On Bazilevič functions of bounded boundary rotation

By Mamoru Nunokawa

(Received Oct. 4, 1971)

§ 1. Introduction.

Let

$$
\begin{equation*}
f(z)=\left\{\frac{\beta}{1+\alpha^{2}} \int_{0}^{z}(h(\zeta)-\alpha i) \zeta^{\left[-\alpha \beta i /\left(1+\alpha^{2}\right)\right]-1} g(\zeta)^{\beta /\left(1+\alpha^{2}\right)} d \zeta\right\}^{(1+\alpha i) / \beta} \tag{1}
\end{equation*}
$$

where $h(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$ satisfies $\operatorname{Re} h(z)>0$ in $|z|<1, g(z)$ is starlike in $|z|<1$, α is any real number and $\beta>0$.

Bazilevič [1] introduced the above class of functions and showed that each such function is univalent in $|z|<1$.

Let $\alpha=0$ in (1). On differentiating we get

$$
\begin{equation*}
z f^{\prime}(z)=f(z)^{1-\beta} g(z)^{\beta} h(z) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re} h(z)=\operatorname{Re}\left(z f^{\prime}(z) / f(z)^{1-\beta} g(z)^{\beta}\right)>0 . \quad \text { in } \quad|z|<1 \tag{3}
\end{equation*}
$$

Thomas [6] called a function satisfying the condition (3) a Bazilevič function of type β. Let $C(r)$ denote the curve which is the image of the circle $|z|=r<1$ under the mapping $w=f(z), L(r)$ the length of $C(r)$ and $A(r)$ the area enclosed by the curve $C(r)$. Let $M(r)=\max _{|z|=r}|f(z)|$.

Hayman [2] gave an example of a bounded starlike function satisfying

$$
\lim _{r \rightarrow 1} \sup \frac{L(r)}{\log 1 /(1-r)}>0
$$

In [7] Thomas gave the following open problems: Does there exist a starlike function for which

$$
\lim _{r \rightarrow 1} \sup _{\inf } \frac{L(r)}{M(r) \log 1 /(1-r)}>0
$$

or

$$
\lim _{r \rightarrow 1} \sup _{\inf } \frac{L(r)}{\sqrt{A(r)} \log 1 /(1-r)}>0 .
$$

In this paper the author gives some results concerning this and others.

§ 2. On Bazilevič functions of bounded boundary rotation.

Lemma 1. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be regular and univalent in $|z|<1$. If $\phi(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$ is regular and $\operatorname{Re} \phi(z)>0$ in $|z|<1$, then we have

$$
\int_{0}^{r} \int_{0}^{2 \pi}\left|f^{\prime}(z) \phi(z)\right| d \theta d \rho \leqq C \int_{\delta}^{r} \frac{M(\rho)}{1-\rho} d \rho+C
$$

where δ is fixed $0<\delta \leqq \rho \leqq r<1$ and C is an absolute constant.
We can prove this lemma by the same method as in the proof of [5, Theorem 3].

THEOREM 1. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be a Bazilevič function of type β and $\arg f(z)$ be a function of bounded rotation on $|z|=r<1$. Let

$$
M(r)=O\left((1-r)^{-\alpha}(\log 1 /(1-r))^{2}\right) \quad \text { as } \quad r \rightarrow 1 \quad \text { for } \quad 0<\alpha \leqq 2 .
$$

Then we have

$$
L(r)=O\left((1-r)^{-\alpha}(\log 1 /(1-r))^{\lambda}\right) \quad \text { as } \quad r \rightarrow 1 \quad \text { for } \quad 0<\alpha \leqq 2 .
$$

Proof. Applying the same method as in the proof of [3, Theorem 1], we have also that

$$
\begin{aligned}
L(r)= & \int_{0}^{2 \pi}\left|z f^{\prime}(z)\right| d \theta \\
= & \int_{0}^{2 \pi}\left|f(z)^{1-\beta} g(z)^{\beta} h(z)\right| d \theta \\
\leqq & \int_{0}^{r} \int_{0}^{2 \pi}\left|(1-\beta) f^{\prime}(z) f(z)^{-\beta} g(z)^{\beta} h(z)\right| d \theta d \rho \\
& +\int_{0}^{r} \int_{0}^{2 \pi}\left|f(z)^{1-\beta} \beta g^{\prime}(z) g(z)^{\beta-1} h(z)\right| d \theta d \rho \\
& +\int_{0}^{r} \int_{0}^{2 \pi}\left|f(z)^{1-\beta} g(z)^{\beta} h^{\prime}(z)\right| d \theta d \rho \\
= & J_{1}+J_{2}+J_{3} \quad \text { say } .
\end{aligned}
$$

Then we have

$$
\begin{equation*}
J_{1} \leqq 2 \pi|1-\beta| M(r)=O\left((1-r)^{-\alpha}(\log 1 /(1-r))^{\lambda}\right) \quad \text { as } \quad r \rightarrow 1 \tag{4}
\end{equation*}
$$

and

$$
J_{2}=|\beta| \int_{0}^{r} \int_{0}^{2 \pi}\left|f^{\prime}(z) \phi(z)\right| d \theta d \rho
$$

where $\phi(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$ is regular and $\operatorname{Re} \phi(z)>0$ in $|z|<1$.
Hence we have by Lemma 1
(5)

$$
\begin{aligned}
J_{2} & \leqq C \int_{\delta}^{r} \frac{M(\rho)}{1-\rho} d \rho+C \\
& \leqq C \int_{\delta}^{r} \frac{1}{(1-\rho)^{\alpha+1}}(\log 1 /(1-\rho))^{2} d \rho+C \\
& \leqq C \frac{1}{\alpha}(1-r)^{-\alpha}(\log 1 /(1-r))^{2}+C
\end{aligned}
$$

where C is an absolute constant, not necessarily the same each time.
Therefore we have

$$
J_{2}=O\left((1-r)^{-\alpha}(\log 1 /(1-r))^{\lambda}\right) \quad \text { as } \quad r \rightarrow 1
$$

Now we have also
(6)

$$
\begin{aligned}
J_{3} & =2 \pi\{|1-\beta| C+|\beta|\} \int_{0}^{r} \frac{M(\rho)}{1-\rho} d \rho \\
& =O\left((1-r)^{-\alpha}(\log 1 /(1-r))^{2}\right) \text { as } \quad r \rightarrow 1 .
\end{aligned}
$$

From (4), (5) and (6) we obtain

$$
L(r)=O\left((1-r)^{-\alpha}(\log 1 /(1-r))^{\lambda}\right) \quad \text { as } \quad r \rightarrow 1 \quad \text { for } \quad 0<\alpha \leqq 2 .
$$

Corollary 1. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be a Bazilevič function of type β and $\arg f(z)$ be a function of bounded boundary rotation on $|z|=r<1$. If

$$
\begin{equation*}
M(r)=O\left((1-r)^{-\alpha}(\log 1 /(1-r))^{2}\right) \tag{7}
\end{equation*}
$$

as $r \rightarrow 1$ for $0<\alpha \leqq 2$ and O in (7) can not be replaced by 0 , then there is not any Bazilevič function satisfying the above conditions and

$$
\lim _{r \rightarrow 1} \sup _{\inf } \frac{L(r)}{M(r) \log 1 /(1-r)}>0
$$

Remark. We notice that if $\beta=0$ in (3) we have the class of starlike functions whose boundary rotation is 2π.

Applying the same method as in the proof of [5, Theorem 2] we can prove the following result:

THEOREM 2. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be regular and close-to-convex in $|z|<1$. Let

$$
M(r)=O\left((1-r)^{-\alpha}(\log 1 /(1-r))^{2}\right) \quad \text { as } \quad r \rightarrow 1 \quad \text { for } \quad 0<\alpha \leqq 2 .
$$

Then we have

$$
L(r)=O\left((1-r)^{-\alpha}(\log 1 /(1-r))^{2}\right) \quad \text { as } \quad r \rightarrow 1
$$

and therefore

$$
\lim _{r \rightarrow 1} \sup _{\inf } \frac{L(r)}{M(r) \log 1 /(1-r)}=0
$$

In [4, Theorem 1] the author got the following result:
THEOREM 3. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be regular and convex in $|z|<1$. Then we have

$$
L(r)=O(A(r) \log 1 /(1-r))^{1 / 2} \quad \text { as } \quad r \rightarrow 1 .
$$

On the other hand, the author gave a question whether there is a positive constant α and a convex function $f(z)$ for which

$$
\begin{equation*}
L(r) \geqq \alpha(A(r) \log 1 /(1-r))^{1 / 2} \quad \text { as } \quad r \rightarrow 1 \tag{8}
\end{equation*}
$$

I should like to thank Professor P. J. Eenigenburg (Western Michigan University) for pointing out to me a extremal function $f(z)=\log 1 /(1-z)$ which is convex in $|z|<1$ and satisfies the condition (8).

Gunma University

References

[1] I. E. Bazilevič, On a case of integrability in quadratures of the Loewner-Kufarev equation, Mat. Sb., 37 (1955), 471-476.
[2] W.K. Hayman, On functions with positive real part, J. London Math. Soc., 36 (1961), 35-48.
[3] M. Nunokawa, On Bazilevič and convex functions, Trans. Amer. Math. Soc., 143 (1969), 337-341.
[4] M. Nunokawa, A note on convex and Bazilevič functions, Proc. Amer. Math. Soc., 24 (1970), 332-335.
[5] D.K. Thomas, On starlike and close-to-convex univalent functions, J. London Math. Soc., 42 (1967), 427-435.
[6] D. K. Thomas, A note on starlike functions, J. London Math. Soc., 43 (1968), 703-706.
[7] D. K. Thomas, On Bazilevič functions, Trans. Amer. Math. Soc., 132 (1968), 353-361.

