta_{\epsilon}(H_{1}-\lambda)A^{*}u, v)$ in a (complex) neighborhood of $\overline{I}^{\prime\prime}$ . As is
well-known, this implies that the set function $(E_{2}(\cdot)A^{*}u, A^{*}v)$ is absolutely
continuous in $I^{\prime\prime}$ . Noting this fact, (4.9) is derived from (4.14) in the same
way as (4.1) was derived from (4.3). $q$ . $e$ . $d$ .

PROPOSITION 4.3. There exists a uniquely determined isometric operatOr $F_{\pm}$

from $E_{2}(I-e)\mathfrak{H}$ into $L^{2}(I;\mathfrak{C})$ satisfying (3.7). Furthermore, $(F_{\pm}E_{2}(I^{\prime})F_{\pm}^{-1}u)(\lambda)=$

$\chi_{I^{\prime}}(\lambda)u(\lambda),$ $a$ . $e.$ , for any $u\in F_{\pm}E_{2}(I-e)\mathfrak{H}$ and any Borel set $I^{\prime}\subset I-e$ .
PROOF. By the definition of $T_{\pm}$ formula (3.7) takes the form

(4.15) $(F_{\pm}E_{2}(I^{\prime})A^{*}u)(\lambda)=x_{I^{\prime}}(\lambda)T_{\pm}(\lambda;A)u$ , $a$ . $e$ . in $I$ .
(4.15) will be used as the basis to define $F_{\pm}$ .

For any $u\in E_{2}(I-e)\mathfrak{H}$ which can be expressed as

(4.16) $u=\sum_{k=1}^{\iota}E_{2}(I_{k})A^{*}u_{k}$ , $u_{k}\in \mathfrak{D}(A^{*})$ , $I_{k}\Subset I-e$ ,

define the $\mathfrak{C}$ -valued function $u_{\pm}$ by

(4.17) $u_{\pm}(\lambda)=\sum_{k=1}^{\iota}\chi_{I_{k}}(\lambda)T_{\pm}(\lambda;A)u_{k}$ .

Evidently $u_{\pm}\in L^{2}(I;\mathfrak{C})$ . By virtue of Proposition 4.2 we see that

(4.18) $\Vert u_{\pm}\Vert^{2}=\sum_{j,k=1}^{l}\int_{I_{j}\cap Ik}(T_{\pm}(\lambda;A)u_{j}, T_{\pm}(\lambda;A)u_{k})d\lambda$

$=\sum_{f.k=1}^{\iota}(E_{2}(I_{j})A^{*}u_{j}, E_{2}(I_{k})A^{*}u_{k})=\Vert u\Vert^{2}$ .
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Hence, $u_{\pm}$ is determined by $u$ uniquely as an element of $L^{2}(I;\mathfrak{C})$ , being inde-
pendent of the way of expressing $u$ in the form (4.16). Since the set of all-
$u$ admitting expression (4.16) forms a dense set in $E_{2}(I-e)\mathfrak{H}$ (cf. Assumption
3.5), the correspondence $u\rightarrow u_{\pm}$ can be extended to an isometric operator $F_{\pm}$

from $E_{2}(I-e)\mathfrak{H}$ into $L^{2}(I;\mathfrak{C})$ .
(4.15) with $I^{\prime}\Subset I$ is a special case of (4.17). For a general $I^{\prime}(4.15)$ is

derived by the limit procedure. The uniqueness of $F_{\pm}$ and the last assertion
of the proposition follow from (4.15) at once. $q$ . $e$ . $d$ .

What is left is to prove that $F_{\pm}$ is onto $L^{2}(I;\mathfrak{C})$ . The proof will be
based on the following three lemmas. In these lemmas $\mathfrak{K}$ and $\mathfrak{C}$ are assumed
to be Hilbert spaces and $K(\lambda)$ is a (norm) continuous $B(\mathfrak{K}, \mathfrak{C})$ -valued function
on $I$.

LEMMA 4.4. Let at least one of $\mathfrak{K}$ and $\mathfrak{C}$ be separable and let $K(\lambda)\mathfrak{K}$ be
dense in $\mathfrak{C}$ for $a$ . $e$ . $\lambda\in I$. SuPpose that $h\in L^{2}(I;\mathfrak{C})$ satisfies

(4.19) $\int_{I},(K(\lambda)u, h(\lambda))d\lambda=0$

for every $u\in \mathfrak{K}$ and every $I^{\prime}\Subset I$. Then, $h(\lambda)=0a$ . $e$ .
PROOF. The proof can be reduced to the case that $\mathfrak{K}$ is separable. In

fact, if $\mathfrak{C}$ is separable, there exists a separable subspace $\mathfrak{K}_{1}$ of $\mathfrak{K}$ such that
$K(\lambda)^{*}\mathfrak{C}\subset \mathfrak{K}_{1}$ for every $\lambda\in I$. Let $K_{1}(\lambda)$ be the restriction of $K(\lambda)$ to $\mathfrak{K}_{1}$ and
$P$ the projection on $\mathfrak{K}_{1}$ . Then, $K(\lambda)u=K_{1}(\lambda)Pu$ and hence the assumptions of
the lemma are satisfied by $\mathfrak{K}_{1}$ and $K_{1}(\lambda)$ .

Assume that $\mathfrak{K}$ is separable and take a countable dense subset $\{u_{n}\}$ of
$\mathfrak{K}$ . Then, $(K(\lambda)u_{n}, h(\lambda))=0a$ . $e$ . by (4.19). Since $\{K(\lambda)u_{n}\}$ is dense in $\mathfrak{C}a$ . $e$ .
by the assumption, we get $h(\lambda)=0a$ . $e$ . $q$ . $e$ . $d$ .

LEMMA 4.5. Let $P(\lambda)$ be the Projection in $\mathfrak{C}$ on the closure of $K(\lambda)\mathfrak{K}$ and
$Q(\lambda)$ the Projection in $\mathfrak{K}$ on $\mathfrak{N}(K(\lambda))$ . Then, $P(\lambda)$ and $Q(\lambda)$ are strongly measur-
able in $I$.

PROOF. Since $P(\lambda)$ is the projection on $\mathfrak{N}(K(\lambda)^{*})$ , it suffices to prove the

assertion for $Q(\lambda)$ . Put $F(\lambda)=K(\lambda)^{*}K(\lambda)$ . Let $F(\lambda)=\int_{0-}^{\infty}\mu E(d\mu;\lambda)$ be the

spectral resolution of $F(\lambda)$ and let $R(\zeta;\lambda)=(F(\lambda)-\zeta)^{-1}$ . Then

$ Q(\lambda)u=E(\{0\} ; \lambda)u=\lim_{\epsilon\downarrow 0}\frac{1}{\pi i}\int_{-1}^{0}\{R(\mu-i\epsilon;\lambda)-R(\mu+i\epsilon;\lambda)\}ud\mu$ .

The strong measurability of the right side is obvious. $q$ . $e$ . $d$ .
LEMMA 4.6. Let $\mathfrak{C}$ be seParable. Assume that there exists a subset $\mathfrak{D}$ of

$\mathfrak{K}$ such that the linear hull of $\{\chi_{I^{\prime}}(\cdot)K(\cdot)u|u\in \mathfrak{D}, I^{\prime}\Subset I\}$ is dense in $L^{2}(I;\mathfrak{C})$ .
Then $K(\lambda)\mathfrak{K}$ is dense in $\mathfrak{C}$ for $a$ . $e$ . $\lambda\in I$.

PROOF. Let $P(\lambda)$ be the projection in $\mathfrak{C}$ on the closure of $K(\lambda)\mathfrak{K}$ . Take
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a countable dense subset $\{c_{n}\}$ of $\mathfrak{C}$ and put $c_{n}(\lambda)=(1-P(\lambda))c_{n}$ . Then, if the
conclusion of the lemma were false, there would exist $c_{n_{0}}(\lambda)$ which does not
vanish on a set of positive measure. We write $c(\lambda)=c_{n_{0}}(\lambda)$ . Then: i) by
Lemma 4.5 $c$ is strongly measurable and hence $c\in L^{2}(I;\mathfrak{C})$ ; ii) $c(\lambda)$ is ortho-
gonal to $K(\lambda)\mathfrak{K},$ $\lambda\in I$ ; iii) $c\neq 0$ as an element of $L^{2}(I;\mathfrak{C})$ . Property ii) im-
plies that $(\chi_{I^{\prime}}(\cdot)K(\cdot)u, c(\cdot))_{L^{2}(I;\mathfrak{C})}=0$ for every $u\in \mathfrak{D}$ and $I^{\prime}\Subset I$. Hence, by
the assumption we have $c=0$ in $L^{2}(I;\mathfrak{C})$ , which contradicts property iii).

$q$ . $e$ . $d$ .
Completion of the proof of Theorem 3.11. We assume that $h\in L^{2}(I;\mathfrak{C})$

is orthogonal to $F_{+}E_{2}(I-e)\mathfrak{H}$ and prove that $h=0$ . For brevity we put

(4.20) $T(\lambda)=T(\lambda;A)$ , $T_{+}(\lambda)=T_{+}(\lambda;A)=T(\lambda)G_{2+}(\lambda)$ .
Let $\mathfrak{C}_{1}$ be a separable closed subspace of $\mathfrak{C}$ such that $h(\lambda)\in \mathfrak{C}_{1}a$ . $e$ . and let
$P$ be the projection in $\mathfrak{C}$ on $\mathfrak{C}_{1}$ . It follows by virtue of (4.15) that

$\int_{I}(PT_{+}(\lambda)u, h(\lambda))d\lambda=\int_{I},(T_{+}(\lambda)u, h(\lambda))d\lambda=0$

for any $u\in \mathfrak{D}(A^{*})$ and $I^{\prime}\Subset I-e$ . Since $T_{+}(\lambda)$ is uniformly bounded on $I^{\prime}$ , this
relation holds for all $u\in \mathfrak{K}$ .

We now want to apply Lemma 4.4. to $K(\lambda)=PT_{+}(\lambda)$ and $\mathfrak{C}=\mathfrak{C}_{1}$ and con-
clude $h=0$ . For this it suffices to show that $PT_{+}(\lambda)\mathfrak{K}$ is dense in $\mathfrak{C}_{1}$ a.e.
However, since $G_{2+}(\lambda),$ $\lambda\in I-e$ , is onto, it suffices by (4.20) to show that

(4.21) $PT(\lambda)\mathfrak{K}$ is dense in $\mathfrak{C}_{1}$ for $a$ . $e$ . $\lambda\in I$ .
(4.21) will be veriPed by applying Lemma 4.6 to $K(\lambda)=PT(\lambda)$ and $\mathfrak{D}=\mathfrak{D}(A^{*})$ .

Namely, by virtue of (3.1) and Assumption 3.2 we have $a$ . $e$ .
(4.22) $\chi_{I^{\prime}}(\lambda)PT(\lambda)u=P(FE_{1}(I^{\prime})A^{*}u)(\lambda)$ , $u\in \mathfrak{D}(A^{*})$ , $I^{\prime}\Subset I$ .

However, Assumption 3.5 and the unitarity of $F$ imply that the linear hull
of $\{P(FE(I^{\prime})A^{*}u)(\cdot)\}$ is dense in $L^{2}(I;\mathfrak{C}_{1})$ . Hence, (4.21) is proved by (4.22)

and Lemma 4.6.
The assertion for $F_{-}$ is proved in the same way. $q$ . $e$ . $d$ .

\S 5. Discreteness of the singular spectrum of $H_{2}$ .
5.1. Introduction. It follows from Theorem 3.12 that the singular spec-

trum of $H_{2}$ in $I$ is confined in a closed null set $e=e_{+}\cup e_{-}$ . The next prob-

lem is to obtain more information about the singular spectrum, desirably to
conclude that it is discrete in $I$. Here, the discreteness of the singular spec-
trum means that $E_{2}(e\cap\Gamma)$ is finite-dimensional for any compact subset $\Gamma$ of $I$.

We shall try to investigate this problem still in the framework of ab-



90 S. T. KURODA

stract operator theory. In order to simulate typical situations in differential
operators, several additional assumptions will have to be introduced whose
meaning can only be clariPed by examples. Thus, it may seem that more
direct aPproaches in concrete problems are preferable. It is hoped, however,
that the present formulation may have an advantage of enabling us to avoid
the repetition of similar arguments in applications.

In this section we shall be concerned solely with the situation described
in \S 2.3. Namely, we assume (2.13) and (2.14) and define quadratic forms $h_{j}^{(\theta)}$

by (2.12). For brevity, we write $h_{j}$ instead of $h_{j}^{(\theta)}$ . Then, $H_{1}$ and $H_{2}$ are
related through the relation

(5.1) $h_{2}[u, v]=h_{1}[u, v]+(CBu, Av)$ , $u\in \mathfrak{D}_{\theta},$ $v\in \mathfrak{D}_{1-\theta}$ .
If $\lambda_{0}\in e_{\pm}$ , there exists $w_{\pm}\in \mathfrak{K}$ such that $w_{\pm}\neq 0$ and

(5.2) $w_{\pm}+Q_{1\pm}(\lambda_{0})^{*}w_{\pm}=0$

(cf. the remark at the end of \S 4.1). Our argument consists of the following
three steps:

(1) To derive from (5.2) that $\lambda_{0}$ is an eigenvalue of $h_{2}$ in a generalized
sense with an eigenvector related to $w_{\pm};$

(2) To show that $w_{\pm}$ has a ” decaying property ” ;
(3) To show that the singular spectrum of $H_{2}$ is discrete.
5.2. Generalized eigenvalue equation. Let $\mathfrak{Y}_{0}$ be the quotient space

$\mathfrak{D}(A)/\mathfrak{N}(A)$ with the norm $\Vert[u]\Vert=Au$ , where $[u]$ is the coset6) determined by
$u\in \mathfrak{D}(A)$ , and let $\mathfrak{Y}$ be the completion of $\mathfrak{Y}_{0}$ Let $\Re$ be the closed subspace

of $\mathfrak{K}$ defined as $\Re=\Re(A)^{a}=\mathfrak{K}\ominus \mathfrak{N}(A^{*})$ . Then the mapping $[u]\rightarrow Au$ from $\mathfrak{Y}_{()}$

to $\Re$ can be extended uniquely to a unitary operator from $\mathfrak{Y}$ onto $\Re$ .
DEFINITION 5.1. The unitary operator mentioned above is denoted by $A$ :

$\mathfrak{Y}\rightarrow\Re$ .
PROPOSITION 5.2. $\Re(Q_{1\pm}(\zeta)^{*})\subset\Re$ for any $\zeta\in\Pi_{I}^{\pm}$ .
PROOF. If ${\rm Im}\zeta\neq 0$ , then $\Re(Q_{1\pm}(\zeta)^{*})=\Re([AR_{1}(\overline{\zeta})B^{*}]^{a}C^{*})\subset\Re(AR_{1}(\overline{\zeta})B^{*})^{a}\subset\Re$ .

For real $\zeta$ we take the limit. $q$ . $e$ . $d$ .
By virtue of this proposition we can multiply both sides of (5.2) by $A^{-1}$

and obtain

(5.3) $A^{-1}w_{\pm}+A^{-1}Q_{1\pm}(\lambda_{0})^{*}w_{\pm}=0$ .

It will be shown that $A^{-1}w_{\pm}\in \mathfrak{Y}$ satisfies a generalized eigenvalue equation.
For this purpose we first define functionals on $\mathfrak{Y}$ induced by $h_{1}$ etc.

For the motivation we briefly consider Example 3.14. There, $A$ is one-
to-one so that no quotient space appears. $\mathfrak{Y}$ coincides with $H_{-\delta/2}^{1}(R^{1})$ . There-

6) This notation of expressing the coset by $[u]$ will be used throughout the rest
of the paper.
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fore, if $\phi\in H3_{/2}(R^{1})$ , then the functional $h_{j}[\phi, ]$ on $\mathfrak{D}=H^{1}(R^{1})$ can be extended
continuously to a functional on $\mathfrak{Y}$ . Similar consideration applies to the func-
tional $(\phi, )$ defined by the inner product of $\mathfrak{H}$ .

Returning to the general situation, we introduce the following definition.
DEFINITION 5.3. The set $\mathfrak{S}\subset \mathfrak{D}_{\theta}$ is defined to be the set of all $\phi\in \mathfrak{D}_{\theta}$

such that there exists $c=c_{\phi}>0$ satisfying

(5.4) $|h_{1}[\phi, v]|\leqq c\Vert[v]\Vert_{\mathfrak{Y}}$ , $|(\phi, v)|\leqq c\Vert[v]\Vert_{\mathfrak{Y}}$

for all $v\in \mathfrak{D}_{1-\theta}$ .
We need the following auxiliary assumption.
ASSUMPTION 5.4. $\mathfrak{D}_{1-\theta}/\mathfrak{N}(A)$ , which is a subset of $\mathfrak{Y}_{0}$ and hence of $\mathfrak{Y}$ , is.

dense in $\mathfrak{Y}^{7)}$ .
Let $\phi\in \mathfrak{S}$ . Then, Assumption 5.4 and (5.4) imply that the linear functional

$h_{1}[\phi, ]$ (or $(\phi,$ $)$ ) on $\mathfrak{D}_{1-\theta}$ induces uniquely a bounded linear functional
$h_{1}[\phi, ]$ (or $(\phi,$ $)$ ) on $\mathfrak{Y}$ :

(5.5) $h_{1}[\phi, [v]]=h_{1}[\phi, v]$ , $(\phi, [v])=(\phi, v)$ , $v\in \mathfrak{D}_{1-\theta}$ .

Since $|(CB\phi, Ay)_{R}|\leqq\Vert CB\phi\Vert_{R}\Vert y\Vert_{\mathfrak{Y}}$ , the functional $h_{2}[\phi, ]$ defined by
(5.6) $h_{2}[\phi, y]=h_{1}[\phi, y]+(CB\phi, Ay)$ , $y\in \mathfrak{Y}$ ,

is also a bounded linear functional on $\mathfrak{Y}$ . Clearly $h_{2}[\phi, ]$ is induced by
$h_{2}[\phi, ]$ :

(5.7) $h_{2}[\phi, [v]]=h_{2}[\phi, v]$ , $v\in \mathfrak{D}_{1-\theta}$ .
THEOREM 5.5. SuPpose that the assumptions of Theorem 2.9 and Assump-

tions 3.1-3.3 are satisfied together with AssumptiOn5.4. Then, any $w_{\pm}\in \mathfrak{K}$

satisfying (5.2) and hence (5.3) satisfies
(5.8) $h_{2}[\phi, A^{-1}w_{\pm}]=\lambda_{0}(\phi, A^{-1}w_{\pm})$ for any $\phi\in \mathfrak{S}$ .

PROOF. Put

(5.9) $K(\zeta)=[BR_{1}(\zeta)A^{*}]^{a},$ ${\rm Im}\zeta\neq 0$ .
The proof of Theorem 3.9 shows that $K$ can be extended to $K_{\pm}$ defined on
$\Pi_{I}\pm$ We have $\Re(K_{\pm}(\zeta)^{*})\subset\Re$ (cf. the proof of Proposition 5.2) and $K_{\pm}(\zeta)^{*}C^{*}$

$=Q_{1\pm}(\zeta)^{*}$ . Putting $(h_{j}-\zeta)[\phi, v]=h_{j}[\phi, v]-\zeta(\phi,$ $v^{\backslash }$ , we first prove that

(5.10) $(h_{1}-\zeta)[\phi, A^{-1}K_{\pm}(\zeta)^{*}u]=(B\phi, u)$ , $u\in \mathfrak{K},$ $\phi\in \mathfrak{S},$ $\zeta\in\Pi_{I}^{\pm}$ .
Clearly it suffices to prove (5.10) for $u\in \mathfrak{D}(B^{*})$ and $\zeta$ with ${\rm Im}\zeta\neq 0$ . But then
the left side is equal to $(h_{1}-\zeta)[\phi, A^{-1}AR_{1}(\overline{\zeta})B^{*}u]=(h_{1}-\zeta)[\phi, R_{1}(\overline{\zeta})B^{*}u]=$

$(\phi, B^{*}u)=(B\phi, u)$ , where the relations $A^{-1}Av=[v]$ and (5.5) are used.
It follows from (5.6) and (5.3) that

7) This assumption is satisfied if $A\mathfrak{D}_{1-\theta}$ is dense in $\Re(A)$ .
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$h_{2}[\phi, A^{-1}w_{\pm}]=(h_{1}-\lambda_{0})[\phi, A^{-1}w_{\pm}]+\lambda_{0}(\phi, A^{-1}w_{\pm})+(CB\phi, w_{\pm})$

$=\lambda_{0}(\phi, A^{-1}w_{\pm})-(h_{1}-\lambda_{0})[\phi, A^{-1}K_{\pm}(\lambda_{0})^{*}C^{*}w_{\pm}]+(CB\phi, w_{\pm})$ .
APplying (5.10) to the right side with $u=C^{*}w_{\pm}$ and $\zeta=\lambda_{0}$ , we see that the
last two terms of the right side cancel each other. Thus, (5.8) is proved.

$q$ . $e.d$ .
The converse of Theorem 5.5 is not necessarily true. (In Lemma 5.22,

however, the converse is proved in a restricted form.) Here we will only
prove the following theorem.

THEOREM 5.6. Let $y\in \mathfrak{Y}$ and $\phi\in \mathfrak{S}$ satisfy $h_{2}[\phi, y]=\lambda_{0}(\phi, y)$ . Then, $z_{\pm}=$

$|(1+A^{-1}Q_{1\pm}(\lambda_{0})^{*}A)y$ satisfies $h_{1}[\phi, z_{\pm}]=\lambda_{0}(\phi, z_{\pm})$ .
PROOF. By the assumption and (5.10) with $u=C^{*}Ay$ and $\zeta=\lambda_{0}$ we get

$0=(h_{1}-\lambda_{0})[\phi, y]+(CB\phi, Ay)$

$=(h_{1}-\lambda_{0})[\phi, z_{\pm}]-(h_{1}-\lambda_{0})[\phi, A^{-1}K_{\pm}(\lambda_{0})^{*}C^{*}Ay]+(CB\phi, Ay)$

$=(h_{1}-\lambda_{0})[\phi, z_{\pm}]$ . $q$ . $e$ . $d$ .
In Example 3.14 we take $\mathfrak{S}=H_{\delta/2}^{1}$ (or we may take $\mathfrak{S}=S(R^{1})$). Equation

(5.8) for $y_{\pm}=A^{-1}w_{\pm}\in H_{-\delta/2}^{1}$ becomes

$-\int_{-\infty}^{\infty}(1+p(x))\phi^{\prime}(x)\overline{y_{\pm}^{\prime}(x})dx+\int_{-\infty}^{\infty}q(x)\phi(x)\overline{y_{\pm}(x)}dx$

$=\lambda_{0}\int_{-\infty}^{\infty}\phi(x)\overline{y_{\pm}(x})dx$ , $\phi\in H_{\delta,2}^{1}$ .

5.3. A lemma. Our aim in this subsection is to prove the following

lemma for later use.
LEMMA 5.7. Assume that the assumptiOns of Theorem 2.9 and AssumptiOns

3.1-3.3 are satisfied. Then, if $w_{\pm}\in \mathfrak{K}$ satisfies (5.2) for a $\lambda_{0}\in I$, we have
$T(\lambda_{0} ; B)C^{*}w_{\pm}=0$ .

The proof will be based on the following propositions.
PROPOSITION 5.8. We have $L(\zeta)=[BR_{1}(\zeta)B^{*}]^{a}\in B(\mathfrak{K})$ . Furthermore, $L$ :

$\Pi\pm\rightarrow B(\mathfrak{K})$ can be extended to a locally Holder continuous function $L_{\pm}:$ $\Pi_{I}^{\pm}\rightarrow B(\mathfrak{K})$ .
PROOF. Since $\theta\leqq 1/2$ , one has $\mathfrak{D}(B)\supset \mathfrak{D}_{\theta}\supset \mathfrak{D}(|H_{1}|^{1\prime 2})$ . Hence, $BR_{1}(\zeta)B^{*}$

$=B|R_{1}(\zeta)|^{1^{\prime}2}W(\zeta)|R_{1}(\zeta)|^{1/2}B^{*}$ is bounded, where $W(\zeta)$ is as in the proof of
Theorem 2.9. The rest of the proof is the same as that of Theorem 3.9.

$q$ . $e$ . $d$ .
PROPOSITION 5.9. Let $K_{\pm}$ and $L_{\pm}$ be as above. Then

\langle 5.11) $(C^{*}K_{\pm}(\zeta)^{*}u, L_{\pm}(\zeta)^{*}v)=(L_{\pm}(\zeta)^{*}u, C^{*}K_{\pm}(\zeta)^{*}v)$ , $u,$ $v\in \mathfrak{K},$ $\zeta\in\Pi_{I}\pm$ .

PROOF. It suffices to prove (5.11) for $u,$ $v\in \mathfrak{D}(B^{*})$ and $\zeta\in\Pi\pm$ . By virtue
ef the symmetry relation $(CBu_{1}, Au_{2})=(Au_{1}, CBu_{2}),$ $u_{j}\in \mathfrak{D}(H_{1})\subset \mathfrak{D}\theta\cap \mathfrak{D}_{1-\theta}$ ,

which follows from the Hermitian property of $h_{1}$ and $h_{2}$ , we see that the left
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side of (5.11) is equal to $(AR_{1}(\overline{\zeta})B^{*}u, CBR_{1}(\overline{\zeta})B^{*}v)=(BR_{1}(\overline{\zeta})B^{*}u, C^{*}AR_{1}(\overline{\zeta})B^{*}v\rangle$

$=(L_{\pm}(\zeta)^{*}u, C^{*}K_{\pm}(\zeta)^{*}v)$ . $q$ . $e$ . $d$ .
PROPOSITION 5.10. We have

$(2\pi i)^{-1}(L_{\pm}(\lambda_{0})-L_{\pm}(\lambda_{0})^{*})=\pm T(\lambda_{0} ; B)^{*}T(\lambda_{0} ; B)$ .
The proof is similar to the arguments given in \S 4.2, especially to the

proof of (4.13).

PROOF OF LEMMA 5.7. Multiplying (5.2) by $C^{*}$ and taking the inner pro-
duct with $L_{\pm}(\lambda_{0})^{*}C^{*}w_{\pm}$ we obtain

$(C^{*}w_{\pm}, L_{\pm}(\lambda_{0})^{*}C^{*}w_{\pm})+(C^{*}K_{\pm}(\lambda_{0})^{*}C^{*}w_{\pm}, L_{\pm}(\lambda_{0})^{*}C^{*}w_{\pm})=0$ .

The second term on the left side is real by Proposition 5.9. Hence, by taking
the imaginary part and noting Proposition 5.10, we obtain the lemma. $q$ . $e$ . $d$ .

5.4. Spaces $\mathfrak{K}_{\gamma}$ . Step (2), a decaying property of $w_{\pm}$ , will be handled
from this subsection through \S 5.6. Our aim is to assert that $w_{\pm}$ (or $y_{\pm}=A^{-1}w_{\pm}$)

actually lies in a space smaller than $\mathfrak{K}$ (or $\mathfrak{Y}$ ). For instance we know in
Example 3.14 that $y_{f}\in H_{-\delta/2}^{1}$ with $\delta/2>1/2$ . But we want to assert that
$y_{\pm}\in H_{-t}^{1}$ for some $t<1/2$ or even $y_{\pm}\in H_{0}^{1}\subset \mathfrak{H}$ . This is especially desired for
higher dimensional problems, because one can then either apply Kato’s theo-
rem (see [7]) to equation (5.8) concluding $y_{\pm}=0$ and hence $ e=\phi$ or use other
means to prove, as will be done in \S 5.7, the discreteness of the singular
spectrum.

In order to see that $w_{\pm}$ lies in a smaller space, we need to have an inter-
polating family of Hilbert spaces. Interpolating $\mathfrak{H}$ and $\mathfrak{Y}$ will not be adequate.
A convenient family will be found by decomposingA as $A=\hat{A}_{1}D$ . In Exam-
ple 3.14 this decomposition is given as follows. $D$ is from $\mathfrak{H}$ to $L_{-\delta/2}^{2}\oplus L_{-\delta/2}^{2}$

$\equiv \mathfrak{K}_{-1}$ and is defined by $Du=\{u^{\prime}, u\},$ $u\in \mathfrak{D}(D)=\mathfrak{D}(A)$ . $\hat{A}_{1}$ is the diagonal
operator from $\mathfrak{K}_{-1}$ to $\mathfrak{K}$ determined by the multiplication by $(1+|x|^{2})^{-\delta/4}$ .
Regard now $\mathfrak{K}_{-1}\supset \mathfrak{K}$ and let $A_{1}$ be the same multiplication operator viewed
as acting in $\mathfrak{K}$ . Then the space $\mathfrak{K}_{\gamma}=L\S_{\gamma/2}\oplus L\S_{\gamma/2},$ $\gamma\in R^{1}$ , which forms a nice
interpolating family, is the space determined by $A_{1}^{-\gamma}$ -norm in $\mathfrak{K}$ . Furthermore,
$\hat{A}_{1}$ is recaptured as an operator naturally induced by $A_{1}$ .

After this motivation let us start a new and first fix notations concern-
ing the space with $A_{1}^{-\gamma}$ -norm. Let $A_{1}\in B(\mathfrak{K})$ be a bounded positive definite
self-adjoint operator in $\mathfrak{K}:A_{1}>0$ . In particular, $A_{1}$ is one-to-one. Put $L=A_{1}^{-1}$ .
Then, $L\geqq c>0$ . Let $\gamma$ be a real number and denote by $\mathfrak{K}_{\gamma}$ the Hilbert space
obtained by the completion of $\mathfrak{D}(L^{\gamma})$ with respect to the norm $\Vert u\Vert_{\gamma}=\Vert L^{\gamma}u\Vert$ .
If $\gamma>0$ . taking completion is not necessary and hence $\mathfrak{K}_{\gamma}=\mathfrak{D}(L^{\gamma})$ . If $\gamma<0$ ,
$\mathfrak{D}(L^{\gamma})=\mathfrak{K}$ but it is not necessarily complete with respect to $\Vert\Vert_{\gamma}$ . For $\gamma=0$

one has $\mathfrak{K}_{0}=\mathfrak{K}$ . Naturally, $\mathfrak{K}_{\gamma}\subset \mathfrak{K}_{\gamma/}$ , if $\gamma^{\prime}\leqq\gamma$ .
For real $\gamma$ and $\gamma^{\prime}$ we denote by $A_{1}^{\gamma\prime.\gamma}$ the (canonical) unitary operator
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from $\mathfrak{K}_{\gamma}$ onto $\mathfrak{K}_{\gamma\prime}$ determined by the relation $A_{1}^{\gamma.\gamma}u=L^{\gamma-\gamma^{\prime}}u,$ $u\in \mathfrak{D}(L^{-\gamma^{\prime}}\cdot L^{\gamma})$ . It
is not difficult to see that

(5.12) $A_{1}^{\gamma^{\prime},\gamma}\mathfrak{K}_{\gamma+\beta}=\mathfrak{K}_{\gamma’+\beta}$ , $\beta>0$ ,

(5.13) $\Vert A_{1}^{\gamma\prime,\gamma}u\Vert_{\gamma’+\beta}=\Vert u\Vert_{\gamma+\beta}$ , $u\in \mathfrak{K}_{\gamma+\beta}$ .
It is well known that the family $\mathfrak{K}_{\gamma}$ satisfies the interpolation relation.

In particular, the following lemma will be used later.
LEMMA 5.11. Relying on the complex method of constructing interpOlatiOn

sPaces and using the customary notation, we have $\mathfrak{K}_{-\gamma}=[\mathfrak{K}_{0}, \mathfrak{K}_{-1}]_{\gamma},$ $0\leqq\gamma\leqq 1$ .
5.5. A decaying property of $w_{\pm}$ . We list up all the assumptions and

make some comments about their meanings afterwards.
ASSUMPTION 5.12. There exist a positive self-adjoint operator $A_{1}\in B(\mathfrak{K})$ ,

$A_{1}>0$ , and a (not necessarily bounded) operator $D$ from $\mathfrak{D}(D)=\mathfrak{D}(A)\subset \mathfrak{H}$ into
$\mathfrak{K}_{-1}$ such that

$\ovalbox{\tt\small REJECT}(5.14)$ $A=A_{1}^{0- 1}D$ .
(Here and in what follows, $\mathfrak{K}_{\gamma}$ etc. are defined in reference to $A_{1}$ appearing
in this assumption.)

ASSUMPTION 5.13. $D$ maps $\mathfrak{D}_{1-\theta}$ boundedly in $\mathfrak{K}_{0}$ ; namely there exists
$c>0$ such that

$\downarrow(5.15)$ $\Vert Du\Vert_{\Re_{0}}\leqq c(\Vert|H_{1}|^{1-\theta}u\Vert+\Vert u\Vert)$ , $u\in \mathfrak{D}_{1-\theta}$ .
It follows from Assumption 5.13 that for any interval $I^{\prime}\Subset I,$ $D$ maps

$E_{1}(I^{\prime})\mathfrak{H}$ boundedly in $\mathfrak{K}_{0}$ ; namely there exists $c_{I^{\prime}}\geqq 0$ such that

(5.16) $\Vert Du\Vert_{\Re_{0}}\leqq c_{I^{\prime}}\Vert u\Vert_{\mathfrak{H}}$ , $u\in E_{1}(I^{\prime})\mathfrak{H}$ .
\langle Note that $\mathfrak{D}(D)=\mathfrak{D}(A)\supset \mathfrak{D}_{1-\theta}\supset \mathfrak{D}(H_{1})\supset E_{1}(I^{\prime})\mathfrak{H}.)$

DEFINITION 5.14. The family of operators $\Phi(\lambda)\in B(R_{1}, \mathfrak{C}),$ $\lambda\in I$, is dePned
by the formula

(5.17) $T(\lambda;A)=\Phi(\lambda)A_{1}^{1.0}$ .
ASSUMPTION 5.15. If $w\in \mathfrak{K}_{\gamma},$ $\gamma\geqq 0$ , then $T(\lambda;B)C^{*}w$ is locally H\"older

continuous with exponent $\theta=\min(\gamma/2+\rho_{0},1)$ , where $\rho_{0}>0$ is a constant inde-
pendent of $\gamma$ , uniformly in the following sense: for any compact interval
$I^{\prime}\Subset_{\lrcorner}r$ and any $\gamma\geqq 0$ , there exists a constant $c=C_{I^{\prime}}\gamma>0$ such that

(5.18) $\Vert\{T(\lambda;B)-T(\lambda^{\prime} ; B)\}C^{*}w\Vert_{\mathfrak{C}}\leqq c\Vert w\Vert_{\Re\gamma}|\lambda-\lambda^{\prime}|^{\theta}$

$\lambda,$
$\lambda^{\prime}\in I^{\prime}$ , $w\in \mathfrak{K}_{\gamma}$ .

The meaning of Assumption 5.12 was already explained. $A_{1}^{0,-1}$ is the
correct interpretation of what we wrote $\hat{A}_{1}$ previously.
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Assumption 5.13 is a technical one and can easily be veriPed in Exam-
ple 3.14.

In order to explain the meaning of Definition 5.14, we note that formally
$T(\lambda;A)u=(FA^{*}u)(\lambda)=(FD^{*}\hat{A}_{1}^{*}u)(\lambda)$ . In Example 3.14, $D^{*}$ is a differential
operator and may be taken out in front of $F$, a modified Fourier transform,
as a multiplication operator $D(\lambda)$ . Furthermore, we may write $(Fv)(\lambda)=F(\lambda)v$

with $F(\lambda)$ being a sort of trace operator from $K_{1}=L\S_{2}\oplus L_{\delta’ 2}^{2}$ to $\mathfrak{C}\oplus \mathfrak{C}$ . Now,
$\Phi(\lambda)$ in Assumption 5.14 corresponds to $D(\lambda)F(\lambda)$ . The correct interpretation
of $\hat{A}_{1}^{*}$ in this formula turns out to be $A_{1}^{1.0}$ . (The reasoning given above is
rather formal. The correct one will be given in [15].)

Referring still to Example 3.14, we can write similarly $T(\lambda;B)C^{*}w=$

$D(\lambda)F(\lambda)A_{1}^{1.0}C^{*}w$ (note that $B=A$ in this example). $C^{*}$ maps $\mathfrak{K}_{\gamma}$ into $\mathfrak{K}_{\gamma}$ so
that $A_{1}^{1.0}C^{*}w\in \mathfrak{K}_{1+\gamma}$ if $w\in \mathfrak{K}_{\gamma}$ . Now, $F(\lambda)$ can be regarded as the trace opera-
tor from $\mathfrak{K}_{1+r}=L_{(1+\gamma)\delta/2}^{2}\oplus L_{(1+\gamma)\delta/2}^{2}$ to $\mathfrak{C}\oplus \mathfrak{C}$ . It is well-known that this $F(\lambda)$ is
H\"older continuous with exponent $\gamma\delta/2+(\delta-1)/2$ . Since $\delta>1$ , Assumption 5.15
is satisfied with $\rho_{0}=(\delta-1)/2$ .

The following theorem describes the decaying property of $w_{\pm}$ and is
fundamental in the present section.

THEOREM 5.16. Assume all the assumptions of Lemma 5.7 and AssumptiOns
5.12, 5.13, and 5.15. Let $w_{\pm}\in \mathfrak{K}$ satisfy (5.2). Then $w_{\pm}\in \mathfrak{K}_{1}$ .

5.6. Proof of Theorem 5.16. We prove the theorem for $w_{+}$ . The proof
is the same for $w_{-}$ . For simplicity we write $w$ instead of $w_{+}$ .

LEMMA 5.17. SuppOse that in a neighbourhood of $\lambda_{0}$ the exPonent of Holder
continuity of $T(\lambda;B)C^{*}w$ can be taken as $\rho,$ $0<p\leqq 1$ . Then: if $\rho\leqq 1/2$ , one
has $w\in \mathfrak{K}_{\gamma},$ $ 0\leqq\gamma<2\rho$ ; and if $\rho>1/2$ , one has $w\in \mathfrak{K}_{1}$ .

PROOF. Let us fix an open interval $I^{\prime}$ such that $\lambda_{0}\in I^{\prime}\Subset I$. We put
$j=R^{1}-I^{\prime}$ and

$R_{J}(\lambda_{0})=\int_{J}\frac{1}{\lambda-\lambda_{0}}E_{1}(d\lambda)\in B(\mathfrak{H})$ .

Under the situation of Theorem 2.9 the operator $AR_{J}(\lambda_{0})B^{*}$ is densely defined
and bounded. More precisely, we have

\langle 5.19) $[AR_{J}(\lambda_{0})B^{*}]^{a}=A|R_{J}(\lambda_{0})|^{1-\theta}W(\lambda_{0})[|R_{J}(\lambda_{0})|^{\theta}B^{*}]^{a}$ ,

where $W(\lambda_{0})=\int_{J}e^{-\arg(\lambda-\lambda_{0})}E_{1}(d\lambda)$ . Therefore, noting (5.2), (2.2), and Proposition

4.1, we can express $w$ as

(5.20)
$(w_{1}=-[AR_{J}(,\lambda_{0})B]w_{2}=_{\epsilon\downarrow 0}-\lim\int_{I}^{w=w_{1}}\frac{*a1C^{*}w}{\lambda-\lambda_{0}-i\epsilon}T(\lambda;+w_{2},A)^{*}T(\lambda;B)C^{*}wd\lambda$

.
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By virtue of (5.19) $w_{1}$ can be written as $w_{1}=Au_{1}=A_{1}^{0.-1}Du_{1}$ , where $ u_{1}\in$

$\mathfrak{D}_{1-\theta}$ . Therefore, it follows from Assumption 5.13 and (5.12) that $w_{1}\in \mathfrak{K}_{1}$ and
hence $w_{1}\in \mathfrak{K}_{\gamma}$ for any $\gamma,$ $0\leqq\gamma\leqq 1$ .

To handle $w_{2}$ we recall that $T(\lambda;A)^{*}$ and $T(\lambda;B)$ are H\"older continuous
and that $T(\lambda_{0} ; B)C^{*}w=0$ (Lemma 5.7). Therefore, if we put

(5.21) $\psi(\lambda)=\frac{1}{\lambda-\lambda_{0}}T(\lambda;B)C^{*}w\in L^{1}(I^{\prime} ; \mathfrak{C})$ ,

then the well-known formula for the limit of the integral of Cauchy type
gives that

(5.22) $w_{2}=-\int_{I},$ $ T(\lambda;A)^{*}\psi(\lambda)d\lambda$

$=-A_{1}^{0.1}\int_{I^{\prime}}\Phi(\lambda)^{*}\psi(\lambda)d\lambda$ .

We now introduce the operator $\Lambda$ acting on $\mathfrak{C}$ -valued functions on $I^{\prime}$ and
defined formally as

$\Lambda\phi=A_{1}^{0.1}\int_{I^{\prime}}\Phi(\lambda)^{*}\phi(\lambda)d\lambda$ .

Since $\Phi(\lambda)=T(\lambda;A)A_{1}^{0.1}$ is continuous, it is clear that

(5.23) $\Lambda\in B(L^{1}(I^{\prime} ; \mathfrak{C}), \mathfrak{K}_{0})$ $(\mathfrak{K}_{0}=\mathfrak{K})$ .
We claim that

(5.24) $\Lambda\in B(L^{2}(I^{\prime} ; \mathfrak{C}), \mathfrak{K}_{1})$ .

To prove this, let $\phi\in L^{2}(I^{\prime} ; \mathfrak{C})\subset L^{1}(I^{\prime} ; \mathfrak{C})$ . Then, $\phi$ can be written as $\phi(\lambda)=$

$(Fu)(\lambda),$ $u\in E_{1}(I^{\prime})\mathfrak{H}$ (Assumption 3.2). Therefore, for any $w\in \mathfrak{D}(A^{*})$ the fol-
lowing manipulation can be carried out:

$(\Lambda\phi, w)_{R}=\int_{I^{\prime}}(\phi(\lambda), \Phi(\lambda)A_{1}^{1.0}w)_{\mathfrak{C}}d\lambda$

$=\int_{I^{\prime}}(\phi(\lambda), T(\lambda;A)w)_{\mathfrak{C}}d\lambda$

$=\int_{I},$ $((Fu)(\lambda), (FE_{1}(I)A^{*}w)(\lambda))_{\mathfrak{C}}d\lambda$

$=(u, A^{*}w)_{\mathfrak{H}}=(Au, w)_{\Re}$ ,

where $u\in \mathfrak{D}(H_{1})\subset \mathfrak{D}(A)$ is used in the last step. Since $\mathfrak{D}(A^{*})$ is dense in
$\mathfrak{K}_{0}=\mathfrak{K}$ , we get $\Lambda\phi=Au=A_{1}^{0.-1}Du$ . From (5.16), (5.12) and (5.13) it now follows
that $\Lambda\phi\in \mathfrak{K}_{1}$ and

$\Vert\Lambda\phi\Vert_{R_{1}}=\Vert Du\Vert_{Ro}\leqq c_{I^{\prime}}\Vert E(I^{\prime})u\Vert_{\mathfrak{H}}=c_{I^{\prime}}\Vert\phi\Vert_{L^{2}(I_{i}^{\prime}\mathfrak{C})}$ .
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Thus (5.24) is proved.
By the interpolation it follows from (5.23), (5.24) and Lemma 5.11 that

(5.25) $\Lambda\in B(L^{p}(I^{\prime} ; \mathfrak{C});\mathfrak{K}_{\gamma})$ , $1\leqq P\leqq 2,$ $\gamma=2(1-P^{-1})$ .
On the other hand $ w_{2}=-\Lambda\psi$ with $\psi$ given by (5.21). From the assumption
of the lemma and the relation $T(\lambda;B)C^{*}w=0$ it follows that

(5.26) $\psi\in L^{p}(I^{\prime} ; \mathfrak{C})$ for any $p,$ $1\leqq P<(1-\rho)^{-1}$ .
Therefore, if $\rho>1/2$ one can take $P=2$ and conclude $w_{2}\in \mathfrak{K}_{1}$ . If $\rho\leqq 1/2$ ,

then $p^{-1}$ in (5.25) ranges over $(1-\rho, 1$] and correspondingly $\gamma$ ranges over
$[0,2\rho)$ . This proves the lemma. $q$ . $e$ . $d$ .

PROOF OF THEOREM 5.16. Suppose that $w\in \mathfrak{K}_{\gamma}$ has been shown for some
$\gamma,$ $0\leqq\gamma<1$ . Then, by Assumption 5.15 and Lemma 5.17 it follows that $w\in \mathfrak{K}_{\gamma\prime}$ ,

for any $\gamma^{\prime}$ satisfying $0\leqq\gamma^{\prime}<\gamma+2\rho_{0}$ if $\gamma+2\rho_{0}\leqq 1$ and $w\in \mathfrak{K}_{1}$ if $\gamma+2p_{0}>1$ .
Hence, beginning with $w\in \mathfrak{K}=\mathfrak{K}_{0}$ and applying the procedure given above
repeatedly, we can conclude $w\in \mathfrak{K}_{1}$ after a finite number of steps. $q.e$ . $d$ .

Before finishing step (2) we record the following lemma which follows
immediately from Assumption 5.15 and the proof of Lemma 5.17.

LEMMA 5.18. If $w\in \mathfrak{K}_{1}$ and $T(\lambda_{0} ; B)C^{*}w=0$ , then $Q_{1\pm}(\lambda_{0})^{*}w\in \mathfrak{K}_{1}$ .
5.7. Discreteness of the singular spectrum. For simplicity we assume

in this subsection that $A$ is one-to-one. Then, $\mathfrak{D}(A)$ can be regarded as a
linear subspace of $\mathfrak{Y}$ and on $\mathfrak{D}(A)$ the operator $A:\mathfrak{Y}\rightarrow \mathfrak{K}$ introduced in \S 5.2
coincides with $A$ .

ASSUMPTION 5.19. i) $A$ is one-to-one; ii) if $Ay\in \mathfrak{K}_{1},$ $y\in \mathfrak{Y}$ , then $y\in \mathfrak{D}_{1-\theta}$

(and hence $Ay=Ay$); and iii) there exists $c>0$ such that

(5.27) $\Vert y\Vert_{\mathfrak{H}}\leqq c\Vert Ay\Vert_{\Re_{1}}$ if $Ay\in \mathfrak{K}_{1}$ .
ASSUMPTION 5.20. For any $u\in \mathfrak{D}_{\theta}$ there exist $\phi_{n}^{(j)}\in \mathfrak{S},$ $n=1,2,$ $\cdots j=1,2$ ,

such that $\Vert\phi_{n}^{(j)}-u\Vert_{\mathfrak{H}}\rightarrow 0$ and

$h_{j}[u, v]=\varliminf h_{j}[\phi_{n}^{(j)}, v]$ , $v\in \mathfrak{D}_{1-\theta}$ .

In Example 3.14 $Ay\in \mathfrak{K}_{1}$ means that $\{y^{\prime}, y\}\in L^{2}\oplus L^{2}$ and hence $y\in H^{1}=\mathfrak{D}_{1/2}$ .
Hence Assumption 5.19 is fulfilled. Since $\mathfrak{S}=H_{\delta/2}^{1}$ and $\mathfrak{D}_{\theta}=H^{1}$ , the validity
of Assumption 5.20 is obvious.

We can now formulate our main theorem.
THEOREM 5.21. Assume the following set of assumptions: i) all the assump-

tions of Theorem 2.9; ii) Assumptions 3.2-3.5 and Assumpti0n 5.4; iii) Assump-
tions 5.12, 5.13, and 5.15; and iv) Assumptions 5.19 and 5.20. Then, $e_{+}=e_{-}=e$

and $E_{z}(\Gamma\cap e)$ is finite-dimensional pr0jecti0n for any compact interval $\Gamma\subset I$. (In

other words, the singular spectrum of $H_{2}$ in I consists of eigenvalues with finite
multiplicity and has no points of accumulation in $I.$)
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For the proof we Prst prove a lemma.
LEMMA 5.22. Let $\lambda_{0}\in I$. Then, $A$ maps the eigenspace $\mathfrak{M}(\lambda_{0})=\{y\in \mathfrak{H}|H_{2}y$

$=\lambda_{0}y\}$ of $H_{2}$ associated with $\lambda_{0}$ onto the null space of $1+Q_{1\pm}(\lambda_{0})^{*}:$ $A\mathfrak{M}(\lambda_{0})=$

$\mathfrak{N}(1+Q_{1\pm}(\lambda_{0})^{*})$ . (Note that $\mathfrak{M}(\lambda_{0})\subset \mathfrak{D}(H_{2})\subset \mathfrak{D}_{1-\theta}\subset \mathfrak{D}(A).$ )

PROOF. First let $y\in \mathfrak{M}(\lambda_{0})$ and put $w=Ay$ . Since $y\in \mathfrak{D}_{1-\theta}$ , we have
$w=A_{1}^{0,-1}Dy\in \mathfrak{K}_{1}$ by Assumption 5.13 and (5.12).

For the purpose of applying Lemma 5.18 we will first prove that $ T(\lambda$ ;
$B)C^{*}w=0$ . The relation $y\in \mathfrak{M}(\lambda_{0})$ implies $h_{2}[v, y]=\lambda_{0}(v, y)$ for any $v\in \mathfrak{D}_{\theta}$ .
Hence, putting $v=R_{1}(\zeta)B^{*}u\in \mathfrak{D}(H_{1})\subset \mathfrak{D}_{\theta}$ , one gets

$(h_{1}-\lambda_{0})[R_{1}(\zeta)B^{*}u, y]+(CBR_{1}(\zeta)B^{*}u, Ay)=0$ , $u\in \mathfrak{D}(B^{*})$ .
By subtracting from this the similar relation for $\overline{\zeta}$ , we obtain

\langle 5.28) $(h_{1}-\lambda_{0})[\{R_{1}(\zeta)-R_{1}(\overline{\zeta})\}B^{*}u, y]+(\{L(\zeta)-L(\overline{\zeta})\}u, C^{*}Ay)=0$ ,

where $L$ is as defined in Proposition 5.8. Put $\zeta=\lambda_{0}+i\epsilon$ and let $\epsilon\downarrow 0$ . By
Propositions 5.8 and 5.10 we see that the second term on the left tends to
$2\pi i(T(\lambda_{0} ; B)^{*}T(\lambda_{0} ; B)u, C^{*}Ay)$ . For brevity write $\tilde{E}_{1}(\lambda)=E_{1}((-\infty, \lambda$]). Then
the first term is equal to

(5.29) $((H_{1}-\lambda_{0})\{R_{1}(\zeta)-R_{1}(\overline{\zeta})\}B^{*}u, y)$

$=\int_{I^{\prime}}\frac{2i\epsilon(\lambda-\lambda_{0})}{(\lambda-\lambda_{0})^{2}+\epsilon^{2}}\frac{d}{d\lambda}(\tilde{E}_{1}(\lambda)B^{*}u, y)d\lambda$

$+remainder$ ,

where $I^{\prime}\Subset I$ is open and $\lambda_{0}\in I^{\prime}$ . The remainder is seen to converge to $0$ as
$\epsilon\downarrow 0$ . To handle the other term we will show that

(5.30) $\frac{d}{d\lambda}(\tilde{E}_{1}(\lambda)B^{*}u, y)\in L^{2}(I^{\gamma})$ .

In fact, by using Assumption 3.2 and equation (3.2) together with Proposition
3.7, one has $(d/d\lambda)\Vert\tilde{E}_{1}(\lambda)B^{*}u\Vert^{2}=\Vert(FE_{1}(I)B^{*}u)(\lambda)\Vert_{\mathfrak{C}}^{2}=\Vert T(\lambda;B)u\Vert_{\mathfrak{C}}^{2},$ $\lambda\in I$. Since
this is bounded in $\overline{I}^{\prime}$ because of the continuity of $T(\lambda;B),$ $(5.30)$ follows from
the inequality $|(d/d\lambda)(\tilde{E}_{1}(\lambda)B^{*}u, y)|^{2}\leqq(d/d\lambda)\Vert\tilde{E}_{1}(\lambda)B^{*}u\Vert^{2}\cdot(d/d\lambda)\Vert\tilde{E}_{1}(\lambda)y\Vert^{2}$ .

(5.30) implies that the first term on the right of (5.29) tends to $0$ as $\epsilon\downarrow 0$ .
Therefore, by letting $\epsilon\downarrow 0$ in (5.28) we obtain

$(T(\lambda_{0} ; B)^{*}T(\lambda_{0} ; B)u, C^{*}Ay)=0$ , $u\in \mathfrak{D}(B^{*})$ .
This result can be extended to an arbitrary $u\in \mathfrak{K}$ . In particular, we can take
$u=C^{*}Ay$ and conclude $T(\lambda_{0} ; B)C^{*}w=0,$ $w=Ay$ .

Since $w=Ay\in \mathfrak{K}_{1}$ as shown before, Lemma 5.18 tells us that $Q_{1\pm}(\lambda_{0})^{*}w\in \mathfrak{K}_{1}$ .
Therefore, by Proposition 5.2 and ii) of Assumption 5.19, we see that $Q_{1\pm}(\lambda_{0})^{*}w$

$\in \mathfrak{D}(A^{-1})$ and $z_{\pm}=y+A^{-1}Q_{1\pm}(\lambda_{0})^{*}Ay=A^{-1}(1+Q_{1\pm}(\lambda_{0})^{*})w\in \mathfrak{D}_{1-\theta}$ . On the other
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hand, $h_{2}[\phi, y]=\lambda_{0}(\phi, y),$ $\phi\in \mathfrak{S}$ , because $y\in \mathfrak{M}(\lambda_{0})$ . We now apply Theorem
5.6. Noting $h_{2}[\phi, y]=h_{2}[\phi, y]$ and $h_{1}[\phi, z_{\pm}]=h_{1}[\phi, z_{\pm}]$ as $y,$ $z_{\pm}\in \mathfrak{D}_{1-\theta}$ , we
then obtain $h_{1}[\phi, z_{\pm}]=\lambda_{0}(\phi, z_{\pm}),$ $\phi\in \mathfrak{S}$ . By Assumption 5.20 this relation
remains true for any $\phi\in \mathfrak{D}_{\theta}$ . Hence $z_{\pm}\in \mathfrak{D}(H_{1})$ and $H_{1}z_{\pm}=\lambda_{0}z_{\pm}$ . However,
$H_{1}$ is absolutely continuous in $I$ (Assumption 3.2). Hence $z_{\pm}=0$ . Recalling

the definition of $z_{\pm}$ , we see that $(1+Q_{1\pm}(\lambda_{0})^{*})w=0$ .
Conversely, suppose that $(1+Q_{1\pm}(\lambda_{0})^{*})w_{\pm}=0,$ $w_{\pm}\in \mathfrak{K}$ . As shown before,

$w_{\pm}\in\Re(A)$ and $y_{\pm}=A^{-1}w_{\pm}$ satisfies (5.8). On the other hand Theorem 5.16
shows that $w_{\pm}\in \mathfrak{K}_{1}$ . Hence, by ii) of Assumption 5.19 one sees that $y_{\pm}\in \mathfrak{D}_{1-\theta}$

and $y_{\pm}=A^{-1}w_{\pm}$ . Then, (5.8) can be written as

$h_{2}[\phi, y_{\pm}]=\lambda_{0}(\phi, y_{\pm})$ , $\phi\in \mathfrak{S}$ .
By virtue of Assumption 5.20 this relation remains true for any $\phi\in \mathfrak{D}_{\theta}$ . But
then it follows that $y_{\pm}\in \mathfrak{D}(H_{2})$ and $H_{2}y_{\pm}=\lambda_{0}y_{\pm}$ . $q$ . $e$ . $d$ .

From Lemma 5.22 it follows that i) $e_{+}=e_{-}=e$ ; ii) $e=\sigma_{sing}(H_{2})\cap I$, where
$\sigma_{sing}(H_{2})$ denotes the singular spectrum of $H_{2}$ ; and iii) every point of $e$ is an
eigenvalue of $H_{2}$ .

PROOF OF THEOREM 5.21. Suppose there exists an infinite sequence $\lambda_{n}\in$

$\Gamma\cap e,$ $n=1,2,$ $\cdots$ , with a corresponding orthonormal system $\{y_{n}\},$ $y_{n}\in \mathfrak{H}$, of
eigenvectors of $H_{2}$ : $H_{2}y_{n}=\lambda_{n}y_{n}$ (some of $\lambda_{n}’ s$ may be equal). The theorem
will be proved if we can derive a contradiction from this supposition.

Put $w_{n}=Ay_{n}$ . Writing $y_{n}=(|\lambda_{n}|^{1-\theta}+i)(|H_{2}|^{1-\theta}+i)^{-1}y_{n}$ , we see by (5.13)

and (5.15) that

\langle 5.31) $\Vert w_{n}\Vert_{\Re_{1}}=\Vert A_{1}^{0.-1}Dy_{n}\Vert_{\Re_{1}}=\Vert Dy_{n}\Vert_{\Re_{0}}$

$\leqq c(|\lambda_{n}|^{1\theta}+i)$ {II I $ H_{1}|^{1-\theta}(|H_{2}|^{1-\theta}+i)^{-1}\Vert$

$+\Vert(I H_{2}|^{1-\theta}+i)^{-1}\Vert\}$ $\Vert y_{n}\Vert_{\mathfrak{H}}$

$\leqq M$ ,

where $M$ is a constant independent of $n$ (note $\Vert y_{n}\Vert_{\mathfrak{H}}=1$ ). Hence $\{w_{n}\}$ is
bounded in $\mathfrak{K}_{1}$ and a fortiori in $\mathfrak{K}_{0}=\mathfrak{K}$ .

We will show that $\{w_{n}\}$ contains a subsequence convergent in I;}. For this
purpose we may assume that $\lambda_{n}\rightarrow\lambda_{0}\in\Gamma$ . Lemma 5.22 shows that $(1+Q_{1+}(\lambda_{n})^{*})w_{n}$

$=0$ . On the other hand, (4.6) and the discussions that follow it show that
$1+Q_{1+}^{*}$ can be written as $1+Q_{1+}(\lambda)^{*}=(1+K(\lambda))S$ , where $S\in B(\mathfrak{K})$ is invertible
in $B(\mathfrak{K})$ and $K(\lambda)$ is a $B_{\infty}(\mathfrak{K})$ -valued continuous function ( $K(\lambda)$ is $K_{+}(\lambda)^{*}$ in the
notation of (4.6)). Therefore, $Sw_{n}=-K(\lambda_{n})Sw_{n}=-\{K(\lambda_{n})-K(\lambda_{0})\}Sw_{n}-$

$K(\lambda_{0})Sw_{n}$ contains a subsequence convergent in $\mathfrak{K}$ , and so does $w_{n}=S^{-1}(Sw_{n})$ .
Switching to a subsequence, we assume from now on that $\lambda_{n}\rightarrow\lambda_{0}$ and

$w_{n}\rightarrow w_{0}$ (in $\mathfrak{K}$). By Theorem 5.16 $w_{0}\in \mathfrak{K}_{1}$ , because $(1+Q_{1+}(\lambda_{0})^{*})w_{0}=0$ holds by
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continuity. We now claim that

(5.32) $\Vert w_{n}-w_{0}\Vert_{R_{1}}\rightarrow 0$ , $ n\rightarrow\infty$ .
For the time being, suPpose that (5.32) has been proved. Then, by (5.27)

we get $\Vert y_{m}-y_{n}\Vert_{\mathfrak{H}}\leqq c\Vert w_{m}-w_{n}\Vert fl_{1}\rightarrow 0,$ $m,$ $ n\rightarrow\infty$ . Hence, $\{y_{n}\}$ is a Cauchy
se($luence$ in $\mathfrak{H}$, which contradicts the orthonormality of $\{y_{n}\}$ .

The proof of (5.32) somehow follows that of Lemma 5.17. Whenever an
object, which was introduced in the proof of Lemma 5.17 related to $w$ , is
used related to $w_{n}$ , we will use the same notation with suitable subscripts.
As in that proof $w_{n},$ $n=0,1,$ $\cdots$ , are decomposed as $w_{n}=w_{1,n}+w_{2,n}$ .

By writing $w_{1,n}=Au_{1,n},$ $u_{1,n}\in \mathfrak{D}_{1-\theta}$ as in (5.20) and using an argument
similar to (5.31) we get $\Vert w_{1,n}-w_{1,0}\Vert_{\Re_{1}}\leqq c(\Vert|H_{1}|^{1-\theta}(u_{1,n}-u_{1,0})\Vert_{\mathfrak{H}}+\Vert u_{1,n}-u_{1,0}\Vert_{\mathfrak{H}})$ .
It is clear by (5.19) and the definition of $u_{1,k}$ that the right side is majorized
by $c\Vert w_{n}-w_{0}\Vert_{9t}$ (we use the same letter $c$ to denote various constants). Hence,
$\Vert w_{1,n}-w_{1,0}\Vert_{\Re_{1}}\rightarrow 0$ .

We next show that $\Vert w_{2,n}-w_{2,0}\Vert_{R_{1}}\rightarrow 0$ . The proof of Lemma 5.17 shows
that it suffices for this purpose to prove $\Vert\psi_{n}-\psi_{0}\Vert_{L^{2}(I^{\prime}}$ ; $\mathfrak{C}$ )

$\rightarrow 0$ , where $\psi_{n}(\lambda)=$

$(\lambda-\lambda_{n})^{-1}T(\lambda;B)C^{*}w_{n}$ . It is clear that $\psi_{n}(\lambda)\rightarrow\psi_{0}(\lambda)$ for each $\lambda\in I^{\prime}-\{\lambda_{0}\}$ . On
the other hand, it follows from (5.18) and $T(\lambda_{n} ; B)C^{*}w_{n}=0$ that $\Vert\psi_{n}(\lambda)\Vert_{\mathfrak{C}}\leqq$

$c\Vert w_{n}\Vert_{R_{1}}|\lambda-\lambda_{n}|^{\theta-1},$ $\lambda\in I^{\prime}$ , where $\theta>1/2$ . Since $\Vert w_{n}\Vert_{R_{1}}\leqq M$ by (5.31), we see
that the $\mathfrak{C}$ -valued set functions $E\rightarrow\int_{B}\Vert\psi_{n}(\lambda)\Vert^{2}d\lambda,$ $E\subset I,$ $n=1,2,$ $\cdots$ , are uni-

formly absolutely continuous. This fact combined with the pointwise con-
vergence mentioned above establishes the desired $L^{2}$-convergence of $\psi_{n}$ (the
$Vita]\lfloor i$ convergence theorem). $q$ . $e$ . $d$ .

\S 6. Supplementary remarks.

6.1. Principle of limiting absorption. The principle of limiting absorp-
tion may be considered as the assertion of the convergence as $\epsilon\downarrow 0$ of the
resolvent $R_{2}(\lambda\pm i\epsilon)$ with respect to the operator norm between suitable spaces.
In our approach this principle may be formulated as in the following theo-
rem. For simplicity we assume that $A$ is one-to-one.

THEOREM 6.1. Let all the assumptions of Theorem 5.21 be satisfied8). $As$

before, let $\mathfrak{Y}$ be the completiOn of $\mathfrak{D}(A)$ with respect to the norm $\Vert u\Vert_{\mathfrak{Y}}=\Vert Au\Vert_{\mathfrak{H}}$ .
Let $\mathfrak{K}^{\prime}$ be a subsPace of $\mathfrak{D}(A^{*})\subset \mathfrak{K}$ such that $A^{*}$ is one-to-one on $\mathfrak{K}^{\prime}$ and let $\mathfrak{X}_{\theta}$

be the inner Product sPace $A^{*}\mathfrak{K}^{\prime}$ with the norm $\Vert A^{*}u\Vert_{k}=\Vert u\Vert_{R},$ $u\in \mathfrak{K}^{\prime}$ . Let X $be$

the completion of $\mathfrak{X}_{0}$ . Furthermore, assume either one of the following condi-
tions (1) and (2): (1) $[AR_{1}(\zeta)A^{*}]^{a}\in B(\mathfrak{K}),$ $\zeta\in\rho(H_{1})$ ; (2) $\mathfrak{X}$ and $\mathfrak{H}$ are con-

8) However, the arguments in this subsection depend essentially on the $argu\rightarrow$

ments up to \S 4. 1.
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tinuously imbedded in $\mathfrak{H}$ and $\mathfrak{Y}$ , respectively. Then, $R_{2}(\zeta)$ restricted to $\mathfrak{X}_{0}$ and
regarded as an operatOr from $\mathfrak{X}_{0}$ to $\mathfrak{D}(A)$ can be extended to a bounded $oPerator$

$R_{2}(\zeta)\in B(\mathfrak{X}, \mathfrak{Y})$ from X to $\mathfrak{Y}$ . Furthermore, the $oPerator$ valued function $R_{2}$ :
$\Pi^{\pm}\rightarrow B(\mathfrak{X}, \mathfrak{Y})$ can be extended uniquely to a locally Holder continuous $oPeratw$

valued function $R_{2\pm};$ $\Pi_{I-e}\pm\rightarrow B(\mathfrak{X}, \mathfrak{Y})$ .
PROOF. In the case that (1) is satisfied we have $X(\zeta)\equiv[AR_{2}(\zeta)A^{*}]^{a}\in B(\mathfrak{K})$

(cf. (2.4)). Furthermore, $X:\Pi\pm\rightarrow B(\mathfrak{K})$ can be extended to $X_{\pm}:$ $\Pi_{I-e}\pm\rightarrow B(\mathfrak{K})$

(cf. (4.9) and the proof of Theorem 3.9). On the other hand, let $ A\dagger$ (resp. $A$)
be the unitary operator from $\mathfrak{K}^{\prime a}$ to $\mathfrak{X}$ (resp. from $\mathfrak{Y}$ to $\Re(A)^{a}$) determined by
$A\dagger u=A^{*}u,$ $u\in \mathfrak{K}^{\prime}$ (resp. $Au=Au,$ $u\in \mathfrak{D}(A)$). Then, it is easy to see that the
operator valued function $\tilde{R}_{2}(\zeta)=A^{-1}X(\zeta)A\uparrow-1$ satisfies the requirement of the
theorem.

In the case that (2) is satisfied we put $X(\zeta)=[AE_{2}(I^{\prime})R_{2}(\zeta)A^{*}]^{a}\in B(\mathfrak{K})$ ,

where $I^{\prime}\subset I-e$ is arbitrarily fixed. $X:\Pi^{\pm}\rightarrow B(\mathfrak{K})$ can be extended to $X_{\pm}:$

$\Pi_{1^{\prime}}^{\pm}\rightarrow B(\mathfrak{K})$ . Put $R_{2}(\zeta)=E_{2}(R^{1}-I^{\prime})R_{2}(\zeta)|_{X}+A^{-1}X_{\pm}(\zeta)A\uparrow- 1$ The second term on
the right side satisfies the requirement of the theorem with $I-e$ replaced by
$I^{\prime}$ . As to the first term we note that $E_{2}(R^{\iota}-I^{\prime})R_{2}(\zeta)$ is analytic in $\Pi+\cup\Pi^{-}\cup I^{\prime}$

as a $B(\mathfrak{H})$ -valued function. By virtue of (2), therefore, the first term is an-
alytic there as a $B(\mathfrak{X}, \mathfrak{Y})$ -valued function. Since $I^{\prime}$ is arbitrary, the theorem
is proved. $q$ . $e$ . $d$ .

COROLLARY 6.2. SuPpose that either (1) is satisfied or $\mathfrak{H}$ is continuously
imbedded in $\mathfrak{Y}$ . Let $v\in\Re(A^{*})$ and let $u(\zeta),$ $\zeta\in p(H_{2})$ , be the unique solution in

$\mathfrak{H}$ of the equation $H_{2}u(\zeta)-\zeta u(\zeta)=v$ . Then, $u:\Pi^{\pm}\rightarrow \mathfrak{Y}^{9)}$ can be extended to a
locally Holder continuous function $u_{\pm}:$

$\Pi_{I-e}^{\pm}\rightarrow \mathfrak{Y}$ . For any $\lambda\in I-e,$ $u_{\pm}$ satisfies
(6.1) $h_{2}[\phi, u_{\pm}(\lambda)]-(\phi, u_{\pm}(\lambda))=(\phi, v)$ , $\phi\in \mathfrak{S}$ .

PROOF. We may suppose that $v\neq 0$ . The first statement follows from
Theorem 6.1 by taking $\mathfrak{K}^{\prime}=\{\alpha u\},$ $v=A^{*}u$ . Let $\zeta\in\Pi^{\pm}$ . Then,

$(h_{2}-\zeta)[\phi, u_{\pm}(\zeta)]=(h_{2}-\zeta)[\phi, u(\zeta)]=(h_{2}-\zeta)[\phi, u(\zeta)]$

$=(h_{2}-\zeta)[\phi, R_{2}(\zeta)v]=(\phi, v)$ , $\phi\in \mathfrak{S}$ .
(6.1) is derived from this by letting $\zeta\rightarrow\lambda$ . $q$ . e.d.

In Example 3.14 we have $\mathfrak{Y}=H_{-\delta/2}^{1}$ . If we take $\mathfrak{K}^{\prime}=\{0\}\oplus L^{2}\subset L^{2}\oplus L^{2}$

$=\mathfrak{K}$ , then $\mathfrak{X}=L_{\delta/2}^{2}$ . Hence, condition (2) is satisfied. Thus, the principle of
limiting absorption holds for $R_{2}(\zeta)$ as operators from $L_{\delta/2}^{2}$ to $H_{-\delta/2}^{1}$ .

6.2. Scattering matrix. The scattering operator $S=S(H_{2}, H_{1} ; I)$ intro-
duced in Theorem 3.12 will be a decomposable operator in the spectral
representation space $L^{2}(I;\mathfrak{C})$ of $E_{1}(I)H_{1}$ . In this subsection an explicit formula
for such an operator will be proved. The formula can be used to examine

9) Note that $u(\zeta)\in \mathfrak{D}(H_{2})\subset \mathfrak{D}(A)\subset \mathfrak{Y}$ .
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how quickly the eigenvalues of $S(\lambda)-1$ , the scattering matrix minus the
identity, tends to $0$ (cf. Corollary 6.4).

The scattering operator $S$ is defined as $S=W_{+}^{*}W_{-}$ where $W_{\pm}=F_{\pm}^{*}F$.
Hence $S=F^{*}F_{+}F_{-}^{*}F$ and $S$ is a unitary operator in $E_{1}(I)\mathfrak{H}$ . We put $\hat{S}=FSF^{*}$

$=F_{+}F_{-}^{*}$ . $\hat{S}$ is the representation of $S$ in $L^{2}(I;\mathfrak{C})$ and is a unitary operator
in $L^{2}(I;\mathfrak{C})$ .

THEOREM 6.3. For any $\lambda\in I-e$ put

(6.2) $S(\lambda)=1-2\pi iT(\lambda;A)G_{2+}(\lambda)CT(\lambda;B)^{*}$ .

Then, for any $f\in L^{2}(I;\mathfrak{C})$ we have

(6.3) $(\hat{S}f)(\lambda)=S(\lambda)f(\lambda)$ , $a$ . $e$ . $\lambda\in I$ ,

(6.4) $(\hat{S}^{-1}f)(\lambda)=S(\lambda)^{-1}f(\lambda)$ , $a$ . $e$ . $\lambda\in I$ ,

where $S(\lambda)^{-1}$ has the form
(6.5) $S(\lambda)^{-1}=1+2\pi iT(\lambda;A)G_{2-}(\lambda)CT(\lambda;B)^{*}$ .
$S(\lambda)$ is a unitary operator in $\mathfrak{C}$ and dePends locally Holder continuously on
$\lambda\in I-e$ with respect to the oPerator norm.

PROOF. That $S(\lambda)^{-1}$ exists and has the form (6.5) can be verified by a
direct computation using the relation $CT(\lambda;B)^{*}T(\lambda;A)=(2\pi i)^{-1}\{Q_{1\prec}.(\lambda)-Q_{1-}(\lambda)\}$ .

For $u\in E_{2}(I)\mathfrak{H}$ put $f_{\pm}(\lambda)=(F_{\pm}u)(\lambda)$ . Then, (6.3) is equivalent to the relation

(6.6) $f_{+}(\lambda)=S(\lambda)f_{-}(\lambda)$ .
We first claim that (6.6) holds for $u$ having the form $u=E_{2}(I^{\prime})A^{*}w,$ $w\in \mathfrak{D}(A^{*})$ ,
$I^{\prime}\subset I-e$ . In fact, by (3.7) we get

(6.7) $f_{\pm}(\lambda)=x_{I^{\prime}}(\lambda)T(\lambda;A)G_{2\pm}(\lambda)w$

and hence

(6.8) $f_{+}(\lambda)=f_{-}(\lambda)+\chi_{I^{\prime}}(\lambda)T(\lambda;A)\{G_{2+}(\lambda)-G_{2-}(\lambda)\}w$ .
Recalling $G_{2\pm}(\lambda)=G_{1\pm}(\lambda)^{-1},$ $\lambda\in I-e$ , we have

(6.9) $G_{2+}(\lambda)-G_{2-}(\lambda)=G_{2+}(\lambda)\{G_{1-}(\lambda)-G_{1+}(\lambda)\}G_{2-}(\lambda)$

$=-2\pi iG_{2+}(\lambda)CT(\lambda;B)^{*}T(\lambda;A)G_{2-}(\lambda)$ .
By inserting (6.9) into (6.8) and using (6.7) for $f_{-},$ $(6.6)$ is proved for $u$ having
the form mentioned above. However, since the set of all such $u$ forms a
fundamental set in $E_{2}(I-e)\mathfrak{H}$ (Assumption 3.5), so is in $L^{2}(I;\mathfrak{C})$ the set of all

$f_{-}$ arising from such $u$ . Therefore, the validity of (6.6) can be extended to
an arbitrary $f_{-}\in L^{2}(I;\mathfrak{C})$ by a limit procedure (note that $S(\lambda)\in B(\mathfrak{C})$). Thus,
(6.3) is proved.

From the unitarity of $\hat{S}$ and the relation $E_{1}(I^{\prime})S=SE_{1}(I^{\prime}),$ $I^{\prime}\subset I-e$ , it fol-
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lows that $\int_{I},$ $\Vert S(\lambda)c\Vert^{2}d\lambda=\int_{p}\Vert c\Vert^{2}d\lambda,$ $c\in \mathfrak{C},$ $I^{\prime}\Subset I-e$ . Hence, $\Vert S(\lambda)c\Vert=\Vert c\Vert$ $a$ . $e$ .
Since $S(\lambda)$ is continuous in $\lambda$ , we see that $\Vert S(\lambda)c\Vert=\Vert c\Vert,$ $\lambda\in I-e,$ $c\in \mathfrak{C}$ . Thus,
$S(\lambda)$ is isometric. Since $S(\lambda)^{-1}$ exists as an operator in $B(\mathfrak{C}),$ $S(\lambda)$ is unitary.
Finally, (6.4) follows from (6.3) at once. $q$ . $e$ . $d$ .

Let St and $\mathfrak{C}$ be Hilbert spaces. We denote by $C_{p}(\mathfrak{K}, \mathfrak{C}),$ $ 0<p<\infty$ , the
von Neumann-Schatten class of completely continuous operators from $\mathfrak{K}$ to
$\mathfrak{C}$ . Namely, $T\in C_{p}(\mathfrak{K}, \mathfrak{C})$ if the sequence of eigenvalues of $(T^{*}T)^{1/2}\in B_{\infty}(\mathfrak{K})$

belongs to $l^{p}$ . Put $C_{p}(\mathfrak{C})=C_{p}(\mathfrak{C}, \mathfrak{C})$ .
COROLLARY 6.4. Let $p,$ $q>0$ and suPpose that

(6.10) $T(\lambda;A)\in C_{p}(\mathfrak{K}, \mathfrak{C})$ , $T(\lambda;B)\in C_{q}(\mathfrak{K}, \mathfrak{C})$ .
Then one has

(6.11) $S(\lambda)-1\in C_{r}(\mathfrak{C})$ , $r^{-1}=p^{-1}+q^{-1}$ .
PROOF. (6.11) follows immediately from (6.2) and the relations $C_{q}(\mathfrak{K}, \mathfrak{C})^{*}$

$=C_{q}(\mathfrak{K}, \mathfrak{C})^{10)},$ $B(\mathfrak{K})\cdot C_{q}(\mathfrak{C}, \mathfrak{K})\subset C_{q}(\mathfrak{C}, \mathfrak{K})$ , and $C_{p}(\mathfrak{K}, \mathfrak{C})\cdot C_{q}(\mathfrak{C}, \mathfrak{K})\subset C_{r}(\mathfrak{K})$ (see, $e$ . $g.$ ,

N. Dunford and J. T. Schwartz, Linear Operators, Part II, Interscience, New
York and London, 1963, Chapt. XI).
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