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Clifford and Preston have defined a class of Croisot-Teissier semigroups
of type $(p, q)$ which are simple with a minimal right ideal when $p=q([1]$
$8.2)$ . In this paper, we define a modified class of Croisot-Teissier semigroups
(1.3) which are simple with a minimal right ideal for all $q\leqq p$ (1.9). The
generalized Baer-Levi semigroups ([1] 8.1) are shown to be right simple
generalized Croisot-Teissier semigroups under the new definition (1.5).

In the concluding sections, we investigate group and band congruences
on these semigroups. We find a set, $E$ , which is contained in the kernel of
every group congruence (2.3), and also find necessary and sufficient conditions
for $E$ to be the kernel of such a congruence (2.11). Using this result, we
show that a Baer-Levi semigroup has a non-trivial group congruence if and
only if $p>q(2.14)$ .

Finally, we relate band congruences on simple semigroups with a minimal
right ideal to the ordering of the $\mathcal{L}$-classes under the usual ordering (3.3),
and after investigating this structure in Baer-Levi semigroups (3.5), we show
they have only trivial band congruences. This is sufficient to show that the
only regular congruences on Baer-Levi semigroups are group congruences
(3.6).

The terminology and notation will be that of Clifford and Preston [1].

\S 1. Generalized Croisot-Teissier semigroups.

In this section we discuss a class of simple semigroups with a minimal
right ideal, which are generalized Baer-Levi semigroups ([1] 8.1). Clifford
and Preston ([1] 8.2) have defined Croisot-Teissier semigroups of type $(p, q)$

which are simple with a minimal right ideal in the case $p=q$ . We will
modify their definition to obtain a class of generalized Groisot-Teissier semi-
groups of type $(p, q)(p\geqq q)$ , each member of which is simple with a minimal
right ideal.

(1.1) DEFINITION ([1] vol. II, p. 86). Let $p$ and $q$ be infinite cardinals
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with $p\geqq q$ , and let $X$ be a set with $|X|\geqq p$ . Suppose $\mathcal{E}=\{\mathcal{E}_{i} ; i\in I\}$ is a set
of distinct equivalences on $X$ such that each quotient set $X/\mathcal{E}_{i},$ $i\in I$ , is of
cardinal $p$ . A subset $B\subseteqq X$ will be said to be well-separated by $\mathcal{E}$ if i) $|B|$

$=p$ , and ii) $\mathcal{E}_{i}\cap(B\times B)=\Delta_{B}$ , the identity relation on $B$ , for all $i\in I$.
(1.2) DEFINITION. Let $p,$ $q,$ $X$ and $\mathcal{E}$ be as in (1.1). Let $B$ be a subset

of $X$ which is well-separated by $\mathcal{E}$ . Then $B$ is said to be q-well-separated by
$\mathcal{E}$ if $C_{i}$ , the collection of all $\mathcal{E}_{i}$ -classes of $X$ which do not intersect $B$ , has
cardinal less than or equal to $q$ , for each $i\in 1$.

When $\mathcal{E}$ is clear from the context, we will simply say that $B$ is q-well-
separated.

(1.3) DEFINITION. $a$ . Let $p,$ $q,$ $X$ and $\mathcal{E}$ be as in (1.1). For each $i\in 1$, let
$\tau_{i}*$ denote the collection of all maps $t_{i}$ of $X$ into $X$ for which i) $t_{i}\circ t_{i}^{-1}=\mathcal{E}_{i}$ ,
and ii) there exists a subset $B$ ( $=B(t_{i})$ , in general depending upon $t_{i}$) of $X$

with $B$ q-well-separated by $\mathcal{E}$ , and $Xt_{i}\subseteqq B$ with $|B\backslash Xt_{i}|=q$ .
$b$ . If $X$ contains a q-well-separated subset $B$ , then $\tau_{i}*\neq\square $ for any $i\in I$.

In this case, we denote by $CT^{*}(X, \mathcal{E}, p, q)$ the union of the sets $\tau_{i}*$ for all
$i\in I$.

A set $X$, with a collection of equivalences $\mathcal{E}$ , may have a subset well-
separated by $\mathcal{E}$ which is not q-well-separated by $\mathcal{E}$ when $p>q$ . For example,
we let $X$ be a set of infinite cardinal $p$ and $A\subseteqq X$ with $B=X\backslash A$ , for which
$|A|=|B|=p$ . Let $\mathcal{E}_{1}=\Delta_{X}$ , the identity relation on $X$, and let $\mathcal{E}_{2}=(A\times A)\cup\Delta_{B}$ ,
where $\Delta_{B}$ is the identity relation on $B$ . Then for $q<p,$ $X$ has no subset q-
well-separated by $\mathcal{E}=\{\mathcal{E}_{1}, \mathcal{E}_{2}\}$ . It is clear, however, that $B$ is well-separated
by $\mathcal{E}$.

The proof of Lemma (1.4) is almost identical to that of [1] Lemma 8.9.
(1.4) LEMMA. Any set of mappings $CT^{*}(X, \mathcal{E}, p, q)$ forms, under composi-

tion, an idempotent free semigroup in which each $\tau_{i}*$ is a right ideal.
Using (1.3) and (1.4), one easily checks the following:
(1.5) COROLLARY. Let $S=CT^{*}(X, \mathcal{E}, p, q)$ . Then if $\mathcal{E}$ consis $ts$ of exactly

one equivalence relation, $S$ is right simple. Furthermore, if $\mathcal{E}=\{\Delta_{X}\}$ , where $\Delta_{X}$

is the identity relation on $X$, then $S$ is a Baer-Levi semigroup of type $(p, q)$ .
(1.6) DEFINITION. The semigroup $CT^{*}(X, \mathcal{E}, p, q)$ will be known as a

generalized Croisot-Teissier semigroup of type $(p, q)$ , or simply a Croisot-Teissier
semigroup.

We note the following for the reader’s convenience.
(1.7) NOTE. Clifford and Preston ([1] 8.2) define the Croisot-Teissier

semigroup of type $(p, q)$ , denoted $CT(X, \mathcal{E}, p, q)$ , as follows:
$a$ . Let $p,$ $q,$ $X$ and $\mathcal{E}$ be as in (1.1). For each $i\in I$, let $T_{i}$ denote the

collection of all maps $t_{i}$ of $X$ into $X$ for which i) $t_{i}\circ t_{i}^{-1}=\mathcal{E}_{i}$ , and ii) there
exists a subset $B$ ( $=B(t_{i})$ , in general depending upon $t_{i}$) of $X$ with $B$ well-
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separated by $\mathcal{E}$, and $Xt_{i}\subseteqq B$ with $|B\backslash Xt_{i}|=q$ .
$b$ . If $X$ contains a well-separated subset $B$ , then $T_{i}\neq\square $ for any $i\in I$.

In this case, $CT(X, \mathcal{E}, p, q)$ is the union of the sets $T_{i}$ for all $i\in I$.
It is easily checked that $CT^{*}(X, \mathcal{E}, p, q)\subset CT(X, \mathcal{E}, p, q)(\subset indicates$ pro-

per containment), for $p\neq q$ , and that $CT^{*}(X, \mathcal{E}, p, p)=CT(X, \mathcal{E}, p, p)$ .
The following is an example of $CT^{*}(X, \mathcal{E}, p, q)$ with $\mathcal{E}$ having more than

one element.
(1.8) EXAMPLE. [6] Let $X$ be a set, $|X|=p$ , where $p$ is an infinite car-

dinal. Let $x,$ $y\in X,$ $x\neq y$ , and define $\mathcal{E}_{1}=\{(x, y), (y, x)\}\cup\Delta_{X}$ . Let $\mathcal{E}_{2}=\Delta_{X}$ .
If $B=X\backslash \{x\}$ , then for any infinite $q\leqq p,$ $B$ is q-well-separated by $\mathcal{E}=\{\mathcal{E}_{1}, \mathcal{E}_{2}\}$ .
Thus $CT^{*}(X, \mathcal{E}, p, q)$ exists for all infinite $q\leqq p$ .

The next theorem is the main result of this section, and it is proven in
much the same way as [1] Theorem 8.11.

(1.9) THEOREM. Each semigroup $CT^{*}(X, \mathcal{E}, p, q)$ is a simple idempotent
free semigroup which is the union of its minimal right ideals $T_{\iota^{*}},$ $i\in I$.

\S 2. Group congruences.

In this section we will give a necessary condition for $CT^{*}(X, \mathcal{E}, p, q)$ to
have a group congruence (2.5). This condition will also be necessary and
sufficient in the case $CT^{*}(X, \mathcal{E}, p, q)$ is right simple (2.12). A sufficient con-
dition for $CT^{*}(X, \mathcal{E}, p, q)$ to have a non-trivial group congruence will also be
given (2.11).

We first quote a theorem which will be the basis for our investigation.
(2.1) THEOREM ([4] Theorem (1.9)). Let $S$ be a simple semigroup with a

minimal right ideal. Then if $S$ has a group congruence $\rho$ , the kernel $E$ of $\rho$

is a unitary subsemigroup such that
i) $E$ is a right cross section ($E\cap aS\neq\square $ , for all $a\in S$),

ii) For $a\in S,$ $a=ae$ for some $e\in E$,
iii) If $xEy\cap E\neq\square $ for $x,$ $y\in S$, then $xEy\subseteqq E$.
Conversely, if $E$ is a unitary subsemigroup of $S$ satisfying i)-iii), then there

exists a group congruence $\rho$ with $E$ as its kernel.
(2.2) DEFINITION. Let $S=CT^{*}(X, \mathcal{E}, p, q)$ , and let $a\in S$. Then we say a

subset $Y_{a}$ of $X$ is fixed by $a$ , if $Y_{a}$ is q-well-separated by $\mathcal{E}$ and $a$ restricted
to $Y_{a}$ is the identity map. We say that $a$ has a fixed set if there exists a set
$Y_{a}$ fixed by $a$ .

We note the following relation between $E=$ { $e\in S:e$ has a fixed set} and
the kernel of any group congruence on $CT^{*}(X, \mathcal{E}, p, q)$ .

(2.3) PROPOSITION. Let $S=CT^{*}(X, \mathcal{E}, p, q)$ and $U$ be the kernel of any
group congruence on S. Then $E\subseteqq U$.
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PROOF. Let $\sigma$ be a group congruence on $S$ with the kernel $U$ . Let $e\in E$ ,

then $e$ fixes some q-well-separated subset $Y$ of $X$. Clearly, there exists $a\in S$

such that $Xa=Y$ , so that $ae=a$ , and $(ae, a)\in\sigma$ . But $ S/\sigma$ is a group, there-
fore $e\in U$ and $E\subseteqq U$ .

We will now find necessary and sufficient conditions for $E$ to be the
kernel of a group congruence. Combining (2.1) and (2.3) we have:

(2.4) LEMMA. If $S,$ $E$ , and $U$ are as in (2.3), and if $\langle E\rangle$ is the subsemi-
group of $S$ generated by $E$, then $\langle E\rangle\subseteqq U$ .

(2.5) PROPOSITION. Let $S=CT^{*}(X, \mathcal{E}, p, q)$ . $1fS$ has a non-trzvial group
congruence, then $p>q$ .

PROOF. Suppose $p=q$ , and $S$ has a non-trivial group congruence $\rho$ with
kernel $U$ . Let $E=$ { $e\in S:e$ has a fixed set}, then the subsemigroup $\langle E\rangle$ of
$S$ generated by $E$ is contained in $U$ . We will show that $\langle E\rangle=S$, and hence
$\rho$ will be a trivial congruence contrary to our assumption.

Let $a\in S$, we will show that there exists $e_{1},$ $e_{2}\in E$ such that $ a=e_{1}e_{2}\in$

$\langle E\rangle$ . Clearly $a\in\tau_{i}*$ for some $i\in I$, so that there exists $A$ , a p-well-separated
subset of $X$, such that $Xa\subseteqq A$ and $|A\backslash Xa|=p$ . Let $W\subseteqq A\backslash Xa$ with $|W|=$

$|(A\backslash Xa)\backslash W|=p$ . If $C_{i}$ is the collection of $\mathcal{E}_{i}$ -classes of $X$ which do not inter-
sect $W$ , then clearly $|C_{i}|=p$ . Therefore, since $p$ is an infinite cardinal, there
exists a one-to-one map $d$ of $C_{i}$ into $(A\backslash Xa)\backslash W$, such that

$(*)$ $|[(A\backslash Xa)\backslash W]\backslash C_{i}d|=p$ .
Define $e_{1}$ on any $x$ in an $\mathcal{E}_{i}$ -class contained in $C_{i}$ by letting $xe_{i}$ be the

image of the $\mathcal{E}_{i}$ -class of $x$ under $d$ . Let $we_{1}=w$ for all $w\in W$ . Since $W$ is
a well-separated subset of $X$, every $\mathcal{E}_{i}$ -class intersects $W$ in exactly one ele-
ment. Therefore if $(w, w^{\prime})\in \mathcal{E}_{i}$ for some $w\in W$ , and we let $w^{\prime}e_{1}=w$ , then $e_{1}$

is a well-defined map on all of the $\mathcal{E}_{i}$ -classes which intersect $W$ . It follows
that $Xe_{1}=C_{i}d\cup W$ , and hence $|A\backslash Xe_{1}|=p$ . It is also true that $e_{1}\circ e_{1}^{-1}=\mathcal{E}_{i}$ ,

so that $e_{1}\in T_{t^{*}}$ . Clearly $W$ is a set fixed by $e_{1}$ , and thus $e_{1}\in E$. Since $e_{1}\circ e_{1}^{-1}$

$=\mathcal{E}_{i}=a\circ a^{-1}$ , if we define $e_{2}$ on $Xe_{1}$ by $xe_{1}e_{2}=xa$ , then $e_{2}$ is well-defined on
$Xe_{1}$ , in fact, $e_{2}$ is a one-to-one map of $Xe_{1}$ onto $Xa$ . For each $xe_{1}\in Xe_{1}$ , we
extend $e_{2}$ to the $\mathcal{E}_{i}$ -class $\overline{xe}_{1}$ of $xe_{1}$ by $(\overline{xe}_{1})e_{2}=xa$ . Since $Xe_{1}$ is well-separated
by $\mathcal{E}$ , this extension is well defined. From $(*)$ it is clear that $|A\backslash (Xe_{1}\ovalbox{\tt\small REJECT}^{(}Xa)|$

$=p$ , and therefore there exists $Y\subseteqq A\backslash (Xe_{1}\cup Xa)=F$, with $|Y|=|F\backslash Y|=|F|$

$=p$ . If $\mathcal{G}$ is the collection of all $\mathcal{E}_{i}$ -classes of $X$ which do not intersect
$Xe_{1}\cup Y$, clearly $|\mathcal{G}|=p$ , and since $p$ is an infinite cardinal, there exists $d^{\prime}$ , a
one-to-one map of $\mathcal{G}$ into $F\backslash Y$, with $|(F\backslash Y)\backslash \mathcal{G}d^{\prime}|=p$ . If $x$ is an $\mathcal{E}_{i}$ -class in $\mathcal{G}$ ,
let $xe_{2}$ be the image of the $\mathcal{E}_{i}$ -class of $x$ under $d^{\prime}$ . Finally, for $y\in Y$, let
$ye_{2}=y$, and if $(y, y^{\prime})\in \mathcal{E}_{i}$ for $y\in Y$, let $y^{\prime}e_{2}=y$ . Then we have $|A\backslash Xe_{2}|=$

$|((F\backslash Y)\backslash \mathcal{G}d^{\prime})\cup Xe_{1}|=P$ , and $e_{2}\circ e_{2}^{-1}=\mathcal{E}_{i}$ , so that $e_{2}\in\tau_{i}*\subseteqq S$. Clearly $e_{2}\in E$

with fixed set Y. Thus combining all of the above, we have $ a=e_{1}e_{2}\in\langle E\rangle$ ,
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and hence every element of $S$ is in $\langle E\rangle\subseteqq U$ and $\rho$ is a trivial congruence.
(2.6) DEFINITION. $LetS=CT^{*}(X, \mathcal{E}, p, q)$ . IfCandDareq-well-separated

subsets of $X$, and $i,$ $j\in I$, then the set

$\mathcal{M}(C, D, i, j)=$ { $c\in C$ : there is $d\in D$ with $(c,$ $d)\in \mathcal{E}_{i}\cap \mathcal{E}_{j}$ }

is said to be the $(i, $])-mesh of $C$ with $D$ .
(2.7) CONDITION G. Let $S=CT^{*}(X, \mathcal{E}, p, q)$ . Then $S$ is said to satisfy

condition $G$ if and only if $p>q$ and, for any $i,$ $j\in I$ and for any subsets $C$

and $D$ of $X$ which are q-well-separated by $\mathcal{E}$ , the set $\mathcal{M}(C, D, i, J)$ is q-well-
separated by $\mathcal{E}$.

An example of a Croisot-Teissier semigroup that satisfies condition $G$ is
given in (1.8).

We will now use a series of lemmas to prove the main result.
(2.8) LEMMA. If $S=c\tau*(X, \mathcal{E}, p, q)$ satisfies condition $G$ , then $E=\{e\in S$ :

$e$ has a fixed set} is a subsemigroup of $S$.
PROOF. Let $a,$ $b\in E$ with sets $Y_{\alpha}$ and $Y_{b}$ fixed by $a$ and $b$ respectively.

Assume further that $a\in\tau_{i}*$ and $b\in T_{j^{*}}$ for some $i,$ $j\in I$. Then, since $Y_{q_{k}}$

and $Y_{b}$ are q-well-separated, $Y_{ab}=\mathcal{M}(Y_{b}, Y_{a}, i, j)$ is q-well-separated (2.7). We
now show that $Y_{ab}$ is a fixed set for $ab$ . Let $y\in Y_{ab}$ , then there exists a
$y^{\prime}\in Y_{a}$ with $(y, y^{\prime})\in \mathcal{E}_{i}\cap \mathcal{E}_{j}$ . Clearly, since $a\in\tau_{i}*$ and $y^{\prime}\in Y_{a}$ , a fixed set
for $a,$ $ya=y^{\prime}a=y^{\prime}$ . Similarly, since $b\in T_{J^{*}}$ and $y\in Y_{ab}\subseteqq Y_{b}$ , a fixed set for
$b$ , we have $y^{\prime}b=yb=y$ . But then, combining these equations, we have $yab$

$=y^{\prime}b=y$ . Thus we have shown that $Y_{ab}$ is a fixed set for $ab$ , and hence.
$ab\in E$ , and $E$ is a subsemigroup of $S$.

(2.9) LEMMA. If $S,$ $E$ are as in (2.8), then $E$ is unitary in $S$.
PROOF. First we show that $E$ is left unitary. Suppose $a\in E$ and $ab\in E$.

and suppose further that $a\in\tau_{i}*$ and $b\in T_{j^{*}}$ . Since $T_{\iota^{*}}$ is a right ideal,
$ab\in\tau_{i}*$ . Then there are sets $Y_{a}$ and $Y_{ab}$ fixed by $a$ and $ab$ respectively.
As in the proof of (2.8), we see that $Y_{b}=\mathcal{M}(Y_{ab}, Y_{a}, i, J)$ is a q-well-separated
subset of $X$. We will show that $b\in E$ by showing that $Y_{b}$ is a fixed set for
$b$ . Let $y\in Y_{b}$ , then there exists $y^{\prime}\in Y_{a}$ with $(y, y^{\prime})\in \mathcal{E}_{i}\cap \mathcal{E}_{j}$ . We now pro-
ceed as we did in (2.8) to get $ya=y^{\prime}a=y^{\gamma}$ , and $yb=y^{\prime}b$ . But then, since $Y_{ab}$.
is a fixed set for $ab$ , we have $y=yab=y^{\prime}b=yb$ . Thus $Y_{b}$ is a fixed set for
$b$ . Therefore, if $a\in E$ and $ab\in E$ for any $b\in S$, we have $b\in E$ and $E$ is left
unitary.

Finally we show $E$ is right unitary. Let $ab\in E$ and $b\in E$ , and suppose $\cdot$

$a\in T_{i^{*}}$ and $b\in T_{J^{*}}$ . Then as $\tau_{i}*$ is a right ideal, we have $ab\in\tau_{i}*$ . Since
$ab\in E$ and $b\in E$ , there exist $Y_{ab}$ and $Y_{b}$ , subsets of $X$ fixed by $ab$ and $b$

respectively. It is easily checked that if $A$ and $B$ are any q-well-separated
subsets of $X$ which are both contained in the same q-well-separated subset
of $X$, then $A\cap B$ is a q-well-separated subset of $X$. It follows that $Y=$
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$Y_{ab}\cap Y_{b}$ is a q-well-separated subset of $X$, since $Y_{ab}\subseteqq Xab\subseteqq Xb$ . We also
know that $Xa$ is a q-well-separated subset of $X$ , so that $Y_{a}=\mathcal{M}(Xa, Y, i, j)$

is q-well-separated by (2.7). We now show that $Y_{a}$ is a fixed set for $a$ . If
$y\in Y_{a}$ , then there exists $y^{\prime}\in Y$ such that $(y, y^{\prime})\in \mathcal{E}_{i}\cap \mathcal{E}_{j}$ . We proceed as in
(2.8) to get $ya=v^{\prime}a,$ $yab=y^{\prime}ab=y^{\prime}$ , and $yb=y^{\prime}b=y^{\prime}$ . Now since $y\in Xa$ , there
exists $y^{\prime\prime}\in X$ such that $y=y^{\prime\prime}a$ , and combining all of these equations, we
have $y^{\prime}ab=y^{\prime}=y^{\prime}b=yb=y^{\prime\prime}ab$ . But since $ab\in\tau_{i}*$ , it follows that $(ab)\circ(ab)^{-1}$

$=\mathcal{E}_{i}$ , and therefore $(y^{\prime}, y^{\prime\prime})\in \mathcal{E}_{i}$ . We also have $a\in\tau_{i}*$ and hence $ya=y^{\prime}a=$

$y^{\prime\prime}a=y$ . Thus $Y_{\alpha}$ is a fixed set for $a$ . We have shown that if $ab\in E$ and
$b\in E$ for some $a\in S$ , then $a\in E$, and $E$ is right unitary. Our result follows.

We recall that in (2.1) we showed that a unitary subsemigroup of a
simple semigroup $S$ with a minimal right ideal was the kernel of a group
congruence on $S$ if and only if it satisfied conditions i)-iii) in the following
lemma.

(2.10) LEMMA. If $S$ and $E$ are as in (2.8), then $E$ satisfles;
i) $E$ is a right cross-section ( $E\cap T_{i}^{*}\neq\square $ , for all $i\in I$ ),

ii) For $a\in S,$ $a=ae$ for some $e\in E$,
iii) $1faEb\cap E\neq\square $ for $a,$ $b\in S$, then $aEb\subseteqq E$ .
PROOF. Conditions i) and ii) are easily checked. To show condition iii),

we let $a\in\tau_{i}*$ and $b\in\tau_{j}*$ for which $aEb\cap E\neq\square $ . We will show $aEb\subseteqq E$.
Let $e_{1},$ $e_{2}\in E$ such that $e_{2}=ae_{1}b\in aEb\cap E$. Clearly $e_{2}\in\tau_{i}*$ , and we may
assume that $e_{1}\in\tau_{k}*$ for some $k\in I$. If $e\in E\cap T_{m^{*}}$ for any $m\in I$, then we
show that $aeb\in E$ . Let $Y,$ $Y_{1}$ , and $Y_{2}$ be subsets of $X$ fixed by $e,$ $e_{1}$ , and $e_{2}$

respectively. If $(Y_{2})_{i}^{*}=\{\overline{x}\in X/\mathcal{E}_{i} : \overline{x}\cap Y_{2}=\square \}$ , then it is clear that since
$a\in\tau_{i}*$ and $Y_{2}$ is q-well-separated, $|Xa\backslash Y_{2}a|=|(Y_{2})_{i}^{*}|\leqq q$ . But $Y_{2}a\subseteqq Xa$ ,
which is q-well-separated, and hence it is easily checked that $Y_{2}a$ is q-well-
separated. Let $Z_{1}^{\prime}=\mathcal{M}(Y_{2}a, Y_{1}, j, k)$ , then by condition $G,$ $|Y_{2}a\backslash Z_{1}^{\prime}|\leqq q$ . It is
also clear that if $Z_{1}=\{y\in Y_{2} : ya\in Z_{1}^{\prime}\}$ , then $|Y_{2}\backslash Z_{1}|=|Y_{2}a\backslash Z_{1}^{\prime}|\leqq q$ , and
hence $Z_{1}$ is q-well-separated. Let $y\in Z_{1}$ , then there is $y^{\prime}\in Y_{1}$ for which
$(ya, y^{\prime})\in \mathcal{E}_{j}\cap \mathcal{E}_{k}$ . Then, since $e_{1}\in\tau_{k}*$ and $b\in\tau_{j}*$ , we have $yae_{1}=y^{\prime}e_{1}$ and
$yab=y^{\prime}b$ . We combine these equations to get $y=ye_{2}=yae_{1}b=y^{\prime}e_{1}b=y^{\prime}b=yab$ ,
so that $Z_{1}$ is a fixed set for $ab$ . Now let $Z_{2}^{\prime}=\mathcal{M}(Z_{1}^{\prime}, Y, j, m)$ , then $z_{2}/is$ q-
well-separated, and as above, if $Z_{2}=\{y\in Z_{1} : ya\in Z_{2}^{\prime}\}$ , then $Z_{2}$ is q-well-
separated. But if $y\in Z_{2}$ , then there exists $y^{\prime}\in Y$ with $(ya, y^{\prime})\in \mathcal{E}_{j}\cap \mathcal{E}_{m}$ . It
follows that $y=yab$ since $y\in Z_{1}$ , a fixed set for $ab$ , and that $y^{\prime}=y^{\prime}e$ since
$y^{\prime}\in Y$, a fixed set for $e$ . We combine these equations, and $y=yab=y^{\prime}b=$

$y^{\prime}eb=yaeb$ follows since $(ya, y^{\prime})\in \mathcal{E}_{j}\cap \mathcal{E}_{m}$ . Therefore we have shown that $Z_{2}$

is a fixed set for $aeb$ , so that $aeb\in E$, and our result follows.
(2.11) THEOREM. Let $S=CT^{*}(X, \mathcal{E}, p, q)$ , then $E=$ { $e\in S:e$ has a fixed set}

is the kernel of a group congruence on $S$ if and only if $S$ satisfies condition
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G. Moreover, in this case, $E$ is the kernel of the minimum group congruence on $S$ .
PROOF. Combining (1.9), (2.1), and $(2.8)-(2.10)$ , we see that $E$ is the kernel

of some group congruence on $S$ , if $S$ satisfies condition $G$ . In [4] Theorem
(2.1) it is shown that if $\rho$ is a group congruence with kernel $E^{\prime}$ , then for
any $a\in S,$ $a\rho=E^{\prime}aE^{\prime}$ . Let $E_{1}$ and $E_{2}$ be the kernels for group congruences
$\rho_{1}$ , and $\rho_{2}$ on $S$ respectively with $E_{1}\subseteqq E_{2}$ . If $(a, b)\in\rho_{1}$ , then $E_{1}aE_{1}=E_{1}bE_{1}$ ,

so that $a=e_{1}be_{2}$ where $e_{1},$ $e_{2}\in E_{1}$ . But then $e_{1},$ $e_{2}\in E_{2}$ and $a\in E_{2}bE_{2}=b\rho_{2}$ ,

thus $\rho_{1}\subseteqq\rho_{2}$ . By (2.3) we have $E$ is contained in the kernel of every group
congruence on $S$ , therefore it is the kernel of the minimum group congruence
$ronS$ .

Suppose $E$ is the kernel of a group congruence on $S$ . Let $Y$ and $Z$ be
q-well-separated subsets of $X$. We will show that for all $i,$ $j\in I,$ $\mathcal{M}(Z, Y, i, j)$

is q-well-separated, $i$ . $e.,$
$S$ satisfies condition $G$ . Let $Y_{1}\subset Y$ and $Z_{1}\subset Z$ such

that $|Y\backslash Y_{1}|=|Z\backslash Z_{1}|=q$ . Clearly $Y_{1}$ and $Z_{1}$ are q-well-separated, and hence
there exists $e_{i}\in\tau_{i}*\cap E$ with fixed set $Z_{1}$ and $e_{f}\in\tau_{j}*\cap E$ with fixed set $Y_{1}$ .
Since $E$ is a subsemigroup (2.1), $e_{j}e_{i}\in E$ , hence $e_{j}e_{i}$ has a fixed set $Y^{*}$ , and
$Y^{*}=Y^{*}e_{j}e_{i}\subseteqq Xe_{i}$ . We also have $Z_{1}\subseteqq Xe_{i}$ , thus $Y^{*}$ and $Z_{1}$ are q-well-separated
subsets of the same q-well-separated set $Xe_{i}$ , and therefore $Y^{\prime}=Y^{*}\cap Z_{1}$ is a
q-well-separated set. Let $Y_{1}^{\prime}=\{y\in Y^{\prime} : ye_{j}\in Y_{1}\}$ . We have $Y^{\prime}e_{j}\subseteqq Xe_{j}$ is q-
well-separated and $Y_{1}\subseteqq Xe_{j}$ is q-well-separated, hence $Y_{1}^{\prime}e_{j}=Y^{\prime}e_{j}\cap Y_{1}$ is q-
well-separated. But $Y_{1}^{\prime}\subseteqq Y^{*}$ , therefore $Y_{1}^{\prime}e_{j}e_{i}=(Y_{1}^{\prime}e_{j})e_{i}=Y_{1}^{\prime}$ , and $Y_{1}^{\prime}$ is q-
well-separated. Let $y\in Y_{1}^{\prime}$ , then $y\in Y^{*}$ , a fixed set for $e_{j}e_{i}$ , and $y\in Z_{1}$ , a
fixed set for $e_{i}$ , so that $(ye_{j})e_{i}=y=ye_{i}$ , and $(y, ye_{j})\in \mathcal{E}_{i}$ since $e_{i}\in\tau_{i}*$ . It is
also clear from the definition of $Y_{1}^{\prime}$ that $ye_{j}\in Y_{1}$ , a fixed set for $e_{j}$ , so that
$ye_{j}=(ye_{j})e_{j}$ . But $e_{j}\in T_{j^{*}}$ , therefore $(y, ye_{j})\in \mathcal{E}_{j}$ . It follows that $(y, ye_{j})\in$

$\mathcal{E}_{i}\cap \mathcal{E}_{j}$ , and since $y\in Z$ and $ye_{j}\in Y$, we have $Y_{1}^{\prime}\subseteqq \mathcal{M}(Z, Y, i, j)$ . Finally, since
$Y_{1}^{\prime}$ is q-well-separated, $\mathcal{M}(Z, Y, i, j)$ must be q-well-separated. By (2.5) $p>q$ ,
and we have our result.

(2.12) LEMMA. Let $S=CT^{*}(X, \mathcal{E}, p, q)$ be right simple, then $S$ satisfies con-
dition $G$ if and only if $p>q$ .

PROOF. Assume $p>q$ . Since $S$ is right simple, we can write $\mathcal{E}=\{E_{1}\}$ .
Then for all $C,$ $D$ , q-well-separated subsets of $X$, it is clear that $\mathcal{M}(C, D, 1,1)$

is q-well-separated, since $p>q$ . Thus $S$ satisfies condition $G$ .
If $S$ satisfies condition $G$ , then $p>q$ .
(2.13) THEOREM. If $S=CT^{*}(X, \mathcal{E}, p, q)$ be right simple, the$nS$ has a non-

trivial group congruence if and only if $p>q$ .
And
(2.14) COROLLARY. A Baer-Levi semigroup of type $(p, q)$ has a non-trivial

..group congruence if and only if $p>q$ .
We recall the following:
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(2.15) THEOREM ([6]). Let $S$ be a right simple idempoten t-free $semigroul^{y}$

and let $E\subseteqq S$ . Then $E$ is the kernel of some group congruence $\rho$ on $S$ if and
only if $E$ is a subsemigroup of $S$ which is unitary in $S$ and satisfies the condi-
tion $EaE\subseteqq aE$ for every $a\in S$. Moreover, for all $a\in S,$ $aE$ is the $\rho$ -class of $a$ .

Combining (2.11) and (2.15), we get:
(2.16) COROLLARY. If $S$ is a Baer-Levi semigroup of type $(p, q)$ where $\cdot$

$p>q$ , and $\rho$ is any congruence on $S$ with $\rho\subseteqq\gamma$ , the minimum group congruence
on $S$, then for $(a, b)\in\rho,$ $D=\{x\in X:xa\neq xb\}$ has cardinal less than or equal $\cdot$

to $q$ .
PROOF. We know that the kernel of $\gamma$ is $E=$ { $e\in S:e$ has a fixed set}

from (2.11). If $(a, b)\in\rho$ , then $(a, b)\in\gamma$ . But then $aE=bE$ , by (2.15), also,
$|X\backslash (Xa\cap Xb)|=q$ , and $|Xa\cap Xb|=p$ . Since $S$ is right simple, there exists.
$e\in S$ such that $ae=a$ . Then $e\in E$ and so $a=ae\in aE=bE$ . Hence there $\cdot$

exists $e_{1}\in E$ such that $a=be_{1}$ . Therefore there exists $Y_{1}\subseteqq X$ such that $Y_{1}$,

is fixed by $e_{1}$ . We put $\{x\in X:xb\in Y_{1}\}=Y_{2}$ . Then we can prove that $|X\backslash Y_{2}|$

$\leqq q$ and $|Y_{2}|=p$ . Also we can check that $xa=xb$ for every $x\in Y_{2}$ . Hence
$D\subseteqq X\backslash Y_{2}$ and so $|D|\leqq|X\backslash Y_{2}|\leqq q$ .

We conclude this section with an example and the following propositioIh
which can easily be verified ( $c$ . $f.$ , proof of [1] Theorem 8.11).

(2.17) PROPOSITION. Let $S=CT^{*}(X, \mathcal{E}, p, q)$ with $Y$ and $Z$ subsets of $X,$ .
q-well-separated by $\mathcal{E}$ . If $a$ is $a$ one-to-one map of $Y$ into $Z$ for which $|Z\backslash Ya|$

$=q$ , then for any $i\in I$, $a$ can be extended to $a_{i}\in\tau_{i}*$ .
The following is an example of a Croisot-Teissier semigroup which does.

not satisfy condition $G$ , and has no non-trivial group congruence.
(2.18) EXAMPLE ([1] vol. II, p. 87). Let $X$ be the Cartesian product $T\times T^{\cdot}$

where $T$ is a set of infinite cardinal $p$ . We may write $X=\{(t_{1}, t_{2}) : t_{1}, t_{2}\in T\}$ .
If $(f_{1}, t_{2}),$ $(t_{1}^{\prime}, t_{2^{\prime}})\in X$, we say $(f_{1}, f_{2})\mathcal{E}_{i}(t_{1}^{\prime}, t_{2}^{\prime})$ if and only if $t_{i}=t_{i^{\prime}}$ where $i=1,$ .
2. The set $Y=\{(t, t):t\in T\}$ is a subset of $X$ which is q-well-separated by
$\mathcal{E}=\{\mathcal{E}_{1}, \mathcal{E}_{2}\}$ , so that $S=CT^{*}(X, \mathcal{E}, p, q)$ exists for all $q\leqq p$ . One may easily
find a q-well-separated subset $Z$ of $X$ for which $\mathcal{M}(Y, Z, 1,2)=\square $ , and thus
$S$ does not satisfy condition $G$ . We will show that the subsemigroup $\langle E\rangle$ ,
generated by $E=$ { $e\in S:e$ has a fixed set}, is all of $S$, i. e., $ S=\langle E\rangle$ , and by
(2.11), it is clear that $S$ not only does not satisfy condition $G$ , but by (2.4), $S$

has no non-trivial group congruence.
Let $a\in S$, then we will show $a=e_{1}e_{2}$ where $e_{1},$ $e_{2}\in E(c. f., (2.5))$ . We

may assume without loss in generality that $a\in\tau_{1}*$ . We may define $a$ as
follows: $(t_{1}, t_{2})a=((t_{1})y_{1}, (t_{1})y_{2})$ where $y_{i}$ is a one-to-one map of $T$ into $T$ with
$|T\backslash Ty_{i}|=q$ for $i=1,2$ . Note that the image of $(t_{1}, t_{2})$ under $a$ does not de-
pend on $t_{2}$ . Let $T^{\prime}\subseteqq T$ for which $|T\backslash T^{\prime}|=q$ , and define $(t_{1}, t_{2})e_{1}=(t_{1}, (t_{1})y_{2})$ ,

for all $t_{1}\in T^{\prime}$ . We extend $e_{1}$ to all of $X$ by letting $T^{\prime\prime}\subseteqq T\backslash T^{\prime}$ with $|T^{\prime\prime}|=$
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(
$|(T\backslash T^{\prime})\backslash T^{\prime\prime}|=q$ and defining $z_{1}$ to be a one-to-one map of $T\backslash T^{\prime}$ onto $T^{\prime\prime}$ , so
that if $t_{1}\in T\backslash T^{\prime}$ , we let $(t_{1}, t_{2})e_{1}=((t_{1})z_{1}, (t_{1})y_{2})$ . Clearly $e_{1}\in T_{1^{*}}$ , and for
$t_{1}\in T^{\prime},$ $(t_{1}, (t_{1})y_{2})e_{1}=(t_{1}, (t_{1})y_{2})$ , i. e., $e_{1}$ has a fixed set. Note that we may ex-
tend $z_{1}$ to be a one-to-one map of $T$ onto $T^{\prime}\cup T^{\prime\prime}$ by defining $(t)z_{1}=t$ for
$t\in T^{\prime}$ . Under this definition, we have $(t_{1}, t_{2})e_{1}=((t_{1})z_{1}, (t_{1})y_{2})$ for all $(t_{1}, t_{2})\in X$.
Define $e_{2^{*}}$ on $Xe_{1}$ by $((t_{1})z_{1}, (t_{1})y_{2})e_{2}^{*}=((t_{1})y_{1}, (t_{1})y_{2})$ , clearly $e_{2^{*}}$ is a one-to-one
map of q-well-separated set $Xe_{1}$ onto q-well-separated set $Xa$ . By definition
of $S=CT^{*}(X, \mathcal{E}, p, q)$ , there exists a q-well-separated set $A$ such that $Xa\subseteqq A$

and $|A\backslash Xa|=q$ , thus by (2.17), $e_{2}^{*}$ may be extended to an element $e_{2}$ of $\tau_{2}*$ .
By the definition it is also clear that $e_{2}$ fixes $Xa$ and that $e_{1}e_{2}=a$ . This is
the desired result.

\S 3. Band congruences.

In this section, we will concentrate mainly on the minimum band con-
gruence on a right simple semigroup. (In particular, on the minimum band
congruence on $CT^{*}(X, \mathcal{E}, p, q)$ when $\mathcal{E}$ consists of exactly one equivalence.)
This study is motivated by the following theorem.

(3.1) THEOREM ([4] (2.8) Theorem). Let $S$ be a simple semigroup with a
minimal right ideal. For any $a\in S$ , let $\gamma_{a}$ be the minimum group congruence
on $aS$ (a right simple subsemigroup of $S$ ), and $\beta_{a}$ be the minimum band con-
gruence on $aS$. If $\pi$ is the congruence generated by $\bigcup_{a_{c}S}(\gamma_{\alpha}\cap\beta_{a})$ , then $\pi$ is the

minimum completely simple congruence on S. Moreover, if $\rho$ is a regular con-
gruence on $S$, then $\pi\subseteqq\rho$ and $\rho/\pi$ is a congruence on $ S/\pi$ . Let $\theta$ be the map
of $C$ , the lattice of regular congruences on $S$, to $C^{\prime}$ , the lattice of congruences
on $ S/\pi$ defined by $\rho\theta=\rho/\pi$ . Then $\theta$ is a lattice isomorphism of $C$ onto $C^{\prime}$ .

First we characterize the minimum band congruence $\beta$ on simple semi-
groups with a minimal right ideal. In such semigroups, $\beta\subseteqq R([1]$ vol. II,
pp. 93-4, ex. 1).

(3.2) LEMMA. Let $\rho$ be a band congruence on $S$, a simple semigroup with
a minimal right ideal. If $a,$ $b\in S$ such that $S^{1}a\supseteqq S^{1}b$ and $aRb$ , then $a\rho^{\mathfrak{h}}=b\rho^{\mathfrak{h}}$ ,
where $\rho^{\mathfrak{h}}$ is the natural homomorphism of $S$ onto $ S/\rho$ induced by $\rho$ .

PROOF. Since $ S/\rho$ is simple with minimal right ideal and regular, $ S/\rho$ is
completely simple by ([1] Theorem 8.14). Then by ([1] Corollary 2.49), $ S/\rho$

is the union of its minimal left ideals. These ideals are of the form $S^{1}\rho^{\mathfrak{h}}a\rho^{\mathfrak{h}}$

$=(S^{1}a)\rho^{\eta}=L_{a\rho^{\mathfrak{h}}}$ for all $a\in S$. If $a,$ $b\in S$ such that $S^{1}a\supseteqq S^{1}b$ , then $L_{a\rho^{\mathfrak{h}}}=$

$’\langle S^{1}a$) $\rho^{\mathfrak{h}}\supseteqq(S^{1}b)\rho^{\mathfrak{h}}=L_{b\rho^{\mathfrak{h}}}$ . Therefore $L_{a\rho^{\mathfrak{h}}}=L_{b\rho^{\mathfrak{h}}}$ since $\mathcal{L}$ is an equivalence rela-
tion. If, in addition, $aRb$ , then clearly $R_{a\rho^{\mathfrak{h}}}=R_{b\rho^{\mathfrak{h}}}$ , and $a\rho^{\mathfrak{h}}=L_{a\rho}w\cap R_{a\rho^{\mathfrak{h}}}=$

$L_{b\rho^{\mathfrak{h}}}\cap R_{b\rho^{\mathfrak{h}}}=b\rho^{\mathfrak{h}}$ . The last equality holds because every element of $ S/\rho$ is an
idempotent and each $\mathcal{H}$-class contains at most one idempotent ([1] Lemma
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2.15).

(3.3) PROPOSITION. Let $S$ be a simple semigroup with a minimal right
ideal, and let $\rho$ be the congruence on $S$ genera $ted$ by the relation $\alpha=\{(a, b)\in$

$S\times S:aRb$ and there is $c\in R_{a}=R_{b}$ for which $S^{1}c\cap S^{1}a\neq\square $ and $S^{1}c\cap S^{1}b\neq\square \}_{r}$

then $\rho=\beta$ .
REMARK. $\alpha$ is clearly a reflexive and symmetric relation.
PROOF. Let $(a, b)\in\alpha$ , then there exists $c\in R_{a}$ such that $S^{1}c\cap S^{1}a\neq\square $

and $S^{1}c\cap S^{1}b\neq\square $ . Let $x\in S^{1}c\cap S^{1}a$ and $y\in S^{1}c\cap S^{1}b$ . Clearly $ax,$ $ay\in aS$

$=R_{a}=R_{b}=R_{c}$ . We also have $S^{1}ax\subseteqq S^{1}x\subseteqq S^{1}c\cap S^{1}a$ and $ S^{1}ay\subseteqq S^{1}y\subseteqq$

$S^{1}c$ ($\eta S^{1}b$ . It follows by (3.2) that $a\beta^{\mathfrak{h}}=(ax)\beta^{\mathfrak{h}}=c\beta^{\mathfrak{h}}=(ay)\beta^{\mathfrak{h}}=b\beta^{\mathfrak{h}}$ and $(a,$ $b)$)

$\in\beta$ , hence $\rho\subseteqq\beta$ .
In order to show $\beta\subseteqq\rho$ , we show $ S/\rho$ is a band. Let $a\in S$ , then $(a, a^{2})$

$\in\alpha$ , since $a^{2}\in aS=R_{a}$ by [1] Lemma 8.13, and $S^{1}a^{2}\cap S^{1}a\neq\square $ . Hence $(a, a^{2})$

$\in\rho$ . Thus, every element of $ S/\rho$ is idempotent, $\rho$ is a band congruence and
$\beta\subseteqq\rho$ . Whence $\beta=\rho$ .

Since Baer-Levi semigroups are right simple, thus simple with a minimal
right ideal, we need only know how their $\mathcal{L}$ -classes are ordered, under the
usual ordering, $L_{\alpha}\leqq L_{b}$ if and only if $S^{1}a\subseteqq S^{1}b$ , to describe $\beta$ using (3.3).

We know that for every right simple, idempotent-free semigroup $S;a,$ $b$

$\in S,$ $L_{a}=L_{b}$ if and only if $a=b$ ([1] vol. II, p. 85, ex. 1). We now give
necessary and sufficient conditions for $L_{a}<L_{b}$ on a Baer-Levi semigroup.

(3.4) LEMMA. Let $S$ be a Baer-Levi semigroup of type $(p, q)$ on a set $X$.
If $L_{b}>L_{a}$ for $a,$ $b\in S$ , then $Xb\supset Xa$ and $|Xb\backslash Xa|=q$ .

PROOF. Let $L_{b}>L_{a}$ . There is thus a $c\in S$ such that $cb=a$ and we have
$Xb\supseteqq Xa$ . Since $b$ is one-to-one, it follows directly that $(X\backslash Xc)b=Xb\backslash Xcb=$

$Xb\backslash Xa$ . Thus $|Xb\backslash Xa|=|X\backslash Xc|=q$ .
(3.5) THEOREM. Let $a,$ $b\in S$, a Baer-Levi semigroup of type $(p, q)$ on a

set X. Then $L_{b}>L_{a}$ if and only if $Xb\supset Xa$ and $|Xb\backslash Xa|=q$ .
PROOF. The necessity follows from (3.4).
Conversely, suppose $Xb\supset Xa$ and $|Xb\backslash Xa|=q$ . Since $b$ is a one-to-one

function of $X$ onto $Xb\supset Xa$ , one can define an inverse function, denoted by
$b^{-1}$ , from $Xb$ onto $X$ in the obvious fashion: $(xb)b^{-1}=x$. The restriction of
$b^{-1}$ to $Xa$ is a one-to-one function of $Xa$ into $X$. Therefore $ab^{-1}$ is a one-to-
one function of $X$ into itself. But $ab^{-1}$ is in $S$ since $|X\backslash Xab^{-1}|=|(X\backslash Xab^{-1})b|$

$=|Xb\backslash Xa|=q$ . It now follows that $a=(ab^{-1})b\in Sb$ , and hence $L_{a}<L_{b}$ .
(3.6) THEOREM. If $S$ is a Baer-Levi semigroup, then $S$ has no non-trivial‘

band congruence.
PROOF. Let $S$ be a Baer-Levi semigroup of type $(p, q)$ on a set $X$. Let

$a,$
$b$ be arbitrary elements of $S$. We will show that $a$ and $b$ are related under

any band congruence on $S$.
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CASE 1. If $p>q$ , then since $|X\backslash Xa|=|X\backslash Xb|=q,$ $ q\leqq|X\backslash (Xa\cap Xb)|\leqq$

$q+q=q$ and $|Xa\cap Xb|=p$ . Let $Y\subset Xa\cap Xb$ with $|Y|=\beta$ and $|(Xa\cap Xb)\backslash Y|$

$=q$ . It is clear that $|X\backslash Y|=|Xa\backslash Y|=|Xb\backslash Y|=q$ , so that there exists $c\in S$

such that $Xc=Y$. By (3.5), $L_{c}<L_{a}$ and $L_{c}<L_{b}$ . Then by the definition of
$\alpha$ in (3.3), $(a, b)\in\alpha\subseteqq\beta$ , the minimum band congruence on $S$ . Thus $(a, b)$ are
related by every band congruence on $S$.

CASE 2. If $p=q$ , then we may have $|Xa\cap Xb|=p$ , in which case the
proof in case 1 still holds if $q$ is replaced by $p$ . On the other hand, we may
have $|Xa\cap Xb|<p$ . In this case, we let $Y_{1},$ $Y_{2}\subseteqq X$ be such that $ Xa\cap Xb\subseteqq$

$Y_{1}\subseteqq Xa$ and $Xa\cap Xb\subseteqq Y_{2}\subseteqq Xb$ with $|Xa\backslash Y_{1}|=|Xb\backslash Y_{2}|=|Y_{1}|=|Y_{2}|=p$ . One
can easily check the existence of $c,$ $d_{1},$ $d_{2}\in S$ for which $Xc=Y_{1}\cup Y_{2},$ $Xd_{1}=Y_{1}$ ,
and $Xd_{2}=Y_{2}$ . Then $L_{d_{1}}<La,$ $L_{d_{1}}<L_{c}$ and $L_{a_{2}}<L_{b},$ $L_{a_{2}}<L_{c}$ . It is now clear
from (3.3) that $(a, c)\in\alpha$ and $(b, c)\in\alpha$ . Therefore $(a, c)\in\beta$ and $(b, c)\in\beta$ , but
$\beta$ is an equivalence relation, hence $(a, b)\in\beta$ . Thus $a$ and $b$ are related under
every band congruence on $S$.

Since $a$ and $b$ are arbitrary in either case, all elements of $S$ are related
under any band congruence on $S$. Thus the only band congruence on $S$ is
the universal relation, and we have the theorem.

We recall the following:
(3.7) THEOREM ([4] (2.5) Theorem). Let $S$ be a right simple semigroup.

If $\tau$ is a group congruence on $S$, and if $\sigma$ is a band congruence on $S$, then
$S/(\tau\cap\sigma)$ is regular. Moreover, if $\rho$ is a regular congruence on $S$, then $\rho=\tau\cap\sigma$

where $\tau$ is a group congruence on $S$ and $\sigma$ is a band congruence on S. In this
case, $\tau$ and $\sigma$ are uniquely determined by $\rho$ .

(3.8) THEOREM. Let $S$ be a Baer-Levi semigroup of type $(p, q)$ , then $S$ has
a non-trivial regular congruence $\rho$ , if and only if $p>q$ , in which case $\rho$ is a
group congruence.

PROOF. This theorem follows immediately from (2.14), (3.6) and (3.7).
We have characterized the minimum band congruence $\beta(3.3)$ , on a sim-

ple, idempotent free semigroup $S$, with a minimal right ideal. The following
is an elaboration of this construction.

We recall:
(3.9) DEFINITION ([1] vol. I, p. 18). If $\rho$ is any relation on a set $S$, which

is reflexive and symmetric, then $\rho T$ , the transitive closure of $\rho$ is the collec-
tion of all pairs $(a, b)$ for which there exists a finite sequence $a=x_{0},$ $x_{1},$

$r$

$x_{n}=b$ with $(x_{i- 1}, x_{i})\in\rho$ for $i=1,2,$ $\cdots$ $n$ .
(3.10) LEMMA. Let $S$ be a simple semigroup with a minimal right ideal.

Then $\beta=\alpha C^{**}T$ , where $\alpha=\{(a, b)\in S\times S:(a, b)\in R$ , and there exists $c\in R_{a}=R_{b}$

for which $S^{1}c\cap S^{1}a\neq\square $ and $S^{1}c\cap S^{1}b\neq\square $ } and $\alpha C^{**}=\{(a, b)\in S\times S:a=su$ ,
$b=sv$ for some $(u, v)\in\alpha$ and $s\in S^{1}$ }.
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PROOF. We recall that by (3.3), $\beta$ is the smallest congruence containing
$\alpha$ . It is also true that if $\alpha C^{*}=\{(a, b)\in S\times S:a=sut$ and $b=svt$ for some
\langle $u,$ $v$) $\in\alpha$ and $s,$ $t\in S^{1}$ }, then $\alpha C^{*}T$ is the smallest congruence containing $\alpha$

\langle $[1]$ Lemma 10.3). We will show that for a simple, idempotent free semigroup
with a minimal right ideal, $\alpha C^{*}=\alpha C^{**}$ . Clearly it is true that $\alpha C^{**}\subseteqq\alpha C^{*}$ .
Let $(a, b)\in\alpha C^{*}$ , then $a=sut$ , and $b=svt$ , where $(u, v)\in\alpha$ and $s,$ $t\in S^{1}$ . Thus
there exists $c\in R_{u}=R_{v}$ for which $S^{1}c\cap S^{1}u\neq\square $ and $S^{1}c\cap S^{1}v=\square $ . We
recall that by [1] Lemma 8.13, we have $R_{u}=uS$ , and it follows that $ct\in R_{ut}$

$=R_{vt}=R_{u}$ . It is also clear that $S^{1}ct\cap S^{1}ut\neq\square $ , and $S^{1}ct\cap S^{1}vt\neq\square $ , hence
$(ut, vt)\in\alpha$ . But then $a=su^{\prime}$ and $b=sv^{\prime}$ , where $u^{\prime}=uf$ and $v^{\prime}=vt$ , and there-
fore $(u^{\prime}, v^{\prime})\in\alpha$ . We now have $(a, b)\in\alpha C^{**}$ , so that $\alpha C^{*}\subseteqq\alpha C^{**}$ and the
result follows.

We note the following lemma which is easily proven.
(3.11) LEMMA. Let $S=c\tau*(X, \mathcal{E}, p, q)$ . If $a,$ $b\in S$ with $L_{a}<L_{b}$ , then

$Xa\subset Xb$ and $|Xb\backslash Xa|=q$ . $(c. f., (3.5))$

We recall that Baer-Levi semigroups have no non-trivial band congruences.
The following is an example of a right simple, idempotent free semigroup
with a non-trivial band congruence.

(3.12) EXAMPLE. Let $S=CT^{*}(X, \mathcal{E}, p, q)$ where $p>q$ and $\mathcal{E}=\{\mathcal{E}_{1}\}$ , where
$\mathcal{E}_{1}$ is defined by the following: let $Y\subseteqq X$ with $|Y|=|X\backslash Y|=p$ , and let
$\theta:Y\rightarrow X\backslash Y=Z$ be a one-to-one map of $Y$ onto $Z$ . Let $\mathcal{E}_{1}=\{(y, \theta(y))\}_{y\in Y}\cup$

$\{(\theta(y), y)\}_{y\in Y}\cup\Delta_{X}$ . Note that both $Y$ and $Z$ are q-well-separated by $\mathcal{E}$, thus
$S=CT^{*}(X, \mathcal{E}, p, q)$ exists. We will now proceed to verify that $\beta$ is non-
trivial by checking the following two claims.

a) Let $\alpha$ be as defined in (3.10). If $(a, b)\in\alpha$ and $|Xa\cap Z|\leqq q$ , then
$|Xb\cap Z|\leqq q$ . To show this we let $(a, b)\in\alpha$ with $|Xa\cap Z|\leqq q$ . Then there
exists $c\in S$ such that $S^{1}c\cap S^{1}a\neq\square $ and $S^{1}c\cap S^{1}b\neq\square $ , and thus there exists
$s_{i}\in S^{1}$ , for $i=1,2,3,4$ , such that $s_{1}c=s_{2}a$ and $s_{3}c=s_{4}b$ . Since $s_{1}c=s_{2}a,$ $L_{s_{1}c}$

$\leqq L_{a}$ , and hence by (3.11), we have $Xs_{1}c\subseteqq Xa$ . Also by (3.11), we get
$|Xc\backslash Xs_{1}c|\leqq q$ , and as a consequence of this, we see that $|Xa\cap Z|\leqq q$ implies
that $|Xc\cap Z|\leqq q$ . We apply this argument again to see that $|Xc\cap Z|\leqq q$

implies $|Xb\cap Z|\leqq q$ , the desired result.
b) Let $\alpha$ be as defined in (3.10). If $(a, b)\in\alpha C^{**}T$ with $|X_{0\Gamma)}Z|\leqq q$ ,

then $|Xb\cap Z|\leqq q$ . This follows by an argument similar to that used in a),
and by finite induction.

We conclude that if $a,$ $b\in S$ with $Xa\subseteqq Y$ and $Xb\subseteqq Z$, then we have
$|Z\cap Xa|=0<q$ and $|Z\cap Xb|=|Xb|=p$ , so that by b), we have $(a, b)\not\in\beta$ .
Thus $\beta$ is non-trivial.

We note that $S$ is right simple, therefore has a non-trivial minimum
group congruence $\gamma$ . Let $T=\Lambda\times S$ be the direct product of $S$ and a non-
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trivial, left zero semigroup $\Lambda$ ( $c$ . $f.,$ $[4](1.10)$ Example). $T$ is simple with a
minimal right ideal. If $(\lambda, a),$ $(\mu, b)\in T$, let $(\lambda, a)\beta^{\prime}(\mu, b)$ if and only if $\lambda=\mu$

and $a\beta b$ . Clearly $\beta^{\prime}$ is a congruence on $T$ , and if $(\lambda, a)\in T,$ $\lambda^{2}=\lambda$ and $a\beta a^{2}$ ,

therefore $(\lambda, a)^{2}=(\lambda^{2}, a^{2})\beta^{\prime}(\lambda, a)$ , so that $\beta^{\prime}$ is a band congruence on $T$ . Simi-
larly, for $(\lambda, a),$ $(\mu, b)\in T$ , let $(\lambda, a)\gamma^{\prime}(\mu, b)$ if and only if $a\gamma b$ , then $\gamma^{\prime}$ is a
group congruence on $T$ ( $c$ . $f.,$ $[4](1.10)$ Example). It is clear that $\pi=\gamma^{\prime}r$) $\beta^{\prime}$

is the minimum completely simple congruence on $T(3.1)$ . We also note that
since $\Lambda$ is non-trivial, $ T/\pi$ is not right simple, and that since $\beta\subset R,$ $ T/\pi$ is
not left simple.

Rhode Island College
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