Three-dimensional compact Kähler manifolds with positive holomorphic bisectional curvature

By Shoshichi KOBAYASHI*) and Takushiro OCHIAI**)

(Received Sept. 27, 1971)

§ 1. Introduction.

One of the most challenging problems in Riemannian geometry is to determine all compact Riemannian manifolds ${ }^{11}$ with positive sectional curvature. As a special case, the following problem has been considered by Frankel [11].

Let M be a compact Kähler manifold of dimension n with positive sectional (or more generally, holomorphic bisectional) curvature. Is M necessarily biholomorphic to the complex projective space $P_{n}(C)$?

This is trivially true for $n=1$ since $P_{1}(\boldsymbol{C})$ is the only compact Riemann surface with positive first Chern class. The question has been answered affirmatively for $n=2$ by Frankel and Andreotti [11]; their proof depends on the classification of the rational surfaces. Recently, Howard and Smyth [18] have determined the compact Kähler surfaces of non-negative holomorphic bisectional curvature. In higher dimensions, this question has been answered affirmatively only under additional assumptions: 1) Pinching conditions (Howard [17]), or 2) Einstein-Kähler (Berger [2]) or constant scalar curvature (Bishop and Goldberg [4]).

The purpose of this paper is to answer the question above affirmatively for $n=3$, see Theorem 7.1. The proof given here leaves much to be desired, for it makes use of a difficult theorem of Aubin (see Lemma 7.3) and does not answer the following algebraic geometric question:

Let M be a compact complex manifold of dimension n with positive tangent bundle. Is M necessarily biholomorphic to $P_{n}(C)$?

This question, which is more general than the first one, has been answered affirmatively by Hartshorne [14] for $n=2$ by a purely algebraic method. It has been affirmatively answered also for the compact homogeneous complex manifolds [22] as well as for the complete intersection submanifolds of complex projective spaces [21]. In [21] we have shown that a 3-dimensional compact complex manifold M with positive tangent bundle admits a group

[^0]of holomorphic transformations of dimension $\geqq 6$. In this paper we shall show that the dimension of the group is at least 7 . We still do not know if for such a manifold the second Betti number is 1 and the third Betti number vanishes.

In concluding the introduction, we wish to express our thanks to Shigeru Iitaka for useful communication.

§2. Sufficient conditions for a manifold to be $P_{n}(C)$.

In this section we quote two general results which will be used in subsequent sections.

Theorem 2.1. Let M be an n-dimensional compact homogeneous complex manifold with positive (i.e., ample) tangent bundle. Then M is biholomorphic to the complex projective space $P_{n}(\boldsymbol{C})$.

See [22] for its proof. The following theorem is proved in [23].
Theorem 2.2. Let M be an n-dimensional compact Kähler manifold whose first Chern class $c_{1}(M)$ is of the form

$$
c_{1}(M)=r \alpha,
$$

where α is a positive element of $H^{1,1}(M ; Z)$ and r is an integer $\geqq n$. Then M is biholomorphic to either $P_{n}(\boldsymbol{C})$ or a hyperquadric in $P_{n+1}(\boldsymbol{C})$. If $r \geqq n+1$, then M is biholomorphic to $P_{n}(C)$.

We note that if $T(M)>0$ in Theorem 2.2, then $r \geqq n$ implies that M is biholomorphic to $P_{n}(\boldsymbol{C})$ since a hyperquadric is a homogeneous complex manifold and cannot have positive tangent bundle by Theorem 2.1.

We remark that Theorem 2.2 is closely related to a theorem of Hirzebruch and Kodaira [16] that an n-dimensional compact Kähler manifold with positive first Chern class which is homeomorphic to $P_{n}(\boldsymbol{C})$ is biholomorphic to $P_{n}(\boldsymbol{C})$ and also to a similar theorem of Brieskorn [9] on a hyperquadric.

§ 3. Properties of 3-dimensional compact complex manifolds with positive tangent bundle.

We shall summarize main properties of compact complex manifolds M with $T(M)>0$.

ThEOREM 3.1. Let M be a compact complex manifold with positive tangent bundle $T=T(M)$. Then
(1) The determinant line bundle $\operatorname{det}(T)$ is positive, i.e., $c_{1}(M)$ is positive;
(2) $H^{p, 0}(M ; \boldsymbol{C})=H^{0, p}(M ; \boldsymbol{C})=0$ for $p \geqq 1$;
(3) $H^{p}\left(M ; S^{k} T\right)=0$ for $p \geqq 1$ and $k \geqq 0$,
where S^{k} T denotes the sheaf of germs of holomorphic sections of the k-th sym-
metric tensor power of T;
(4) All Chern numbers of M are positive, in particular, the Euler number of M is positive;
(5) If $\operatorname{dim} M=3$, then

$$
c_{1} c_{2}[M]=24, \quad c_{1}^{3}[M]=\text { even }, \quad c_{3}[M]=\text { even },
$$

where $c_{i}=c_{i}(M)$ denotes the i-th Chern class of M;
(6) If $\operatorname{dim} M=3$, then

$$
\operatorname{dim} H^{0}(M ; T)=\left\{\frac{1}{2}\left(c_{1}^{3}-2 c_{1} c_{2}+c_{3}\right)+\frac{5}{24} c_{1} c_{2}\right\}[M] \geqq 7 .
$$

We note that $H^{0}(M ; T)$ is the space of holomorphic vector fields on M. Proof. (1) This is due to Hartshorne [13].
(2) This follows from (1) and the vanishing theorem of Kodaira.
(3) This has been proved in our previous paper [21; Corollary 2.5].
(4) This is due to Bloch and Gieseker [5].
(5) By (2), the arithmetic genus $\sum_{p=0}^{3}(-1)^{p} \operatorname{dim} H^{0, p}(M ; \boldsymbol{C})$ is equal to 1. On the other hand, the Riemann-Roch theorem states that the arithmetic genus is equal to $\frac{1}{24} c_{1} c_{2}[M]$, see [15]. Hence, $c_{1} c_{2}[M]=24$. The RiemannRoch theorem gives also

$$
\chi(M ; \operatorname{det}(T))=\Sigma(-1)^{p} \operatorname{dim} H^{p}(M ; \operatorname{det}(T))=\left(\frac{1}{2} c_{1}^{3}+\frac{1}{8} c_{1} c_{2}\right)[M] .
$$

Since $\chi(M ; \operatorname{det}(T))$ is an integer, we may conclude that $\frac{1}{2} c_{1}^{3}$ is an integer. Another consequence of the Riemann-Roch theorem is

$$
\chi(M ; T)=\Sigma(-1)^{p} \operatorname{dim} H^{p}(M ; T)=\left\{\frac{1}{2}\left(c_{1}^{3}-2 c_{1} c_{2}+c_{3}\right)+\frac{5}{24} c_{1} c_{2}\right\}[M] .
$$

This shows that $\left(c_{1}^{3}-2 c_{1} c_{2}+c_{3}\right)[M]$ is an even integer and hence $c_{3}[M]$ is also even.
(6) From (3), we obtain $\chi(M ; T)=\operatorname{dim} H^{0}(M ; T)$. This gives the equality in (6). To prove the inequality $\operatorname{dim} H^{0}(M ; T) \geqq 7$, we repeat the argument used to prove the inequality $\operatorname{dim} H^{0}(M ; T) \geqq 6$ in [21]. Let

$$
F=L\left(T^{*}\right)^{-1}
$$

be the tautological positive line bundle over the projective bundle $P\left(T^{*}\right)$ associated with the cotangent bundle $T^{*}=T^{*}(M)$ as in [21; §4]. Let f be the first Chern class of the line bundle F. We have shown [21]

$$
\begin{equation*}
f^{5}\left[P\left(T^{*}\right)\right]=\left(c_{1}^{3}-2 c_{1} c_{2}+c_{3}\right)[M] . \tag{3.1}
\end{equation*}
$$

Since $F>0$ and hence f is positive, the left hand side of (3.1) is positive.

Hence, $\operatorname{dim} H^{0}(M ; T)>\frac{5}{24} c_{1} c_{2}[M]=5$, as we have shown in [21]. Now assume that $\operatorname{dim} H^{0}(M ; T)=6$, i. e., $\frac{1}{2}\left(c_{1}^{3}-2 c_{1} c_{2}+c_{3}\right)[M]=1$. From (3.1) we obtain

$$
\begin{equation*}
f^{5}\left[P\left(T^{*}\right)\right]=2 . \tag{3.2}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\operatorname{dim} H^{0}\left(P\left(T^{*}\right) ; F\right)=6 . \tag{3.3}
\end{equation*}
$$

This is a consequence of (see [21; Theorem 2.1])

$$
H^{*}(M ; T)=H^{*}\left(P\left(T^{*}\right) ; F\right) .
$$

From (3.2) and (3.3) we may conclude that there are at most two common zeros (i.e., base points) of $H^{0}\left(P\left(T^{*}\right) ; F\right)$. This is a special case of the following general result proved in [23]:

If X is a compact complex manifold of dimension n with a positive line bundle F such that $\left(c_{1}(F)\right)^{n}[X]=2$ and $\operatorname{dim} H^{0}(X ; F)=n+1$, then there are at most two common zeros of $H^{\circ}(X ; F)$.

A point u of $P\left(T^{*}\right)$ is represented by a non-zero cotangent vector $\omega \in T^{*}$ (which is unique up to a non-zero constant multiple). A section $s \in H^{0}\left(P\left(T^{*}\right) ; F\right)$ vanishes at u if and only if the corresponding holomorphic vector field $\sigma \in H^{0}(M ; T)$ is annihilated by ω. This means that $u \in P\left(T^{*}\right)$ is a common zero of $H^{\circ}\left(P\left(T^{*}\right) ; F\right)$ if and only if

$$
\langle\omega, \sigma\rangle=0 \text { for all holomorphic vector fields } \sigma \in H^{\circ}(M ; T) .
$$

Let x be any point of M. There are three possibilities :
(i) No point of $P\left(T^{*}\right)$ over x is a common zero of $H^{0}\left(P\left(T^{*}\right) ; F\right)$. In this case, $H^{\circ}(M ; T)$ spans the tangent space $T_{x}(M)$ at x.
(ii) There is exactly one common zero $u \in P\left(T^{*}\right)$ of $H^{0}\left(P\left(T^{*}\right) ; F\right)$ over x. In this case, $H^{\circ}(M ; T)$ spans the hyperplane in $T_{x}(M)$ defined by $\omega=0$.
(iii) There are two common zeros $u, u^{\prime} \in P\left(T^{*}\right)$ of $H^{0}\left(P\left(T^{*}\right) ; F\right)$ over x. In this case, $H^{0}(M ; T)$ spans the 1-dimensional subspace of $T_{x}(M)$ defined by $\omega=\omega^{\prime}=0$, (where ω and ω^{\prime} are cotangent vectors representing u and u^{\prime}, respectively).

The set A of points x for which (ii) or (iii) holds is a finite set (with at most two points). Let G be the largest connected group of holomorphic transformations of M. Since G leaves A invariant and A is discrete, G fixes every point of A. In other words, every point of A is a common zero of $H^{\circ}(M ; T)$. On the other hand, $H^{\circ}(M ; T)$ spans a non-trivial subspace of $T_{x}(M)$ in all cases. We may conclude that A is empty, i. e., (i) holds for all $x \in M$. Then $H^{\circ}(M ; T)$ spans $T_{x}(M)$ for all x. Hence, G is transitive on M.

By Theorem 2.1, M is biholomorphic to $P_{3}(C)$ and $\operatorname{dim} H^{0}(M ; T)=15$, in contradiction to the assumption $\operatorname{dim} H^{\circ}(M ; T)=6$.

QED.

§ 4. Surfaces in M.

Lemma 4.1. Let M be a compact complex manifold of dimension 3 and $c_{i}=c_{i}(M)$ the i-th Chern class of M. Let S be a closed complex submanifold of dimension 2 and $h \in H^{2}(M ; Z)$ its dual. Then the Euler number $\chi(S)$ of S is given by

$$
\chi(S)=\left(c_{2}-c_{1} h+h^{2}\right) h[M] .
$$

Proof. Let $d_{i}=c_{i}(S)$. Denote by j the imbedding $S \rightarrow M$. Then

$$
j^{*}\left(1+c_{1}+c_{2}+c_{3}\right)=\left(1+d_{1}+d_{2}\right)\left(1+j^{*} h\right) .
$$

Comparing both sides, we obtain

$$
d_{2}=j *\left(c_{2}-c_{1} h+h^{2}\right) .
$$

Hence,

$$
\chi(S)=d_{2}[S]=j *\left(c_{2}-c_{1} h+h^{2}\right)[S]=\left(c_{2}-c_{1} h+h^{2}\right) h[M] . \quad \text { QED. }
$$

We do not know if the second Betti number of a compact complex manifold M with $T(M)>0$ is equal to 1 . If M is a compact Kähler manifold with positive holomorphic bisectional curvature, then M is simply connected and $H^{2}(M ; \boldsymbol{Z})=\boldsymbol{Z}$. In the remainder of this section, we shall assume that $T(M)$ is positive and the second Betti number of M is 1 and we shall disregard the torsion part of $H^{2}(M ; \boldsymbol{Z})$. Thus, by a generator of $H^{2}(M ; \boldsymbol{Z})$ we mean a generator of the Betti part of $H^{2}(M ; \boldsymbol{Z})$ which is isomorphic to \boldsymbol{Z}.

Lemma 4.2. Let M be a 3-dimensional compact complex manifold with $T(M)>0$. Assuming that the second Betti number of M is 1 , let α be the positive generator of $H^{2}(M ; \boldsymbol{Z})$. Let S be a closed complex (hyper) surface in M.
(1) If $c_{1}(M)=\alpha$, then $\chi(S) \geqq 24$;
(2) If $c_{1}(M)=2 \alpha$ and α is the dual of S, then

$$
\begin{array}{ll}
\chi(S)=\frac{1}{4}\left(31-\operatorname{dim} H^{0}(M ; T)\right) & \text { in case } \quad \chi(M)=4, \\
\chi(S)=\frac{1}{4}\left(30-\operatorname{dim} H^{0}(M ; T)\right) & \text { in case } \quad \chi(M)=2
\end{array}
$$

(3) If $c_{1}(M)=2 \alpha$ and α is not the dual of S, then $\chi(S) \geqq 24$.

Proof. Let $h=s \alpha$ be the dual of S. Since $T(M)$ is positive, its restriction to S is a positive vector bundle. Since the normal bundle of S is a quotient bundle of $\left.T(M)\right|_{s}$, it is also positive. Hence, the characteristic class of the normal bundle is positive. It folllows that $s \geqq 1$. By Lemma 4.1, we have

$$
\chi(S)=\left(c_{2}-s c_{1} \alpha+s^{2} \alpha^{2}\right) s \alpha[M],
$$

where $c_{i}=c_{i}(M)$.
If $c_{1}=\alpha$, making use of the fact that $c_{1} c_{2}[M]=24$ (see Theorem 3.1), we obtain

$$
\chi(S)=\left(24-A s+A s^{2}\right) s, \quad \text { where } \quad A=\alpha^{3}[M] .
$$

Since $s \geqq 1$, we obtain

$$
\chi(S) \geqq 24 .
$$

If $c_{1}=2 \alpha$, then we obtain

$$
\chi(S)=\left(12-2 A s+A s^{2}\right) s, \text { where } A=\alpha^{3}[M] .
$$

Since $s \geqq 1$, we obtain

$$
\begin{array}{ll}
\chi(S)=12-A & \text { for } \quad s=1, \\
\chi(S) \geqq 24 & \text { otherwise } .
\end{array}
$$

We have now only to evaluate $A=\alpha^{3}[M]$. From (6) of Theorem 3.1, we obtain

$$
A=-\frac{1}{8}-c_{1}^{3}[M]=\frac{1}{4}\left(19-\frac{1}{2} c_{3}[M]+\operatorname{dim} H^{0}(M ; T)\right) .
$$

By substituting this into $\chi(S)=12-A$, we obtain the desired result. We should perhaps point out that the Euler number $c_{3}[M]$ of M is an even positive integer by Theorem 3.1 and does not exceed 4 by our assumption that the second Betti number of M is equal to 1 .

QED.

§ 5. The group of holomorphic transformations of M.

Let M be a compact complex manifold and G the largest connected group of holomorphic transformations.

Lemma 5.1. If the line bundle $\operatorname{det} T$, where $T=T(M)$, is positive, i.e., if the first Chern class $c_{1}(M)$ is positive, then M can be imbedded into a projective space $P_{N}(\boldsymbol{C})$ in such a way that G is the identity component of the group of projective linear transformations of $P_{N}(\boldsymbol{C})$ leaving the submanifold M invariant.

Proof. We shall sketch an outline of this more or less well known fact. By a result of Kodaira [24] there is a positive integer k such that (det $T)^{k}$ is very ample, i.e., has sufficiently many holomorphic sections, say $N+1$ linearly independent sections, which induce an imbedding of M into $P_{N}(\boldsymbol{C})$. Every holomorphic transformation of M induces an automorphism of the bundle $(\operatorname{det} T)^{k}$ and hence a linear transformation of the space $H^{0}\left(M\right.$; $\left.(\operatorname{det} T)^{k}\right)$ of holomorphic sections which in turn induces a projective linear transformation of $P_{N}(\boldsymbol{C})$ leaving M invariant.

QED.
We quote two results on algebraic groups (see Borel [6], [7]).

Lemma 5.2. Let M be imbedded in $P_{N}(\boldsymbol{C})$ and let G be the largest connected group of projective linear transformations of $P_{N}(\boldsymbol{C})$ leaving M invariant. Then the G-orbit of a point of M of least dimension is closed in M.

Lemma 5.3. Let M be imbedded in $P_{N}(\boldsymbol{C})$ and let G be a connected solvable Lie group of projective linear transformations of $P_{N}(\boldsymbol{C})$ leaving M invariant. Then G has a common fixed point in M.

We quote now a theorem on the zero set of a Killing vector field on a compact Kähler manifold which will be used in the next section as well as here in this section.

Lemma 5.4. Let M be a compact Kähler manifold and g_{t} a 1-parameter group of (holomorphic) isometries. Let F be the fixed point set of g_{t}. Let $b_{i}(M)$ and $b_{i}(F)$ denote the i-th Betti numbers of M and F, respectively. Then F is a disjoint union of closed complex submanifolds and
(1) $\chi(M)=\Sigma(-1)^{i} b_{i}(M)=\Sigma(-1)^{j} b_{j}(F)=\chi(F)$;
(2) $\Sigma b_{i}(M)=\Sigma b_{j}(F)$ if F is non-empty;
(3) The odd dimensional Betti numbers $b_{2 i+1}(M)$ of M vanish if and only if those $b_{2 j+1}(F)$ of F vanish, provided F is non-empty.

If K is a compact group of holomorphic transformations of M, we can consider K as a group of isometries by averaging the metric of M by K and can apply Lemma 5.4 to the fixed point set of any 1-parameter subgroup of K.

In Lemma 5,4, (1) is valid for any Riemannian manifold (see [19]). For the proof of (2), see Frankel [10]. (3) is immediate from (1) and (2).

We shall denote by $b_{i}()$ the i-th Betti number of the space inside the parenthesis.

Lemma 5.5. Let M be a 3-dimensional compact complex manifold with $T(M)>0$ and $b_{2}(M)=1$. Let F be the fixed point set of a 1-parameter subgroup of a compact group of holomorphic transformations of M. Then the following cases exhaust all possibilities:
(1) $\chi(M)=4$ and F consists of a single surface S with

$$
b_{1}(S)=b_{3}(S)=0 \quad \text { and } \quad b_{2}(S)=2
$$

(2) $\chi(M)=4$ and F consists of a surface S and a point p with

$$
b_{1}(S)=b_{3}(S)=0 \quad \text { and } \quad b_{2}(S)=1 ;
$$

(3) $\chi(M)=4$ and F consists of two curves of genus 0 ;
(4) $\chi(M)=4$ and F consists of a curve of genus 0 and two points;
(5) $\chi(M)=4$ and F consists of four points;
(6) $\chi(M)=2$ and F consists of a single surface S with

$$
b_{1}(S)=b_{3}(S)=1 \quad \text { and } \quad b_{2}(S)=2 ;
$$

(7) $\chi(M)=2$ and F consists of a surface S and a point p with

$$
b_{1}(S)=b_{2}(S)=b_{3}(S)=1 ;
$$

(8) $\chi(M)=2$ and F consists of a curve of genus 1 and two points.

Proof. Since the Euler number of M must be positive when $T(M)>0$, we have only two possibilities for the Betti numbers of M :
(a) $b_{1}(M)=b_{3}(M)=0$ and $\chi(M)=4$,
(b) $\quad b_{1}(M)=b_{3}(M)=1$ and $\chi(M)=2$.

In case (a), the odd dimensional Betti numbers of F vanish and the sum of the (even dimensional) Betti numbers is 4 by Lemma 5.4. In case (b), the sum of the even dimensional Betti numbers of F is 4 and the sum of the odd dimensional Betti numbers of F is 2 by Lemma 5.4. Now Lemma 5.5 follows. easily.

QED.
Lemma 5.6. Let M and F be as in Lemma 5.5. Let α be the positive generator of $H^{2}(M ; \boldsymbol{Z})$ as in Lemma 4.2. Then
(i) If $c_{1}(M)=\alpha$, cases (1), (2), (6) and (7) of Lemma 5.5 do not occur, i.e., F does not contain a surface as a component;
(ii) If $c_{1}(M)=2 \alpha$, cases (6) and (7) of Lemma 5.5 do not occur;
(iii) If $c_{1}(M)=2 \alpha$ and case (1) of Lemma 5.5 occurs, then

$$
\operatorname{dim} H^{0}(M ; T(M))=15 ;
$$

(iv) If $c_{1}(M)=2 \alpha$ and case (2) of Lemma 5.5 occurs, then

$$
\operatorname{dim} H^{0}(M ; T(M))=19 .
$$

Proof. (i), (iii) and (iv) follow immediately from Lemma 4.2 and Lemma 5.5. To prove (ii) we have only to consider case (2) of Lemma 4.2. In this case, since $c_{1}(M)=2 \alpha$ and the first Chern class of the normal bundle of S is equal to $\alpha \mid S$, it follows that $c_{1}(S)=\alpha \mid S$. In particular, $c_{1}(S)$ is positive. By the vanishing theorem of Kodaira, $b_{1}(S)=0$, which shows that cases (6) and (7) of Lemma 5.5 do not occur. QED.

Lemma 5.7. Let M be a 3-dimensional compact complex manifold with $T(M)>0$ and the second Betti number $b_{2}(M)=1$. Let G be the largest connected group of holomorphic transformations of M. If G has a closed orbit S of complex dimension 2 , then $\operatorname{dim}_{c} G \geqq 14$ and either $S=P_{2}(\boldsymbol{C})$ or $S=P_{1}(\boldsymbol{C}) \times P_{1}(\boldsymbol{C})$.

Proof. Since S is a compact Kähler manifold with a transitive group of holomorphic transformations, it is a direct product of a Kähler C-space and a complex torus by a theorem of Borel and Remmert [8]. Imbed M into $P_{N}(\boldsymbol{C})$ as in Lemma 5.1. If S has a complex torus as a factor, consider a 1-parameter subgroup of G which induces translations on the torus factor. Such a 1-parameter group has no fixed points on S. This contradicts Lemma 5.3. Thus, S is a Kähler C-space. Since $\operatorname{dim}_{c} S=2$, we have either $S=P_{2}(C)$
or $S=P_{1}(\boldsymbol{C}) \times P_{1}(\boldsymbol{C})$. Let α be the positive generator of $H^{2}(M ; \boldsymbol{Z})$ as in Lemma 4.2. If $c_{1}(M)=r \alpha$ with $r \geqq 3$, then Theorem 2.2 implies that $M=P_{3}(\boldsymbol{C})$ and that G is transitive on M. We have therefore only to consider the cases $c_{1}(M)=\alpha$ and $c_{1}(M)=2 \alpha$. Since $\chi(S) \leqq 4$, Lemma 4.2 implies $\operatorname{dim}_{c} G=$ $\operatorname{dim} H^{\circ}(M ; T(M)) \geqq 14$.

QED.

§ 6. Compact groups of holomorphic transformations.

We prove
Theorem 6.1. Let M be a 3-dimensional compact complex manifold with $T(M)>0$ and the second Betti number $b_{2}(M)=1$. Let G be the largest connected group of holomorphic transformations of M and K a maximal compact subgroup of G. Assume that $\operatorname{dim} K=\frac{1}{2} \operatorname{dim} G\left(=\operatorname{dim}_{c} G\right)$. Then M is biholomorphic to $P_{3}(\boldsymbol{C})$.

Proof. We prove first the following
Lemma 6.2. If M is a 3-dimensional compact complex manifold with $T(M)>0$ and admits a compact group K of holomorphic transformations of dimension $\geqq 10$, then M is biholomorphic to $P_{3}(C)$.

Proof. Let $K(x)$ be the K-orbit through a point x of M. Choose x such that $K(x)$ is a K-orbit of highest dimension and set

$$
r=\operatorname{dim} K(x) .
$$

Let K_{x} denote the isotropy subgroup of K at x so that $K(x)=K / K_{x}$ and

$$
\begin{equation*}
\operatorname{dim} K=r+\operatorname{dim} K_{x} . \tag{6.1}
\end{equation*}
$$

Choosing a K-invariant hermitian metric on M, we consider K as a group of holomorphic isometries of M. Since $K(x)$ is a maximal dimensional K-orbit, K acts essentially effectively on $K(x)$ (see, for instance, [20]). Hence,

$$
\begin{equation*}
\operatorname{dim} K_{x} \leqq \operatorname{dim} O(r)=\frac{1}{2} r(r-1) \tag{6.2}
\end{equation*}
$$

Now (6.1) and (6.2) imply

$$
\begin{equation*}
\operatorname{dim} K \leqq r+\frac{1}{2} r(r-1) \tag{6.3}
\end{equation*}
$$

Since $\operatorname{dim} K \geqq 10$ by assumption, it follows that $r \geqq 4$. Let $T_{x}(K(x))$ be the tangent space of $K(x)$ at x; it is a real subspace of $T_{x}(M)$. We decompose it as follows:

$$
T_{x}(K(x))=V+W
$$

where V is the largest complex subspace of $T_{x}(M)$ contained in $T_{x}(K(x))$, i. e., $V=T_{x}(K(x)) \cap J\left(T_{x}(K(x))\right.$) and W is the orthogonal complement to V. (Here, J denotes the complex structure of M.) If $r=4$, then either $\operatorname{dim}_{c} V=1$ or
$\operatorname{dim}_{c} V=2$ since $\operatorname{dim}_{c} M=3$. Since K_{x} acts on V as a unitary group and on W as an orthogonal group, we have

$$
\begin{array}{ll}
\operatorname{dim} K_{x} \leqq \operatorname{dim} U(1)+\operatorname{dim} O(2)=2 & \text { if } \operatorname{dim}_{\boldsymbol{c}} V=1 \\
\operatorname{dim} K_{x} \leqq \operatorname{dim} U(2)=4 & \text { if } \operatorname{dim}_{\boldsymbol{c}} V=2 \tag{6.5}
\end{array}
$$

In either case, (6.1) implies $\operatorname{dim} K \leqq 8$, in contradiction to the assumption $\operatorname{dim} K \geqq 10$. If $r=5$, then $\operatorname{dim}_{c} V=2$ and

$$
\begin{equation*}
\operatorname{dim} K_{x} \leqq \operatorname{dim} U(2)=4 \tag{6.6}
\end{equation*}
$$

[TV In this case, (6.1) implies $\operatorname{dim} K \leqq 9$, again in contradiction to the assumption $\operatorname{dim} K \geqq 10$. If $r=6$, then K is transitive on M and Theorem 2.1 implies that M is biholomorphic to $P_{3}(\boldsymbol{C})$.

QED.
Lemma 6.3. If M is a 3-dimensional compact complex manifold with $T(M)>0$ and admits a compact connected group K of holomorphic transformations of dimension $\geqq 6$ which has a common fixed point, then M is biholomorphic to $P_{3}(\boldsymbol{C})$.

Proof. Let x be a common fixed point of K. Under the linear isotropy representation at x, K can be considered as a subgroup of $U(3)$. Set

$$
r=\operatorname{dim}(U(3) / K)
$$

Then $r=\operatorname{dim} U(3)-\operatorname{dim} K \leqq 9-6=3$. Let N be the normal subgroup of $U(3)$ consisting of elements which act trivially on $U(3) / K$. Then N is contained in K, and $U(3) / N$ acts effectively on $U(3) / K$. Since the manifold $U(3) / K$ of dimension r cannot admit a compact group of transformations of dimension $>\frac{1}{2} r(r+1)$, we obtain

$$
\operatorname{dim}(U(3) / N) \leqq \frac{1}{2} r(r+1) \leqq 6
$$

Hence, $\operatorname{dim} N \geqq 3$. Then either $N=S U(3)$ or $N=U(3)$. Since K contains N, either $K=S U(3)$ or $K=U(3)$. In either case, K acts transitively on the unit sphere in the tangent space $T_{x}(M)$. By a theorem of Nagano [26], M is C^{1}-diffeomorphic to a compact symmetric space of rank 1. (In [26], Nagano has determined all Riemannian manifolds which are isotropic at one point). Since M is a Kähler manifold, M must be C^{1}-diffeomorphic to $P_{3}(\boldsymbol{C})$. We may now use the result of Kodaira-Hirzebruch quoted in $\S 2$ to conclude that M is biholomorphic to $P_{3}(\boldsymbol{C})$. But we may use Theorem 2.2 as follows. Let α be the positive generator of $H^{2}(M ; \boldsymbol{Z})$ and write $c_{1}=r \alpha$. Then $\alpha^{3}[M]=1$, since M is homeomorphic to $P_{3}(\boldsymbol{C})$. As we have seen in $\S 3$,

$$
\left(c_{1}^{3}-2 c_{1} c_{2}+c_{3}\right)[M]>0 .
$$

Since $c_{1} c_{2}[M]=24$ by Theorem 3.1 and $c_{3}[M]=\chi(M)=4$, the inequality above
implies

$$
r^{3}-48+4>0
$$

Hence, $r \geqq 4$.
QED.
Lemma 6.4. Let M be a 3-dimensional compact complex manifold with $T(M)>0$ (more generally, $\operatorname{det}(T(M)) \geqq 0$). Let K be a compact group of holomorphic transformations of M. Then $\operatorname{rank} K \leqq 3$. If $\operatorname{dim} K \geqq 6$, then rank $K \geqq 2$ and the center of K has dimension $\leqq 1$.

Proof. Let A be a connected maximal abelian subgroup of K. Then $\operatorname{dim} A=\operatorname{rank} K$. By Lemmas 5.1 and 5.3, A leaves a point x of M fixed. Then A may be considered as an abelian subgroup of $U(3)$ through the linear isotropy representation at x. Hence, $\operatorname{dim} A \leqq 3$. It is obvious that rank $K \geqq 2$ if $\operatorname{dim} K \geqq 4$. Let C be the center and K_{s} the semi-simple part of K. Since $\operatorname{rank} K=\operatorname{rank} K_{s}+\operatorname{dim} C \leqq 3$ and $\operatorname{dim} K \geqq 6$, we obtain $\operatorname{dim} C \leqq 2$. If $\operatorname{dim} C=2$, then $\operatorname{rank} K_{s}=1$ and hence $\operatorname{dim} K_{s}=3$, which implies $\operatorname{dim} K=5$. Hence, $\operatorname{dim} C \leqq 1$.

QED.
We shall now prove Theorem 6.1. Let G be the largest connected group of holomorphic transformations of M. Let m be the complex dimension of a minimal dimensional G-orbit and let $G(x)$ be such an orbit. We know (Lemma 5.2) that $G(x)$ is a closed complex submanifold of dimension m.

If $m=3$, then G is transitive on M and, by Theorem $2.1, M$ is biholomorphic to $P_{3}(C)$. If $m=2$, Lemma 5.7 implies that $\operatorname{dim}_{C} G \geqq 14$. Since we are assuming that $\operatorname{dim} K=\operatorname{dim}_{C} G$, Lemma 6.2 implies that M is biholomorphic to $P_{3}(\boldsymbol{C})$. The case $m=1$ will be considered last. If $m=0, G(x)$ is a point, i. e., G leaves the point x fixed. Since $\operatorname{dim} K=\operatorname{dim}_{c} G \geqq 7$ by (6) of Theorem 3.1, M is biholomorphic to $P_{3}(\boldsymbol{C})$ by Lemma 6.3 .

We shall now consider the case $m=1$, i. e., the case where $G(x)$ is a closed curve. Let K_{s} denote the semi-simple part of K. Since $\operatorname{dim} K \geqq 7$ by (6) of Theorem 3.1 and the dimension of the center C of K is at most 1 , we have $\operatorname{dim} K_{s} \geqq 6$. Since a compact group of dimension $\geqq 4$ cannot act effectively on a real 2 -dimensional manifold, K_{s} cannot act effectively on the orbit $G(x)$ of complex dimension 1 . If K_{s} is simple, this means that K_{s} acts trivially on $G(x)$. Applying Lemma 6.3 to the compact group K_{s} leaving x fixed, we see that M is biholomorphic to $P_{3}(\boldsymbol{C})$. We may now assume that K_{s} is not simple. By Lemma 6.2, we may also assume that $\operatorname{dim} K \leqq 9$. Let N denote the normal subgroup of K consisting of elements which act trivially on the curve $G(x)$. Since K / N acts effectively, $\operatorname{dim}(K / N) \leqq 3$. If $\operatorname{dim} K=9$, then $\operatorname{dim} N \geqq 6$ and Lemma 6.3 applied to the compact group N implies that M is biholomorphic to $P_{3}(\boldsymbol{C})$. We may therefore assume that $\operatorname{dim} K \leqq 8$. If $\operatorname{dim} N \geqq 6, M$ is biholomorphic to $P_{3}(\boldsymbol{C})$ by the same lemma. Hence, we may further assume that $\operatorname{dim} N \leqq 5$. If $\operatorname{dim} K=8$, then $\operatorname{dim} N=5$ since $\operatorname{dim}(K / N)$
$\leqq 3$. Since there is no simple group of dimension 4 or 5 , it follows that rank $N \geqq 3$. Hence, rank $K=\operatorname{rank} N+\operatorname{rank} K / N \geqq 4$, in contradiction to Lemma 6.4. We may assume therefore that $\operatorname{dim} K=7$. Again considering rank K, we see that $\operatorname{dim} N=4$, $\operatorname{rank} N=2$ and $\operatorname{rank} K / N=1$. In other words,

$$
K=K_{1} \times K_{2} \times C \quad \text { (local direct product) }
$$

where K_{1} and K_{2} are 3 -dimensional simple compact groups and C is the 1-dimensional center, i.e., a circle group.

We shall first prove that the odd dimensional Betti numbers of M vanish and $\chi(M)=4$. Since rank $K=3$, we take a 3 -dimensional torus subgroup A of K. The set F_{A} of common fixed points of A is non-empty by Lemmas 5.1 and 5.3. The linear representation of A at any point x of F_{A} is trivial on the tangent space $T_{x}\left(F_{A}\right)$ and hence must be faithful on the normal space $N_{x}\left(F_{A}\right)$. If $r=\operatorname{dim} N_{x}\left(F_{A}\right)$, then A is a subgroup of $U(r)$. But this is possible only if $r=3$. This means that F_{A} consists of isolated points. A dense 1parameter subgroup of A has the same fixed point set F_{A} as A. Applying Lemma 5.4 or Lemma 5.5 to this 1-parameter subgroup, we see that M has vanishing odd dimensional Betti numbers and $\chi(M)=4$.

We consider now the set F_{C} of common fixed points of the center C of $K=K_{1} \times K_{2} \times C$. If F_{C} has a surface S as one of its components, then $\chi(S)$ is. either 3 or 4 by Lemma 5.5. Since we can exclude the cases $c_{1}(M) \geqq 3 \alpha$ by Theorem 2.2, we see that $\operatorname{dim}_{C} G \geqq 15$ by Lemma 4.2. Then $\operatorname{dim} K \geqq 15$, in contradiction to the present assumption $\operatorname{dim} K=7$. Suppose F_{C} contains an isolated point, say x, as one of its components. Since $K_{1} \times K_{2}$ commutes with C, it leaves F_{C} invariant. Since x is an isolated point of F_{C}, it is left fixed by $K_{1} \times K_{2}$ also. By Lemma 6,3, M is biholomorphic to $P_{3}(C)$.

In view of Lemma 5.5, the only remaining case to be considered is when the fixed point set F_{C} of the center C consists of two curves of genus 0 . (i. e., $P_{1}(C)$). Write

$$
F_{C}=P \cup P^{\prime}, \quad \text { where } P \text { and } P^{\prime} \text { are biholomorphic to } P_{1}(C)
$$

If the action of $K_{1} \times K_{2}$ on P is trivial, Lemma 6.3 implies that M is biholomorphic to $P_{3}(\boldsymbol{C})$. Assume that $K_{1} \times K_{2}$ acts non-trivially on P. Since $\operatorname{dim}\left(K_{1} \times K_{2}\right)=6$, $K_{1} \times K_{2}$ cannot act effectively on P (of complex dimension 1), Without loss of generality, we may assume that K_{1} acts effectively on P and K_{2} acts trivially on P.

Take a point $a \in P$. Let T_{1} be the isotropy subgroup of K_{1} at a; it is a circle group and $P=K_{1} / T_{1}$. Let $F_{T_{1}}$ be the fixed point set of T_{1}. It contains. the point a.

If the component of $F_{T_{1}}$ containing the point a is a surface S, we obtain a contradiction as in the case when F_{C} has a surface as one of its components.
(using Lemmas 5.5 and 4.2 again).
Assume that the component of $F_{T_{1}}$ containing the point a is a curve, say $P^{\prime \prime}$. We claim that P and $P^{\prime \prime}$ are transversal at a, i. e., $T_{a}(P) \cap T_{a}\left(P^{\prime \prime}\right)=0$. To see this, we consider the linear isotropy representation of the circle group T_{1} at the point a. Since $P=K_{1} / T_{1}, T_{1}$ acts on the tangent space $T_{a}(P)$ as the unitary group $U(1)$. On the other hand, since T_{1} leaves $P^{\prime \prime}$ pointwise fixed, T_{1} acts trivially on $T_{a}\left(P^{\prime \prime}\right)$. Hence the two 1 -dimensional complex subspaces $T_{a}(P)$ and $T_{a}\left(P^{\prime \prime}\right)$ of $T_{a}(M)$ cannot coincide and hence $T_{a}(P) \cap T_{a}\left(P^{\prime \prime}\right)$ $=0$. We consider now the linear isotropy representation of $K_{2} \times C$ at the point a. We write

$$
T_{a}(M)=T_{a}(P)+T_{a}\left(P^{\prime \prime}\right)+N_{a}
$$

where N_{a} is the 1-dimensional complex subspace of $T_{a}(M)$ which is normal to $T_{a}(P)+T_{a}\left(P^{\prime \prime}\right)$. Since $K_{2} \times C$ leaves P pointwise fixed, it acts trivially on $T_{a}(P)$. Since $K_{2} \times C$ commutes with the circle group $T_{1} \subset K_{1}$, it leaves the fixed point set $F_{T_{1}}$ invariant and hence it leaves $P^{\prime \prime}$ invariant. It follows that $K_{2} \times C$ leaves $T_{a}\left(P^{\prime \prime}\right)$ invariant. Consequently, $K_{2} \times C$ must leave N_{a} invariant. This means that with respect to the decomposition $T_{a}(M)=T_{a}(P)+T_{a}\left(P^{\prime \prime}\right)+N_{a}$ the linear isotropy representation of $K_{2} \times C$ at a must look like the following:

$$
K_{2} \times C \subset\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & U(1) & 0 \\
0 & 0 & U(1)
\end{array}\right)
$$

But this is impossible since $\operatorname{dim}\left(K_{2} \times C\right)=4$. This shows that the component of $F_{T_{1}}$ containing the point a cannot be a curve.

Assume that the component of $F_{T_{1}}$ containing the point a is of dimension 0 , i. e., the point a is an isolated fixed point of T_{1}. Let N_{a} denote the normal space to P at a; it is a 2 -dimensional complex subspace of $T_{a}(M)$ and

$$
T_{a}(M)=T_{a}(P)+N_{a}
$$

Since $K_{2} \times C$ acts trivially on P and hence on $T_{a}(P)$ and since $\operatorname{dim}\left(K_{a} \times C\right)=4$, the linear isotropy representation of $K_{2} \times C$ at a is of the following form with respect to the decomposition $T_{a}(M)=T_{a}(P)+N_{a}$:

$$
K_{2} \times C=\left(\begin{array}{cc}
1 & 0 \\
0 & U(2)
\end{array}\right)
$$

Since T_{1} leaves P and hence $T_{a}(P)$ invariant, the linear isotropy representation of T_{1} at a is of the form

$$
T_{1} \subset\left(\begin{array}{cc}
U(1) & 0 \\
0 & U(2)
\end{array}\right)
$$

Write the circle group T_{1} as a 1-parameter group f_{t}. Then the linear isotropy
representation of f_{t} at a is of the form:

$$
\left(\begin{array}{cc}
* & 0 \\
0 & A(t)
\end{array}\right),
$$

where $A(t)$ is a 1-parameter subgroup of $U(2)$. Take a 1-parameter subgroup g_{t} of $K_{2} \times C$ whose linear isotropy representation at a is of the form

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & A(t)
\end{array}\right) .
$$

We define a non-trivial 1-parameter subgroup h_{t} of $T_{1} \times K_{2} \times C$ by

$$
h_{t}=f_{t} \circ g_{t}^{-1} .
$$

Then h_{t} leaves the point a fixed and its linear isotropy representation at a leaves the space N_{a} pointwise fixed. Let $F_{h_{t}}$ be the fixed point set of the 1-parameter group h_{t}. Its component containing the point a is a surface whose tangent space at a coincides with N_{a}. Using Lemmas 5.5 and 4.2 again, we obtain a contradiction as in the case when F_{C} has a surface as one of its components. This completes the proof of Theorem 6.1.

§ 7. Positive holomorphic bisectional curvature.

We shall prove the main theorem of this paper.
ThEOREM 7.1. Let M be a 3-dimensional compact Kähler manifold with positive holomorphic bisectional curvature. Then it is biholomorphic to $P_{3}(\boldsymbol{C})$.

Proof. We have shown in our previous paper [21] that a compact Kähler manifold with positive holomorphic bisectional curvature has a positive tangent bundle. On the other hand, such a manifold M has the second Betti number $b_{2}(M)=1$ by a result of Bishop and Goldberg [3] (see also [12]). Let G be the largest connected group of holomorphic transformations of M and K a maximal compact subgroup of G. Our theorem will follow from Theorem 6.1 if we show that $\operatorname{dim} K=\frac{1}{2} \operatorname{dim} G\left(=\operatorname{dim}_{C} G\right)$. But this is a consequence of the following two results.

Lemma 7.2. (Matsushima [25]). If M is a compact Einstein-Kähler manifold, then the Lie algebra \mathfrak{g} of holomorphic vector fields is the complexification of the Lie algebra \ddagger of infinitesimal isometries (i.e., Killing vector fields).

Thus, for a compact Einstein-Kähler manifold M, the largest connected group K of isometries is a maximal compact subgroup of G and $\operatorname{dim} K=$ $\operatorname{dim} f={ }_{2}^{1} \operatorname{dim} g={ }_{2}^{-\operatorname{dim} G .}$

Lemma 7.3. (Aubin [1]). Let M be a compact Kähler manifold with nonnegative holomorphic bisectional curvature. If the Kähler 2-form represents the first Chern class $c_{1}(M)$, then M admits a Kähler-Einstein metric.

We note that if $b_{2}(M)=1$ as in the present case, a suitable constant multiple of the given Kähler 2-form represents $c_{1}(M)$. Since $c_{1}(M)$ is positive in the present case, this constant is positive. Hence the result of Aubin can be applied to the manifold M.

QED.

University of California, Berkeley

Bibliography

[1] T. Aubin, Métriques riemanniennes et courbure, J. Differential Geometry, 4 (1970), 383-424.
[2] M. Berger, Sur les variétés d'Einstein compactes, C. R. III ${ }^{e}$ Réunion Math. Expression latine, Namur (1965), 35-55.
[3] R.L. Bishop and S.I. Goldberg, On the second cohomology group of a Kaehler manifold of positive curvature, Proc. Amer. Math. Soc., 16 (1965), 119-122.
[4] R.L. Bishop and S.I. Goldberg, On the topology of positively curved Kaehler manifolds II, Tôhoku Math. J., 17 (1965), 310-318.
[5] S. Bloch and D. Gieseker, The positivity of the Chern classes of an ample vector bundle, Invent. Math., 12 (1971), 112-117.
[6] A. Borel, Linear algebraic groups, Benjamin, New York, 1969.
[7] A. Borel, Groupes linéaires algébriques, Ann. of Math., 64 (1965), 20-82.
[8] A. Borel and R. Remmert, Über kompakte homogene Kählersche Mannigfaltigkeiten, Math. Ann., 145 (1961/62), 429-439.
[9] E. Brieskorn, Ein Satz über die komplexen Quadriken, Math. Ann., 155 (1964), 184-193.
[10] T. T. Frankel, Fixed points and torsions on Kaehler manifolds, Ann. of Math., 70 (1959), 1-8.
[11] T. T. Frankel, Manifolds with positive curvature, Pacific J. Math., 11 (1961), 165-174.
[12] S.I. Goldberg and S. Kobayashi, On holomorphic bisectional curvature, J. Differential Geometry, 1 (1967), 225-233.
[13] R. Hartshorne, Ample vector bundles, Publ. Math. IHES, 29 (1966), 63-94.
[14] R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture notes in Math. No. 156, Springer Verlag, 1970.
[15] F. Hirzebruch, Topological methods in algebraic geometry, Springer Verlag, 1966.
[16] F. Hirzebruch and K. Kodaira, On the complex projective spaces, J. Math. Pures Appl., 36 (1957), 201-216.
[17] A. Howard, A remark on Kählerian pinching, to appear.
[18] A. Howard and B. Smyth, On Kähler surfaces of non-negative curvature, J. Differential Geometry, 5 (1971), 491-502.
[19] S. Kobayashi, Fixed points of isometries, Nagoya Math. J., 13 (1958), 63-68.
[20] S. Kobayashi and T. Nagano, Riemannian manifolds with abundant isometries, Differential Geometry in honor of K. Yano, Kinokuniya, Tokyo, (1972), 195-219.
[21] S. Kobayashi and T. Ochiai, On complex manifolds with positive tangent bundle, J. Math. Soc. Japan, 22 (1970), 499-525.
[22] S. Kobayashi and T. Ochiai, Compact homogeneous complex manifolds with positive tangent bundle, Differential Geometry in honor of K. Yano, Kinokuniya,

Tokyo, 1972, 221-232.
[23] S. Kobayashi and T. Ochiai, Characterizations of complex projective spaces and hyperquadrics, to appear.
[24] K. Kodaira, On Kähler varieties of restricted type, Ann. of Math., 60 (1954), 28-48.
[25] Y. Matsushima, Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne, Nagoya Math. J., 11 (1957), 145-150.
[26] T. Nagano, Homogeneous sphere bundles and the isotropic Riemannian manifolds, Nagoya Math. J., 15 (1959), 29-55.

[^0]: *), **) Both authors were partially supported by NSF Grant GP-16551.

 1) All manifolds in this paper are connected unless otherwise stated.
