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§1. Introduction.

The symmetric group S; of degree five and the two dimensional projective
special linear group PSL(2, 11) over the field of eleven elements are doubly
transitive permutation groups of degree five and eleven, respectively, in which
the stabilizer of two points is isomorphic to the symmetric group S; of degree
three.

Let £2 be the set of points 1, 2, ---, n, where n is odd. Let & be a doubly
transitive permutation group in which the stabilizer &,,, of the points 1 and
2 has even order and a Sylow 2-subgroup & of &,,, is cyclic. In the case &,,,
is cyclic, Kantor-O’Nan-Seitz and the author proved independently that &
contains a regular normal subgroup (5] and [8]). In this paper we shall
study the case &,, is not cyclic. Let ¢ be the unique involution in &. By
a theorem of Witt ([10, Th. 9.47]) the centralizer Cg(z) of = in & acts doubly
transitively on the set J(r) consisting of points in £ fixed by z.

The purpose of this paper is to prove the following theorem.

THEOREM. Let &, ®,,, v and J(z) be as above. Assume that all Sylow
subgroups of &,, are cyclic, the image of the doubly transitive permutation
representation of Cg(r) on J(r) contains a regular normal subgroup and that
& does not contain a regular normal subgroup. If & has two classes of
involutions, then & is isomorphic to Sy and n=5. If & has one class of in-
volutions and t is not contained in the center of &,,, then & is isomorphic to
PSL(2,11) and n=11.

In we proved this theorem in the case that the order &,, equals 2p
for an odd prime number p.

Let X be a subset of a permutation group. Let JI(X) denote the set of all
the fixed points of X and let a(¥X) be the number of points in J(X). The other
notion is standard.

§2. On the degree of ®.

Let & be a doubly transitive permutation group on 2={1, 2, ---, n}.
Let &, and ®,,, be the stabilizers of the point 1 and the points 1 and 2,
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respectively. In this paper we assume that a Sylow 2-subgroup & (1) of
@,,. is cyclic. Let us denote the unique involution in & by z. By the Burn-
side argument &,, has a normal 2-complement £. Let I be an involution
with the cycle structure (1, 2)---. Then [ is contained in Ng(®,,.) and we have
the following decomposition of &:

B8=06,+6,I6,.

By Frattini argument it may be assumed that [ nQrmalizes 8. Let d be the
number of elements in &,, inverted by I. Let g(2) and g,(2) denote the
numbers of involutions in & and &,, respectively. Then the following equality
is obtained:

2.1 Q) =g2)+d(n—-1).

(See [4] or [6])

Let = fix i (i=2) points of £, say 1,2,---,i. By a theorem of Witt ([10,
Th. 947) Cg(z) acts doubly transitively on J(z). Let X,(z) and X(z) be the
kernel of this permutation representation and its image, respectively. In
general, let X be a subgroup of &,,, satisfying the condition of Witt. Then
Ng(X) acts doubly transitively on J(X). Let X,(X) and X(X) be the kernel of
this permutation representation and its image, respectively. Let us denote
[S,,2: C,,5(0)] by 7.

Let us assume that n is odd. Let g¥(2) be the number of involutions in
@, which fix only the point 1. Then from the following equality is
obtained :

(2.2) g¥Qn+yrn(n—1)/iG—1) = g¥@)+rn—1)/G—1)+d(n—1)-

It follows from that d > g¥@) and n=1i(Bi—B+7y)/y, where B=d—g¥?2)
equals the number of involutions with cycle structures (1, 2) --- which are
conjugate to z.

Next let us assume that n is even. Let g*(2) be the number of involutions
in @ which fix no point of £. Then the following equality is obtained:

23 g*@Q)+rn(n—1)/i(—1) =y(n—1)/G—D+dn—-1).

Since @ is doubly transitive on £2, g*(2) is a multiple of n—1. It follows .
from [2.3) that d(n—1) > g*(2) and n=1i(Bi—B+7r)/y, where 8=d—g*(2)/(n—1)
equals the number of involutions with the cycle structures (1, 2) --- which are
conjugate to ¢ (see [7).

Let &, be the set of elements in & inverted by I. For an element K of
K, let DUK) be the set of elements in £ inverted by IK and d(IK) be the
number of elements in DUK).

LEMMA 1. d= 3 d(K) and d(IK) is odd.

K<89
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PrOOF. Let KH be an element of &,,= 89 inverted by /. Then (KH)!
=H'K'=K*'KH'K'=K'H?’. Therefore K=K and H®=H"'. This
proves the first assertion. For the second, see [2, Lem. 10.4.1].

LEMMA 2. Every involution in I®,, is conjugate to I or It and & has one
or two classes of involutions.

PROOF. For an element K of &, every involution in IK® is conjugate
to IK. Every involution in I®, is conjugate to / or Iz and every involution
in G is conjugate to an involution in /®,,, since & is doubly transitive. This
proves the lemma. ‘

LEMMA 3. d is even and so is B if |R]> 2.

PROOF. Trivial.

LEMMA 4. Assume |®|>2. Then let B be a subgroup of & of order 4.
If (B, I> is dihedral, then {B, J> dihedral for every involution J(+#+ 7) in Ng(B).

PROOF. Since a Sylow 2-subgroup of &,, is cyclic, a({l, B))=a({], B>)
=1. A doubly transitive permutation group M of odd degree such that the
stabilizer M,,, of two points is of odd order has one class of involutions since
all involutions are conjugate in I’M,,, where I’ is an involution of i with
the cycle structure (1, 2)---. From this and Lemma 2 IX,(8) and JX,(B) are
conjugate under X(®B). Thus /=Y 'JXY, where X and Y are elements of
Ns,,,(B) and Ng(B), respectively. Since Ng(®B)=<I, Cy(B))>, X and Y are con-
tained in Cg(®). Thus ¥V =V for every element V of B. This proves the
lemma.

From now on, throughout this paper, we assume 7 is odd and X(z) contains
a regular normal subgroup. Then ¢ equals a power of a prime number, say
™.

THEOREM 1. Let & be a doubly transitive permutation group of odd degree
n such that a Sylow 2-subgroup & of &,, is cyclic. If |®|>2 and (&, I) is
dihedral or quasi-dihedral, then & contains a regular normal subgroup. If
IRX1=2 and & has one class of involutions, then it contains a regular normal
subgroup or it is isomorphic to PSL(2, 11) with n=11.

PrOOF. n—1=(G—1)(Bi+y)/r and y is odd. By Lemma 3 B is even.
Therefore a Sylow 2-subgroup of Cg(z) is that of &. By Lemma 4 a proof
of the theorem is similar to the case that &,, is cyclic ([8]).

§3. Proof of Theorem.

Let & be as in Theorem. By Theorem 1 we may assume &,=<z) and
d=d(l)+d(z). If all involutions are conjugate, then 8=d is even and if &
has two classes of involutions, then let us assume a(J/)=1 and B=dlz). Let
9, be a Sylow g-subgroup of $. Since all Sylow subgroups of § are cyclic,
we may assume that Ng(9,) contains (&, I> and 9, for r <gq.
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LEMMA 5. If @ has two classes of involutions and if a(9,) is odd for
every 9, such that {$, I> is dihedral, then & contains a regular normal sub-
group.

PROOF. Let a be the unique element in J(/). Assume {$,, I) is dihedral.
Let 9, be a Sylow g-subgroup of § normalized by I. Then <{9,, /> must be
dihedral. Since a(9,) is odd, so is a(9,). Since J(,)! = I(H,), it contains a.
Let X be an element of ®(). Then X is a product of elements of D),
X, -+, X,_, and X,, where | X,| is a power of a prime number and (| X/, | X:|)
=1 for j# k. From the above J(X;) contains a. Thus J(X) contains a and
so does JI(D()). Since g¥(2)=d(l), the set of involutions fixing only the
point a is that of involutions in (®{), I). It is trivial that [ is a unique
involution in {(®{), I> which is commutative with I. Since Cg(I) is contained
in &,, there is no involution (#+ I) in Cg(/) which is commutative with I and
conjugate to I. By [1] & contains a solvable normal subgroup. This proves
the lemma.

By this lemma we may assume that if & has two classes of involutions,
then there exists §, (# 1) such that {(£,, I) is dihedral and a(9,) is even.

LEMMA 6. If a(®,) is even, then (£, ) is dihedral.

PROOF. Assume {§,, t) is abelian. If J(D,) contains J(z), then a(®,) is
odd since a(z) is odd. Therefore £, is not contained in X,(z). Since X(7)
contains a regular normal subgroup, so does X(H,X,(r)) and its degree
a({9,, t7) is a power of p. Since the stabilizer in X(,) of any two points
of J(H,) is of even order, a(9,) =1 (B '—1)+r")/r’, where /! =a((D,, 77), 7’
is odd and B’ is some integer. Therefore a(9,) is odd, which is a contradiction.

LEMMA 7. If a(l)=1, a(®,) is even and if (., I)> is dihedral, then
q=p= |‘bq | .

PROOF. By Lemma 6 {9,, ) is dihedral. Therefore {($,, Iz) is abelian.
If a((9,, I7)) =2, then {H,, Ir) must be conjugate to a subgroup of {(H,;, K>
and it is dihedral. Therefore a({ 9, 7)) <1. Assume a({9,, It))=1. Since
a(I)=1 and a(9,) is even, J(J) is not contained in J(,). Let a be an element
of Iy, It)). Then a’+#a and a’ =a° is an element of J(®,). Therefore
(a’Yy*=a"=a’ and it is an element of J( P, I7)), which is a contradiction.
Thus a((9,, Iz))=0. Since Cg(I7) is conjugate to Cg(z), g=p. Since |Cg,,,(7)|
is not divisible by p, a Sylow p-subgroup of Cg(I7) is elementary abelian.
Thus |9,|=0p».

LEMMA 8. If & has one class of involutions and {8, t) is dihedral, or
if a)=1 and {9, vy and {P,, I) are dihedral, then q=p=|9,| and a(Dy)
is even.

PROOF. Assume by way of contradiction that g=#p. Let &, be a sub-
group of §, of order g. If all involutions are conjugate, we may assume that
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{$q¢, Ir> is abelian. Since (9, r) is dihedral and ¢g#p, al9,, Iz))=1.
Thus ¢ is a factor of i—1. Since r normalizes {9, Iz), IKP,, Ir)) is con-
tained in J(z). Therefore a({ 9}, Iz, z>)=1 and {9}, ) X,(Iz) is a complement
of a Frobenius subgroup of X(Iz). By a property of Frobenius groups
{9y, ©>X,(I) must be cyclic. Since it is isomorphic to <{£}, >, (9}, ¢> must
be cyclic, which is a contradiction. Thus ¢=p. In the same way as in the
proof of Lemma 7, $,=9,. Since a({9,, It>)=0 and (D) =1(D,), a(®,) is
even.

COROLLARY 9. If every involution is conjugate to t, then d=(1+p)d’,
where d’ =[Ce(z): CoKz, I))] and y=p.

PROOF. Since r is not contained in the center of &,,, there exists a
Sylow g¢-subgroup £, such that {9, ) is dihedral. By Lemma 8 if {9,, t>
is dihedral, then ¢=p=[9,|. Thus y=[9: Ce(r)]=p. Since <{(H,, v) is
dihedral, we may assume that <{$,, I> is dihedral. Let $; be a Sylow r-
subgroup of Cgy(/). Then <(9,, I) is abelian since £, and §, are conjugate
by an element of Cy(I), and {(9,, z) is also abelian. Thus [: Co(I)]=
P[Co(2): CoKI, v))]=pd’. Similarly [$: Co(Iz)]=4d".

COROLLARY 10. If a(I)=1, then y is a factor of Pp.

LEMMA 11. If {9y, I> or {9, v is dihedral for q+p, then (D¢, Hp) is
abelian.

PROOF. Assume <{9,, I) is dihedral. If ¢ <p, then </, §,> is contained
in Ng(9,). Since Ng(®,)/Ce(D,) is cyclic, (9, D, is abelian. If ¢>p, then
{1, $,> is contained in Ng(9,). Thus <{9,, H,> is abelian.

LEMMA 12. ¢=p=3 and a(D,)=2.

PrOOF. If a(l)=1, then a(lz)=1 and {9, ) is dihedral by Lemma 7.
If a(l)=a(lz)=1, then we may assume that {9,, /) is dihedral. Since Cg(I7)
is conjugate to Cg(z) and it contains 9,, Cs(r) contains a subgroup of order
p which is conjugate to £,. Let Mt be a normal subgroup of Cg(z) containing
X.(z) such that M/A,(z) is a regular normal subgroup of X(z) of order i. Since
Sylow 2-subgroup of M is cyclic, :t has a normal 2-complement, which is
normalized by I. Let P be a Sylow p-subgroup of Cg(z) which is invariant
by I and let P’ be a subgroup of P of order p which is conjugate to 9,.
Then PBX,(z) is a regular normal subgroup of X(z).

(1) P is normal in PX,(z).

PROOF. Let ), be a Sylow g-subgroup of X,(z) contained in §,. We may
assume that by the Frattini argument P is contained in Ng(9;). We shall
prove that P is contained in Cg(9,). Since Cg(z) = X,(z)(Ns(®y) N Co(7)), Nu(Dy)
N Cg(z) acts doubly transitively on J(z) and hence so does Ng($,) N Ce(r)
N Ne(PB). Thus Ng(®,) N Cs,(z) N\ Ng(PB) acts transitively on P—{1}. Assume
that P is not contained in Cg($;). Since Aut () is cyclic, t=p and it is a



402 H. KiMmura

factor of ¢—1. If <($,,I) is dihedral, then {(£,, B> must be abelian since
(P, I> is dihedral and Aut (9,) is cyclic. Thus (£, I> is abelian and so is
{9y, Ir)>. If I(9,)=23(z), then ¢ is a factor of i—1 since Iz is conjugate to
7. This is a contradiction and J(z) is a proper subset of J(§;). Since p<g,
9, is contained in Ng(®,). If X,(§,) contains ,, then I H,, t»)=3J(zr). Since
I®"=I(D,), a(®,) is odd. On the other hand, a(P,) is even by Lemma 8
since (H,, t> and {H,, I> are dihedral. Thus 9, is not contained in X,(§;).
Thus 2(9,),,. contains a dihedral subgroup <{z, $,>X,(9;). Thus X(9;) is a
doubly transitive permutation group on J(£;) in which the stabilizer of two
points contains at least two involutions. Since Ng(®;) N\ Cg(z) acts doubly
transitively on J(z) and (Ng(9)) N Ce(e)X,(2)/ X (z) =A(z), X($,) satisfies the
conditions in Theorem. By the inductive hypothesis X(£;) is isomorphic to
one of S; and PSL(2, 11) or contains a regular normal subgroup. Since <{I, 97
is abelian and |[X,($;)] is not divisible by p, Cs(9;)X,(D;) is a proper subgroup
of X(9,). Thus X(9,) contains a regular normal subgroup, which is contained
in Ce(9)X,(9,). Let f be a Sylow p-subgroup of Ce(®,). Since |9,|=p and
(P, D,> is non abelian, P is isomorphic to a regular normal subgroup of X(£).
By the Frattini argument ¢ normalizes $. Since a((z, 9,))=1i, we may
assume that B contains P, which is a contradiction. Therefore | Ce(£) NPAL(D)|
is divisible by i. By the Burnside’s splitting theorem P is normal in PX,(7).

From (1) P is normal in Cg(z). Since Cg,(z) acts transitively on P—{1},
[Coi(z): Ne(B) N Co(t)]=(—1)/(p—1). And [Ng(®B’) N Coy(r): Ca(B) N Coy()]
=p—1. Next we shall study |[Cg(B")]|.

(2) Let © be a Sylow 2-subgroup of Cg(B’) containing z. Then & is
conjugate to & and [Cg(R’): Cs(P) N\ Ce(7)] is odd.

PROOF. Since n is odd, J(S) is non empty. Since J(&) is contained in
J(z) and a7, P’ >) =0, a(&)=p. Thus & is conjugate to K.

(3) Let Q' be a Sylow ¢-subgroup of Cg(P’). If a(Q’)=1, then a(Q’) =2.

PROOF. From (2) Cg(B’) has a normal 2-complement. Therefore it may
be assumed that r normalizes Q’. If I(Q) N\I(7) is non empty, then a({Q’, T)
=p. If Q)N () is empty, then a(Q’) =2 since J(Q)" = JQ).

4) a(P’) is divisible by p—1.

PROOF. Let ¢ be a prime factor of p—1. By Corollary 9 and 10, i—1 is
a factor of n—1 and so is p—1. Let Q be a Sylow g-subgroup of Ng(B’)
containing a Sylow g-subgroup £/ of Cg(’). Then a(@)=1 and a(Q’)=2
from 3). If |®,,| is not divisible by ¢, then /=1 and it may be assumed
that £ is contained in Cg,(z) N\ Ng(P’). Thus every element (# 1) of £ fixes
only the point 1 and hence |Q] is a factor of a(P’). Next assume $,+ 1.
If {(§,, =) is abelian, then it may be assumed that £, is contained in Cg(P’)
since X(zr) contains a regular normal subgroup and P is normal in Cg(z) by
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Q). If {9, > is dihedral, then {9, D, is abelian by Lemma 11. Since P’
is conjugate to £,, O’ is conjugate to P,. Since Ng(P’)/Ce(P’) is cyclic, by
the Frattini argument z is contained in Ng(Q). If ¢ is a factor of a(P")—1,
then a({Q, B’>)=1. Since a7, P'D)=0, aKLQ;P’>)=2 and || must be a
factor of |9,|, which is a contradiction and hence ¢ is a factor of a(P).
Thus [ : 2] is a factor of a(P’). This proves (4).

5) i=p=3 and a(H,) =2.

PROOF. X(P’) is a doubly transitive group of degree a(P’). Let r be a
prime factor of a(P’)—1. Let R be a Sylow r-subgroup of Ng(B’). Then
a(R)=1. From (4) R is contained in Cg(P’). From (3) a(R)=2. Thus a(P’)—1
=1 and a®P’)=2. From (4) p—1 is a factor of a(Pf’)=2. Thus p=3. Since
a(B) =2, P is a subgroup of X,(P’). Thus P=P’ and :=3.

COROLLARY 13. R=<7)>.

PROOF. Since & is contained in Ng(9,) and {9,, > is dihedral,  ={z).

LEMMA 14. If & has one class of involutions, then & 1is isomorphic to
PSL (2,11) with n=11.

PrROOF. The lemma follows from Theorem 1 and Corollary 13.

LEMMA 15. If & has two classes of involutions, then & is isomorphic to
S; with n=>5.

PROOF. Assume that {$,, ) is abelian and <{®,, /> is dihedral. If J(z)
does not contain J(P,), then there exist points a and b in J(H,) such that
a*=b. Let n be an involution of Ng(9,) N\®,,, which is commutative with z.
Then a(rn)=1 and {77, H,> is abelian, which is a contradiction. Therefore
a(®,)=3. Since P is normal in Cg(r), IW)*?=3IJ(B®). Since a(P)=2 and
al( 9y, B>)=0, $,=1. Thus y=pp and n=1i{B(t—1)+r}/yr=>5. This proves
the lemma.

This completes a proof of Theorem.

Hokkaido University
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