A note on the prime radical

By Robert C. Shock

(Received June 30, 1970)
(Revised Oct. 8, 1971)

§ 1. Introduction.

In 1943 R. Baer introduced the lower nil radical, which is commonly called the prime radical, as a radical built from nilpotent rings [1]. N. McCoy first considered the intersection of prime ideals of a ring [7] and then J. Levitzki showed that the prime radical was the intersection of the prime ideals of a ring [6]. Elementwise characterizations of the prime radical were given first by N. Jacobson in terms of m-sequences [4, p. 195] and then recently by J. Lambek in terms of strongly nilpotent elements [5, p. 55]. This latter characterization enables us to describe it in terms of annihilators. The primary purpose of this paper is to give necessary and sufficient conditions in terms of annihilators for the prime radical to be nilpotent (see Corollary 3). Theseconditions follow from Theorem 2. This also proves that the prime radical of a ring with the minimum condition on (two-sided) ideals is nilpotent (seeCorollary 5).

§ 2. The results.

R will always denote a ring and $r(S)(l(S))$ the right (left) annihilator of a subset S of R. For $b \in R$ we write $r(b)$ instead of $r(\{b\})$. Also, $b R$ means. the right ideal generated by b.

A decreasing sequence of sets $S_{1} \supseteq S_{2} \supseteq S_{3} \supseteq \cdots$ of R is said to have a right (left) constant annihilator provided that the corresponding increasingsequence of right (left) annihilators becomes constant, that is, $r\left(S_{n}\right)=r\left(S_{n+j}\right)$. for some fixed n and all $j \geqq 1$. ($\left.l(S n)=l\left(S_{n+j}\right)\right)$. In particular we say that a: sequence of elements $\left\{x_{i}\right\}$ has a right constant annihilator if $R x_{1} \supseteq R x_{2} x_{1} \supseteq$ $R x_{3} x_{2} x_{1} \supseteq \cdots$ has a right constant annihilator.

Proposition 1. The prime radical is the set S of elements x such that $x R^{*}$ is nil and each sequence $\left\{x_{i}\right\}$ where $x_{1}=x, x_{k+1} \in x_{k} \cdots x_{1} R$ has a right constant annihilator.

Proof. All strongly nilpotent elements belong to S. Let $y \in S$ and let: $\left\{y_{i}\right\}$ be a sequence where $y_{1}=y, y_{k+1}=y_{k} \cdots y_{1} p_{k}$ for some $p_{k} \in R$ and for all
$k \geqq 2$. If $y_{k+1} y_{k} \cdots y_{1} \neq 0$, then $r\left(y_{k} \cdots y_{1}\right) \subsetneq r\left(y_{k+1} y_{k} \cdots y_{1}\right)$ because $p_{k}\left(y_{k} \cdots y_{1}\right)$ and $y_{k} \cdots y_{1}$ are nilpotent elements. Since $y \in S$, the sequence $y_{1}, y_{2} y_{1}, y_{3} y_{2} y_{1}, \cdots$ is ultimately zero and y is strongly nilpotent.

We say that a subring N of R has a right constant annihilator if the sequence $N \supseteq N^{2} \supseteq N^{3} \supseteq \cdots$ has a right constant annihilator.

Theorem 2. If the prime radical P of a ring R has a right constant annihilator but is not nilpotent, then there is a sequence $\left\{x_{i}\right\}$ of P such that for all $k \geqq 1 \quad x_{k} \cdots x_{1} R \neq 0$ and $x_{k} R x_{k} \cdots x_{1} R=0$.

Proof. Let $K=r\left(P^{t}\right)=r\left(P^{t+1}\right)$ for some $t(\geqq 1)$. Since P is not nilpotent, we have $P \nsubseteq K$, so that $R \neq K$. There exists an element b_{1} of P such that $b_{1} R \nsubseteq K$ since $P R \oplus K$. If $b_{1} R b_{1} R \oplus K$, then we can select $b_{2} \in b_{1} R b_{1}$ such that $b_{2} R \nsubseteq K$. If $b_{2} R b_{2} R \nsubseteq K$, then select $b_{3} \in b_{2} R b_{2}$ such that $b_{3} R \nsubseteq K$. This process can not continue since b_{1} is strongly nilpotent. We conclude that there exists an element y_{1} of P such that $y_{1} R \llbracket K$ and $y_{1} R y_{1} R \subseteq K$. Since $y_{1} R \llbracket K$, we have $P y_{1} R \nsubseteq K$. Repeating the similar process es above, we conclude that there exists an element y_{2} of P such that $y_{2} y_{1} R \nsubseteq K$ and $y_{2} R y_{2} y_{1} R \subseteq K$. Continuing in this manner, we conclude that there is an infinite sequence $\left\{y_{i}\right\}$ of P such that $y_{k} \cdots y_{1} R \nsubseteq K$ and $y_{k} R y_{k} \cdots y_{1} R \subseteq K$, for all $k \geqq 1$. Let $h=t+1$ and let $x_{k}=y_{k h} \cdots y_{(k-1) h+1}, k=1,2, \cdots$. Then we have $x_{k} \cdots x_{1} R \nsubseteq K$ and $x_{k} R x_{k} \cdots x_{1} R$ $=0$ for all $k \geqq 1$.

Corollary 3. The prime radical P of a ring R is nilpotent if and only if P has a right constant annihilator and for each sequence $\left\{x_{i}\right\}$ of P, the sequence $R x_{1} R \supseteq R x_{2} x_{1} R \supseteq R x_{3} x_{2} x_{1} R \cdots$ has a left constant annihilator.

Proof. Assume that P has a right constant annihilator but is not nilpotent. By Theorem 2, we can conclude that there exists an infinite sequence $\left\{x_{i}\right\}$ of P such that $x_{k} \cdots x_{1} R \neq 0$ and $x_{k} R x_{k} \cdots x_{1} R=0$ for any $k \geqq 1$. Then the sequence $R x_{1} R \supseteq R x_{2} x_{1} R \supseteq R x_{3} x_{2} x_{1} R \supseteq \cdots$ has no left constant annihilator since $x_{k+2} \in l\left(R x_{k+2} \cdots x_{1} R\right)$ but $x_{k+2} \notin l\left(R x_{k} \cdots x_{1} R\right)$. The rest of the proof is obvious.

Corollary 4. Assume that R is a nil ring. Then R is nilpotent if and only if R has a right constant annihilator and, for each sequence $\left\{x_{i}\right\}$ of R, the sequence $R x_{1} R \supseteq R x_{2} x_{1} R \supseteq R x_{3} x_{2} x_{1} R \supseteq \cdots$ has right and left constant annihilators.

Proof. It follows from Proposition 1 that the prime radical of R is R. Corollary 2 implies that R is nilpotent.

Corollary 5. The prime radical of a ring with the minimum condition on ideals is nilpotent.

Proof. The proof is clear.
Corollary 6. Assume that each sequence of elements of R and each nil subring of R have right constant annihilators. If R is a right finite dimensional
ring, then each nil subring is nilpotent.
Proof. By Proposition 1 the prime radical of a nil subring N is N. If N is not nilpotent, then there does exist a sequence $\left\{x_{i}\right\}$ of N such that $x_{n} \cdots x_{1} \neq 0$ and $x_{n} R x_{n} \cdots x_{1}=0$ for all $n \geqq 1$. By hypothesis $r\left(x_{j} \cdots x_{1}\right)=$ $r\left(x_{j+k} \cdots x_{1}\right)$ for some fixed j and all $k \geqq 1$; for notational purposes assume that $r\left(x_{1}\right)=r\left(x_{k} \cdots x_{1}\right)$ for all $k \geqq 1$. The sum $x_{1} R+x_{3} x_{2} x_{1} R$ is direct for if $0 \neq y=x_{1} r_{1}=x_{3} x_{2} x_{1} r_{2}$ where $r_{1}, r_{2} \in R$ then by multiplying on the left by $x_{3} x_{2}$ we have $0 \neq x_{3} x_{2} y=x_{3} x_{2} x_{3} x_{2} x_{1} r_{2}=0$ since $r\left(x_{3} x_{2} x_{1}\right)=r\left(x_{1}\right)$ and $x_{3} R x_{3} x_{2} x_{1}=0$. Continuing in this manner we conclude that the sum $x_{1} R+x_{3} x_{2} x_{1} R+x_{5} x_{4} x_{3} x_{2} x_{1} R+\cdots$ is direct, a contradiction. Therefore N is nilpotent.

Recall that a right Goldie ring is a right finite dimensional ring with the maximum condition on right annihilators. All right Goldie rings satisfy the hypothesis of Corollary 5, but not conversely. The following ring, which is not a right Goldie ring, satisfies the hypothesis of Corollary 5 . Let R be the commutative ring generated by $p, e_{1}, e_{2}, \cdots, a_{1}, a_{2}, \cdots$ with the relation that all products are zero except those of the form : $a_{i}^{2} \neq 0, a_{i} e_{i} \neq 0, a_{i}^{2} e_{i}=p . \quad R$ has dimension one since $p R$ is essential, but $r\left(S_{1}\right) \subsetneq r\left(S_{2}\right) \subsetneq r\left(S_{3}\right) \subsetneq \ldots$ where $S_{i}=$ $\left\{a_{k}: k \geqq i\right\}$.

The author thanks the referee for his suggestions.

Southern Illinois University Carbondale, Illinois

Bibliography

[1] R. Baer, Radical ideals, Amer. J. Math., 65 (1943), 537-568.
[2] N. J. Divinsky, Rings and radicals, University of Toronto Press, 1965.
[3] A. W. Goldie, Semiprime rings with the maximum condition, Proc. London Math. Soc., 10 (1969), 201-220.
[4] Nathan Jacobson, Structure of rings, Amer. Math. Soc. Colloq., 37 (1964).
[5] J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, Mass., 1966.
[6] J. Levitzki, Prime ideals and the lower radical, Amer. J. Math., 73 (1951), 25-29.
[7] N. McCoy, Prime ideals in general rings, Amer. J. Math., 71 (1949), 823-833.

