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§1. Introduction.

A Kaehler manifold of constant holomorphic sectional curvature is called
a complex space form. A Kaehler immersion is an isometric immersion which
is complex analytic. B. O’Neill ([2]) proved the following result.

Let M and M be complex space forms of dimension n and n+p, respectively.

If p<—~"§’/’2i3 and if M is a Kaehler submanifold of NI, then M is totally

geodesic in M.
He also gave the following example: There is a Kaehler imbedding of
an n-dimensional complex projective space of constant holomorphic sectional

curvature 1/2 into an {n—l-’-z‘(ﬁz_'——l)—}-dimensional complex projective space of

constant holomorphic sectional curvature 1. This shows that the dimensional
restriction in the above result is the best possible.

We have proved in [I] the following result.

Let M be an n-dimensional complex space form of constant holomorphic
sectional curvature ¢ and M be an (n+p)-dimensional complex space form of

constant holomorphic sectional curvature &. If pg»ﬁgﬁzjj)—r— and if M is a
Kachler submanifold of M with parallel second fundamental form, then either
c=¢ (i.e., M is totally geodesic in M) or c=<¢/2, the latter case arising only
when &> 0.

The purpose of this paper is to prove the following
THEOREM. Let M be an n-dimensional complex space form of constant

holomorphic sectional curvature c and M be an {n—l—ﬁ(ﬂz—tp‘}-dimensional
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complex space form of constant holomorphic sectional curvature &. If M is a
Kaehler submanifold of M, then either c=¢ (i.e., M is totally geodesic in M)

or ¢=7(/2, the latter case arising only when &> 0. Moreover, the immersion is
rigid.

§2. Proof of Theorem.

We use the same notation as in unless otherwise stated.
Let M be an n-dimensional complex space form of constant holomorphic

sectional curvature ¢ and M be an {n+ﬂ§rr—l—2+——1)ﬂ}-di'mensional complex space
form of constant holomorphic sectional curvature ¢&. We assume that M is
a Kaehler submanifold of M. First we note that ¢ <7¢.

If c=¢, then M is totally geodesic in M. From now on we may therefore

assume that ¢ <& We have proved in that the second fundamental form
o of the immersion satisfies

€)) 17a|?= n(n—{-l)(n—{—Z)(E_.c)(mg&__c) ,

where V'’ denotes the covariant differentiation with respect to the connection

in (tangent bundle) @ (normal bundle). Therefore to prove our [Theorem) it
suffices to show that Vo =0.

We choose a local field of orthonormal frames*® e, ---, ¢,, eﬂ:fel, e, Cps
=Je,, ey, -+, ey, erx=Jet, -+, ezx»=Jey in M in such a way that, restricted to
M, ey, -+, e, e, -, €, are tangent to M and*®

V2
€ = Tfch o(eq, €4,
2
ety =" gr——0(Ca, @) ,
where
(a, by =min {a, b} +1470IENFI=A=0D  gor gy,
*) Hereafter we denote n(nz—+1) by ».

**)  We make use of the following convention on the range of indices:

~ o~

A B,C,D=1, ., n, 1% e n* 1, p, 1% oo, p*

i, B, l=1, ., n, 1% . pn*
a,bc,d e=1,..,n
a,ﬁ:T,. ,5,~*,. ,5*

4, /1:1, . ,5,
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With respect to the frame field of’M chosen above, let o!,---, ®*, @', -, ®™,

o, -, @P, w*, -+, 0" be the field of dual frames. Then the structure equa-

tions of M are given by

(2) dw‘z—%wé/\ws,
3) wit+wf=0,
0} = ¥, ol =wk, %= i,
0% = @i, W = s, Wl = 0%,
4) dog= —Eo)wéf\w%HDﬁ,
4= ; > Kéopw® N o?,
Cc.D
®) Kéecp= _'Z_(aAC'aBD_6.40530+]AC]BD""]AD]BC+2]AB]CD) ’
where
0o I,
x I 0 0
(jAB): \ L O O _'Ip s
I, 0

I, being the identity matrix of degree s.
Restricting these forms to M, we have the structure equations of the
immersion :

(6) e*=0,
(7) wf - E h?jwj ’ h:tj = h_‘irt ’
J
® do*=—-Jwj\ o,
J

9 dwi= —ka};/\w’;—l—Q,‘-.

0i—= 1 k 1

Q=4 —ZR u®* N\ @,
(10) R_’f:kl"‘_‘ i‘(5¢k5jz“5i151k+fikfﬂ—]tz]jk+zftjsz) ,
where

U= 7.

Since a(e;, e;) = 3 he,, we can see the following (cf. [1]:
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a
0 )
Y R Y
0
( (h?j = - T 0 0 ]
i * S n-+a
0
\ ; 0
an n-t+a
a b
( | 3
L I R *
0
bl A S
| (rig™) = — — :
~~~~~~~ ——>;< ——————————— n+a
0
e n+b
! |
. | | Y,
n+a n-+b
_ Ve—c _ Ve—c
where XX = VT and == 5 .
It is easily seen that is equivalent to
a '\/5—6‘ a a E/E—C a*
wl v 0 0l ik
wf=0i=0 (b+a),
vy o
W@ :_@2:_07 @, W@ = Q/*Cz';c,_ o
L WD = Ed = ( (c#a, c#b).

[f we define A%, by
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12) %} hixw* = dh —; hﬁw}—; he wi—i—? h3w§ ,

then from (4), (5), (6) and (7) we have h{, = h%,; so that
13) hi is symmetric with respect to i,j and k.
Moreover we can see that

14) hwo = —h&ue hgpe = hsoi «

Therefore we have the following

LEMMA. The following three conditions are mutually equivalent :

(i) V'e=0.

(ii) hf =0 for all a,1,j and k.

(iii) =204, }=0, =0,
0FP=v2al, ofP=+2ol,

ot =0, o' =0,
e (b, c)*

w%D = Wit wh,
(a,0)*

W0V =w}, 0% =,

(asc) (a,c)*
w(t:‘b) = 0’ w(a;.lb) — 0,
(crd) (ed)*

where a, b, c and d are different.
From [(11) and we have

(15) hzak - hg;:k == O .
From (13), and we have
% hza*kw" = ‘? hza.,,w"—{— Zb: hg,m,.a)b'

—_ a b*
= Zb) h pe®— Zb) he .o

=0,
that is,
hga.k = O .
This, together with and [(12), implies
(16) 0 =2wl. .

From (4), (5), (6), (A1} and [16), we have (for example, (17), is
putting A=¢& and B=a in (4))

S —2wf) A w”-{—%,’a(wfﬁ)‘—«/ 208) N o> =0

bFa (abd

S0l —vVZop) A0~ —vZop) Aa” =0

d¥Fa (a,d d¥a

an

obtained

by
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( (@® ( —\/Zw )/\w“—l—(a) ——Vfwg,.,)/\w“*—l—V?w%/\w”—\—\/fcu%,‘/\w”’
a..
+ 3 Wl ANo*+ T 0 ANe™=0
(18) cFarb (b. cFab (b.c)*
(@ —VZ o) Ao ——(wd ——«/fa)g) A 0*+v2 0f N 0°—V2 0l A o™
o)+
+ 3 o Ao'— 3 0. No™=0
~ cFabd  Bo* cEab GO
(V2 (0D /T ) A 02 (0FD— V2 W) A 0
H P —0h—wf) A 0"+ T (@ED—a) Ao+ T (@ —et)N e
(a,b)* cFab  (a.0)
=0
19)
VZ(0EP — /2 08%) A 0°—/2 (0D — 2 b)) A 0
H(@ED —@th—al) A @+ T (@G —wl) A o' — T (@D —wd) A o
(a,b)* c£ard (a,e)* c£ad (a0
. =0
(w((a,b) wb) A wa+(w(a.b) —w *) A wa*+(w(a.b) g) A wb
+(w(a,b) _wa) A wb*_{_\/z w(a,b) A wc_}_,\/z w(a,b) A Coc*
+ 2 (w(a »b) A wd+w(a.b) A wd*) —
(20) d=a,b,¢ (c,d) Cyd)*
(@@ —wh) A 0 —~(0—wl) A 0*" o@D —0f) Ao’
(a,0)* (asc) e b)*
—‘(w(("fzb)—‘w?) Aw”1A/2, w(a.b) A @ —/2 w(a.b) A @
¢ b)
+ (w(a,w A ot a)‘(‘f’:;’;) A @™ =0
Cyd)

d=+a,b¢ (e, d)*

where a, b, ¢ and d are different.
From (17) and Cartan’s lemma we may write

w( Aiz)_ Vfw,‘,‘ :c§ (gpgca)c-{- gpgc*a)c*)
(21) a, a
ot ~«/ 208 = 2 L (Pl —fe ),
where

(22) P = 0% , Pfex = Pox .

From (18), (21) and Cartan’s lemma we may write
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V2 7530)0 ‘Pbcw '—QDbc "+l = Z(S[’bcdwd‘i”sbbcd wd‘)

(hre

V2 88w, — ol + o™ + wfr) =d§a(¢?cmw"—¢?caw"') ,
NAL

or
V2 0} — g% — 0f «0” = 3 (Pa@® + Dage?)
(23) d¥a
V2 0 — g 0"+ ™ :d§a(¢gM‘wd_¢ngd.)
z'z__aa.__a.u': a ,.,2 a._rl'
@ | W' T PR Pl d§a(¢bcdw + Phear @
(’M — e 0+ PR ™ d;za(sb&a-wd—(ﬁé‘mw“'),
where
(25) Phea and Ppg. are symmetric with respect to b, ¢ and d.

Since of +w} =0 and ol =w}., we can see from that

(26) ngb:O, SD%‘ZO, ()bgbd:Oa ¢3w~=0,
and hence
@27 0f=0, ol = (a+b).

From (21) and we have

28 ( S —V2w§= E (SDbcwc+§9bcw ")
) Qa,
’“’\/2 wbc = 2 (Sobc.w ¢bcwc.)

(a.b)‘

which implies that wf —+/2 w¢ and a) ' —+v2 i do not contain % w*, w’
@, b) )M

and . Moreover from [24), (25) and [26) m we have

’ wd ‘Pbcw —‘(Pbc‘w fe= 2 (¢'mwd+¢mw )
(29) (5re) dsa,b,c
@ — @ t = a w0 — D
(b o Pl "+ 0 d;t%?b.c(sbbcdw Piea™)
which implies that w ) and w‘?b ) do not contain ®® ", ®° and .
.c »C)*

From (19) and [(28) m we can see that w@® —w2—w} does not contain @

(a.b)'
0®”, »® and w® so that we may write
(30) G — @l — @l = (A“”w”—f—Ac. ®®) .
(@) cFa,

From (20) and [29) we can see that @ —w? and > —w? do not contain

(a.c) (a.c)‘

®° and o®. By symmetry, they do not also contain ®® and ®”. Therefore
we may write
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0P —wf= 3 (Bia'+Bio®)
(ase) d#bie
@D
0P — @b = Z (Bcd.w —BZ 0¥).

(aver*

~ ~ ’ ~ o~
Since w‘-‘"‘”—wz—i—w“f:f’—wizo and ©@*? —@d = w9 —w§, we can see from
(a,¢) (ad) (a,e)* (@, 0)*

(31) that B“”-'— 22, =0 and hence

0&D = o}
(are)

(32)

w(a.b) J— (0
(a.c)‘

Substituting and into (19), we can see
f=¢f=0, AP=A¥=0,
which, together with and [(30), implies
0% =2 wf

(33) (arb)
= '\/2 wb‘
(a.b)'
C!)d = (¢'bcdw +¢bcd“wd.)
50 d:#a..b.
(34)
w? = (¢bcd'w —‘/’bcdwd‘)

(Brer* dqta. e

(35) 0D = @2+ Wl

(a,b)*

Moreover (20) implies that we may write

@ @D = 3 (Chw'+Chne”
(crd) e

(36)

w(a.b) = E (C cder@ cdewe’)
(c.d)'

Since W'*?+@w®® =0 and w*? =w“?, we can see from (36) that C%. = C%.-

~ 9

(cd) (a:b) (csd)* (a,b)*
=0, and hence

(37) C()(a"b) — a)(a.b) =0.

6D Gy
Substituting [(32), and (37) into (20), we can see
¢‘gcd = (,l’gcd‘ =0 ’
which, together with [(34), implies
(38) 0. = =0.

X)) Brer
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Thus we have proved the following

PROPOSITION.
wg‘zzwg‘y w%':-w%,:O,
WP =T at, 0@ =+Zwk..

0% = wg+w},
(a,d)*

0 =w'%? =0,
(¢,d) (c,d)*

where a, b, ¢ and d are different.
Our follows immediately fromjLemma and Proposition.
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