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\S 0. Introduction.

In this paper, we examine the ergodic properties of a bisequence over
some finite set of symbols which is generated by a substitution. By a sub-
stitution, we mean a mapping which maps each symbol to a sequence of some
common length $(\geqq 2)$ of the symbols. For example, consider a substitution
$\theta:0\rightarrow 01,1\rightarrow 10$ which is defined on $\{0,1\}$ . Define substitutions $\theta^{2},$ $\theta^{3},$ $\cdots$ ,
as follows:

$\theta^{2}(0)=\theta(01)=\theta(0)\theta(1)=0110$ ,

$\theta^{2}(1)=\theta(10)=\theta(1)\theta(0)=1001$ ,

$\theta^{3}(0)=\theta(0110)=\theta(0)\theta(1)\theta(1)\theta(0)$

$=01101001$ ,
.:

A bisequence $\alpha=\cdots 01101001*01101001\cdots$ which is known as the
Morse sequence is defined as the limit of extensions:

$1*0\prec\theta^{2}(1*0)\equiv\theta^{2}(1)*\theta^{2}(0)=1001*0110$

$\prec\theta^{4}(1*0)\prec\theta^{6}(1*0)\prec\cdots$ ,

where $‘‘*‘‘$ denotes the “ center ” of bisequences. In this case, it holds that
$\theta^{2}(\alpha)=\alpha$ . Generally speaking, given any substitution $\theta$ over some finite set
$D$ , a bisequence $\alpha$ over $D$ is said to be generated by $\theta$ if $\theta^{k}(\alpha)=\alpha$ for some
integer $k\geqq 1$ . It is known ([3]) that for any substitution $\theta$ , there exists at
least one almost periodic sequence generated by $\theta$ . Moreover, it can be
proved (from Lemma 1\sim 3) that if $\theta$ satisfies Condition $\#$ defined in Section 1,
all almost periodic sequences generated by $\theta$ belong to a common minimal set
of the shift dynamical system over $D$ . Such a minimal set $S$ as above is
unique and characterized as a minimal set $S$ for which $\theta(S)\subset S$ holds. In
this case, denote $S=W(\theta)$ . Let $\Theta$ be a set of all substitutions defined on
$\{0,1, \cdots , r-1\}$ for some integer $r\geqq 1$ which satisfy Condition $\#$ . We introduce
a computable (in the sense of the recursive function theory) function $B$ called
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the branching number which is defined on $\Theta$ and takes positive integral values.
We prove the followings:

I. For any positive integers $b$ and $r$, there exists a substitution $\theta$ on $\gamma$

symbols such that $B(\theta)=b$ , if and only if $b\leqq r$ (Theorem 2 and Theorem 6).

II. $B(\theta)=\min_{\alpha\in W(\theta)}$ Card $(\alpha\Lambda)$ , where $\Lambda$ is the trace relation of $(W(\theta), T)$

($T$ is the shift). Therefore, the branching number is a topological invariant
(Theorem 5).

III. If there exists a homomorphism (in the sense of topological dynamics)
from $(W(\theta), T)$ onto $(W(\theta‘), T)$ , then $B(\theta)\geqq B(\theta^{J})$ (Corollary 2).

IV (from I and III). For any integer $r\geqq 2$ , there exists a substitution
minimal set on $\gamma$ symbols which is not a homomorphic image of any sub-
stitution minimal set on $r^{\prime}$ symbols, where $\gamma^{\prime}<r$ (Corollary 3).

V. If $B(\theta)=1$ , then $(W(\theta), T)$ is measure isomorphic to the divided system
$(W(\theta)/\Lambda, T/\Lambda)$ , where $\Lambda$ is the trace relation of $(W(\theta), T)$ . Therefore, in this
case $T$ has a rational pure point spectrum (Theorem 7).

\S 1. Formulation of the problem.

The set of integers is denoted by I. $N$ is the set of non-negative integers.
For $p\in N$, let $N_{p}=\{0,1, , p-1\}$ . For any pair of sets $E$ and $F,$ $E^{F}$ denotes
the set of all functions from $F$ into $E$. For any non-empty finite set $D$ , the
set $D^{I}$ is considered as a topological space with the following metric $d$ :

$d(a, \beta)=\frac{1}{\min\{|\dot{\iota}|;a(i)\neq\beta(i)\}+1}$ .
$T$ denotes the shift transformation on $D^{I}$ , that is, $T$ is defined by $(Ta)(i)=$

$\alpha(i+1)$ . By a compact dynamical system, we mean a pair of a compact metric
space and a homeomorphism from it onto itself. Thus $(D^{I}, T)$ is a compact
dynamical system. Denote by $D^{*}$ the disjoint sum $\bigcup_{p\in N}D^{N_{p}}$ . An element of
$D^{*}$ is called a block, which may be also represented by a finite sequence.
$D^{N_{0}}$ consists only of the empty block. $D^{N_{1}}$ is sometimes identified with $D$ .
For example, $\xi=100$ is an element of $(N_{2})^{N_{\theta}}$ such that $\xi(0)=1,$ $\xi(1)=0$ and
$\xi(2)=0$ . For $\xi\in D^{*}$ , the length of $\xi$ is denoted by $l(\xi)$ , that is, $l(\xi)=p$ if
and only if $\xi\in D^{N_{p}}$. For $\xi,$ $\eta\in D^{*},$ $\xi\eta$ denotes the concatenation, that is,

$(\xi\eta)(i)=\left\{\begin{array}{l}\xi(i) \ldots if0\leqq i<l(\xi)\\\eta(i-l(\xi))\cdots ifI(\xi)\leqq i<l(\xi)+l(\eta).\end{array}\right.$

Similarly an element of $D^{I}$ can be regarded as a bisequence. That is,
... $a_{-2}a_{-1^{*}}a_{0}a_{1}$ ..., where $a_{i}\in D(i\in I)$ , is an element $a$ of $D^{I}$ for which
$\alpha(i)=a_{i}(i\in I)$. By a substitution, we mean a mapping from $D$ into $D^{Np}$, where
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$p\geqq 2$ is any integer. $D$ is called the domain of the substitution. Card $(D)$

($=number$ of elements of $D$) and $p$ are called the size and the length of the
substitution, respectively. The size and the length of a substitution $\theta$ are
denoted by $s(\theta)$ and $L(\theta)$ , respectively. Let $\theta$ be a substitution $D\rightarrow D^{Np}$ . We
define a mapping $\overline{\theta}$ from $D^{*}$ into $D^{*}$ as follows:

$\overline{\theta}(\xi_{0}\xi_{1}\ldots\xi_{k- 1})=\theta(\xi_{0})\theta(\xi_{1})\cdots\theta(\xi_{k- 1})$ ,

where $\xi_{i}\in D$ $(i=0,1, \cdots , k-1)$ . That is to say, for $\xi\in D^{*}$ and a non-negative

integer $i<pl(\xi)$ , we set $\overline{\theta}(\xi)(i)=\theta(\xi(j))(i-pj)$ , where $j=[\frac{i}{p}]$ . Also, we define

.a mapping $\hat{\theta}$ from $D^{I}$ into $D^{r}$, as follows:
$\hat{\theta}(\cdots\alpha_{-2}\alpha_{-1^{*}}\alpha_{0}\alpha_{1} )=\cdots\theta(\alpha_{-2})\theta(\alpha_{-1})^{*}\theta(\alpha_{0})\theta(\alpha_{1})\ldots$

$where_{\wedge}^{\sim}\alpha_{i}\in D(i\in I)$ , that is, for $\alpha\in D^{I}$ and $i\in I$, we set $\hat{\theta}(\alpha)(i)=\theta(\alpha(j))(i-pj)$ ,

where $i=[\frac{i}{p}]$ . For a substitution $\theta$ and a positive integer $k,\overline{\theta}^{k}$ or $\hat{\theta}^{k}$

denotes :the k-ple composition of the mapping $\overline{\theta}$ or $\hat{\theta}$, respectively. The
restriction of $\overline{\theta}^{k}$ to the domain of $\theta$ is denoted by $\theta^{k}$ .

DEFINITION 1. A subset $S$ of $D^{I}$ is called a minimal set of the compact
’dynamical system $(D^{I}, T)$ if $S=\overline{Orb}(\alpha)$ ( $=the$ closure of $\{T^{i}\alpha;i\in I\}$ ) for
any $\alpha\in S$. An element $\alpha$ of $D^{I}$ is called an almost periodic sequence if Orb $(\alpha)$

is a minimal set of $(D^{I}, T)$ . A minimal set $S$ of $(D^{I}, T)$ is said to be associated
with a substitution $\theta$ whose domain is $D$ , if $\hat{\theta}(S)\subset S$. A substitution minimal
.set is a minimal set of $(D^{I}, T)$ which is associated with some substitution.

Our definition of a minimal set associated with a substitution $\theta$ is slightly
different from that of Gottschalk ([3]). In fact, in 3.39 of [3], a minimal set
$S$ is said to be generated by a substitution $\theta$ if $\hat{\theta}^{k}(S)\subset S$ for some positive
-integer $k$ . Nevertheless, these two definitions coincide if $\theta$ satisfies the follow-
ing Condition $\#$ (see Lemma 3), concerning a substitution $\theta$ such that the
tdomain of $\theta$ is $D$ and $L(\theta)=p$ .

CONDITION $\#$ . There exists a positive integer $k$ , such that for any
$n,$ $m\in D$ , there exists $j\in N_{p^{k}}$ satisfying $\theta^{k}(n)(j)=m$ .

LEMMA 1. (1) Let a substitution $\theta$ satisfy Condition $\#$ . Then there exists
uniquely a minimal set associated with $\theta$ , which will be denoted by $W(\theta)$ .

(2) For any substitution minimal set $S$, there exists a subset $A$ of $D$ and
a substitution $\theta$ on $A$ satisfying Condition $\#$ such that $S=W(\theta)$ .

PROOF. (1) Let a substitution $\theta:D\rightarrow D^{N_{p}}$ satisfy Condition $\#$ . Let $S$ be
a minimal set of $(D^{I}, T)$ such that $\hat{\theta}(S)\subset S$. Let $\alpha\in S$. Let $k$ be a positive
integer as in Condition $\#$ for this $\theta$ . Since $\hat{\theta}^{k}(\alpha)(i)=\overline{\theta}^{k}(\alpha(0))(i)$ for $i=0,1$ , $\cdot$ .. ,
$p^{k}-1$ , it holds that $\{\hat{\theta}^{k}(\alpha)(i);i\in I\}=D$ . Since $\alpha$ and $\hat{\theta}^{k}(\alpha)$ belong to the
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common minimal set $S$, this implies that $\{\alpha(i);i\in I\}=D$ . Suppose that there
exists another minimal set $S^{\prime}$ of $(D^{I}, T)$ such that $\hat{\theta}(S^{\prime})\subset S^{\prime}$ . Let $\beta\in S_{-}^{\prime}$

From the above discussion, there exist $i,$ $j\in I$ such that $\alpha(i)=\beta(j)$ . For any
positive integer $h$ , let

$\alpha^{\prime}=T^{ip^{h}+h}\circ\hat{\theta}^{h}(\alpha)$ , and
$\beta^{\prime}=T^{JP^{h_{+h}}}\circ\hat{\theta}^{h}(\beta)$ .

Then it is easy to verify that $d(\alpha^{\prime}\cdot\beta^{\prime})\leqq 1/h$ . Since $S$ and $S^{\prime}$ are closed sets
and $h$ is arbitrary, this implies $ S\cap S^{\prime}\neq\emptyset$ , from which $S=S^{\prime}$ follows since $S$

and $S^{\prime}$ are minimal sets. Thus the uniqueness is proved.
Next, we prove the existence of a minimal set associated with $\theta$ . Let $\theta^{f}$

satisfy Condition $\#$ . It was proved in 3.38 of [3] that there exist an almost
periodic sequence $\alpha$ and a positive integer $h$ such that $\hat{\theta}^{h}(\alpha)=\alpha$ . Denote by
$S$ the orbit closure of $\alpha$ under the shift $T$ . Denote by $\theta^{h}$ the restriction of
$\theta^{\overline{h}}toD$ . Then $\theta^{h}isasubstitutiondefinedonDwhichalsosatisfiesCondition\#.$.

It is clear that $\hat{\theta}^{h}(S)\subset S$. It was proved in 3.41 of [3] that $\hat{\theta}(\alpha)$ is also aru
almost periodic sequence. Let $S^{\prime}$ be the orbit closure of $\hat{\theta}(\alpha)$ under the shift
$T$. Then it holds that $S^{\prime}$ , as well as $S$ , is a minimal set associated with $\theta_{-}^{h}$

Therefore $S=S^{\prime}$ . That is, $\hat{\theta}(\alpha)\in S$, which implies $\hat{\theta}(S)\subset S$ since $\hat{\theta}$ is a con-
tinuous mapping satisfying $\hat{\theta}\circ T=T^{p}\circ\hat{\theta}$ . Thus (1) is proved.

(2) Let $S$ be a minimal set oi $(D^{I}, T)$ associated with a $substitution_{1}$

$\theta^{\gamma}$ : $D\rightarrow D^{N_{p}}$ . Let $A=\{a(i);i\in I, \alpha\in S\}$ . Denote by $\theta$ the restriction of $\theta^{r}$

to $A$ . Then $\hat{\theta}(S)=\hat{\theta}^{\prime}(S)\subset S$. Since $S$ is a minimal set, there exists a positive
integer $n$ such that $a\in\{\alpha(i);j\leqq i<j+n\}$ for any $a\in A,$ $\alpha\in S$ and $j\in I$ ([7]).
Let $k$ be a positive integer satisfying $n\leqq p^{k}$ . Let $a\in A$ . Let $\alpha\in S$ and
$\alpha(m)=a$ . Since $\overline{\theta}^{k}(a)(i)=\hat{\theta}^{k}(\alpha)(mp^{k}+i)$ for any $i=0,1$ , $\cdot$ .. , $p^{k}-1$ and $\hat{\theta}^{k}(\alpha\rangle$

belongs to $S$, it holds that $\{\overline{\theta}^{k}(a)(i);i\in N_{p^{k}}\}=A$ . Since $a\in A$ is arbitrary,
this implies that $\theta$ satisfies Condition $\#$ . Thus $S=W(\theta)$ .

LEMMA 2. For a substitution $\theta$ satisfying Condition $\#$ , the mapping
$\hat{\theta}:W(\theta)\rightarrow W(\theta)$ is open and continuous and satisfies $\hat{\theta}\circ T=T^{p}\circ\hat{\theta}$ .

PROOF. It is sufficient to prove that the mapping $\hat{\theta}:W(\theta)\rightarrow W(\theta)$ is open
since the other statements of the lemma are clear. Since the mapping
$\hat{\theta}:D^{I}\rightarrow D^{I}$ is open, it is sufficient to prove that $\hat{\theta}(W(\theta))$ is an open set in]

$W(\theta)$ . Since $\hat{\theta}(W(\theta))$ is a minimal set of $(D^{I}, T^{p})$ , this follows from Lemma 15.
The proof of Lemma 1 implies the following two lemmas.
LEMMA 3. For any substitution $\theta$ which satisfies Condition $\#$ and for any $\cdot$

positive integer $n,$
$\theta^{n}$ satisfies also Condition $\#$ and we have $W(\theta)=W(\theta^{n})$ .

LEMMA 4. If $\theta$ satisfies Condition $\#$ and $\alpha\in W(\theta)$ , then $\alpha:I\rightarrow D$ is an
onto mapping, where $D$ is the domain of $\theta$ .
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Since any substitution minimal set $S$ is strictly ergodic (see [5] or [6]),

the pair $(S, T)$ can be also regarded as the pair of the probability measure
space $S$ with the unique T-invariant probability measure and the measure
preserving transformation $T$ on $S$. The statement that such pairs are measure
isomorphic (measure homomorphic) should be understood in this sense. On
the contrary, topological isomorphisms (topological homomorphisms) are called
simply isomorphisms (homomorphisms). That is, the statement that $\psi$ is a
measure homomorphism (homomorphism) from $(S, T)$ to $(S^{\prime}, T^{\prime})$ , where $S$ and $S^{\prime}$

are substitution minimal sets and $T,$ $T^{\prime}$ are shifts on $S,$ $S^{\prime}$ , respectively, implies
that $\psi$ is a measure preserving mapping (continuous and onto mapping) from
$S$ to $S^{\prime}$ satisfying $\psi\circ T(\alpha)=T\psi(\alpha)$ for almost all $\alpha\in S$ (for any $\alpha\in S$ ). In
the above, if $\psi$ is invertible, then $\psi$ is called a measure isomorphism (iso-

morphism).

Denote by $\Theta$ the set of all substitutions satisfying Condition $\#$ and the
domains of which are one of $N_{r}’ s(r\geqq 1)$ . We use the common notation $T$

for shifts on distinct $D^{I}’ s$ so far as ambiguities can be avoided.
DEFINITION 2. By a topological invariant (measure invariant), we mean a

function $\psi$ from $\Theta$ into $I$, satisfying the condition that if $(W(\theta), T)$ and
$(W(\theta^{\gamma}), T)$ are isomorphic (measure isomorphic) to each other, then $\psi(\theta)=\psi(\theta^{\prime})$ .

Since any substitution minimal set is strictly ergodic, it is clear that a
measure invariant is a topological invariant. In the sequel, $\theta$ denotes a sub-
stitution belonging to $\Theta$ such that $s(\theta)=r$ and $L(\theta)=p$ , unless stated otherwise.
Therefore, $\theta$ is a mapping $N_{r}\rightarrow(N_{r})^{N_{p}}$ . Also, we use the common notation $\theta$

for $\theta,\overline{\theta}$ and $\hat{\theta}$.

\S 2. Cyclic substitutions.

DEFINITION 3. Let $\theta$ be any substitution satisfying Condition $\#$ . It is
said to be cyclic if $(W(\theta), T)$ is cyclic (i. e. $W(\theta)$ is a finite set). In this case,
Card $(W(\theta))$ is called the cycle of $\theta$ .

LEMMA 5. Assume that $\theta\in\Theta$ is cyclic and one-to-one ( $i$ . $e$ . the mapping
$\theta:N_{r}\rightarrow(N_{r})^{Np}$ is one-to-one). Then it holds that

(i) the cycle of $\theta$ is $r$,
(ii) $r$ and $p$ are relatively prime to each other, and
(iii) for any $\alpha\in W(\theta),$ $\alpha(i)=\alpha(j)$ if and only if $i\equiv j(mod r)$ .
PROOF. Let $c$ be the cycle of $\theta$ . Let $\alpha\in W(\theta)$ . Then $\alpha$ is a cyclic func-

tion with the least cycle $c$ from I onto $N_{r}$ (by Lemma 4). Since $\theta(\alpha)\in W(\theta)$ ,
there exists an integer $k$ such that $\theta(\alpha)=T^{k}\alpha$ , that is,

$\theta(\alpha(i))(j)=\alpha(k+pi+j)$ (1)

for any $i\in I$ and $j\in N_{p}$ . We may and do assume $p\geqq c$ , since otherwise, we
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consider $\theta^{n}$ for sufficiently large $n$ instead of $\theta$ , and have the conclusions ( $i\rangle$

and (iii) (by Lemma 3) and that $\gamma$ and $p^{n}$ are relatively prime to each other,
from which (ii) follows. Let $e$ be the greatest common factor of $c$ and $p$.
Since $p\geqq c$ , the statement that $\alpha(k+pi+j)=\alpha(k+pi^{\prime}+j)$ for any $j\in N_{p}$ is
equivalent to $k+pi\equiv k+pi^{\prime}(mod c)$ , or $i\equiv i^{\prime}(mod c/e)$ . On the other hand,
since $\theta$ is one-to-one, the statement that $\theta(a(i))(j)=\theta(a(i^{\prime}))(j)$ for any $j\in N_{p}$

is equivalent to $a(i)=\alpha(i^{\prime})$ . Using (1), we arrive at the conclusion that $\alpha(i)=$

$\alpha(i^{J})$ if and only if $i\equiv i^{\gamma}(mod c/e)$ . This implies that $c/e$ is a cycle of $a$ ,
from which it follows that $e=1$ . Also, the above implies that $c/e=r$, since
$\{\alpha(i);i\in I\}=N_{r}$ . Thus we complete the proof.

LEMMA 6. Let $\theta\in\Theta$ be cyclic and one-to-one. Then for any integers $k\geqq 1$

and $j\in N_{p^{k}}$ , the mapping $n\rightarrow\theta^{k}(n)(j)$ is a bijection from $N_{r}$ to $N_{r}$ .
PROOF. Let $\theta\in\Theta$ be cyclic and one-to-one. Let $k\geqq 1$ and $0\leqq j<p^{k}$ be

any integers. Let $n$ , me $N_{r}$ and $n\neq m$ . Let $\alpha\in W(\theta),$ $a(h)=n$ and $a(i)=m$ .
By (iii) of Lemma 5, $h\not\equiv i(mod r)$ . It holds that $\theta^{k}(n)(j)=\theta^{k}(a)(hp^{k}+j)$ and
$\theta^{k}(m)(j)=\theta^{k}(\alpha)(ip^{k}+j)$ . Since $hp^{k}+j\not\equiv ip^{k}+j(mod r)$ by (ii) of Lemma 5 andi
$\theta^{k}(a)$ belongs to $W(\theta)$ , we have $\theta^{k}(n)(j)\neq\theta^{k}(m)(j)$ by (iii) of Lemma 5.
Thus the mapping $n\rightarrow\theta^{k}(n)(j)$ is an injection, and therefore, a bijection from
$N_{r}$ to $N_{r}$ .

LEMMA 7. Let $\theta e\Theta$ be one-to-one and $s(\theta)=r\geqq 2$ . Assume that there$\cdot$

exist integers $n\in N_{r},$ $k\geqq 1$ and $0\leqq j<p^{k}-1$ such that $\theta^{k}(n)(])=\theta^{k}(n)(j+1)_{-}$

Then $\theta$ is not cyclic.
PROOF. Clear from (iii) of Lemma 5.
LEMMA 8. There exists an algorithm on $\theta$ to decide whether or not $\theta e\Theta$

is cyclic and one-to-one.
PROOF. That $\theta$ is one-to-one is clearly decidable (in the sense of the

recursive function theory). Let $\theta\in\Theta$ be one-to-one. If { $\theta(n)(O)$ ; ne $N_{r}$ } $\neq N_{r}$.

or { $\theta(n)(1)$ ; ne $N_{r}$ } $\neq N_{r}$ , then $\theta$ is not cyclic by Lemma 6. Assume that

$\{\theta(n)(O) ; neN_{r}\}=\{\theta(n)(1) ; neN_{r}\}=N_{r}$ .
Define a bijective mapping $\psi:N_{r}\rightarrow N_{r}$ by $\psi(\theta(n)(O))=\theta(n)(1)(neN_{r})$ . We
prove that $\theta$ is cyclic if and only if

(1) $\psi^{j}(\theta(n)(0))=\theta(n)(J)$ , and
(2) $\psi^{P}(\theta(n)(0))=\theta(\psi(n))(0)$

for any $n\in N_{r}$ and $j\in N_{p}$ . Let $\theta$ be cyclic and $\alpha eW(\theta)$ . Then exists an
integer $k$ , such that

$\theta(\alpha(i))(j)=a(k+pi+j)$

for any $ie$ $I$ and $j\in N_{p}$ . Since $r$ and $p$ are relatively prime to eaph other
(by Lemma 5), for any integer $h$ , there exists an integer $i$ such that $h\equiv k+pi$

$(mod r)$ . Since $\gamma$ is the least cycle of $a$ (by Lemma 5),
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$\psi(\alpha(h))=\psi(\alpha(k+pi))$

$=\psi(\theta(a(i))(0))$

$=\theta(\alpha(i))(1)$

$=\alpha(k+pi+1)$

$=\alpha(h+1)$ .
Thus, $\psi(\alpha(h))=\alpha(h+1)$ for any integer $h$ . Since $\alpha:I\rightarrow N_{r}$ is an onto
mapping, for any ne $N_{r}$ , we can find $h$ such that $n=\alpha(h)$ . Then,

$\psi^{j}(\theta(n)(0))=\psi^{f}(\theta(a(h))(0))$

$=\psi^{j}(\alpha(k+ph))$

$=\alpha(k+ph+])$

$=\theta(\alpha(h))(j)$

$=\theta(n)(])$

for any $j\in N_{p}$ . Also,

$\psi^{p}(\theta(n)(0))=\psi^{p}(\theta(\alpha(h))(0))$

$=\psi^{p}(a(k+ph))$

$=a(k+ph+p)$

$=\theta(\alpha(h+1))(0)$

$=\theta(\psi(a(h)))(0)$

$=\theta(\psi(n))(0)$ .
Conversely, suppose (1) and (2) hold. We prove that $\psi^{f}(\theta^{k}(n)(0))=\theta^{k}(n)(])$

for any integer $k\geqq 1$ and $j=0,1$ , $\cdot$ .. , $p^{k}-1$ by induction about $j$. If $0\leqq j<p$,
then using (1) we have

$\psi^{f}(\theta^{k}(n)(0))=\psi^{f}(\theta(\theta^{k-1}(n)(0))(0))$

$=\theta(\theta^{k-1}(n)(0))(j)$

$=\theta^{k}(n)(])$ .
Assume that the above equality holds for any $i^{\prime}$ less than $j$ and for any $k$

such that $p\leqq j<p^{k}$ . Let $i=ap^{c}+b$ , where $a,$
$b$ and $c$ are integers such that

$0<a<p,$ $0<c<k$ and $0\leqq b<p^{c}$.
Using (1) (2) and the assumption of induction, we have

$\psi^{f}(\theta^{k}(n)(0))=\psi^{b}\circ\psi^{ap^{c}}(\theta^{c}(\theta^{k-c}(n)(0))(0))$

$=\psi^{b}(\theta^{c}(\psi^{a}(\theta^{k-c}(n)(0)))(0))$
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$=\psi^{b}(\theta^{c}(\theta^{k-c}(n)(a))(0))$

$=\theta^{c}(\theta^{k-c}(n)(a))(b)$

$=\theta^{k}(n)(ap^{c}+b)$

$=\theta^{k}(n)(J)$ .
Let $k$ be a positive integer as in Condition $\#$ for this $\theta$ . Then, { $\psi^{j}(\theta^{k}(n)(0))$ ;
je $I$ } $=N_{r}$ from the above equality. Therefore, { $\psi^{j}(0)$ ; je $I$ } $=N_{r}$ . Define
$\alpha\in(N_{r})^{I}$ by $\alpha(i)=\psi^{i}(0)(i\in I)$ . Then $\alpha$ is cyclic and has the least cycle $r$.
From the above equality, for any integers $n\in N_{r}$ and $h\geqq 1$ it holds that
$\theta^{h}(n)$ is a section of length $p^{h}$ of $a$ . This implies that $\alpha\in W(\theta)$ and $\theta$ is
cyclic. Thus that $\theta$ is cyclic is decidable.

REMARK 1. If $\theta$ satisfies Condition $\#$ , then we can select $k$ as in Condition
$\#$ to be $r$ ] $+r^{2}$ , where $r$ is the size of $\theta$ . This fact proves the decidability
of $\theta\in\Theta$ .

\S 3. The branching number.

DEFINITION 4. Let $\theta\in\Theta$ . A partition $\pi$ of $N_{r}(i$ . $e$ . $\pi$ is a family $\{S_{0},$ $S_{1}$ ,

... , $S_{q-1}$ } of non-empty subsets of $N_{r}$ , such that $\bigcup_{i=0}^{q-1}S_{i}=N_{r}$ and $ S_{i}\cap S_{j}=\emptyset$ if
$i\neq j)$ is said to be consistent (w. r. $t$ . $\theta$) if $n\sim m(\pi)$ (i. e. there exists an
element of $\pi$ which contains both $n$ and m) implies $\theta(n)(j)\sim\theta(m)(])(\pi)$ for
any $n,$ $m\in N_{r}$ and $j\in N_{p}$ . Let $\pi$ be a consistent partition. Then, a sub-
stitution $\theta^{\pi}$ from $\pi$ into $\pi^{N_{p}}$ can be well defined as follows:

$\theta^{\pi}(S)(J1=S^{\prime}$ if $\theta(n)(J)\in S^{\prime}$ for some $n\in S$, where $S,$ $ S^{\prime}\in\pi$ and $j\in N_{p}$ .
LEMMA 9. Let $\theta\in\Theta$ . Let $\pi$ be a consistent partition and $\tilde{\pi}$ be the projec-

tion $ N_{r}\rightarrow\pi$ . For $a\in(N_{r})^{I}$ , define $\hat{\pi}(a)\in\pi^{I}$ by $\hat{\pi}(\alpha)(i)=\tilde{\pi}(\alpha(i))(i\in I)$ . Then it
holds that

(1) $\theta^{7\zeta}$ saiisfies Condition $\#$ ,
(2) $W(\theta^{7\Gamma})=\hslash(W(\theta))$ , and
(3) if $\theta^{\pi}$ is cyclic and the cycle is relatively prime with $p$ , then $\theta^{\pi}$ is one-

to-one (as the mapping $\pi\rightarrow\pi^{p}$).

PROOF. (1) is clear. Since $\hat{\pi}\circ T=T\circ$ it, $\hat{\pi}(W(\theta))$ is a minimal set of $(\pi^{I}, T)$ .
Therefore, (2) follows from the fact that $\theta^{\pi}\circ\hat{\pi}(W(\theta))=\hat{\pi}\circ\theta(W(\theta))\subset\hat{\pi}(W(\theta))$ .
Let Card $(W(\theta^{\pi}))=k$ . Let $T^{\pi}$ be the shift on $W(\theta^{\pi})$ . Since $\theta^{7t}\circ T^{\pi}=(T^{\pi})^{p}\circ\theta^{\pi}$

and $p$ is relatively prime with $k,$ $\theta^{\pi}$ : $W(\theta^{\pi})\rightarrow W(\theta^{7\zeta})$ must be a bijection.
Suppose that $\theta^{\pi}(S)=\theta^{\pi}(S^{\prime})$ for some $S\neq S^{\prime}(e\pi)$ . There exist $E$ and $F$ belong-
ing to $W(\theta^{7\zeta})$ such that $E(O)=S$ and $F(O)=S^{J}$ . Then for any large integer $n$ ,
$d((\theta^{\pi})^{n}\circ T^{\pi}\circ\theta^{\pi}(E), (\theta^{7\zeta})^{n}\circ T^{\pi}\circ\theta^{\pi}(F))\leqq p^{-n}$ , where $d$ is the metric on $\pi^{I}$ , which
is a contradiction since both $\theta^{7l}$ and $T^{\pi}$ are bijections on $W(\theta^{\pi})$ and $W(\theta^{\pi})$ is
a finite set.
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LEMMA 10. Let $\theta\in\Theta$ . $ Lef\pi$ and $\psi$ be consistent partitions such that both
$\theta^{\pi}$ and $\theta^{\psi}$ are cyclic and one-to-one. Let $\tau$ be the least common refinement of
rc and $\psi$ . Then Card $(\tau)$ is the least common multiple of Card $(\pi)$ and Card $(\psi)$ .
Therefore, if Card $(\pi)=Card(\psi)$ , then $\pi=\psi$ .

PROOF. Let $\alpha eW(\theta)$ . Let $\tilde{\pi}$ and $\tilde{\psi}$ be the projections from $N_{r}$ onto $\pi$

and $\psi$ , respectively. Then $\tilde{\pi}\circ\alpha$ and $\tilde{\psi}\circ\alpha$ are cyclic functions with the least
cycles Card (z) and Card $(\psi)$ , respectively (by Lemma 5 and Lemma 9). For
any $i\in I$, consider the pair $(\tilde{\pi}(\alpha(i)),\tilde{\psi}(\alpha(i)))$ . The number of all distinct pairs
is the least common multiple of Card $(\pi)$ and Card $(\psi)$ (by (iii) of Lemma 5),

which completes the proof since the image of $\alpha$ is $N_{r}$ .
LEMMA 11. Let $\theta\in\Theta$ . There exists a unique consistent partition $\pi$ , such

that
(1) $\theta^{\tau\tau}$ is cyclic and one-to-one (as the mapping $\pi\rightarrow\pi^{p}$), and
(2) $\pi$ has the greatest Card $(\pi)$ among consistent partitions satisfying (1)

above.
PROOF. The existence is clear since the trivial partition $\{N_{r}\}$ satisfies

(1) above. The uniqueness follows from Lemma 10.
DEFINITION 5. Let $\theta\in\Theta$ . The consistent partition $\pi$ satisfying the con-

ditions (1) and (2) of Lemma 11 is called the partial cycle partition of $\theta$ .
Card $(\pi)$ is called the partial cycle of $\theta$ and denoted by $P(\theta)$ .

DEFINITION 6. Let $\theta\in\Theta$ . Let $\pi$ be the partial cycle partition of $\theta$ .
Define $B(\theta)$ by

$B(\theta)=\min_{r ,0<\Rightarrow J<v^{2}}\min_{S\in\pi}$ Card $(\{\theta^{2^{\gamma}}(n)(j);n\in S\})$ ,

which will be called the branching number of $\theta$ .
LEMMA 12. In the same situation as in Definition 6, we have

$B(\theta)=\min_{k\in N}\min_{0\leqq J<x^{k}}\min_{S\in\pi}$ Card $(\{\theta^{k}(n)(j);neS\})$ (1)

$=\min$ $\min$ Card $(\{\theta^{2}r(n)(j);n\in N_{r}\}\cap S)$ (2)
$ 0\leqq J<p^{2^{\prime}}S\in\pi$

$=\min_{k\in N}\min_{0\leqq J<p^{k}S\in\pi}\min$ Card $(\{\theta^{k}(n)(j);n\in N_{r}\}\cap S)$ . (3)

PROOF. For $k=1,2,$ $\cdots$ , let

$B_{k}=\min_{0\leqq J<p^{k}}\min_{S\in\pi}$ Card $(\{\theta^{k}(n)(]);n\in S\})$ .

It is clear that $ B_{1}\geqq B_{2}\geqq\cdots$ . Let $S$ be the class of all subsets of $N_{r}$ . For
$j\in N_{p}$ , define a mapping $\theta_{j}$ from $S$ into $S$ by $\theta_{j}(U)=\{\theta(n)(j);n\in U\}$ , where
$U\in S$ . Since Card $(S)=2^{r}$ , for any sequence $j_{1},$ $j_{2}$ , , $j_{k}\in N_{p}$ and $U\in S$ , we
can select a subsequence $j_{1}^{\prime},$ $j_{2}^{\prime},$ $\cdots j_{k}^{\prime},$ , where $k^{\prime}\leqq 2^{r}$ , such that

$\theta_{j_{k}}\circ\cdots\circ\theta_{j_{2}}\circ\theta_{!1}(U)=\theta_{J_{k^{\prime}}^{\prime}}\circ\cdots\circ\theta_{j_{2}^{\prime}}\circ\theta_{j_{1}^{\prime}}(U)$ .
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This implies that $B_{k}=B_{gr}$ for any $k\geqq 2^{r}$ and proves (1). To prove (2) and
(3), it is sufficient to prove that for any integers $k\geqq 1$ and je $N_{p^{k}}$ , it holds
that $n\sim m(\pi)$ if and only if $\theta^{k}(n)(j)\sim\theta^{k}(m)(])(\pi)$ . Since this follows from
Lemma 6, we complete the proof.

DEFINITION 7. Let $\theta e\Theta$ . Define $C(\theta)$ by

$C(\theta)=\min_{0\lessgtr j<p^{2^{\prime}}}$ Card $(\{\theta^{2^{f}}(n)(J);n\in N_{r}\})$ ,

which will be called the column number of $\theta$ .
Similarly as (1) of Lemma 12, we can prove the following lemma.
LEMMA 13. Let $\theta\in\Theta$ . It holds that

$C(\theta)=\min_{k\in N0}\min_{\cong J<p^{k}}$ Card $(\{\theta^{k}(n)(]);n\in N_{r}\})$ .

THEOREM 1. There exist algorithms (in the sense of the recursive function
theory) to compute $B(\theta),$ $C(\theta)$ and $P(\theta)$ for $\theta\in\Theta$ .

PROOF. Clear from Lemma 8 and the definitions.
THEOREM 2. For any $\theta e\Theta$ , it holds that
(1) $1\leqq B(\theta)\leqq C(\theta)\leqq s(\theta)$ ,
(2) $B(\theta)=C(\theta)$ if and only if $P(\theta)=1$ ,
(3) $C(\theta)=1$ if and only if $B(\theta)=P(\theta)=1$ ,
(4) $P(\theta)=s(\theta)$ if and only if $\theta$ is cyclic and one.to-one,
(5) if $\theta$ is cyclic, then $B(\theta)=1$ , and
(6) $P(\theta)$ is relatively prime with $L(\theta)$ .
PROOF. (1) and (4) are clear from the definitions. (3) follows from (1)

and (2). Since the trace relation (see Definition 8, Section 4) of any cyclic
system coincides with the diagonal, (5) follows from Theorem 5 which shall
be proved in Section 5. (6) is clear from Lemma 5. The “if” part of (2) is
clear from the definitions. The “ only if ” part of (2) is clear from the fact
that for the partial cycle partition $\pi$ of $\theta$ and any integers $k\geqq 1$ and $j\in N_{p^{k}}$ ,
$n\sim m(\pi)$ if and only if $\theta^{k}(n)(j)\sim\theta^{k}(m)(j)(\pi)$ , which follows from Lemma 6.

We use the following lemma later.
LEMMA 14. Let $\theta\in\Theta$ . Assume that there exist integers ne $N_{r},$ $k\geqq 1$ and

$0\leqq j<p^{k}-1$ , such that $\theta^{k}(n)(j)=\theta^{k}(n)(j+1)$ . Then $P(\theta)=1$ .
PROOF. Clear from Definition 5 and Lemma 7.

\S 4. The trace relation.

Throughout this section, we fix a substitution $\theta e\Theta$ , where $s(\theta)=r$ and
$L(\theta)=p$ . Let $W=W(\theta)$ . For this $\theta$ , we define a function $\lambda$ as in the state-
ment of the following lemma.

LEMMA 15 (Gottschalk and Hedlund [2]). For any positive integer $k$ , there
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exists a factor $\lambda(k)$ of $k$ , such that $W$ can be decomposed into $\lambda(k)$ minimal
sets of $(W, T^{k})$ . Therefore, each minimal set of $(W, T^{k})$ is open and closed
in $W$.

PROOF. Let $S$ be a minimal set of $(W, T^{k})$ . Since $T^{k}S=S,\bigcup_{i=0}^{k-1}T^{i}S$ is

closed and T-invariant. Therefore $W=\bigcup_{i=0}^{k-1}T^{i}S$. Let $\lambda(k)$ be the least positive

integer such that $T^{\lambda(k)}S=S$. Then it is clear that $\lambda(k)$ is a factor of $k$ and
$W=\bigcup_{i=0}^{\lambda(k)-1}T^{i}S$. Since $T^{i}S$ is a minimal set of $(W, T^{k})$ for any $i\in I$, either
$T^{i}S=T^{j}S$ or $ T^{i}S\cap T^{f}S=\emptyset$ holds for any $i,$ $j\in I$. The minimality of $\lambda(k)$

means that $W=\bigcup_{\iota=0}^{\lambda(k)-1}T^{i}S$ is a disjoint sum.
DEFINITION 8 (Gottschalk and Hedlund [2]). For $k=1,2,$ $\cdots$ , define :a

T-invariant equivalence relation $\Lambda_{k}$ on $W$, as follows:

$(\alpha, \beta)e\Lambda_{k}$ if $\alpha$ and $\beta$ belong to a common minimal set of $(W, T^{k})$ .
The closed T-invariant equivalence relation $\Lambda=\bigcap_{k=1}^{\infty}\Lambda_{k}$ is called the trace
relation (of $(W,$ $T)$).

DEFINITION 9. Let $R$ and $R^{\prime}$ be any equivalence relations on $W$ which
are closed sets of $W\times W$. They are said to be independent of each other if
$\alpha R=t\gamma;(\alpha, \gamma)\in R\}$ intersects with $\beta R^{\prime}$ for any $\alpha$ and $\beta$ belonging to $W$.

Note that since $W$ is compact, a closed relation $R$ on $W$ satisfies the
condition that $FR=\bigcup_{\alpha\in F}aR$ is a closed set if $F$ is a closed set of $W$.

LEMMA 16. Let $R_{1},$ $R_{2},$ $\cdots$ and $R$ be closed equivalence relations on $W$, such
that

(1) $ R_{1}\supset R_{2}\supset\cdots$ , and
(2) $R$ is independent of any of $R_{i}(i=1, 2, )$ .

Then $R$ is. independent of $\bigcap_{=1}^{\infty}R_{i}$ .
PROOF. Clear since $W$ is compact.
LEMMA 17. Let $R$ and $R^{\prime}$ be any closed equivalence relation on $W$ which

are independent of each other. Then $W/(R\cap R^{\prime})$ is homeomorphic to $(W/R)$

$\times(W/R^{\prime})$ .
PROOF. Let $f(\alpha(R\cap R^{\prime}))=(\alpha R, aR^{\prime})$ . From the definition of quotient

topologies, $f$ is clearly a continuous mapping from $W/(R\cap R^{\prime})$ into $(W/R)$

$\times(W/R^{\prime})$ . Also it is clear that $f$ is an injection. From Definition 9, for any
$\beta,$ $\gamma\in W$, there exists $\alpha\in W$ such that $\alpha e\beta R\cap\gamma R^{\prime}$ . Hence $ f(\alpha(R\cap R^{\prime})\rangle$

$=(\beta R, \gamma R^{\prime})$ and $f$ is an onto mapping. Since $W/(R\cap R^{\prime})$ is compact and
metrizable, this implies that $f$ is a homeomorphism from $W/(R\cap R^{\prime})$ onto
$(W/R)\times(W/R^{\prime})$ .

LEMMA 18. (1) $A_{1}=W\times W$.
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(2) If $h$ is a factor of $k$ , then $\Lambda_{\hslash}\supset\Lambda_{k}$ .
(3) $\Lambda_{k}=\Lambda_{\lambda(k)}$ for $k=1,2,$ $\cdots$

(4) $\lambda(\lambda(k))=\lambda(k)$ for $k=1,2,$ $\cdots$ .
PROOF. Clear.
LEMMA 19. If $h$ and $k$ are relatively prime with each other, then $\Lambda_{h}$ and

$\Lambda_{k}$ are independent of each other. Hence, $\Lambda_{h}$ is independent of $\bigcap_{i=1}^{\infty}\Lambda_{k}i$ if $h$ is
relatively prime with $k$ .

PROOF. Let $h$ and $k$ be relatively prime with each other. Then by
Lemma 15, $\lambda(h)$ and $\lambda(k)$ are relatively prime. Therefore, for any $\alpha\in W$, the
elements $\alpha,$

$T^{\lambda(k)}\alpha,$ $ T^{2\lambda(k)}\alpha$ , $\cdot$ .. , $ T^{(\lambda(h)-1)\lambda(k)}\alpha$ of $W,$ $\lambda(h)$ in number, belong to
different classes of $\Lambda_{h}$ , while they belong to a common class of $\Lambda_{k}$ . This
completes the proof.

LEMMA 20. (1) If $\lambda(k)=k$ and $h$ is a factor of $k$ , then $\lambda(h)=h$ .
(2) If $\lambda(h)=h,$ $\lambda(k)=k$ and $j$ is the least common multiple of $h$ and $k$ ,

then $\lambda(j)=j$ and $\Lambda_{j}=\Lambda_{h}\cap\Lambda_{k}$ .
(3) Assume that $\lambda(h)=h$ . Then $\Lambda_{h}\supset\Lambda_{k}$ if and only if $h$ is a factor of $k$ .
PROOF. (1) Let $k=ha$ . Let $S$ be a minimal set of $(W, T^{k})$ . Then

$U=\bigcup_{i=0}^{a-1}T^{hi}S$ is a minimal set of $(W, T^{h})$ . Since $\lambda(k)=k,$ $T^{i}S\subset U$ implies

$i\equiv 0(mod h)$ . Thus, $T^{i}U=U$ only if $i\equiv 0(mod h)$ , which proves $\lambda(h)=h$ .
(2) Let $U$ and $V$ be minimal sets of $(W, T^{h})$ and $(W, T^{k})$ , respectively,

such that $U$ and $V$ intersect. Let $S=U\cap V$ . Then it holds that $S,$ $TS,$ $\cdots,$
$T^{j-1}S$

$are^{v}closed\tau!$-invariant sets which are disjoint with each other. This implies
$\lambda(j)\geqq j$ . From $\lambda(])\leqq j$ , it follows that $\lambda(j)=j$ and that $S$ is a minimal set of
$\langle W,$ $T^{j}$).

(3) It is sufficient to prove the ” only if ” part. Assume that $\Lambda_{h}\supset\Lambda_{k}$ .
Let $j$ be the least common multiple of $h$ and $\lambda(k)$ . From (2), $\Lambda_{j}=\Lambda_{h}\cap\Lambda_{\lambda(k)}$

$=\Lambda_{k}$ , and hence $\lambda(])=\lambda(k)$ . This implies, however, $j=k$ , since $k$ is a factor
of $j$ and $\lambda(])=i$

LEMMA 21. For $k=1,2$ , $\cdot$ .. and $0\leqq i<p^{k},$ $T^{j}\circ\theta^{k}(W)$ is a complete class
of the equivalence relation $\Lambda_{p^{k}}$ .

PROOF. Clear since $\theta^{k}(W)$ is a minimal set of $(W, T^{pk})$ (by (1) of Lemma 2).

LEMMA 22 (Gottschalk [3]). $\bigcap_{i=1}^{\infty}\theta^{t}(W)$ is a finite set.

PROOF. Assume that we can select $r^{2}+1$ distinct elements $\alpha_{0},$ $\alpha_{1},$
$\cdots$ , $\alpha_{r^{2}}$ ,

belonging to $\bigcap_{i=1}^{\infty}\theta^{i}(W)$ . There exists $k$ such that if $i\neq i$ , then $a_{i}(h)\neq\alpha_{j}(h)$

for some $-p^{k}\leqq h<p^{k}$ . For $i=0,1$ , $\cdot$ .. , $\gamma^{2}$ there exists $\beta_{i}\in W$ such that
$\alpha_{i}=\theta^{k}(\beta_{i})$ . Then there existi andi such that $\beta_{i}(-1)=\beta_{j}(-1)and\beta_{i}(0)=\beta_{j}(0)$ .
This implies that $\alpha_{i}(h)=a_{j}(h)$ for any $h$ such that $-p^{k}\leqq h<p^{k}$ , which is a

contradiction. Thus Card $(\bigcap_{i=1}^{\infty}\theta^{i}(W))\leqq r^{2}$ .
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THEOREM 3. There exists an integer $q\geqq 1$ satisfying the following three
conditions:

(1) $q$ is relatively prime with $p$ ,

(2) $\lambda(q)=q$ , and
(3) $\Lambda=(\bigcap_{i=1}^{\infty}\Lambda_{P^{i}})\cap\Lambda_{q}$ .

Moreover, such $q$ is unique and equal to $P(\theta)$ .
PROOF. Let $K=$ { $k;k=\lambda(k)$ and $k$ is relatively prime with $p$ }. Let $h\geqq 1$

be any integer. Let $\lambda(h)=jk$ , where $j$ is the greatest common factor of $\lambda(h)$

and $p^{i}$ . Choose $i$ so large that $\lambda(h)$ is the least common multiple of $j$ and $k$ .
Then $k$ is relatively prime with $p$ and belongs to $K$ (by (4) of Lemma 18 and
(1) of Lemma 20). From Lemma 18 and Lemma 20,

$\Lambda_{h}=\Lambda_{\lambda(h)}$

$=\Lambda_{j}\cap\Lambda_{k}\supset(\bigcap_{i=1}^{\infty}\Lambda_{p^{i}})\cap(\bigcap_{k\overline{\subset}K}\Lambda_{k})$ .
Therefore

$\Lambda=(\bigcap_{i=1}^{\infty}\Lambda_{p^{i}})\cap(\bigcap_{k\in K}\Lambda_{k})$ .

Let $k\in K$. From Lemma 19, $\Lambda_{k}$ is independent of $\bigcap_{i=1}^{\infty}\Lambda_{p^{i}}$ . Since $\bigcap_{i=1}^{\infty}\theta^{i}(W)$ is

a complete class of $\bigcap_{i=1}^{\infty}\Lambda_{p^{i}}$ (by Lemma 21), any equivalence class of $\Lambda_{k}$

intersects with the finite set $\bigcap_{t=1}^{\infty}\theta^{i}(W)$ . Therefore $k\leqq Card(\bigcap_{i=1}^{\infty}\theta^{i}(W))$ . That
is, $K$ is a finite set. Let $q$ be the least common multiple of all elements of
$K$. Then $q$ also belongs to $K$ and $\bigcap_{k\in K}\Lambda_{k}=\Lambda_{q}$ (by (2) of Lemma 20). Thus

$\Lambda=(\bigcap_{i=1}^{\infty}\Lambda_{p^{i}})\cap\Lambda_{q}$ , where $q=\max_{=k^{\prime}K}k$ . For any other $q^{\prime}\in K$, suppose $\Lambda=$

$(\bigcap_{i=1}^{\infty}\Lambda_{p^{i}})\cap\Lambda_{q^{\prime}}$ . Then $\Lambda_{q}\supset(\bigcap_{i=1}^{\infty}\Lambda_{p^{i}})\cap\Lambda_{q^{\prime}}$ . Since $\Lambda_{i}$ is an open and closed set

of $W\times W$ for any $i$ and $W\times W$ is compact, there exists $j$ such that $\Lambda_{q}\supset\Lambda_{pJ}\cap\Lambda_{q^{\prime}}$ .
Therefore, from Lemma 18 and Lemma 20,

$\Lambda_{q}\supset\Lambda_{p^{f\cap}}\Lambda_{q^{\prime}}=\Lambda_{\lambda(p^{j})q^{\prime}}$ .

This implies that $q$ is a factor of $\lambda(pJ)q^{\prime}$ by Lemma 20. Since $q$ is relatively
prime with $\lambda(pJ),$ $q$ is a factor of $q^{\prime}$ . Thus $q=q^{\prime}$ . To complete the proof, it
is sufficient to prove the following lemma.

LEMMA 23. A necessary and suficient condition that $keK$ is that there
exists a consistent partition $\pi$ of $N_{\gamma}$ , such that Card $(\pi)=k$ and $\theta^{\pi}$ is cyclic and
one-to-one. Therefore, $P(\theta)=\max_{k\in K}k$ .

PROOF. To prove the sufficiency, let $\pi$ be a consistent partition $of_{-}\backslash N_{r}$

such that $\theta^{\pi}$ is cyclic and one-to-one. Let $k=Card(\pi)$ . From Lemma 5, $k$ is
relatively prime with $p$ . Let $\lambda^{\gamma}$ be the function defined in Lemma 15 for
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this $\theta^{\pi}$ . From Lemma 5, $\lambda^{\prime}(k)=k$ . Since it (defined in Lemma 9) is a con-
tinuous mapping from $W(\theta)$ onto $ W(\theta\circ$ which commutes with the shifts, it
is easy to see that $\lambda(k)\geqq\lambda^{\prime}(k)$ . Since $\lambda(k)\leqq k$ , this implies that $\lambda(k)=k$ .
When $k=1$ , the necessity is clearly true. Suppose $keK$ and $k\geqq 2$ . Let $S_{0}$

be a minimal set of $(W, T^{k})$ . Let $S_{i}=T^{i}S_{0}$ for $i=1,2$ , $\cdot$ .. , $k-1$ . Then
$S_{0},$ $S_{1}$ , , $S_{k-1}$ are open and closed sets which are disjoint with each other.
Let $d$ be the metric on W. There exists a real number $\epsilon>0$ , such that
for any $\alpha eS_{i}$ and $\beta eS_{j}$ , where $i\neq j$ , $ d(\alpha, \beta)>\epsilon$ . For $i=0,1$ , $\cdot$ .. , $k-1$ ,
let $P_{i}=$ { $n\in N_{r}$ ; there exists $\alpha\in S_{i}$ such that $\alpha(0)=n$ }. We prove that
$\pi=\{P_{i} ; i=0,1, , k-1\}$ is a partition of $N_{r}$ . First, suppose that ne $P_{i}\cap P_{f}$

for $i\neq i$ . Let $\alpha eS_{0}$ . Then, there exist $i^{\prime},$ $j^{\prime}\in I$ such that $i^{\prime}\equiv i,$ $j^{\prime}\equiv j(mod k)$

and $a(i^{\prime})=\alpha(j^{\prime})=n$ . It is easy to verify that

$d(\theta^{h}\circ To \theta\circ T^{i^{\prime}}(a), \theta^{h}\circ To \theta\circ T^{j^{\prime}}(\alpha))<(1/p)^{h}$

for any $h=1,2,$ $\cdots$ Let $h$ be sufficiently large and satisfy $(1/p)^{h}<\epsilon$ . Then
$(\theta^{h}\circ To \theta\circ T^{i^{\prime}}(\alpha), \theta^{h}\circ T\circ\theta\circ T^{j^{\prime}}(\alpha))\in\Lambda_{k}$ . On the other hand, since

$\theta^{h}\circ T\circ\theta\circ T^{i^{\prime}}(\alpha)=T^{p^{h}+i^{\prime}p^{\hslash+1}}\circ\theta^{h+1}(\alpha)$

$\theta^{h}\circ T\circ\theta\circ T^{j^{\prime}}(\alpha)=T^{p^{h_{-\llcorner}}.f^{\prime}p^{h+1}}\circ\theta^{h+1}(a)$

and
$p^{h}+i^{\prime}p^{\hslash+1}\frac{\prime}{\mp}p^{h}+j^{\prime}p^{h+1}(mod k)$ ,

we have
$(\theta^{h}\circ T\circ\theta\circ T^{i^{\prime}}(\alpha), \theta^{h}\circ T\circ\theta\circ T^{f^{\prime}}(a))\not\in\Lambda_{k}$ ,

which is a contradiction. Therefore $\pi$ is a partition of $N_{r}$ . Next, suppose
that $n\sim m(\pi)$ . Let $j\in N_{p}$ . Let $\alpha\in W(\theta)$ . There exist $i,$ $i^{\gamma}\in I$ such that
$a(i)=n$ and $\alpha(i^{J})=m$ (by Lemma 4). Then $i\equiv i^{J}(mod k)$ from the definition
of the partition $\pi$ . Therefore, $\theta(a)(ip+j)\sim\theta(\alpha)(i^{\prime}p+j)(\pi)$ , which implies
$\theta(n)(j)\sim\theta(m)(j)(\pi)$ . Thus $\pi$ is consistent. It is clear from Lemma 9 that $\theta^{\pi}$

is cyclic and one-to-one.
LEMMA 24. Let $H=\{k;\lambda(k)=k$ and $k$ is a factor of $l^{\ell}$ for some positive

integer $i$ }. Then $H$ is a finite set if and only if $\theta$ is cyclic.
PROOF. The ” if ” part is clear. Assume that $H$ is a finite set. Then

there exists an integer $j\geqq 1$ such that $\Lambda_{pJ}=\Lambda_{pJ+1}=\cdots$ . This implies that

$W=\bigcup_{\hslash=0}^{d-1}T^{h}(\bigcap_{i=0}^{\infty}\theta^{i}(W))$ .
Thus from Lemma 22, $W$ is a finite set.

Lemma 23 and Lemma 24 lead us to the following theorem.
THEOREM 4. Let $\theta,$

$\theta^{\prime}\in\Theta$ . Assume that $(W(\theta), T)$ and $(W(\theta^{J}), T)$ are iso-
morphic to each other. Then at least one of the following two cases occurs.

(1) Both $\theta$ and $\theta^{\prime}$ are cyclic.
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(2) $L(\theta)$ and $L(\theta^{\prime})$ have a common factor $(\geqq 2)$ .
PROOF. Assume that $(W(\theta), T)$ and $(W(\theta^{\prime}), T)$ are isomorphic to each

other and are not cyclic. Then the common function $\lambda$ which is defined in
Lemma 15 corresponds to both $(W(\theta), T)$ and $(W(\theta^{\prime}), T)$ . Let $H=\{k;\lambda(k)=k$

and $k$ is a factor of $L(\theta)^{i}$ for some positive integer $i$ } and $K^{\prime}=\{k;\lambda(k)=\cdot k$

and $k$ is relatively prime with $L(\theta^{\prime})$ }. Suppose that $L(\theta)$ and $L(\theta^{\prime})$ are rela-
tively prime each other. Then $H\subset K^{\prime}$ . Since $H$ is an infinite set by
Lemma 24, $K^{\gamma}$ is also an infinite set, which contradicts with the fact that
$ P(\theta^{\prime})=\max_{-,k\subset K}k\leqq s(\theta^{\prime})<\infty$ .

The direct product $ N_{p}\times N_{p}\times\cdots$ is considered as a compact metrizable
space in the usual sense. Let $(a_{0}, a_{1}, a_{2}, \cdots)\in N_{p}\chi N_{p}\times\cdots$ Define $(b_{0}, b_{1}, b_{2}, \cdots)$

$\in N_{p}\times N_{p}\times\cdots$ inductively as follows:

$c_{0}=1$

$c_{n}=\{01$ $e1seifc_{n-1}=1$
and $a_{n- 1}=p-1$

$(n=1,2, )$

$b_{n}=\left\{\begin{array}{lll} & & a_{n} if c_{n}=0\\ & & a_{n}+1 if c_{n}=1 and a_{n}\neq p-1\\ & & 0 if c_{n}=1 and a_{n}=p-1\end{array}\right.$

$(n=0,1,2, )$ .
Denote $(b_{0}, b_{1}, b_{2}, )=\psi((a_{0}, a_{1}, a_{2}, ))$ . Then $\psi$ is a homeomorphism from
$ N_{p}\times N_{p}\times\cdots$ onto itself. The compact dynamical system $(N_{p}\times N_{p}\times\cdots , \psi)$ is
called the p-adic system. The $p$-adic system is the projective limit of the
cyclic system with cycle $p^{k}$ as $ k\uparrow\infty$ .

For $\theta\in\Theta$ , assume that $\lambda(p^{k})=p^{k}$ for $k=1,2,$ $\cdots$ Then it is clear that
\langle $W/\Lambda^{\gamma},$ $T/\Lambda^{J}$) is isomorphic to the $p$ -adic system, where $\Lambda^{\prime}=\bigcap_{i=1}^{\infty}\Lambda_{p^{i}},$ $W/\Lambda^{\prime}$

$=\{\alpha\Lambda^{\prime} ; \alpha eW\}$ and $T/\Lambda^{\prime}$ is a homeomorphism from $W/\Lambda^{\prime}$ onto itself defined
by $(T/\Lambda^{\prime})(a\Lambda^{\gamma})=(T\alpha)\Lambda^{\prime}$ for any $\alpha\in W$. Let $(W, T)$ and $(W^{\prime}, T^{\prime})$ be any
dynamical systems. By the direct product of $(W, T)$ and $(W^{\gamma}, T^{\prime})$ , we mean
the dynamical system $(W\times W^{\prime}, T\times T^{\prime})$ , where $W\times W^{\prime}$ is the product space and
$T\times T^{J}$ is a homeomorphism from $W\times W^{\prime}$ onto itself defined by $(T\chi T^{\prime})((w, w^{\prime}))$

$=(Tw, T^{\prime}w^{\prime})((w, w^{\prime})\in W\times W^{\prime})$ . Since $\Lambda^{J}$ and $\Lambda_{P(\theta)}$ are independent of each
other (by Lemma 19), it follows from Theorem 3 and Lemma 17 that $(W/\Lambda, T/\Lambda)$

is isomorphic to the direct product of the $p$-adic system by the cyclic system
with cycle $P(\theta)$ . Let $\Psi=\{\theta\in\Theta;\lambda(l^{k})=p^{k}$ for $k=1,2,$ $\cdots$ , where $p=L(\theta)$

and $\lambda$ is the function defined in Lemma 15 for this $\theta$ }. For a positive integer
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$i$ , let $\tau(i)$ be the product of all distinct prime factors of $i$ .
COROLLARY 1. If we restrict our consideration to $\theta\in\Psi$ , then both $\tau(L(\theta))$

and $P(\theta)$ are topological invariants.
PROOF. Assume that $p,$ $q,$ $p^{J}$ and $q^{\prime}$ are positive integers such that $p$ and

$q$ are relatively prime with each other and $p^{\prime}$ and $q^{\prime}$ are also relatively prime
with each other. Then it holds that the direct product of the $p$-adic system
by the cyclic system with cycle $q$ is isomorphic to the direct product of the
$p^{\prime}$ -adic system by the cyclic system with cycle $q^{\prime}$ only if $\tau(p)=\tau(p^{\prime})$ and $q=q^{\prime}$ .
To prove this, let the above two systems be isomorphic to each other. Note
that they are minimal systems. Let $\lambda$ be the function defined in Lemma 15
for them. Then it is easy to see that

$\{k.\cdot\lambda(k)=k\}=$ { $k;k$ is a factor of $qp^{i}$ for some $i\in N$ }

$=$ { $k;k$ is a factor of $q^{\prime}p\prime i$ for some $ieN$ } ,

which implies $\tau(p)=\tau(p^{\prime})$ and $q=q^{\prime}$ . This fact proves Corollary 1.
From Lemma 24 and (1) of Lemma 20, it can be easily verified that $\theta\in\Psi$

if $\theta$ is non-cyclic and $L(\theta)$ is a power of a prime number. Also, it was
proved in [3] that $\theta\in\Psi$ if $\theta$ is non-cyclic and $s(\theta)=2$ .

\S 5. Main results.

Throughout this section, we fix a substitution $\theta\in\Theta$ , where $s(\theta)=r$ and
$L(\theta)=p$ . Let $W=W(\theta)$ . Let $\Lambda$ be the trace relation of $(W, T)$ and $\lambda$ be the
function defined in Lemma 15 for this $(W, T)$ .

LEMMA 25. Let $q=P(\theta)$ . Then $(\alpha, \beta)\in\Lambda_{q}$ if and only if $(\theta(\alpha), \theta(\beta))\in\Lambda_{q}$ .
PROOF. The “ only if ” part is clear since $\theta\circ T=T^{p}\circ\theta$ and $q$ is relatively

prime with $p$ . The “ if ” part is also clear since the $\theta$ -induced mapping on
$W/\Lambda_{q}$ is one-to-one (see Lemma 23 and its proof).

LEMMA 26. Let $q=P(\theta)$ and $W_{0}(\subset W)$ be any equivalence class of $\Lambda_{q}$ .
Then for any integers $k\geqq 0$ and $j$ (we may assume $0\leqq i<p^{k}$), $T^{j}\circ\theta^{k}(W_{0})$ is a
complete class of $\Lambda_{p^{k}}\cap\Lambda_{q}$ . Conversely, any equivalence class of $\Lambda_{p^{k}}\cap\Lambda_{q}$ is
expressed like this. Therefore, if $S$ is a complete class of $\Lambda_{p^{k}},$ $\cap\Lambda_{q}$ , then $T^{j}\circ\theta^{k}(S)$

is a complete class of $\Lambda_{p^{k+k^{\prime}}}\cap\Lambda_{q}$ , where $k$ and $k^{\prime}$ are any non-negative integers
and $j$ is any integer.

PROOF. Since the partial cycle partition is consistent, it is clear that
$T^{f}\circ\theta^{k}(W_{0})$ is contained in some equivalence class of $\Lambda_{p^{k}}\cap\Lambda_{q}$ . Let $(\alpha, \beta)$

$e\Lambda_{p^{k}}\cap\Lambda_{q}$ and $\alpha\in T^{f}\circ\theta^{k}(W_{0})$ . Since $T^{f}\circ\theta^{k}(W)$ is a complete class of $\Lambda_{p^{k}}$ ,
there exists $\beta^{\prime}eW$, such that $\beta=T^{f}\circ\theta^{k}(\beta^{\prime})$ . Let $a=T^{f}\circ\theta^{k}(\alpha^{\prime})$ for $a^{\prime}\in W_{0}$ .
Suppose that $(\alpha^{\prime}, \beta^{\prime})\not\in\Lambda_{q}$ . Then from Lemma 25, we have a contradiction
that $(\alpha, \beta)\not\in\Lambda_{q}$ . Therefore, we have that $\beta^{\prime}\in W_{0}$ and $\beta eT^{f}\circ\theta^{k}(W_{0})$ . This
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proves one half of Lemma 26. Let $W_{1}$ and $W_{2}$ be any equivalence classes
of $\Lambda_{q}$ . Assume that $T^{j_{1}}\circ\theta^{k}(W_{1})=T^{Jz}\circ\theta^{k}(W_{2})$ . Then from Lemma 25 and
Lemma 21, it is easy to see that $j_{1}\equiv j_{2}(mod \lambda(p^{k}))$ and $W_{1}=w_{2}$ . Since the
number of equivalence classes of $\Lambda_{p^{k}}\cap\Lambda_{q}$ is $\lambda(p^{k})q$ , this completes the proof.

THEOREM 5 (Main Theorem). We have

$B(\theta)=\min_{\alpha\in W}$ Card $(a\Lambda)$ .

Therefore, $B(\theta)$ is a topological invariant of $\theta e\Theta$ .
PROOF. Let $b=B(\theta)$ and $q=p(\theta)$ . Let $\pi$ be the partial cycle partition

of $\theta$ . First we prove $b\leqq Card(\alpha\Lambda)$ for any $\alpha\in W$. Let $\alpha eW$ and $k$ be any
integer $\geqq 1$ . There exists an integer $0\leqq h<p^{k}$ such that a $eT^{h}\circ\theta^{k}(W)$ . By
Deflnition 6 and Lemma 12, for any $ S\in\pi$ , it holds that

Card $(\{\theta^{k}(n)(h);n\in S\})\geqq b$ .
Select $\beta_{0},$ $\beta_{1},$ $\cdots$ , $\beta_{b- 1}\in W$ which satisfy

(1) $\beta_{i}(0)eS$ for $i=0,1,$ $\cdots$ , $b-1$ , and
(2) $\theta^{k}(\beta_{i}(0))(h)\neq\theta^{k}(\beta_{j}(0))(h)$ if $i\neq j$ .

Let $\alpha_{i}=T^{h}\circ\theta^{k}(\beta_{i})$ for $i=0,1$ , $\cdot$ .. , $b-1$ . Since we can select Sand $\beta_{0}$ so that
$\alpha_{0}=a$ , we may and do assume $\alpha_{0}\Rightarrow\alpha$ . It is easy to see (by Lemma 26) that

(1) $(\alpha_{i}, a_{j})\in\Lambda_{p^{k}}\cap\Lambda_{q}$ for any $i,$ $j=0,1,$ $\cdots$ , $b-1$ , and
(2) $d(\alpha_{i}, \alpha_{j})=1$ if $i\neq j$ , where $d$ is the metric on $W$.

Hereafter, $\alpha_{i}$ thus obtained for $k$ is denoted by $\alpha_{k,i}$ . Let $\gamma_{0}=\alpha$ . From the
sequence $\{\alpha_{k,1} ; k=1,2, \cdots\}$ , select a convergent subsequence $\{\alpha_{k_{m},1} ; m=1,2, \cdots\}_{r}$

which converges to, say, $\gamma_{1}$ . Next, from the sequence $\{\alpha_{k_{m^{2}}}, ; m=1, 2, \}$ ,
select a convergent subsequence $\ldots$ Continuing this procedure, we obtain
$\gamma_{0}(=\alpha),$

$\gamma_{1}$ , $\cdot$ .. , $\gamma_{b-1}$ . By Theorem 3 it holds that
(1) $\gamma_{i}\in\alpha\Lambda$ for $i=0,1,$ $\cdots$ , $b-1$ , and
(2) $\gamma_{i}\neq\gamma_{j}$ if $i\neq j$ ,

from which it follows that $b\leqq Card(\alpha\Lambda)$ for any $\alpha eW$.
Conversely, let

$b=Card(\{\theta^{k}(n)(j);neS\})$

for some $k\geqq 1,0\leqq j<p^{k}$ and $ S\in\pi$ . Since in this case,

$b=Card(\{\theta^{k+1}(n)(jp+\iota);n\in S\})$

for any $i=0,1$ , $\cdot$ .. , $p-1$ , we may and do assume that $k\geqq 2$ and $1\leqq j<p^{k}-1$ .
Let $W_{0}=\{\alpha\in W;\alpha(0)\in S\}$ and $W_{i}=T^{i}W_{0}$ for $i=1,2,$ $\cdots$ , $q-1$ . Then
$\{W_{0}, W_{1}, \cdots , W_{q-1}\}$ is the family of all equivalence classes of $\Lambda_{q}$ . Let $V_{0}$

$=T^{f}\circ\theta^{k}(W_{0})$ . Then, $V_{0}$ is a complete class of $\Lambda_{p^{k}}\cap\Lambda_{q}$ (by Lemma 26) and
there exist $n_{1},$ $n_{2}$ , $\cdot$ , $n_{b}\in N_{r}$ , such that for any $\alpha\in V_{0},$ $\alpha(0)$ is equal to one
of $n_{1},$ $n_{2}$ , $\cdot$ .. , $n_{b}$ . For $i=1,2,$ $\cdots$ , let $V_{i}=(T^{f}\circ\theta^{k})^{i}(V_{0})$ . Since $1\leqq i<p^{k}-1$ ,
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the above statement implies that $V_{i}$ is covered by a family of $b$ balls with
diameter less than $p^{-i+1}$ . Also, by Lemma 26, $V_{i}$ is a complete class of
$\Lambda_{p^{k(i+1)}}\cap\Lambda_{q}$ . Therefore, there exists an integer $0\leqq h_{i}<q$ such that $V_{i}=$

$(T^{f}\circ\theta^{k})^{i+1}(W)\cap W_{h_{i}}$ . We can select an infinite sequence $i_{1},$ $i_{2},$ $\cdots$ , such that

$ h_{\iota_{1}}=h_{i_{2}}=\cdots$ . Then $ V_{i_{1}}\supset V_{i_{2}}\supset\cdots$ . By Theorem 3, $\bigcap_{m=1}^{\infty}V_{i_{m}}$ is a complete class

of $\Lambda$ . Since $\bigcap_{m=1}^{\infty}V_{t_{m}}$ is covered by $\epsilon$ -balls, $b$ in number, for any real number

$\epsilon>0$ , we have Card $(\bigcap_{m=1}^{\infty}V_{i_{m}})\leqq b$ . Q. E. D.

COROLLARY 2. Let $\theta,$
$\theta^{\prime}\in\Theta$ . If there exists a homomorphism from

\langle $W(\theta),$ $T$ ) onto $(W(\theta^{J}), T)$ , then $B(\theta)\geqq B(\theta^{\prime})$ .
PROOF. Let $\Lambda$ and $\Lambda^{\prime}$ be the trace relations of $(W(\theta), T)$ and $(W(\theta^{J}), T)$ ,

respectively. Let $\psi$ be a homomorphism from $(W(\theta), T)$ onto $(W(\theta^{J}), T)$ .
Then it is well known and proved without difficulty that $\psi(a\Lambda)=\psi(\alpha)\Lambda$ for
any $\alpha\in W(\theta)$ . This implies that

$\min_{\alpha\in W(\theta)}$ Card $(\alpha\Lambda)\geqq\min_{\alpha\subset W(\theta)}$ Card $(a\Lambda^{\prime})$ ,

which completes the proof in virtue of Theorem 5.
EXAMPLE 1. Let $r,$ $p$ and $b$ be any positive integers such that $r\geqq 2,$ $p\geqq 2$

and $b\leqq r$. Define $\theta\in\Theta$ as follows:
(i) for $n\in N_{r}$ ,

$\theta(n)(0)=$

(ii) for $n\in N_{r}$ and $j=1,2,$ $\cdots$ , $p-1$ ,

$\theta(n)(j)=$

From Lemma 14, we have $P(\theta)=1$ . Since clearly $C(\theta)=b$ , we have $B(\theta)=b$.
Let $\lambda$ be the function defined in Lemma 15 for this $\theta$ . We prove that
$\lambda(p^{k})=p^{k}$ for $k=1,2,$ $\cdots$ It is sufficient to prove that $\lambda(p)=p$ since $\theta$ is
one-to-one ([2]). Since $\lambda(p^{2})=p^{2}$ implies $\lambda(p)=p$ , it is sufficient to prove
$\lambda(p^{2})=p^{2}$ . Let $\alpha\in\theta^{2}(W(\theta))$ . Then it is easy to see that

$\emptyset\neq$ { $i\in I;\alpha(i)=0,$ $a(i+1)=a(i+2)=1$ and $\alpha(i+3)=2$ } $\subset\{ip^{2} ; i=0, \pm 1, \cdots\}$ .
This implies that $ T^{i}\circ\theta^{2}(W(\theta))\cap T^{f}\circ\theta^{2}(W(\theta))=\emptyset$ if $i\not\equiv i$ $(mod p^{2})$ . Thus
$\lambda(p^{2})=p^{2}$ .

Therefore, $(W(\theta)/\Lambda, T/\Lambda)$ is isomorphic to the p-adic system, where $\Lambda$ is
the trace relation of $(W(\theta), T)$ .

THEOREM 6. Let $r,$ $p$ and $b$ be any positive integers such that $r\geqq 2,$ $p\geqq 2$

and $ b\leqq\gamma$. Then there exists $\theta\in\Theta$ such that
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(1) $s(\theta)=r$ and $L(\theta)=p$ ,
(2) $B(\theta)=b$ , and
(3) $(W(\theta)/\Lambda, T/\Lambda)$ is isomorphic to the p-adic system, where $\Lambda$ is the trace

relation of $(W(\theta), T)$ .
The following corollary follows from (1) of Theorem 2, Corollary 2 and

Theorem 6.
COROLLARY 3. For any integer $r\geqq 2$ , there exists a substitution minimal

set on $r$ symbols which is not a homomorphic image of any substitution minimal
set on $r^{\prime}$ symbols, where $\gamma^{\prime}<r$.

\S 6. Discrete or continuous substitutions.

DEFINITION 10. A substitution $\theta\in\Theta$ is said to be discrete if $B(\theta)=1$ .
If $\theta$ is cyclic or if $C(\theta)=1$ , then $\theta$ is discrete. The following example

shows a discrete substitution which is not of these types.
EXAMPLE 2.

$\theta(0)=010$

$\theta(1)=102$

$\theta(2)=201$ .
Let $\theta\in\Theta$ . Let $W=W(\theta)$ . Let $\mu$ be the unique T-invariant probability

measure on $W$ . Let $L_{2}(W, \mu)$ be the $L_{2}$ -space over the complex numbers.
Let $U$ be the unitary operator on $L_{2}(W, \mu)$ defined by $(Uf)(\alpha)=f(T\alpha)$ , where
$\alpha\in W$ and $f\in L_{2}(W, \mu)$ . By the spectrum of $(W, T)$ or $W$, we mean the
spectrum of the unitary operator $U$ thus defined.

THEOREM 7. If $\theta\in\Theta$ is discre $te$ , then $(W, T)$ is measure isomorphic to
\langle $W/\Lambda,$ $ T/\Lambda$), where $W=W(\theta)$ and $\Lambda$ is the trace relation of $(W, T)$ . Therefore,
$W(\theta)$ has rational pure point spectrum.

PROOF. Let $\theta\in\Theta$ be discrete. Let $\mu$ be the unique T-invariant probability
measure on $W$. Let $q=P(\theta)$ . From Theorem 5, there exists $\alpha_{0}\in W(\theta)$ such
that $\alpha_{0}\Lambda=\{\alpha_{0}\}$ . Let $\alpha_{i}=T^{i}\alpha_{0}$ for any positive integer $i<q$ . Then it is clear
that $\alpha_{i}\Lambda=\{\alpha_{i}\}$ for any $i<q$ . Since $W$ is compact, for any real number $\epsilon>0$ ,

there exists a positive integer $k$ such that the diameter of $\alpha_{i}(\Lambda_{p^{k}}\cap\Lambda_{q})$ is less
than $\epsilon$ for any $i<q$ . For $i<q$ , let $0\leqq j_{i}<p^{k}$ satisfy $\alpha_{i}\in T^{J\iota}\circ\theta^{k}(W_{i})$ , where
$W_{0},$ $W_{1},$ $\cdots$ , $W_{q- 1}$ are distinct equivalence classes of $\Lambda_{q}$ (see Lemma 26). Let
$T^{f}\circ\theta^{h}(W_{i})$ be any equivalence class of $\Lambda_{P^{h}}\cap\Lambda_{q}$ , where $0\leqq j<p^{h}$ and $0\leqq i<q$ .
Since there exists $0\leqq i^{\prime}<q$ such that $T^{j}\circ\theta^{h}(W_{i})\subset W_{i}$ , there exists $0\leqq j^{J}<p^{k}$

such that the diameter of $T^{j^{\prime}}\circ\theta^{k}\circ T^{j}\circ\theta^{h}(W_{i})$ is less than $\epsilon$ , where for example,
$j^{\prime}=j_{i^{\prime}}$ . Since

$d(T^{j}\circ\theta^{h}(\alpha), T^{j}\circ\theta^{h}(\beta))\leqq d(\alpha, \beta)$

for any $\alpha,$ $\beta\in W$ if $0\leqq j<p^{h}$ , where $d$ is the metric on $W$, the above statement
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implies that the ratio of the number of the equivalence classes of $\Lambda_{p^{mk}}\cap\Lambda_{q}$

whose diameters are less than $\epsilon$ among all equivalence classes of $\Lambda_{p^{mk}}\cap\Lambda_{q}$

is at least $1-(1-p^{-k})^{m}$ . Since each equivalence class of $\Lambda_{p^{mk}}\cap\Lambda_{q}$ has a
common measure, this implies that

$\mu$ ( $\{\alpha\in W$ ; the diameter of $\alpha\Lambda$ is less than $\epsilon\}$ )

$\geqq\mu$( $\{a\in W$ ; the diameter of $a(\Lambda_{p^{mk}}\cap\Lambda_{Q})$ is less than $\epsilon\}$ )

$\geqq 1-(1-p^{-k})^{m}$ .
Since $m$ and $\epsilon>0$ are arbitrary, we have

$\mu(\{a\in W;\alpha\Lambda=\{a\}\})=1$ .
Thus the projection from $W$ onto $ W/\Lambda$ gives a measure isomorphism from
$(W, T)$ to $(W/\Lambda, T/\Lambda)$ . It is easy to verify that $(W/\Lambda, T/\Lambda)$ has a pure point
spectrum {k-th roots of 1; $\lambda(k)=k$ }. This completes the proof.

COROLLARY 4. If $\theta$ belongs to $\Psi$ and is discrete, then $(W(\theta), T)$ is measure$\cdot$

isomorphic to the direct product of the $L(\theta)$ -adic system by the cyclic system
with cycle $P(\theta)$ .

DEFINITION 11. A substitution $\theta\in\Theta$ is said to be continuous if the follow-
ing two conditions are satisfied.

(1) $B(\theta)\geqq 2$ .
(2) There exists a cyclic permutation $\sigma$ on $N_{r}$ such that $\theta(\sigma(n))$ (]\rangle

$=\sigma(\theta(n)(]))$ for any $n\in N_{r}$ and $j\in N_{p}$ .
LEMMA 27. If $\theta\in\Theta$ is continuous, then there exists a homeomorphism $\tilde{\sigma}-$

from $W(\theta)$ onto $W(\theta)$ satisfying that
(1) $\tilde{\sigma}^{r}=identity$ ,
(2) $\tilde{\sigma}$ is measure preserving, and
(3) $\tilde{\sigma}$ commutes with the shift.
PROOF. Let $\sigma$ be as in Definition 11. Define a mapping $\tilde{\sigma}$ : $ W(\theta)\rightarrow W(\theta\rangle$

by $\overline{\sigma}(\alpha)(i)=\sigma(\alpha(i))$ , where $\alpha eW(\theta)$ and $i\in I$. Then (1) and (3) are clear. Let
$\mu$ be the unique T-invariant probability measure on $W(\theta)$ . For $\xi e(N_{r})^{*}$ and
$a\in(N_{r})^{*}\cup(N_{r})^{I}$ such that $l(\xi)\leqq l(\alpha)$ , let

$R(\xi;\alpha)=$

for $i=0,1,$ $\cdots$ , $l(\xi)-1$ }) ... if $a\in(N_{r})^{I}$ .
Note that $R(\xi:\alpha)$ exists and is equal to $\mu(\Gamma_{\xi})$ for any $\xi\in(N_{r})^{*}$ and $a\in(N_{r})^{jr}$

since $(W(\theta), T)$ is a strictly ergodic system ([7]), where
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$\Gamma_{\xi}=$ { $\beta\in W(\theta);\beta(i)=\xi(i)$ for $i=0,1,$ $\cdots$ , 1 $(\xi)-1$ }.

For any $n\in N_{r}$ , it holds that

$\sum_{m\in N,}R(m;\theta(n))=1$ ,

and

$\sum_{m\in N_{r}}R(n:\theta(m))=\sum_{\iota=0}^{r-1}R(n:\theta(\sigma^{i}(0)))$

$=\sum_{i=0}^{r-1}R(\sigma^{-i}(n):\theta(0))$

$=\sum_{m\subset N_{\gamma}}R(m:\theta(0))$

$=1$ .
Therefore, the matrix $A$ defined by

$A=\left\{\begin{array}{lll}R(1\cdot.\theta(0)) & \cdots & R(r-1\cdot.\theta(0))\\R(1.\theta(1)) & \cdots & R(r-1.\theta(1))\\\vdots & & \vdots\\ R(1.\theta(r-1)) & \cdots & R(r-1.\cdot\theta(r-1))\end{array}\right\}$

is a doubly stochastic matrix. Let $v=$ $(\mu(\Gamma_{0}), \mu(\Gamma_{1}),$ $\cdots$ , $\mu(\Gamma_{r-1}))$ be a row
vector. Since for any $\alpha\in W(\theta)$ and ne $N_{r}$ , it holds that $\mu(\Gamma_{n})=R(n:\alpha)$

$=R(n:\theta(\alpha)),$ $vA=v$ . On the other hand, $(\frac{1}{r},$ $\frac{1}{r}$ , $\cdot$ .. , $\frac{1}{r})A=(\frac{1}{\gamma}$ , $\frac{1}{r}\ldots,$ $\frac{1}{r})$ .
Since $\theta$ satisfies Condition $\#$ , there exists $k$ such that all components of $A^{k}$

are positive. This implies that 1 is a simple proper value of $A$ . Therefore,

$v=(\div,$ $\div,$ $\cdots$ $\frac{1}{r})$ . That is, $\mu(\Gamma_{n})=\frac{1}{r}$ for any $n\in N_{r}$ . Let $\xi e(N_{r})^{*}$ .
Define $\overline{\sigma}(\xi)\in(N_{r})^{*}$ by $\overline{\sigma}(\xi)(i)=\sigma(\xi(i))$ for $i=0,1$ , $\cdot$ .. , $l(\xi)-1$ . We prove that
$\mu(\Gamma_{\xi})=\mu(\Gamma_{\overline{\sigma}(\xi)})$ . For any real number $\epsilon>0$ , let $k$ be an integer satisfying
$\frac{l(\xi)}{p^{k}}<\epsilon$ . Let $\alpha\in W(\theta)$ . Since $R(n:\alpha)=\frac{1}{r}$ for any $n\in N_{r}$ , it holds that

$\mu(\Gamma_{\xi})=R(\xi:\theta^{k}(\alpha))$

$\geqq\frac{1}{r}\sum_{n\in N_{r}}R(\xi:\theta^{k}(n))-\epsilon$

$=\frac{1}{r}\sum_{n\in N_{r}}R(\xi:\theta^{k}(\sigma^{-1}(n)))-\epsilon$

$=+\sum_{n\subset- N_{\gamma}}R(\overline{\sigma}(\xi):\theta^{k}(n))-\epsilon$

$\geqq R(\overline{\sigma}(\xi):\theta^{k}(\alpha))-2\epsilon$

$=\mu(\Gamma_{\overline{\sigma}(\xi)})-2\epsilon$ .
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Since $\epsilon>0$ is arbitrary, $\mu(\Gamma_{\xi})\geqq\mu(\Gamma_{\overline{\sigma}(\xi)})$ . Similarly we can prove $\mu(\Gamma_{\xi}\rangle$

$\leqq\mu(\Gamma_{\overline{\sigma}_{(\xi)}})$ . Thus $\mu(\Gamma_{\xi})=\mu(\Gamma_{\overline{\sigma}(\xi)})$ and $\tilde{\sigma}$ is measure preserving.
THEOREM 8. Let $\theta\in\Theta$ be continuous. Then $W(\theta)$ has a partially con-

tinuous spectrum.
PROOF. Let $W=W(\theta)$ . Let $\overline{\sigma}$ be as in Lemma 27. Let $L_{2}=L_{2}(W, \mu)_{r}$

where $\mu$ is the unique T-invariant probability measure on $W$ . Let $U$ and $V$

be the unitary operators on $L_{2}$ defined by $(Uf)(\alpha)=f(T\alpha)$ and $(Vf)(\alpha)=f(\tilde{\sigma}(\alpha))_{t}$

where $f\in L_{2}$ and $\alpha\in W$. Then it is clear that $V$ commutes with $U$ . Since any
proper value of $U$ is simple, it is clear that any proper function of $U$ is a
proper function of $V$ . Assume that $U$ has a pure point spectrum. Then $V$

also has a pure point spectrum and any proper function of $V$ is a proper
function of $U$ . For $n\in N_{r}$ , let $\psi(n)(\in N_{r})$ be the smallest non-negative
integer $i$ such that $\sigma^{i}(0)=n$ . Let $\omega$ be any primitive r-th root of 1. Define
$f\in L_{2}$ by $f(\alpha)=\omega^{\psi(\alpha(0))}$ . Then it is clear that $f$ is a proper function of $V$.
But $f$ is not a proper function of $U$ , since $(W, T)$ is not cyclic $(\cdot. B(\theta)\geqq 2)$ .
This contradiction completes the proof.

REMARK 2. It is clear that if $s(\theta)=2$ , then $\theta$ is either discrete or con-
tinuous. In this special case, Theorem 7 and Theorem 8 are obtained in [1].
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