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\S 1. Introduction.

One of the most challenging problems in Riemannian geometry is to de-
termine all compact Riemannian manifolds1) with positive sectional curvature.
As a special case, the following problem has been considered by Frankel [11].

Let $M$ be a compact Kahler manifold of dimension $n$ with positive sectional
(or more generally, holomorphic bisectional) curvature. Is $M$ necessarily biholo-
morphic to the complex projective space $P_{n}(C)$ ?

This is trivially true for $n=1$ since $P_{1}(C)$ is the only compact Riemann
surface with positive first Chern class. The question has been answered
affirmatively for $n=2$ by Frankel and Andreotti [11]; their proof depends on
the classification of the rational surfaces. Recently, Howard and Smyth [18]

have determined the compact K\"ahler surfaces of non-negative holomorphic
bisectional curvature. In higher dimensions, this question has been answered
affirmatively only under additional assumptions: 1) Pinching conditions
(Howard [17]), or 2) Einstein-K\"ahler (Berger [2]) or constant scalar curvature
(Bishop and Goldberg [4]).

The purpose of this paper is to answer the question above affirmatively
for $n=3$, see Theorem 7.1. The proof given here leaves much to be desired,

for it makes use of a difficult theorem of Aubin (see Lemma 7.3) and does
not answer the following algebraic geometric question:

Let $M$ be a compact complex manifold of dimension $n$ with positive tangent
bundle. ls $M$ necessarily biholomorphic to $P_{n}(C)$ ?

This question, which is more general than the first one, has been answered
affirmatively by Hartshorne [14] for $n=2$ by a purely algebraic method. It
has been affirmatively answered also for the compact homogeneous complex
manifolds [22] as well as for the complete intersection submanifolds of com-
plex projective spaces [21]. In [21] we have shown that a 3-dimensional
compact complex manifold $M$ with positive tangent bundle admits a group

$*),$ $**$) Both authors were partially supported by NSF Grant GP-16551.
1) All manifolds in this paper are connected unless otherwise stated.
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of holomorphic transformations of dimension $\geqq 6$ . In this paper we shall
show that the dimension of the group is at least 7. We still do not know if
for such a manifold the second Betti number is 1 and the third Betti number
vanishes.

In concluding the introduction, we wish to express our thanks to Shigeru
Iitaka for useful communication.

\S 2. Sufficient conditions for a manifold to be $P_{n}(C)$ .
In this section we quote two general results which will be used in sub-

sequent sections.
THEOREM 2.1. Let $M$ be an n-dimensional compact homogeneous complex

manifold with positive ( $i$ . $e.$ , ample) tangent bundle. Then $M$ is biholomorphic
to the complex projective space $P_{n}(C)$ .

See [22] for its proof. The following theorem is proved in [23].

THEOREM 2.2. Let $M$ be an n-dimensional compact Kahler manifold whose
first Chern class $c_{1}(M)$ is of the form

$ c_{1}(M)=r\alpha$ ,

where $\alpha$ is a positive element of $H^{11}(M;Z)$ and $r$ is an integer $\geqq n$ . Then $M$

is biholomorphic to either $P_{n}(C)$ or a hyperquadric in $P_{n+1}(C)$ . $1fr\geqq n+1$ ,
then $M$ is biholomorphic to $P_{n}(C)$ .

We note that if $T(M)>0$ in Theorem 2.2, then $r\geqq n$ implies that $M$ is
biholomorphic to $P_{n}(C)$ since a hyperquadric is a homogeneous complex
manifold and cannot have positive tangent bundle by Theorem 2.1.

We remark that Theorem 2.2 is closely related to a theorem of Hirzebruch
and Kodaira [16] that an n-dimensional compact K\"ahler manifold with posi-
tive first Chern class which is homeomorphic to $P_{n}(C)$ is biholomorphic to
$P_{n}(C)$ and also to a similar theorem of Brieskorn [9] on a hyperquadric.

\S 3. Properties of 3-dimensional compact complex manifolds with positive
tangent bundle.

We shall summarize main properties of compact complex manifolds $M$

with $T(M)>0$.
THEOREM 3.1. Let $M$ be a compact complex manifold with positive tangent

bundle $T=T(M)$ . Then
(1) The determinant line bundle $\det(T)$ is positive, $i$ . $e.,$ $c_{1}(M)$ is positive;
(2) $H^{p0}(M;C)=H^{0p}(M;C)=0$ for $p\geqq 1$ ;
(3) $H^{p}(M;S^{k}T)=0$ for $p\geqq 1$ and $k\geqq 0$,

where $S^{k}T$ denotes the sheaf of germs of holomorphic sections of the k-th sym-
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metric tensor power of $T$ ;
(4) All Chern numbers of $M$ are positive, in particular, the Euler number

of $M$ is positive;
(5) If $\dim M=3$ , then

$c_{1}c_{2}[M]=24$ , $c_{1}^{3}[M]=even$ , $c_{3}[M]=even$ ,

where $c_{i}=c_{i}(M)$ denotes the i-th Chern class of $M$ ;
(6) If $\dim M=3$ , then

$\dim H^{0}(M;T)=\{\frac{1}{2}(c_{1}^{3}-2c_{1}c_{2}+c_{3})+\frac{5}{24}c_{1}c_{2}\}[M]\geqq 7$ .

We note that $H^{0}(M;T)$ is the space of holomorphic vector fields on $M$.
PROOF. (1) This is due to Hartshorne [13].

(2) This follows from (1) and the vanishing theorem of Kodaira.
(3) This has been proved in our previous paper [21; Corollary 2.5].

(4) This is due to Bloch and Gieseker [5].

(5) By (2), the arithmetic genus $\sum_{p=0}^{3}(-1)^{p}\dim H^{0p}(M;C)$ is equal to 1.

On the other hand, the Riemann-Roch theorem states that the arithmetic

genus is equal to $\frac{1}{24}c_{1}c_{2}[M]$ , see [15]. Hence, $c_{1}c_{2}[M]=24$ . The Riemann-

Roch theorem gives also

$\chi(M;\det(T))=\sum(-1)^{p}\dim H^{p}(M;\det(T))=(\frac{1}{2}c_{1}^{3}+\frac{1}{8}c_{1}c_{2})[M]$ .

Since $\chi(M;\det(T))$ is an integer, we may conclude that $\frac{1}{2}c_{1}^{8}$ is an integer.

Another consequence of the Riemann-Roch theorem is

$\chi(M;T)=\Sigma(-1)^{p}\dim H^{p}(M;T)=\{\frac{1}{2}(c_{1}^{3}-2c_{1}c_{2}+c_{3})+\frac{5}{24}c_{1}c_{2}\}[M]$ .

This shows that $(c_{1}^{3}-2c_{1}c_{2}+c_{3})[M]$ is an even integer and hence $c_{3}[M]$ is also
even.

(6) From (3), we obtain $\chi(M;T)=\dim H^{0}(M;T)$ . This gives the equality
in (6). To prove the inequality $\dim H^{0}(M;T)\geqq 7$ , we repeat the argument
used to prove the inequality $\dim H^{0}(M;T)\geqq 6$ in [21]. Let

$F=L(T^{*})^{-1}$

be the tautological positive line bundle over the projective bundle $P(T^{*})$

associated with the cotangent bundle $\tau*=T^{*}(M)$ as in [21; \S 4]. Let $f$ be
the first Chern class of the line bundle $F$. We have shown [21]

(3.1) $f^{5}[P(T^{*})]=(c_{1}^{3}-2c_{1}c_{2}+c_{3})[M]$ .
Since $F>0$ and hence $f$ is positive, the left hand side of (3.1) is positive.
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Hence, $\dim H^{0}(M;T)>\frac{5}{24}c_{1}c_{2}[M]=5$ , as we have shown in [21]. Now

assume that $\dim H^{0}(M;T)=6$ , i. e., $\frac{1}{2}(c_{1}^{3}-2c_{1}c_{2}+c_{S})[M]=1$ . From (3.1) we
obtain

(3.2) $f^{\epsilon}[P(T^{*})]=2$ .
On the other hand, we have

(3.3) $\dim H^{0}(P(T^{*});F)=6$ .
This is a consequence of (see [21; Theorem 2.1])

$H^{*}(M;T)=H^{*}(P(T^{*});F)$ .
From (3.2) and (3.3) we may conclude that there are at most two common
zeros ( $i$ . $e.$ , base points) of $H^{0}(P(T^{*});F)$ . This is a special case of the follow-
ing general result proved in [23]:

If $X$ is a compact complex manifold of dimension $n$ with a positive line
bundle $F$ such that $(c_{1}(F))^{n}[X]=2$ and $\dim H^{0}(X;F)=n+1$ , then there are at
most two common zeros of $H^{0}(X,\cdot F)$ .

A point $u$ of $P(T^{*})$ is represented by a non-zero cotangent vector
$\omega\in\tau*$ (which is unique up to a non-zero constant multiple). A section
$s\in H^{0}(P(T^{*});F)$ vanishes at $u$ if and only if the corresponding holomorphic
vector field $\sigma\in H^{0}(M;T)$ is annihilated by $\omega$ . This means that $u\in P(T^{*})$ is
a common zero of $H^{0}(P(T^{*});F)$ if and only if

$\langle\omega, \sigma\rangle=0$ for all holomorphic vector fields $\sigma\in H^{0}(M;T)$ .

Let $x$ be any point of $M$. There are three possibilities:
(i) No point of $P(T^{*})$ over $x$ is acommon zero of $H^{0}(P(T^{*});F)$ . In this

case, $H^{0}(M;T)$ spans the tangent space $T_{x}(M)$ at $x$.
(ii) There is exactly one common zero $u\in P(T^{*})$ of $H^{0}(P(T^{*});F)$ over $x$.

In this case, $H^{0}(M;T)$ spans the hyperplane in $T_{x}(M)$ defined by $\omega=0$.
(iii) There are two common zeros $u,$ $u^{\prime}\in P(T^{*})$ of $H^{0}(P(T^{*});F)$ over $x$.

In this case, $H^{0}(M;T)$ spans the l-dimensional subspace of $T_{x}(M)$ defined by
$\omega=\omega^{\prime}=0$, (where $\omega$ and $\omega^{\prime}$ are cotangent vectors representing $u$ and $u^{\prime}$ ,
respectively).

The set $A$ of points $x$ for which (ii) or (iii) holds is a finite set (with at
most two points). Let $G$ be the largest connected group of holomorphic
transformations of $M$. Since $G$ leaves $A$ invariant and $A$ is discrete, $G$ fixes
every point of $A$ . In other words, every point of $A$ is a common zero of
$H^{0}(M;T)$ . On the other hand, $H^{0}(M;T)$ spans a non-trivial subspace of
$T.(M)$ in all cases. We may conclude that $A$ is empty, $i$ . $e.,$ $(i)$ holds for all
$x\in M$. Then $H^{0}(M;T)$ spans $T_{x}(M)$ for all $x$. Hence, $G$ is transitive on $M$.
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By Theorem 2.1, $M$ is biholomorphic to $P_{3}(C)$ and $\dim H^{0}(M;T)=15$, in
contradiction to the assumption $\dim H^{0}(M;T)=6$. QED.

\S 4. Surfaces in $M$.
LEMMA 4.1. Let $M$ be a compact complex manifold of dimension 3 and

$/c_{i}=c_{i}(M)$ the i-th Chern class of M. Let $S$ be a closed complex submanifold
’of dimension 2 and $h\in H^{2}(M;Z)$ its dual. Then the Euler number $\chi(S)$ of $S$

is given by
$\chi(S)=(c_{2}-c_{1}h+h^{2})h[M]$ .

PROOF. Let $d_{i}=c_{i}(S)$ . Denote by $j$ the imbedding $S\rightarrow M$. Then

$j^{*}(1+c_{1}+c_{2}+c_{3})=(1+d_{1}+d_{2})(1+j^{*}h)$ .
Comparing both sides, we obtain

$d_{2}=j^{*}(c_{2}-c_{1}h+h^{2})$ .
Hence,

$\chi(S)=d_{2}[S]=j^{*}(c_{2}-c_{1}h+h^{2})[S]=(c_{2}-c_{1}h+h^{2})h[M]$ . QED.

We do not know if the second Betti number of a compact complex mani-
fold $M$ with $T(M)>0$ is equal to 1. If $M$ is a compact K\"ahler manifold with
positive holomorphic bisectional curvature, then $M$ is simply connected and
$H^{2}(M;Z)=Z$. In the remainder of this section, we shall assume that $T(M)$

is positive and the second Betti number of $M$ is 1 and we shall disregard
the torsion part of $H^{2}(M;Z)$ . Thus, by a generator of $H^{2}(M;Z)$ we mean
a generator of the Betti part of $H^{2}(M;Z)$ which is isomorphic to $Z$.

LEMMA 4.2. Let $M$ be a 3-dimensional compact complex manifold with
$T(M)>0$. Assuming that the second Betti number of $M$ is 1, let $\alpha$ be the
positive generator of $H^{2}(M;Z)$ . Let $S$ be a closed complex (hyper) surface in $M$.

(1) If $ c_{1}(M)=\alpha$ , then $\chi(S)\geqq 24$ ;
(2) If $ c_{1}(M)=2\alpha$ and $\alpha$ is the dual of $S$ , then

$\chi(S)=\frac{1}{4}(31-\dim H^{0}(M;T))$ in case $\chi(M)=4$ ,

$\chi(S)=\frac{1}{4}(30-\dim H^{0}(M;T))$ in case $\chi(M)=2$ ;

(3) If $ c_{1}(M)=2\alpha$ and $\alpha$ is not the dual of $S$, then $\chi(S)\geqq 24$ .
PROOF. Let $ h=s\alpha$ be the dual of $S$. Since $T(M)$ is positive, its restric-

tion to $S$ is a positive vector bundle. Since the normal bundle of $S$ is a
quotient bundle of $T(M)|_{S}$ , it is also positive. Hence, the characteristic class
of the normal bundle is positive. It folllows that $s\geqq 1$ . By Lemma 4.1, we
have
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$\chi(S)=(c_{2}-sc_{1}a+s^{2}\alpha^{2})s\alpha[M]$ ,

where $c_{i}=c_{i}(M)$ .
If $ c_{1}=\alpha$ , making use of the fact that $c_{1}c_{2}[M]=24$ (see Theorem 3.1), we

obtain
$\chi(S)=(24-As+As^{2})s$ , where $A=a^{3}[M]$ .

Since $s\geqq 1$ , we obtain
$\chi(S)\geqq 24$ .

If $ c_{1}=2\alpha$ , then we obtain

$\chi(S)=(12-2As+As^{2})s$ , where $A=\alpha^{3}[M]$ .
Since $s\geqq 1$ , we obtain

$\chi(S)=12-A$ for $s=1$ ,

$\chi(S)\geqq 24$ otherwise.

We have now only to evaluate $A=\alpha^{s}[M]$ . From (6) of Theorem 3.1, we
obtain

$A=--c_{1}^{3}[M]81=_{4}^{1}--(19-\frac{1}{2}c_{3}[M]+\dim H^{0}(M;T))$ .

By substituting this into $\chi(S)=12-A$ , we obtain the desired result. We
should perhaps point out that the Euler number $c_{s}[M]$ of $M$ is an even
positive integer by Theorem 3.1 and does not exceed 4 by our assumption
that the second Betti number of $M$ is equal to 1. QED.

\S 5. The group of holomorphic transformations of $M$.
Let $M$ be a compact complex manifold and $G$ the largest connected group

of holomorphic transformations.
LEMMA 5.1. If the line bundle $\det T$ , where $T=T(M)$ , is positive, $i$ . $e.$ , if

the first Chern class $c_{1}(M)$ is positive, then $M$ can be imbedded into a projective
space $P_{N}(C)$ in such a way that $G$ is the identity component of the group of
projective linear transformations of $P_{N}(C)$ leaving the submanifold $M$ invariant.

PROOF. We shall sketch an outline of this more or less well known fact.
By a result of Kodaira [24] there is a positive integer $k$ such that $(\det T)^{k}$

is very ample, $i$ . $e.$ , has sufficiently many holomorphic sections, say $N+1$

linearly independent sections, which induce an imbedding of $M$ into $P_{N}(C)$ .
Every holomorphic transformation of $M$ induces an automorphism of the
bundle $(\det T)^{k}$ and hence a linear transformation of the space $ H^{0}(M;(\det T)^{k}\rangle$

of holomorphic sections which in turn induces a projective linear transforma-
tion of $P_{N}(C)$ leaving $M$ invariant. QED.

We quote two results on algebraic groups (see Borel [6], [7]).
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LEMMA 5.2. Let $M$ be imbedded in $P_{N}(C)$ and let $G$ be the largest connected
group of projective linear transformations of $P_{N}(C)$ leaving $M$ invariant. Then
the G-orbit of a point of $M$ of least dimension is closed in $M$.

LEMMA 5.3. Let $M$ be imbedded in $P_{N}(C)$ and let $G$ be a connected solvable
Lie group of projective linear transformations of $P_{N}(C)$ leaving $M$ invariant.
Then $G$ has a common fixed point in $M$.

We quote now a theorem on the zero set of a Killing vector field on a
compact K\"ahler manifold which will be used in the next section as well as
here in this section.

LEMMA 5.4. Let $M$ be a compact Kahler manifold and $g_{t}$ a l-parameter
group of (holomorphic) isometries. Let $F$ be the fixed point set of $g_{t}$ . Let $b_{i}(M)$

and $b_{i}(F)$ denote the i-th Betti numbers of $M$ and $F$, respectively. Then $F$ is
a disjoint union of closed complex submanifolds and

(1) $\chi(M)=\sum(-1)^{i}b_{i}(M)=\sum(-1)^{j}b_{j}(F)=x(F)$ ;
(2) $\sum b_{i}(M)=\sum b_{j}(F)$ if $F$ is non-empty;
(3) The odd dimensional Betti numbers $b_{2i+1}(M)$ of $M$ vanish if and only

if those $b_{2j+1}(F)$ of $F$ vanish, provided $F$ is non-empty.
If $K$ is a compact group of holomorphic transformations of $M$, we can

consider $K$ as a group of isometries by averaging the metric of $M$ by $K$ and
can apply Lemma 5.4 to the fixed point set of any l-parameter subgroup
of $K$.

In Lemma 5.4, (1) is valid for any Riemannian manifold (see [19]). For
the proof of (2), see Frankel [10]. (3) is immediate from (1) and (2).

We shall denote by $b_{i}()$ the i-th Betti number of the space inside the
parenthesis.

LEMMA 5.5. Let $M$ be a 3-dimensional compact complex manifold with
$T(M)>0$ and $b_{2}(M)=1$ . Let $F$ be the fixed point set of a l-parameter subgroup
of a compact group of holomorphic transformations of M. Then the following
cases exhaust all possibilities:

(1) $\chi(M)=4$ and $F$ consists of a single surface $S$ with

$b_{1}(S)=b_{3}(S)=0$ and $b_{2}(S)=2$ ;

(2) $\chi(M)=4$ and $F$ consists of a surface $S$ and a point $p$ with

$b_{1}(S)=b_{3}(S)=0$ and $b_{2}(S)=1$ ;

(3) $\chi(M)=4$ and $F$ consists of two curves of genus $0$ ;
\langle 4) $\chi(M)=4$ and $F$ consists of a curve of genus $0$ and two points;
\langle 5) $\chi(M)=4$ and $F$ consists of four points;
(6) $\chi(M)=2$ and $F$ consists of a single surface $S$ with

$b_{1}(S)=b_{3}(S)=1$ and $b_{2}(S)=2$ ;
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(7) $\chi(M)=2$ and $F$ consists of a surface $S$ and a point $p$ with

$b_{1}(S)=b_{2}(S)=b_{3}(S)=1$ ;

(8) $\chi(M)=2$ and $F$ consists of a curve of genus 1 and two points.
PROOF. Since the Euler number of $M$ must be positive when $T(M)>0$.

we have only two possibilities for the Betti numbers of $M$ :
(a) $b_{1}(M)=b_{3}(M)=0$ and $\chi(M)=4$ ,
(b) $b_{1}(M)=b_{3}(M)=1$ and $\chi(M)=2$ .

In case (a), the odd dimensional Betti numbers of $F$ vanish and the sum of
the (even dimensional) Betti numbers is 4 by Lemma 5.4. In case (b), the
sum of the even dimensional Betti numbers of $F$ is 4 and the sum of the odd
dimensional Betti numbers of $F$ is 2 by Lemma 5.4. Now Lemma 5.5 follows.
easily. QED.

LEMMA 5.6. Let $M$ and $F$ be as in Lemma 5.5. Let $\alpha$ be the positive
generator of $H^{2}(M;Z)$ as in Lemma 4.2. Then

(i) If $ c_{1}(M)=\alpha$ , cases (1), (2), (6) and (7) of Lemma 5.5 do not occur, $i$ . $e.,$.
$F$ does not contain a surface as a component;

(ii) If $ c_{1}(M)=2\alpha$ , cases (6) and (7) of Lemma 5.5 do not occur;
(iii) If $ c_{1}(M)=2\alpha$ and case (1) of Lemma 5.5 occurs, then

$\dim H^{0}(M;T(M))=15$ ;

(iv) $ 1fc_{1}(M)=2\alpha$ and case (2) of Lemma 5.5 occurs, then

$\dim H^{0}(M;T(M))=19$ .
PROOF. (i), (iii) and (iv) follow immediately from Lemma 4.2 and Lemma

5.5. To prove (ii) we have only to consider case (2) of Lemma 4.2. In this
case, since $ c_{1}(M)=2\alpha$ and the first Chern class of the normal bundle of $S$ is
equal to $a|S$, it follows that $c_{1}(S)=\alpha|S$. In particular, $c_{1}(S)$ is positive. By
the vanishing theorem of Kodaira, $b_{1}(S)=0$ , which shows that cases (6) and
(7) of Lemma 5.5 do not occur. QED.

LEMMA 5.7. Let $M$ be a 3-dimensional compact complex manifold with
$T(M)>0$ and the second Betti number $b_{2}(M)=1$ . Let $G$ be the largest connected
group of holomorphic transformations of M. If $G$ has a closed orbit $S$ of
complex dimension 2, then $\dim_{C}G\geqq 14$ and either $S=P_{2}(C)$ or $S=P_{1}(C)\times P_{1}(C)$ .

PROOF. Since $S$ is a compact K\"ahler manifold with a transitive group of
holomorphic transformations, it is a direct product of a K\"ahler C-space and
a complex torus by a theorem of Borel and Remmert [8]. Imbed $M$ into
$P_{N}(C)$ as in Lemma 5.1. If $S$ has a complex torus as a factor, consider a
l-parameter subgroup of $G$ which induces translations on the torus factor.
Such a l-parameter group has no fixed points on $S$ . This contradicts Lemma
5.3. Thus, $S$ is a Kahler C-space. Since $\dim_{C}S=2$ , we have either $ S=P_{2}(C\rangle$



Compact Kahler manifolds 473

or $S=P_{1}(C)\times P_{1}(C)$ . Let $\alpha$ be the positive generator of $H^{2}(M;Z)$ as in
Lemma 4.2. If $c_{1}(M)=ra$ with $r\geqq 3$ , then Theorem 2.2 implies that $M=P_{3}(C)$

and that $G$ is transitive on $M$. We have therefore only to consider the
cases $ c_{1}(M)=\alpha$ and $ c_{1}(M)=2\alpha$ . Since $\chi(S)\leqq 4$ , Lemma 4.2 implies $\dim_{C}G=$

$\dim H^{0}(M;T(M))\geqq 14$ . QED.

\S 6. Compact groups of holomorphic transformations.

We prove
THEOREM 6.1. Let $M$ be a 3-dimensional compact complex manifold with

$T(M)>0$ and the second Betti number $b_{2}(M)=1$ . Let $G$ be the largest connected
group of holomorphic transformations of $M$ and $K$ a maximal compact subgroup

of G. Assume that $\dim K=\frac{1}{2}\dim G(=\dim_{c}G)$ . Then $M$ is biholomorphic
to $P_{3}(C)$ .

PROOF. We prove first the following
LEMMA 6.2. If $M$ is a 3-dimensional compact complex manifold with

$T(M)>0$ and admits a compact group $K$ of holomorphic transformations of
dimension $\geqq 10$, then $M$ is biholomorphic to $P_{3}(C)$ .

PROOF. Let $K(x)$ be the K-orbit through a point $x$ of $M$. Choose $x$ such
that $K(x)$ is a K-orbit of highest dimension and set

$r=\dim K(x)$ .
Let $K_{x}$ denote the isotropy subgroup of $K$ at $x$ so that $K(x)=K/K_{x}$ and

(6.1) $\dim K=r+\dim K_{x}$ .
Choosing a K-invariant hermitian metric on $M$, we consider $K$ as a group of
holomorphic isometries of $M$. Since $K(x)$ is a maximal dimensional K-orbit,
$K$ acts essentially effectively on $K(x)$ (see, for instance, [20]). Hence,

(6.2) $\dim K_{x}\leqq\dim O(r)=\frac{1}{2}r(r-1)$ .
Now (6.1) and (6.2) imply

(6.3) $\dim K\leqq r+\frac{1}{2}r(r-1)$ .

Since $\dim K\geqq 10$ by assumption, it follows that $r\geqq 4$ . Let $T_{x}(K(x))$ be the
tangent space of $K(x)$ at $x$ ; it is a real subspace of $T_{x}(M)$ . We decompose

it as follows:
$T_{x}(K(x))=V+W$ ,

where $V$ is the largest complex subspace of $T_{x}(M)$ contained in $T_{x}(K(x)),$ $i.e.$ ,
$V=T_{x}(K(x))\cap J(T_{x}(K(x)))$ and $W$ is the orthogonal complement to V. (Here,

$J$ denotes the complex structure of $M.$) If $r=4$ , then either $\dim_{C}V=1$ or



474 S. KOBAYASHI and T. OCHIAI

$\dim_{c}V=2$ since $\dim_{c}M=3$ . Since $K_{x}$ acts on $V$ as a unitary group and on
$W$ as an orthogonal group, we have

(6.4) $\dim K_{x}\leqq\dim U(1)+\dim O(2)=2$ if $\dim_{C}V=1$ ,

(6.5) $\dim K_{x}\leqq\dim U(2)=4$ if $\dim_{C}V=2$ .
In either case, (6.1) implies $\dim K\leqq 8$, in contradiction to the assumption
$\dim K\geqq 10$. If $r=5$ , then $\dim_{C}V=2$ and

(6.6) $\dim K_{x}\leqq\dim U(2)=4$ .
FIn this case, (6.1) implies $\dim K\leqq 9$ , again in contradiction to the assumption

$\dim K\geqq 10$ . If $r=6$ , then $K$ is transitive on $M$ and Theorem 2.1 implies that
$M$ is biholomorphic to $P_{s}(C)$ . QED.

LEMMA 6.3. If $M$ is a 3-dimensional compact complex manifold with
$T(M)>0$ and admits a compact connected group $K$ of holomorphic transfor-
mations of dimension $\geqq 6$ which has a common fixed point, then $M$ is biholo-
morphic to $P_{3}(C)$ .

PROOF. Let $x$ be a common fixed point of $K$. Under the linear isotropy
representation at $x,$ $K$ can be considered as a subgroup of $U(3)$ . Set

$r=\dim(U(3)/K)$ .
Then $r=\dim U(3)-\dim K\leqq 9-6=3$ . Let $N$ be the normal subgroup of $U(3)$

consisting of elements which act trivially on $U(3)/K$. Then $N$ is contained
in $K$, and $U(3)/N$ acts effectively on $U(3)/K$. Since the manifold $U(3)/K$ of
dimension $r$ cannot admit a compact group of transformations of dimension

1
$>\overline{2}r(r+1)$ , we obtain

$\dim(U(3)/N)\leqq\frac{1}{2}r(r+1)\leqq 6$ .
Hence, $\dim N\geqq 3$ . Then either $N=SU(3)$ or $N=U(3)$ . Since $K$ contains $N$,
either $K=SU(3)$ or $K=U(3)$ . In either case, $K$ acts transitively on the unit
sphere in the tangent space $T_{x}(M)$ . By a theorem of Nagano [26], $M$ is
$C^{1}$ -diffeomorphic to a compact symmetric space of rank 1. (In [26], Nagano
has determined all Riemannian manifolds which are isotropic at one point).
Since $M$ is a K\"ahler manifold, $M$ must be $C^{1}$ -diffeomorphic to $P_{3}(C)$ . We
may now use the result of Kodaira-Hirzebruch quoted in \S 2 to conclude that
$M$ is biholomorphic to $P_{3}(C)$ . But we may use Theorem 2.2 as follows. Let
$\alpha$ be the positive generator of $H^{2}(M;Z)$ and write $ c_{1}=r\alpha$ . Then $\alpha^{3}[M]=1$ ,
since $M$ is homeomorphic to $P_{3}(C)$ . As we have seen in \S 3,

$(c_{1}^{3}-2c_{1}c_{2}+c_{s})[M]>0$ .
Since $c_{1}c_{2}[M]=24$ by Theorem 3.1 and $c_{3}[M]=x(M)=4$ , the inequality above
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implies

$r^{3}-48+4>0$ .
Hence, $r\geqq 4$ . QED.

LEMMA 6.4. Let $M$ be a 3-dimensional compact complex manifold with
$T(M)>0$ (more generally, $\det(T(M))\geqq 0$). Let $K$ be a compact group of
holomorphic transformations of M. Then $rankK\leqq 3$ . If $\dim K\geqq 6$ , then
rank $K\geqq 2$ and the center of $K$ has dimension $\leqq 1$ .

PROOF. Let $A$ be a connected maximal abelian subgroup of $K$. Then
$\dim A=rankK$. By Lemmas 5.1 and 5.3, $A$ leaves a point $x$ of $M$ fixed. Then
$A$ may be considered as an abelian subgroup of $U(3)$ through the linear
isotropy representation at $x$ . Hence, $\dim A\leqq 3$ . It is obvious that rank $K\geqq 2$

if $\dim K\geqq 4$ . Let $C$ be the center and $K_{s}$ the semi-simple part of $K$. Since
rank $K=rankK_{s}+\dim C\leqq 3$ and $\dim K\geqq 6$ , we obtain $\dim C\leqq 2$ . If $\dim C=2$ ,

then $rankK_{s}=1$ and hence $\dim K_{s}=3$ , which implies $\dim K=5$ . Hence,
$\dim C\leqq 1$ . QED.

We shall now prove Theorem 6.1. Let $G$ be the largest connected group
of holomorphic transformations of $M$. Let $m$ be the complex dimension of
a minimal dimensional G-orbit and let $G(x)$ be such an orbit. We know
(Lemma 5.2) that $G(x)$ is a closed complex submanifold of dimension $m$ .

If $m=3$ , then $G$ is transitive on $M$ and, by Theorem 2.1, $M$ is bi-
holomorphic to $P_{3}(C)$ . If $m=2$ , Lemma 5.7 implies that $\dim_{C}G\geqq 14$ . Since
we are assuming that $\dim K=\dim_{c}G$ , Lemma 6.2 implies that $M$ is bi-
holomorphic to $P_{3}(C)$ . The case $m=1$ will be considered last. If $m=0,$ $G(x)$

is a point, i. e., $G$ leaves the point $x$ fixed. Since $\dim K=\dim_{C}G\geqq 7$ by (6)

of Theorem 3.1, $M$ is biholomorphic to $P_{3}(C)$ by Lemma 6.3.
We shall now consider the case $m=1,$ $i$ . $e.$ , the case where $G(x)$ is a closed

curve. Let $K_{s}$ denote the semi-simple part of $K$. Since $\dim K\geqq 7$ by (6) of
Theorem 3.1 and the dimension of the center $C$ of $K$ is at most 1, we have
$\dim K_{s}\geqq 6$ . Since a compact group of dimension $\geqq 4$ cannot act effectively
on a real 2-dimensional manifold, $K_{s}$ cannot act effectively on the orbit $G(x)$

of complex dimension 1. If $K_{s}$ is simple, this means that $K_{s}$ acts trivially
on $G(x)$ . Applying Lemma 6.3 to the compact group $K_{s}$ leaving $x$ fixed, we
see that $M$ is biholomorphic to $P_{3}(C)$ . We may now assume that $K_{s}$ is not
simple. By Lemma 6.2, we may also assume that $\dim K\leqq 9$ . Let $N$ denote
the normal subgroup of $K$ consisting of elements which act trivially on the
curve $G(x)$ . Since $K/N$ acts effectively, $\dim(K/N)\leqq 3$ . If $\dim K=9$ , then
$\dim N\geqq 6$ and Lemma 6.3 applied to the compact group $N$ implies that $M$ is
biholomorphic to $P_{3}(C)$ . We may therefore assume that $\dim K\leqq 8$ . If
$\dim N\geqq 6,$ $M$ is biholomorphic to $P_{3}(C)$ by the same lemma. Hence, we may
further assume that $\dim N\leqq 5$ . If $\dim K=8$ , then $\dim N=5$ since $\dim(K/N)$
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$\leqq 3$ . Since there is no simple group of dimension 4 or 5, it follows that
rank $N\geqq 3$ . Hence, rank $K=rankN+rankK/N\geqq 4$ , in contradiction to Lemma
6.4. We may assume therefore that $\dim K=7$ . Again considering rank $K$,
we see that $\dim N=4$ , rank $N=2$ and rank $K/N=1$ . In other words,

$K=K_{1}\times K_{2}\times C$ (local direct product),

where $K_{1}$ and $K_{2}$ are 3-dimensional simple compact groups and $C$ is the
l-dimensional center, $i$ . $e.$ , a circle group.

We shall first prove that the odd dimensional Betti numbers of $M$ vanish
and $\chi(M)=4$ . Since rank $K=3$ , we take a 3-dimensional torus subgroup $A$

of $K$. The set $F_{A}$ of common fixed points of $A$ is non-empty by Lemmas 5.1
and 5.3. The linear representation of $A$ at any point $x$ of $F_{A}$ is trivial on
the tangent space $T.(F_{A})$ and hence must be faithful on the normal space
$N_{x}(F_{A})$ . If $r=\dim N_{x}(F_{A})$ , then $A$ is a subgroup of $U(r)$ . But this is possible
only if $r=3$ . This means that $F_{A}$ consists of isolated points. A dense 1-
parameter subgroup of $A$ has the same fixed point set $F_{A}$ as $A$ . Applying
Lemma 5.4 or Lemma 5.5 to this l-parameter subgroup, we see that $M$ has
vanishing odd dimensional Betti numbers and $\chi(M)=4$ .

We consider now the set $F_{c}$ of common fixed points of the center $C$ of
$K=K_{1}\times K_{2}\times C$ . If $F_{C}$ has a surface $S$ as one of its components, then $\chi(S)$ is
either 3 or 4 by Lemma 5.5. Since we can exclude the cases $ c_{1}(M)\geqq 3\alpha$ by
Theorem 2.2, we see that $\dim_{c}G\geqq 15$ by Lemma 4.2. Then $\dim K\geqq 15$ , in
contradiction to the present assumption $\dim K=7$ . Suppose $F_{c}$ contains an
isolated point, say $x$. as one of its components. Since $K_{1}xK_{2}$ commutes with
$C$ , it leaves $F_{C}$ invariant. Since $x$ is an isolated point of $F_{C}$ , it is left fixed
by $K_{1}\times K_{2}$ also. By Lemma 6.3, $M$ is biholomorphic to $P_{3}(C)$ .

In view of Lemma 5.5, the only remaining case to be considered is when
the fixed point set $F_{C}$ of the center $C$ consists of two curves of genus $\alpha$

$(i. e., P_{1}(C))$ . Write

$F_{c}=P\cup P^{\prime}$ , where $P$ and $p/are$ biholomorphic to $P_{1}(C)$ .
If the action of $K_{1}\times K_{2}$ on $P$ is trivial, Lemma 6.3 implies that $M$ is bi-
holomorphic to $P_{3}(C)$ . Assume that $K_{1}\times K_{2}$ acts non-trivially on $P$. Since
$\dim(K_{1}\chi K_{2})=6,$ $K_{1}\times K_{2}$ cannot act effectively on $P$ (of complex dimension 1).
Without loss of generality, we may assume that $K_{1}$ acts effectively on $P$ and
$K_{2}$ acts trivially on $P$.

Take a point $a\in P$. Let $T_{1}$ be the isotropy subgroup of $K_{1}$ at $a$ ; it is a
circle group and $P=K_{1}/T_{1}$ . Let $F_{T_{1}}$ be the fixed point set of $T_{1}$ . It contains
the point $a$ .

If the component of $F_{\tau_{1}}$ containing the point $a$ is a surface $S$, we obtain
a contradiction as in the case when $F_{c}$ has a surface as one of its components
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(using Lemmas 5.5 and 4.2 again).

Assume that the component of $F_{\tau_{1}}$ containing the point $a$ is a curve, say
$P^{\prime\prime}$ . We claim that $P$ and $P^{\prime\prime}$ are transversal at $a$ , i. e., $T_{a}(P)\cap T_{\alpha}(P^{\prime\prime})=0$.
To see this, we consider the linear isotropy representation of the circle group
$T_{1}$ at the point $a$ . Since $P=K_{1}/T_{1},$ $T_{1}$ acts on the tangent space $T_{a}(P)$ as
the unitary group $U(1)$ . On the other hand, since $T_{1}$ leaves $P^{\gamma/}$ pointwise
fixed, $T_{1}$ acts trivially on $T_{a}(P^{\prime\prime})$ . Hence the two l-dimensional complex sub-
spaces $T_{a}(P)$ and $T_{a}(P^{\prime\prime})$ of $T_{a}(M)$ cannot coincide and hence $T_{a}(P)\cap T_{a}(P^{\prime\prime})$

$=0$ . We consider now the linear isotropy representation of $K_{2}\times C$ at the
point $a$ . We write

$T_{a}(M)=T_{a}(P)+T_{\alpha}(P^{\prime\prime})+N_{a}$ ,

where $N_{a}$ is the l-dimensional complex subspace of $T_{a}(M)$ which is normaE
to $T_{a}(P)+T_{a}(P^{\prime\prime})$ . Since $K_{2}\times C$ leaves $P$ pointwise fixed, it acts trivially on
$T_{a}(P)$ . Since $K_{2}\times C$ commutes with the circle group $T_{1}\subset K_{1}$ , it leaves the
fixed point set $F_{\tau_{1}}$ invariant and hence it leaves $P^{\prime\prime}$ invariant. It follows that
$K_{2}\times C$ leaves $T_{\alpha}(P^{\prime\prime})$ invariant. Consequently, $K_{2}\times C$ must leave $N_{\alpha}$ invariant.
This means that with respect to the decomposition $T_{a}(M)=T_{a}(P)+T_{a}(P^{\prime\prime})+N_{\alpha}$

the linear isotropy representation of $K_{2}\times C$ at $a$ must look like the following:

$K_{2}\times C\subset\left(\begin{array}{lll}1 & 0 & 0\\0 & U(1) & 0\\0 & 0 & U(1)\end{array}\right)$ .

But this is impossible since $\dim(K_{2}\times C)=4$ . This shows that the component
of $F_{\tau_{1}}$ containing the point $a$ cannot be a curve.

Assume that the component of $F_{T_{1}}$ containing the point $a$ is of dimension
$0,$ $i$ . $e.$ , the point $a$ is an isolated fixed point of $T_{1}$ . Let $N_{a}$ denote the normal
space to $P$ at $a$ ; it is a 2-dimensional complex subspace of $T_{\alpha}(M)$ and

$T_{a}(M)=T_{a}(P)+N_{a}$ .
Since $K_{2}\times C$ acts trivially on $P$ and hence on $T_{a}(P)$ and since $\dim(K_{a}xC)=4_{r}$

the linear isotropy representation of $K_{2}\times C$ at $a$ is of the following form with
respect to the decomposition $T_{a}(M)=T_{\alpha}(P)+N_{a}$ :

$K_{2}\times C=($ $01$ $U(2)0$ ).
Since $T_{1}$ leaves $P$ and hence $T_{a}(P)$ invariant, the linear isotropy representation
of $T_{1}$ at $a$ is of the form

$T_{1}\subset\left(\begin{array}{ll}U(1) & 0\\0 & U(2)\end{array}\right)$ .
Write the circle group $T_{1}$ as a l-parameter group $f_{t}$ . Then the linear isotropy
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representation of $f_{t}$ at $a$ is of the form:

$\left(\begin{array}{ll}* & 0\\0 & A(t)\end{array}\right)$ ,

where $A(t)$ is a l-parameter subgroup of $U(2)$ . Take a l-parameter subgroup
$g_{t}$ of $K_{2}\times C$ whose linear isotropy representation at $a$ is of the form

$\left(\begin{array}{ll}1 & 0\\0 & A(t)\end{array}\right)$ .

We define a non-trivial l-parameter subgroup $h_{t}$ of $T_{1}\times K_{2}\times C$ by

$h_{t}=f_{l}\circ g_{t}^{-1}$ .
Then $h_{t}$ leaves the point $a$ fixed and its linear isotropy representation at $a$

leaves the space $N_{a}$ pointwise fixed. Let $F_{h_{t}}$ be the fixed point set of the
l-parameter group $h_{t}$ . Its component containing the point $a$ is a surface
whose tangent space at $a$ coincides with $N_{a}$ . Using Lemmas 5.5 and 4.2
again, we obtain a contradiction as in the case when $F_{c}$ has a surface as one
of its components. This completes the proof of Theorem 6.1.

\S 7. Positive holomorphic bisectional curvature.

We shall prove the main theorem of this paper.
THEOREM 7.1. Let $M$ be a 3-dimensional compact Kahler manifold with

positive holomorphic bisectional curvature. Then it is biholomorphic to $P_{3}(C)$ .
PROOF. We have shown in our previous paper [21] that a compact

K\"ahler manifold with positive holomorphic bisectional curvature has a positive
tangent bundle. On the other hand, such a manifold $M$ has the second Betti
number $b_{2}(M)=1$ by a result of Bishop and Goldberg [3] (see also [12]).

Let $G$ be the largest connected group of holomorphic transformations of $M$

and $K$ a maximal compact subgroup of $G$ . Our theorem will follow from
1Theorem 6.1 if we show that $\dim K=-$ $\dim G(=\dim_{c}G)$ . But this is a2

consequence of the following two results.
LEMMA 7.2. (Matsushima [25]). If $M$ is a $co$mpact Einstein-Kahler mani-

fold, then the Lie algebra $\mathfrak{g}$ of holomorphic $\iota 1ector$ fields is the complexification

of the Lie algebra $f$ of infinitesimal isometries ( $i$ . $e.$ , Killing vector fields).

Thus, for a compact Einstein-K\"ahler manifold $M$, the largest connected
group $K$ of isometries is a maximal compact subgroup of $G$ and $\dim K=$

$1$ 1
$\dim f=2\dim \mathfrak{g}=2^{-\dim G}$

LEMMA 7.3. (Aubin [1]). Let $M$ be a compact Kahler manifold with non-
negative holomorphic bisectional curvature. $1f$ the Kahler 2-form represents the

first Chern class $c_{1}(M)$ . then $M$ admits a Kahler-Einstein metric.
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We note that if $b_{2}(M)=1$ as in the present case, a suitable constant
multiple of the given K\"ahler 2-form represents $c_{1}(M)$ . Since $c_{1}(M)$ is positive
in the present case, this constant is positive. Hence the result of Aubin can
be applied to the manifold $M$. QED.

University of California, Berkeley
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