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For a submanifold M in a Riemannian manifold M, the minimal index
(m-index) at a point of M is by definition the dimension of the linear space
of all the 2nd fundamental forms with vanishing trace. The geodesic co-
dimension (g-codim) of M in M is defined by the minimum of codimensions of
M in totally geodesic submanifolds of M containing M.

In and [9], the author investigated minimal submanifolds with m-index
2 everywhere in Riemannian manifolds of constant curvature and gave some
typical examples of such submanifolds with g-codim 3 and g-codim 4 in the
space forms of Euclidean, elliptic and hyperbolic types. Each example is the
locus of points on a moving totally geodesic submanifold intersecting ortho-
gonally a surface at a point. This surface is called the base surface. This
situation is quite analogous to the case of the right helicoid in E® generated
by a moving straight line along a base helix.

When the ambient space is Euclidean, the base surface of the example
in case of g-codim 4 is a minimal surface in a 6-sphere, whose equations are
analogous to those of the so-called Veronese surface which is a minimal sur-
face in a 4-sphere with m-index 2 and g-codim 2. In [2], T. Itoh gave a
minimal surface of the same sort in an 8-sphere. '

In the present paper, the author will give some examples of minimal
submanifolds with m-index 2 and g-codim of any integer =2 in the space
forms of Euclidean, elliptic and hyperbolic types. The base surfaces cor-
responding to the minimal submanifolds with m-index 2 and even geodesic
codimension in Euclidean spaces will be called generalized Veronese surfaces.

§1. Preliminaries

Let M= M" be an n-dimensional submanifold of an (n4-v)-dimensional
Riemannian manifold M= M™* of constant curvature é. Let @, @ 3= —@pa,
A,B=1, 2, ---, n+v, be the basic and connection forms of M on the orthonormal
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frame bundle F(M) which satisfy the structure equations:
(1.1) d54=2643/\6)'3, d543=254¢A505—c’a_)AAa_)B.
B 4

Let B be the subbundle of F(M) over M composed of b=(x, e, -, Cps)
e F(M) such that (x, e,, -+, e,) € F(M), where F(M) is the orthonormal frame
bundle of M with the Riemannian metric induced from M. Then deleting
the bars of @w,, @, on B, we have

(1-2) w,=0, Wiq= Zj Aaijwj ’ Aaij = Aaji ’

a=n+1,--,n+v; 1,;j=1,2,--,n.
At x = M, we denote the normal space to M,=T,M in M,=T,M by N,.
In the following, we suppose that M is minimal and of m-index 2 in M

at each point. Then, N, is decomposed as
N,= N;+0O;, N;10;,

where O/ is the linear set of normal vectors such that the corresponding 2nd
fundamental forms vanish. By means of the above assumption, we have
dim N} =2. ’

Let B, be the set of 4 such that e,., ¢,., € N} which is a principal bundle
over M of structure group O(n)XO0(2)XO(v—2). Setting A,=(Aa:,), on B, we
have

1.3 Aprs=Ansa= -+ = A =0.
Since we have?
W11, = Wp1p,3=0 (mod w,, -, w,) on B,
for B> n-+2, we define a bilinear mapping ¢’: M, X N;— O, by
a4 (X, V)= % V, ens 1@y, g(X )t Cpao®nag,f(X) D g

¢’ is called the lst torsion operator of M in M.»

Now, let I, be the space of relative nullity of M in M at x, which is by
definition the subspace of M, spanned by all tangent vectors that are anni-
hilated simultaneously by all the 2nd fundamental forms of M at x. dim]/,
is called the index of relative nullity of M at x. We have easily

LEMMA 1. If M is minimal and of m-index 2 at a point, then the index of
relative nullity of M is at most n—2 there.

In the above mentioned case, we say that M has maximal relative nullity
if its index of relative nullity is n—2 everywhere. Then, we have®

1) [Lemma 1 in [8].
2) §1in 9]

3) Lemmas 1, 2 and Theorem 1 in [8].
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THEOREM A. If M is minimal and of m-index 2 and ¢’'+ 0 everywhere,
then M has maximal relative nullity and 1, is the kernel of ¢} for any V& NJ,
V#0, where ¢y (X)=¢’(X, V), and ¢} has the same image.

Supposing that M has maximal relative nullity, we decompose M, as
follows:

M, =w,+1;, w, 11z,

dimw,=2, diml,=n—2,
and can choose b = B, such that ¢, ¢, =w, and ¢, ---, ¢, =, and
WDy,na1 = Aw,, Wo,n41 = —Aw,, Wyyniy =10 ,
(1.5)
Winse = U@y, Wopiy= 01, Drz4=0,

r=3,4,--,n; A#=0, p+0.

We denote the set of such frames b B, by B/, which is a smooth sub-
manifold® of B, in general. If we can choose smooth local fields e,s;, @nte
of N'=\U Nj such that {A,s;, Ans.>=0, M is called nicely of m-index 2. If
M is nicely of m-index 2, we may consider B is smooth. Then, on B] we
have

(1'6) c"11“‘—7:(1)21' = (pr+1QT)(w1+lw2) ’ 2 <r é n 'G)
The vector fields P=3}p,e¢, and Q =3}q,e, of M are called the principal and

subprincipal asymptotic vector fields, respectively.
THEOREM B. Let M be minimal and nicely of m-index 2 in M of constant
curvature ¢. If M has maximal relative nullity, then we have:
) The distribution 1=\J\, is completely integrable and its integral sub-
manifolds are totally geodesic in M.
(2) The distribution w=\Jw, is completely integrable if and only if Q=0.
(B When Q=0, the integral surfaces of w are totally umbilic in M.
(4) When P+0 and Q=0, the integral curves of the vector field P are
geodesics in M.
Under the conditions of Theorem B and Q =0, on B we have”

a7 {dlog A—< P, dx>—1Qw,,—0d )} N (w;+iw,) =0,
(1.8) {do+i(1—0%d,} N\ (0, +1iwy) =0,

4) Lemmad in [B]

5) A singular frame b of the smoothness of B{ is over such a point xM that
E1An41+E2Anys, E1+83=1, describes a circle in the space S, of all symmetric matrixes
of order n.

6) in [8].

7) Lemma 6 in [8].
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1.9) dw,=—{|P|*+—2—p*}w, A\ w,,

L.10) do,=— ;2 (2XE—IFI'= |Gl @, A w,

>n+ >n+

where 0=/, @,=®n41,ne: and F= 3 frey and G= 3 grer are defined
7 2 7 2

through means of the fact® Aw,.,r+ipw,., can be written on Bj as
1.11) 2wn+1,7’+i#wn-:-2,7’ = (fr+igr)(w,—iw,), r>n+2.

LEMMA 2. Under the conditions of Theorem B and Q=0, ¢+ 0 implies
P=+0.
PrOOF. If P=0 on a neighborhood of M, then (1.6) implies

we, =0, a=1,2, r=3,---,n on Bj,

from which we have
dwsr = —Cwa N @, =0 .

Hence it must be ¢ =0. Q.E.D.

According to Lemmas 7, 8, 9, 10 and Theorem 3 in [8], we have the
following theorem which plays a fundamental role in this paper. '

THEOREM C. Let M™ be an n-dimensional maximal® minimal submanifold
in an (n+v)-dimensional space form M™ (of constant curvature &) which is
nicely of m-index 2 and has maximal relative nullity and Q=0, then it is a
locus of (n—2)-dimensional totally geodesic subspaces L™ *(y) in M™ through
points vy of a base surface W? lying in either a Riemannian hypersphere in
M™> with center z, such that

(i) L™ %(y) intersects orthogonally with W? at y and contains the geodesic

radius from z, to v,
(ii) The (n—3)-dimensional tangent spaces to the intersection of L™ *(y)
and the hypersphere at y are parallel along W?* in M™,

or an (n+2)-dimensional linear space in M™> = E™" such that M" is (n—2)-
dimensionally cylindrical and L"*(y) are its generators intersecting orthogonally
W? at y.

REMARK. W? in this theorem is an integral surface of the distribution
w and the geodesic radius from z, to y in the first case is the integral curve
of P. In this case, denoting the length measured from z, to ¥ along the
geodesic ray starting z, by v, we have

8 (T2 in [8]

*) “maximal” means here that M™ is not a submanifold of any other n-dimensional
minimal submanifold of Mn"+v,
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VE cotViv c>0),
1.12) p=|Pl=4 1/v €=0),
v =¢coth ~/—Cv (£<0).

§2. Minimal submanifolds with m-index 2 in space forms.

In the following, we shall investigate M™ in M"* as in Theorem C and
use the notations in §1. ;

First, for an integer m =1, we suppose that the normal vector bundle
N=VUN, over M=M" has the following smooth orthogonal decomposition
such that
2.1 N=N+N4 ... L N®™ L Om

where
NO®=UNG® dim N =2,

Ny= N)+ -« +N@™ L0
and

(2.2) DyVe (N¢D4(N®LT(NSYY, Ve [(N®), Xel(T(M)),
t=1,2 -, m—1,

where D is the covariant differential operator of M and I" denotes the set of
smooth cross sections of a smooth vector bundle and

NO=UN®, N@=mu,

and the component of DV on N®* in (2.2) spans N&*’ at each point x = M.
Under the above assumption, for t=1, 2, ---, m—1, the ¢-th torsion operator
¢® as a tensor field on M of type T(M)RQ NPRQ NP js defined by

(23)  ¢O(X, V)= N%V.component of DV, XeI'(T(M)), Vel (N®),.

Now, we shall show that we can define the m-th torsion operator ¢™
for M. Let B, be the set of frames b=(x, e,, &, -+, €,4,) such that

’. . ()
€nt1y €nie € Nz‘ 3 0005 €ngat-1y €paat € Nx ’

which is smooth in B by the above assumption.

From now on, we use the following convention about- indices: Setting
I,={1, 2}, and I,={n+2t—1, n+2t},t=1, 2, ---, m, if we write a,, a, I,, then
a, < a,. ,

By means of (2.2), on B,;,; we have

@4 Wap=0, ael, B>n+2+2, ¢

i

1,2, -, m—1.
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Using the matrices

Wayp Way8
(2.5) -QL:< e ' 2), a, a, < 1I;; 131, B‘zelbi-lr
Wazpy Way s,
t=0,1,2,---,m—1,
and putting

(26) B;:Bthiy t:1)27 e, m,

we prove the following
LEMMA 3. There exist complex valued (1, 2)-matrix fields ¥i= Wy, ¥i)
on B; satisfying the identities

2.7,) .2,=V,,(w,—iw,) on B,,, t=1,2--,m—1.
PROOF. If we put

(2.8) U .=Q, iy on Bj,

(2.9) U, =(for+18ar; fantiLas) s a, a,1, on Bj,

then (2.7,) is identical with on B;.
Now, inductively we suppose (2.7,) for t<s, s<m—1. Since for aecl,,
y > n+2(s+1)
wr=0 on B,.,,
we have
AdWar = Wapy N\ O+ @apy N\ Opyr B B: € Isay,s

which can be written as

w
Qs/\( ‘81T>=0 On BS"'I'

@Wgar

Hence, by (2.7,) we have

) ®
.o, n ( A ) =T, (0,—iw,) /\< A )

Wgr Wgor

(OF:1%4

=) A@—iop=0  on B,

(!)lgzr
By E. Cartan’s lemma, we can find ¥4, =@ 41,1, ¥s41,,) On By such that
V,412s81 = ¥ iap(0,—iw,) on By,,.

Thus, we have proved (2.7), t=1, 2, ---, m—1, by induction. Q.E.D.
In the same way as in the proof of for By, B € In, v>n+2m,
we can put

wWa,r .
2.10) (") =pislw—iw)  on Bi,

@Wgor
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where ¥ .., are functions on By,
By means of these ¥,, we can define the following vector fields F;, G,
el'(N®), t=1,2, ---,m, and Fpy,, Gpe, s I'(O™) by

(2-11t) wtlerl_'_w:gerz = Ft+ZGt y Tlv r2 & It
(2.12) > wm-l-l,?’e?' = Frp1t1iGna
7onr2m

and call the pair (F}, G,) the t-th pair of normal vector fields associated with
M™ in M™+,

Now, we define the m-th torsion operator ¢ as a tensor field on M of
type TIM)QN™ R O™ defined by
2.13) P™(X, V)=0"-component of DV,

Xe I'(TM)), Ve '(N™).,

LEMMA 4. T ,,/W,, + real for t=1,2,---, m and the t-th torsion operator
PPX, V), XM, Ve N®, has the same image for V=+0 at each point x, for
t=1,2,--,m.

PrOOF. For t=1,7,,/¥,,=iu/2+ real everywhere.

By induction, it will be sufficient to prove that supposing ¥ ,,/¥ ., # real,
¢ has the property stated in the lemma.

Putting ¥, =a,+1ib,, ¥, =a,+ib,, where a,, b,, a, and b, are real, ¥ /¥ m,

# real is equivalent to
4=a,b,—ab,+ 0.

By means of (2.10), (2.12), we have for B, B, € In

T>ﬂ§2mw‘81rer = ~57{(b2Fm+l—azcm+1)w1+(asz+1+bsz+1>w2} y

(2.14)
> mwﬁzTeT = ”‘"j’ {(b1Fm+1‘“01Gm+1)0)1+(G1Fm+1+b1Gm+1)wz} ,

7>n72
which shows that

wgr =0 (mod w,, w,) on B, for pel,, y>n+2m.
Hence, for any Ve N and X< M,, we have

¢(m)(X’ V) - 2 <V’ eﬁ> wﬁT(X)eT

= = b0, (X) (@0, — 4,0)0(X)} P

A (= 0,000, (X) + B2y — b0 X} G
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where v,=(V,e5,>, v,=<(V,eg,>, B, B € In. This equality shows that for
any fixed Ve N{™, V=0, the set of images ¢™(X, V) is the space spanned by
Fr: and Gpyy.

On the other hand, from the above argument we see that supposing
V,/¥. +real for t <m, the set of images ¢*(X, V) for a fixed Ve NP, V+# 0,
is the space spanned by F.., and G;.,, By the supposition stated at the
beginning of this section, it must be N{*’. Hence, we have

FiayNGisy# 0,
which is equivalent to
U141,2/ Va1, # real. Q.E.D.
By virtue of Lemma 4, if Fpe; A Gne, # 0 everywhere, then we can replace
m by m+1 in the above argument.
LEMMA 5. If Fpui=Gps =0, then the geodesic codimension of M™ is 2m.

If Fpus s AGpy=0 and Fp., or Guny, #+ 0 everywhere, then the geodesic codimen-
sion of M™ is 2m—+1.

PROOF. If F,.,=Gnre; =0, then by (2.14) we have

ws;=0 on B, for Bel,, y>n+2m,
we have also

wi?':()y wer:() on B;nv
for i=1,2,---,n; a=n+l,-,n4+2m—2, y>nt+2m.

These equations show that there exists an (n+2m)-dimensional totally geodesic
submanifold M™*™c M™ containing M™

If Froea AN Gprei=0 and F.., or G,.,#+ 0 everywhere, then we can consider
the set of frames b=(x, e,, -*, €p12ms.) € B, such that

Fosy=fepsomer, Gms1= ZCnszmar s
which we denote by B,.,. Then, on B, = B,.,\ Bl we have

wr=20, for acl,, y>n+2m+1,
from which we get

AdWar = Wa,nsome1 N\ Onazmar,r =0.

Using the notations in the proof of (2.14) implies

Oagmsamis = (0o~ 0, )0, +(as /b, )}

Way,nd2me1 — —_}1 Al f—a,g)w,+(a, f+b,8)w,},

from which we get
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’

1
wa1,n+2m+1 A wag,n+2m+1 - - A (f2+g2)w1 A (O + 0 on Bm-XA-l .

Hence, it must be
Wypsvoms1,r = 0 on B;n»’.-l for 7 > n+2m+l .
Therefore, by an analogous argument to the first case, we see that tl_xere
exists an (n-+2m--1)-dimensional totally geodesic submanifold M™+*™*! in M™+
containing M™. Q.E.D.
By virtue of these lemmas, we can conclude the following
THEOREM 1. Let M™ be an n-dimensional submanifold in an (n-4v)-
dimensional space form M™ asin Theorem C. Then, the normal vector bundle
N over M™ in M™> can be decomposed orthogonally and smoothly in general
as follows:
(i) If the geodesic codimension of M™ in M™" is even, say 2m, then
N____ N/+N//+ +N(m)+0(m);
(ii) If the geodesic codimension of M™ in M™ is odd, say 2m-+1, then
N: N/+N/l+ +N(7n+1)_|_0(7n+1) ,

where the fibre NP of N® is of 2-dimension for t=1, 2, ---, m and 1-dimension
Jor t=m+1, and for X I'(T(M™)) and Ve ['(ND)

D Ve F(N“-2)+ [(N®)+ [ (N¢)
Jor t=1, .-, m—1 in case (i) and t=1, ---, m in case (ii) and
Dy Ve ['(N“ D4 [(N®)
Sor t=m in case (i) and for t=m+1 in case (ii),
here N means w=\Jw,. Furthermore,
N AN+ oo =N™ oy N 4N/ oo 4 NmsD

are the normal vector bundles of M™ in the totally geodesic submanifolds of
the least dimensions in M™ containing M.

In the following, we call M in S-type or T-type according to
g-codim M™=even or odd.

In the rest of this section, we shall prepare some formulas on the cur-
vature of the normal vector bundles treated ir. this section. Putting

(2.15) é\)t = Wpiag s a;, o, & It ’
the curvature form of the vector bundle N is given by

(216) do, = — 2 Wy N\ Wpay— » W8N\ Wayp «
Belp_y Beliya

On the other hand, we put
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(2.17) det (gi) = w-u@"tz—w'czwu =—2id,,

then 4, is real and the area with sign of the paralellogram made by the #-th
pair of normal vectors (F,, G,). By we have

1
(2.18) p§+foalﬁ N Wapp= 4 T 11l A @, ,
where
(2.19) 1T =T * 2 = Fl*+IIGl?  for t=1,2,--,m
and

| neall®*=0  in case (i),
1 sl =1 ¥ s | 2 = | Froaa I+ | Graall2 - in case (ii)

of [Theorem 1. Analogously, we have
4.

(2.20) pefi':'_lwﬁm N Wgay = ’(Atvl)z' ||§Vc-1l|2w1 N, .
Using (2.20), can be written as
@:21) doc=—{ 2 1%, = 1T} 0 Aw, on Ba,

for t=12,---,m,
where we put
r.=Q,r1) and 4,=1.

coincides with (1.10) for ¢t=1.
Finally, we compute the exterior derivative of £2,. By means of the
structure equations and the relations above, we have easily

(2.22) dQ,= o, N\ J2,+2:J N\ &+, on B, for t=0,1, -, m—1,

where

and &,= w,,, we have also
(2.23) dw,—iw,) = (iw;;,—< P, dxD) N\ (0,—1iw,) on B,
by and @=0. From (2.7,), we get
dU A 2,40 ,dR2, = d¥ 13, N\ (0;—10,)+ ¥ 1y d( 0, —iw,) .
Substituting (2.22) and in the above equality, we have
2.29) {d¥ 4T Jo,} N 2.
= {d¥ 14, +V 10,01, — P, dx D)+ 14, JB 144} A (@3—iw,) on By,
for t=0,1, -, m—1.
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Furthermore, we have

(2.25) Q,= 97;,2 _wt,2)< wt—%l(wl_iwz))

1
24, (_wm wt,l ¥V,ilw,+1w,)
from (2.7;,) and then

2.26) V0= oy (I T+ T (Gl i

y}_"t—ld(wl"}_ iwz) '

§3. Minimal submanifolds with m-index 2 of S-type and 7-type.

In this section, we shall continue the investigation of M=M" in M=M"**
as in [Theorem 1|, supposing v=2m or 2m-1 according to the case (i) or (ii).

Now, we introduce the following three conditions fer a base surface W?
of M™ which is an integral surface of the distribution v:

() ¥,,/¥,,=c, is constant on W?* for t=1, ---, m.

(B W? is of constant curvature c.

(r) @,#0 for t=1,2,---,m.

THEOREM 2. Let M™ be a submanifold of M"™ as stated above. If a base
surface W? of M™ satisfies conditions (a), (B) and (y), then we can find a sub-
manifold Bl, C B, over W? on which

(i) ei=1ior —i for t=1,2,---,m;

(ii) @, is constant for t=1,2,---,m+1;

(i) (F., G:>=0 for t=1,2,---,m;

(iv) @,=0G+1)o.,w,,, where g,=c,/1, for t=1,2,---,m;
and

(v) ¢>0 when M™ is of S-type and ¢c=0 when M™" is of T-type.

PrROOF. Since ¥,=(4, iy), ¢;=ip/2=1e. Therefore o=o0, is constant
and so from (1.8) we get

(1_‘0'2)(2)1 VAN (Ct)l—l—in) =0,

hence
3.1 A—»®,=0 on W?2.
By means of (7), it must be 1—0*=0, i.e.
(3.2 =1 or -1,
i.e. ¢,=1 or —t.
Since we have
dwy, = —cw; N\ W, on W?
by means of (), we get from and
3.3) Ayt =22=|P|*+i—c.

By Theorem C and its remark, ||P|| is constant on W2 Hence, by
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and [33), 2 and z i.e. ¥, must be constant. Then, (1.7) becomes

Qw,,—0d) N\ (@, +iw,) =0 on W2,
hence we get

3.49) ®,=20,0,,, g,=a0.
Now, we take s<m and suppose that (i), (ii), (iii) and (iv) are true for
t <s. Then, putting
(3.5 U, =a(Q,c), a, = const., t<s,
we get from (2.24) the equality
U, Jos A2 1 =@V A1V 0,+ T Jo) N (0,—iw,) .
becomes for t=s—1

ws—l]QS—I:: —1 |Z;_j‘2 Ws(wl—iwz)-

By means of [(3.5) and [(2.17), we have

gs—1|as—1|2:As—1 ’

and hence
VU, J2:..= —10,, ¥ (0,—1iw,) .

Using these, we obtain from the above equality
{dws‘l‘iqfs(wxz‘}‘as—1Qs—1)+ws]d)s} N(w,—iw,) =0.

Since @&;.,=sos;_,w,, by the assumption, we obtain

(3.6) {dV A i+ DV 0, +¥ . Jds} N (0,—iw,) =0.
On the other hand, from and (B) we get
— As—l 2 __ 1 2
SO 1= d,_,)? ”ws—zll d,_, 1%l
2
= Usl—cllls_iz:l-jl zlas~2|2_ as—1l](.ls—1|2 stllzy
and hence
_ 2fo |@s1]*
3.7 1P = 1@ |*{2 507 =),

which shows that |¥,]| is constant on W2 Since
ws :(wsn wsz) = wn(ly Cs),
can be written in components as

{dlog ¥s, +i(s+1Dw,— 05} N (0,—1iw,) =0,

{dlog ¥ortilsH Dot 6.} Alw—iw) =0,
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from which we get
1N . .
<cs+ —Cs~) @ N {w;—1tw,) =0.
By the condition (), we get
cs+~c]‘—~:0, i.e. cs=1 or —I,

hence ;=1 or —1. By means of the above consideration, we may put
3.8 WS,I = asew's y ws,z = iaswsg ’
where a; is a positive real constant. Then can be written as

(39) agz laS_IIZ{_lgsr—_le _ ;C}

las—l®
and is equivalent to

{(s+ VN, +dbs—00,} N (w,—1w,) =0,
hence
s = 03{(S+1)w;2+d03} .
Now, if we replace ez, g, 8i, B: € I, with
el =ep, cos O;+eg,8in b, e}, = —ep, sin G;+eg, cos b,
then we get
aFf =Def, - eg,= @;+db; .

Therefore, if we use only such frames, we may assume that ¢,=0, and then
we have

3.10) @ = (s+1osw,

and

3.1 U.=al,io,),

which is constant on W2 Furthermore, we have
Fy=aseg, , Gs=o0a.ep,

and so

(3.12) {Fs, G =0.

From the above argument, we see that there is a submanifold BZ of B,
over W? on which

(3.13) ¥,=a(Q,io), a>0, o,==+1 for t=12,--,m;
9 1\t
(3.14) ai=ai{( g7 ) —5 ¢} for t=2,3, -, m

and (iii) and (iv) are true, where we put a,=1.
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Finally we consider (ii) for t=m+1 and (v). First, we suppose that M*
is of S-type. Then, ¥ ., =0. for t=m implies

_ 2 am \?
(3.15) C"m+1( -

Ap-1
hence ¢ > 0.
Second, we suppose that M" is of T-type, then becomes on B?

am(wa17'+iamwaz7’) == wm+1(w1_iw2) ’

where a,, @, € In, y=n+2m+1 and ¥4 =¥ sy, from which we get by
exterior derivation

(3.16) {dV a1+ s (@1 +0ndm)} A (@,—iw,) =0.
On the other hand, from for t=m, we have

@17 1@ ol = e (2( 2= ) —m+1)c}

which is for s=m. Therefore |¥,.,| is constant on BZ. Hencelwe
can put

(3.18) Va1 = Apeie*?, Ame1 >0, Gme, = constant
and then substituting this into |(3.16) we have
do+w;,+0,d0,=0.

Since @, =(m+1)o,w,,, this equality becomes

3.19) do+(m+2)w, =0 on B..
Therefore it must be dw,, =0, hence we get
(3.20) c=0. Q.E.D.

§4. The Frenet formulas of W2 of S-type.

In this section, we shall investigate W?2 in in detail, in the
case that M™ is of S-type.
By means of we may suppose that

“.1) c=1,
in the following. Then, putting

_a \ -
(4.2) (md —=b,, for t=2,3, - ,m,
3.14) and [3.15) can be written as

be=b,_y—-" t=2,3, -, m

2 ’
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and
_ m+1
bp = 5 -
Hence we have
4.3) b, = (m—t+1{4<m+f+2) o t=1,2, -, m.

On the other hand, from [(1.9), (1.10), (3.4) and (4.1} we have
1=|P|*+c—22°

and
mr g
since [[FlI°+G,lI* =¥ ,[|*=2a3. Using 2*=a} and for t=2, we get easily
(4.4) A= _W.(’liiﬁ_) ,
and
(4.5) |Pl2+¢ = L’Eﬂ%(ﬂj;zl .

Since (2.7;) can be written by as

A, io)$: = ’\/bt-:-l A, i)W, —1w,),
we have

(4 6) waqﬂ;[ = '\/bt-l-l Wy, walﬁz = at-!-l'\/bt-H @, ,
wazﬁl - _at'\/bt-Fl @, , wa’zﬂz = o'to't-!-l'\/bt-l-‘t @y,
A&y, azelt; 181’ 1326[&-!-1; t:]-y 2)"':m—l-

Now, we construct the Frenet formulas for W2 On B, we have
~ 3 . . n -
D(e,+ie;) = —1(e;+ie)wy,+ 2(0)17'_’_10)21‘)81‘

+ AW 8y YWy — 1AW I, 0y
= —i(e,+1e)w,+ Plw,+iw,)+ A(epy+10€,0.)(w;—1iw,)
by i e.
@47 Dleytie) = —i(e;+ie)ws,+ Plwy+iwy)+A(ens1+i018n10) (@ —iw,) .

By | Pl is constant on W2 If P+#0, we can use frames be& Bf such
that

4.8) P=pe,.
Then we have easily
(4.9) D-ea = —p(e,w;+¢iw,) .
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Therefore, in general we have
4.10) DP = —p(e,w,+e,0,) .
Analogously, using we have
4.11) Doy +i0:e05) = —V b (er,+10:_ 187, Y, +iw,)—i0,(€ oy +10,24,) G,
+ vV iy (s, +10,4,108) (0, —iw,) ,

for aj,a,€1l,; By, BeELivr; 7v 7261y, t=1,2,--, m—1
and

(412) E(ea1+i0meu2) == _\/b;;(eh—*"iom— 1872)(w1+iw2)—i0m(ea1+iamen'g)é)m ’
for a,a,€ln, 1, 7.€In .
Now, let S? be a unit sphere with the line element

2 __ 4dzdz
4.13) ds =tz

with respect to the complex coordinate z and ¥, w¥ and w¥ the basic and
connection forms respectively given by

. 2dz
* * __
4.14) of +10F = 14zz
Zdz—zdz
(4.15) wl=1" 142z

Since W? is locally isometric to S?% we may regard z as a local isothermal

coordinate of W2 and then we can put
0, +Hiw, = e Y(wFt+iwf), W, = wk+do .

If we put
(4'16) St = ei(t+1)g(ea1+i0tea2) y
Where 24T aZG It; t—:O, 1’ e, M 10: {1’ 2}! 00:1, then by (IV) Of
4.7, [(4.10), (4.11) and (4.12) can be written as follows:
De,= ~$o(zdz —zdz) +- %1 Pdz+ 2;{[)‘ £,dz,

Dt = —2-vbitudz+ 2 £ (ade—zdd+-EY gz,

~ 2v/b,

4.17) ¢ Dé=— "~ -&iadzt t“ -&,(Zdz—2zdz) +- 2‘/1"*‘ -&40d2

Dgn=— 2\/bm Epdz+ T -'Em(zdz zd3),

| DP=— P (dztt,a2),
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where
(4.18) h=1+zz.

We have also for the moving point x of W?
(4.19) dx=-p Gdz+&d7).

and (4.17) constitute the Frenet formulas of W>

REMARK. Now, we shall give a remark on the conditions in
As is easily seen, the condition (y) out of them is a little artificial from the
differential geometrical point of view, because @, is the connection form of
the vector bundle N over M™ and so &, 0 has, in general, no intrinsic
meaning. But, in the case of S-type, we can replace (y) by the intrinsic
condition :

¢ dao,+ 0 for t=1,2, -+, m,

in terms of the curvature forms d&; of N,
THEOREM 3. Let M™ be a minimal submanifold of M™*™ with g-codim 2m
as in Theorem C. If a base surface W?* of M™ satisfies the conditions:

(@) U,,/U,,=c, is constant on W? for t=1, ---, m,
B W? is of constant curvature ¢+ 0,

then ¢> 0 and supposing c¢=1, there exist m complex normal vector fields &,
-, &, defined on W? such that

(D) { £ -&=6-E=0, t+s,
Et'ét:Oy Et'gtzzy ty S:]-rz! e, m
and
dx= - (Bdz+8ud),
pe, =L h £.(zdz— zdz)—{—  Pdz+- 2‘/ by 4z,
551___2«/2 L edet g (sdi—adn+ DY gz,
an 3 Dé= —--2~’/"‘ Grsdz+ L g (adz—2d2)+ - 2 gz,
Den=—2Ybn g,z ™MLt Gdz—2a2),
pp=— APV (& aztg,a2),
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where z is an isothermal complex coordinate of W?* and h=1+z22, &, =e,+1e,.
PrOOF. It will be sufficient to prove that condition (y) is satisfied, by the
argument in this section. We shall give a brief proof, referring to the proof
of
From (8’) and we have
AR pt=2(A+0®=|P|*+i—c
must be constant on W? hence 2 and g are also constant. From (1.7), we

get

(61=" 0)12-

g

Since ¢# 0, we have d@,+# 0 and so &, # 0 locally. Hence, we get {(3.2) from

and also from (1.7).

Now, take s=m and suppose that (i), (ii), (iii) and (iv) in are
true for t<s. Then, we have and so ||¥,| is constant on W?2 Since
1)1 =1, 1°A+ | cs]®), |¥s,| is non-zero constant. Putting ¥,, = a,e',
becomes

G{+1Dw+dl,} —cdq) A (0, —iwy) =0,

(HG+Dwu+db}+—-0,) Ao —in) =0.

Putting ¢, =re!* (r> 0), from these equalities we get

2rsin ad; = 1+rH{(s+1Dw,,+db,}
and so

o 14
d(l)s = *zrsln& (S+1)d0)12 #0 ,

since sina # 0 by Hence it must be &, 0 locally. On the other
hand, we have

(C.-;+ "cl;’*')@s A (@ —iwy) =0

Cl‘zO. From the above equality, we get
3

&5 =0{(s+Dw,;,+db;} .

The remaining argument is completely analogous to the proof of Theo-
rem 2. Q.E.D.

from and so it must be c,+

§5. Determination of W? of S-type in E™**™,

In this section, we shall give the solutions of the equations in Theo-
rem 3 in the case M"**" = E"**™ Then, we havc
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G p= P = o/ TDnED

by Since the operator D become the ordinary differential operator in
E™™ we get

0n __ m+1
0z no Zemo
hence we can put
&) En=pmn F@,

where F(z) is a holomorphic vector function of z. Substituting in
and using we obtain

©3) nms= VALY P 2Am 1+1)hm F@.

Substituting [(5.2) and [5.3) in [II}, we obtain analogously

V(m+1 1 1 z
(5.4 fnoy= Y OADCMIDE iy JIEL 2 poy

+ PR 16

24/ 2m+1)(m+1)hm1 )
Now, in general, from [I[), we have
__ ko & _ 1.
(5.5) b= — g az( ht;,) for t=m, m—1, -, 1,
and
____,_._ 3

G.6) &y =5 = 2p o (5.

Comparing the forms of the right hand sides of [5.2), [56.3) and [(5.4)] and
using the equalities [5.5), we see \

—m—t zm—t—l Fs-t—-1

=T B, = Z P, e (=i e peio,

, (— )m— hH- F(m—z)]R+’ t=m, m—1, -, 0,
by induction, where [ Jz+ means a linear combination of the vector functions
in the brace with positive constants. Therefore, we have also

Fm+l

6.7 —eo=[ s By = B oy (1P FO, (1 Fomes

R+’

Since ¢, is a real vector field and h = 142Z is real, A™*'¢, is also a real vector
field and its components must be polynomials in Z and also z of order at
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most m-+1 respectively. Using the fact that A* is a polynomial in z and z

and of order ¢t with respect to z and Z respectively and its constant term is
1, for t=1, ---, m+1, we have from

—hmey = [(— )@Y ]ge (mod 2, 2, e, 27

Hence, F™(z) and so F(2) must be polynomial vector functions in z. Ac-
cording to this fact, we can put

6.8) F(z)=A,+Az+ --- +A,2,
where A,, A,, ---, A, are constant complex vectors in C™*2,
Now, for simplicity, setting
5.9 Co=2""'Nbpbpm_, - by , t=0,1, -, m—1
and
Cn=1,
define the following vector functions:
(5.10) H,(z, 2)=C,h™"'&,.
Then, by we have
5.11) Ho,=z{(m+t+2H,—2 O ) O

— — ptms 0 H, >,

0z "h_t—(«mrg-z ) for t= m, m—l, cee 2, 1.

Since
Ho=F@) =X A2,
we have from for t=m ~
(.12) Hpos Z,éo (@m+2—j)z2—j2 1} A, .
Analogously, from for t=m—1 and we get
H,_, =j>=‘30 (@m+2—)@m+1—))z2!
—2j2m+2—7)zz" " +j(—1)Z7*} A; .
Noticing the forms of these equalities, we get by induction

G13)  H.=(n—1) !Jé ((Brr 2T ygmesg (A 2Ty (P gmotigia g

A e (L e,

for t=m, m—1, ---, 0.
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In particular, we have

(5.14) —m :é { é(—us(zmm*_zs‘j)( Dgmeszi=s) 4,
and
(5.15) go=" ¢ pnesHi2, 2.

In these formulas [(5.13), and so on, we have used the convention
(é) =0 for s>j. From [(5.9) and [(4.3), we have easily
(2m+-2)!

©16 €= Nt D012y
Finally, from [5.6) and [(5.14), we get

h* H, -1 m
P=—y- az (g ) =g s {— 1" “( )} -
Thus, noticing [6.11) and [(5.13), we have

_ AN m+Dm+2) (m+1)!
®.17) == vemiy

BB GIEDOm

Now, we search for the condition that P is real. Looking we con-
sider the vector function

Gn(z, Z)__‘ {é( l)s(2m+52—{_1j>(£>zm—s+1Zj—s}A

and find the condition that G, is real. Since

(5.18) Cuz, 2 ="2 (— 1y B Gt 2N (1)area,,

we have

G = -z B 2 (DA,

__m+1 __1\s5m-s + m 2m+2 ] ] i~s A

=X (~Dyzm JZ (= pymr- J( s+1>(5>2 Ayt
by suitable changes of indices. Hence, from the condition G,(z, 2) = G,(z, 2),
we obtain the conditions
(5'19) Aj :<—1>m+1_j~’71'2m+2—j ’ j: O; 17 Tty 2m+2

and in particular
Apsi = Apay .
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And, we get also [=2m-+2. Substituting [5.19) into [5.18), and changing the
indices, we have

G20 Gue =S EN(eEr)

— m+1 2
% (fm_l_l_jAj_‘_zm-:-l—jAj)+(_1)111+1 2()(__1)3(7":_1) (ZE)'AW-"‘I .

At last, we have to investigate the condition (I) in Looking
into the right hand sides of in we see that the condition (I)
will be satisfied identically, if it is true at 2=0, as in the case of the curve
theory.

From [(5.10), [(5.13) and [(4.3), we have
(=)™ (m—1)!

&2 o= ¢, HOD= gy p@m+1y = (59
for t=0,1, ---, m—1,

and

(6.22) Emlimo=Hp0,0)=A4

and from and we get

(5.23) Pl = (TDMmA DV mt A

2/ @mA4-2)(2m+1) - (m+3)

Therefore, the condition (I) can be replaced by the following for solutions
of in the present case:

At'At:O, t’:oy 1; e, M Am-!-l:;l-m-!-l;

At'As:At‘A-s:Oy tisy tyszo)ly"'ym+1;

Ay Ty=2, Ay Tz, CPFDQIAD o @m—t+) _ y2mt2)
0 ] - t

(111)

t=1,2, -, m m+1.

Thus, through these arguments, we reach the stage to give the exact
form of W2 From [(II), we get easily

1
+’pz
We may suppose that this fixed point for W? is the origin of E*™*3, Then,

from [(5.17), [(5.20) and [(5.1)] we get

vm' o
G2 F= oV @emt2@mET) - (m3) A zz)

x [go(—l)f{sg(—l)“(z,;"flz "D ey A, 4 me-iA)

-P=a fixed point in E*™"¥=C™" X R.
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S (Y e ]

We denote this isometrically immersed surface from the unit sphere into
E*+ by W2,. According to Theorem C, we can construct an n-dimensional
minimal submanifold M" in E™**", That is, first of all, we make the follow-
ing identification:
Erntem . pn-4 x RZm'—4 Rzm-—4~ Cm -2
and
RZm ;S E2m 3 >< R

We take a W2 in E*™*+® as stated above. For any point y € W3, let L"*(y)
be a linear subspace through y such that

L DIR*™ X R and L"*WIP), y=x().

Then, the locus of points on the moving L" %) is an n-dimensional sub-
manifold in E™**™ as in Theorem. We denote this submanifold by MZ2(S, E).

Thus, by virtue of the argument in this section, we have

THEOREM 4. Let M" be a minimal submanifold in E™*™ with g-codim 2m
as in Theorem C. If a base surface W?of M™" satisfies the conditions (a), (")
in Theorem 3 and c=1, then M" is locally congruent with M2(S, E) under the
motions of Em™m,

REMARK 1 W32, given by (5.24) in E®*™*3 clearly lies in the (2m--2)-sphere

with radius and it is minimal and of g-codim 2m in the

E2 \/(m-i—l)(m—l-Z)
sphere. Enlargmg these figures by the similarity of magnification p, we get
a surface with analogous properties in the unit sphere S**? which we de-
note V2. We shall give the equations of V% in the canonical coordinates
Xoy X1yt 5 Xgmas Of EZ™3 By means of (III), we put

A= (=52 (P F2) 370,

A= (1 p) (P F2) 007, +i0/0%)

o (7 )
A, —~(_ 1)5\/< ¢ ) ( 0Xom -2041 L 0Xym-stez |’

Ry — 9 3
Alz—\/2m+2 *a‘;": . +l axzm

0
A= (e ot )

then V2, is given by the following equations:
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o 1 omay ombINg
0=y ppymn 5D @
_ 1 _ (m+lm - (m—t+2)
Y1 (14 2zt N2 (mAt 1) (m+) - (n+2)
(5.25) < < (EID T e,

o —1i |/ (m+Dm- (m—t+2)
2 (14-zz)™+! 2-(m+t-+D(m-4-1) --- (m+2)

CE (Y e,

t=1,2, ---, m+1.

If we consider especially the case m =1, then V{ in S* is given by the
equations:

%= g +le)2 (1— 42z +2%),
= D e A=t D),
Xy = (;:;3’) (1—22)(z—32),
Xy = (1‘1325)2 (z*+2%),
x= (I:z/;’) @ —2%).

These equations show that our Vi coincides with the so called Veronese sur-
face. Therefore, we may call the minimal surface V2, in S*™*? the generalized
Veronese surface of index m.

REMARK 2. The generalized Veronese surface V2 can be considered as
isometric immersion of P? with the standard metric into S***? for odd m
and into P®™*? with the standard metric for even m. In fact, if we replace

z by —é—- and Z by ——'f; - in the vector functions in the right hand side of

(5.24):

B 1 B ! 3 2m+2”—] ] S\S( sm-41- m+1-5 A
(Atzzme 2D Crii—D(DerEma-1a,42m-14),
we get
@™ L e2m2—\ N\ (=™ 1 5
(1+zz)™+! sgo( D m-{—l—s)(s)’" - (22)° ( Zmri-d Aj+ zmri-i Aj)
(—1ymet om-+2—j

1 )
=¥ (=1 J 5\j-8(zm+1- Maeleq T
= Wreprn BCV (TGl e @A Ay,
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which guarantees the above assertion.

§ 6. Determination of W? of S-type in S™**™ and H™**™.

Continuing to §5, we shall try to get the solutions of the equations
in [Theorem 3 for the case M™"*™ is a sphere or hyperbolic space form.

CASE: M™m = Snetm(R), L

S™?™(R) denotes the (n+2m)-sphere of radius R and we suppose ot =C.

According to the method in [9], we regard as S™"*™(R)C E™+*™*!, Putting

(61) g = Cptamtyy
we have by
dx=Rd epromss = ;:Il'-l,; (éodz+god§) .

On the base surface W? in[Theorem 3 in the present case, we have easily

2
deoz’}zfo(fdz~zdz)+ -Pdz +~3/b1 §.dz— th Cryam+1dZ ,

dflz ‘2—\/’171* Eod zZ-+ h El(ZdZ Zdz)_l_A\ﬂ/j;AEzd-
(6.2) : —
dé, = —M’* Ei_1dz+- *’*—E (zdz— zdz)+ b”“ -&14adZ,
dEm:-—‘Z-\/bm Em-1dz+ m?kl En(Zdz—2zdz),
HlDll2

dP - (E dz+$0dz)a

from and the above relation, where d denotes the ordinary differential
operator in EnmEl
On the other hand, we have

. =" = ___¥1; v
(6.3 p=+/¢cot Vi v= R Cot—p-.
We see easily that the point x4+ - pz -P and the unit vector
e, =e 08 — 5~ 4, sin —5— e S
0= €niama1 C R 3 S1n R 3= "p

are fixed on W2 Hence W? lies in the linear space E?** through the point

O,=¢y,R cos —;é* and orthogonal to ¢, Now, setting
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(6.4) ef = e; cos —;é - — €pyam+ SIN 713 ,
we have
OT;C = —e¥R sin Ig , P— 11? Craomel = - 1 o e*
R sin - R
arnd
\Plte= 1. = (mEDm+2)
Risin - 2
by and ((6.3). Hence the first equality of (6.2) can be written as
(6.5) dfo =) EuEdz—zd2)+ 2 Prdz+ 2Yhs ¢ dz,
where

pr [ DD
and we get easily
| P*|* = 5
6.6) dP* = — —(E,dz+-£,d2) .
Thus, we see that (6.2) turns out to be the system of equations in
Ep+im if we replace the first and last ones by [6.5) and [(6.6) respectively.
In conclusion, we can construct a minimal submanifold M™ in S"**™(R)
in as follows: We take a W2 in Er*™,  Let L}%) be the (n—2)-
dimensional linear subspace in E}**™ as described in §5. Then, the image
L**(y)7of IL77%(y) under the projection E™+*™+! . Sn+2m(RY) from the origin of
Enr+*m+l jg an (n—2)-dimensional great sphere of S™*™(R). The locus of
points on the moving L""%(y) as ¥ varies is the n-dimensional submanifold
in S™?**(R) to be constructed in this case. We denote it by M2(S, S).
CASE: M™m = frm(g),
In this case, H"+**™(¢) is the (n+2m)-dimensional hyperbolic space of cur-

vature ¢, (4.5) and imply
®.7) —e= @ii;(m—“)— sinh®v/—¢ .

Now, we use the Poincaré representation of H™*?*™() in the unit disk in
E™*™ with the canonical coordinates x,, x,, -+, Xp+.m and the metric

4RMdx-dx 1
(I—x-x)2 —C
where x-x=§j)x,x,. For any tangent vector X and Y, we have

2
<Xi Y):A.[{%_X.Y’ L=1“‘x‘Xv

(6.8) ds*=
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where <X, Y)> and X-Y denote the inner products of X and Y in H™**™()
and E™*™, For any tangent vector field X, we have

69 Dx=fr[a( % X (G x)axs( 2 x.02)]]

Putting

(6.10) =", a=2Fe, =01 m,

we rewrite in in these terms, by using (6.9). Then, we get

(6.11) dx= o (Efdztgtdz),

(6.12) dst=-} &iedz—zdD)+ 2 (pes+ - x)dz—}——&ﬁﬂfl dz,
— oy (- EDEHdz et dz),

(6.13) de¥ = —-‘3}1/132 rudz+-EHE ;k(zdz—zdz)Jrfﬂ%-‘/}fgz £¥.,dz
— oy D@ daterdn),  t=1,2 0, m—1,

(6.14) dgh = — Y bmex gzt "L e dz—zd2)
— o G B dk g8 ),

©15)  def=—{p+p (v-ed)}-p Erder&rda).

On the other hand, any geodesic starting from the origin O(0, ---, 0) in
H"**™(¢) is a Euclidean straight line segment in the unit disk. The arc
lengths v and » in H™***™(¢) and E™**™ have the relations:

v=R log - }-i—r , 1’:tanh~21;e }

Since any W? is congruent to others under the hyperbolic motions, we may
suppose the focal point z, in Theorem C is the origin O. Then, we have

v
x = —efr= —cef¥ tanh 9R

x-&F=0 for t=0,1, ---, m
and
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L=1—x-x=" 1 T
2__ Y .
cosh 9R
1 _ 1 (m+DOm+2)
prpep=-_ 1= +2
R Rsinh-2 2

R

by [1.12) and [6.7). Thus, the system of equation (6.11)~(6.15) can be written
as

dx = 1 A (Erdzreran,
v h
cosh R +1
dek = /i £¥(zdz—zd2)+ i P*dz+ 2‘}:”1 £*dz

o2 2V iy
deF = — ‘}f”t gt T erEdz—zdn+ Vb ex,
dex — _ Z«meé.#»ﬁr "L et (ade—2dz),

x)
apr=— 1B Eraztgraz),

where P*:x/(m-i—,l)z(m—l-Z) e¥. This system of equalities is completely

identical with the one for W? in Case M™?™ = E™™ except the first one.
Thus we see that W? is obtained from V2 in E""*™ by the similarity of

magnification 1/( cosh ,;}e,,ﬂ)_

As in the previous case, we can construct a minimal submanifold M" in
H™?™(¢) in as follows: First we take a base surface W? as men-
tioned above in the unit disk of E™**®, Then, we take the (n—2)-dimensional
linear subspace L7 %(y) through each y= W?*? which is parallel to P* and
orthogonal to &F, ---, &5. And let L* %(y) be the totally geodesic subspace of
H™?*™(¢) tangent to Ly *(y) at ¥. The locus of points on the moving L""%(y)
as y varies is the n-dimensional submanifold in H***™(¢) to be constructed in
this case. We denote it by M,(S, H).

By virtue of the argument in this section, we have

THEOREM 5. Let M™ be a minimal submanifold in S™*™(R) or H™+m _‘le)
with g-codim 2m as in Theorem C. If a base surface W?* of M™ satisfies con-
ditions (a), () in Theorem 3 and c=1, then M™ is locally congruent with

M2(S, S) or M2(S, H) under the motions of S™*™(R) or H"“”‘(—~12—) respec-
tively.
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§7. The Frenet formulas of W? of T-type.

In this section, we shall investigate W? in in the case that
M™ is of T-type, in detail. Using the notations in §3, let M™ and M "+2m+
be the manifolds as in

Since ¢=0, (3.14) becomes"
a 4
azzz*‘tilz“ for t=2, 3, -, m,

and and imply

4
2 A
A" =2 "™ 5,
m Ay
From these equalities, we have
a,= A", for t=1, ---, m,

(7.1)
Ay = /2 A1
Therefore we have
U, =2Q1, io,), t=12, -, m
and ‘
Y osy = V2 2t

Hence, from (2.7) and [(2.17), we have

7.2) Wi e = K00 on BI,
Wy ot 101Wayp, = 104,40, —1W,)
al’aze[t; ﬁ1, ,826114.1, for f:1, 2, e, m
and
(7.3) W7 10 W gy =V 2 260, —1w,) ,
a, a,e1,; y=n-+2m-+1.

Since dw,, =0, we can put locally

7.4 wy, =df,
then becomes

(7.5) do = —(m+2)dé .
From we have

(7.6) PP=21*—¢

By means of ((7.2) and {(7.3), on B2 we get

dx=e¢,w,+e,w,,




118 T. OTsukKI

D(e,+ie,) = —i(e,+ie,)wyp+ P(@,+iwy) + A(eps 1 +ige ) (@, —iwy)
D(eny+i0180y) = —Aer,+i0,_18;,) (@, +iw,)

—10,(C0;,+10:04;) B+ A(ep, 1011250, —10,) ,

a,a, 15 By B E Lits 7 72 € L, t=1,2,---,m—1,
Dy +10n8ay) = —Aer, +i0 ner) (@, +iwy)

— 10 n(Cay T 1O mCag) B+ 2 A6 0es(w,—iw,)

ay, @€ In; 1y 72€ Inoy; f=n+2m+1,
Deg= —+/2 AR((ea, +i0meay)e (0, +iwy)),
DP= —||P||*(e,0,+e,w,)

in the same way as we obtained (4.7), (4.10)~(4.12) for M™ of S-type.
Since W? is flat, we can take a complex coordinate z such that w,+iw,

=¢ "%z by (74 If we set
(7'7) 5: - ei<t+1)0(ea1+iatea2) ’ aly a'z S Iz ’ t= 0, 1, ttty m,

and
o =—(m+2)(0+0,)

by then by (iv) of the above equalities can be written as
follows:

dx= %ﬁ (B dz+2,d2) ,

D&, = Pdz+2¢,dz,

&= —2A&_dz+ A&, dZ, t=1,2, -, m—1,
D= —2AEm_1dz+~/2 Ae ¥ mD00g,dz

Deg=—+/2 AR(Ene'™+?%dz),  B=n+2m+1,

!

pp=— MV (a1 gea2),

but if we change the complex coordinate z to ze¢*’°, we may assume 6,=0.
Now, if we impose the following geometrical condition:

I Fell =Gl (Fy G >=0 for t=1, ---, m,
from the beginning of the proof of we get easily the same rela-
tions when M" is of T-type. Thus, we have the following theorem in a
little more arranged expression.
THEOREM 6. Let M™ be a minimal submanifold of M™*™*' with g-codim
2m-+1 as in Theorem C. If a base surface W of M™ is flat and the associated
normal vector fields F,, G, of M™ satisfy
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|Fll =G|, {F., G:>=0 on W*  fort=1, -, m,

then there exist m complex normal vector fields &,, &,, -+, En and a real normal
vector field 7 on W? such that

o { §06,=6-5,=&-7=0, l#s,

et'st:O’ Et‘gt:2, 77'77:1; t,S:l, 2’ e, M
and

dx =5 (Godz+6sd2),

D-§0=sz—l—2§,a’§,

5552 —A&i1dz+264.,d2, t=1, -, m—1,
{an \ D&, = — 8 dz+/Z Andz,

= 1 I

DP=——5- | PGz +£0d2),

where z is a complex coordinate of W? and &,= e,+1ie,.

§8. Examples of W? of T-type.

In this section, we shall give a solution of the equations in
6 when M™?™+ i3 a Euclidean space. When M™**™ is an elliptic or hyper-
bolic space form, we can get the examples of W? by the same method used
for S-type as shown in in the case m=1. '

Supposing M™+mtl = Entmil from and we have

GRY p=|Pl=v22="1
and from of we see that x+~j512~~P is a fixed point. We may

consider this point as the origin of E™**™+! then

1
(8'2) x:——}zﬁp.
Since D =d in E™"**! we can easily see that the vector fields &, &,, -+, &n,
n, P satisfy the equation
% ST
®3) 0202 — X

Supposing the completeness of M™, we can put
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1 m+2 . .
8.4 3 P=U= El {A; exp A(z exp (ia;)—2Z exp (—ia;))
+A; exp A(—z exp (la;)+Z exp (—ia,)},
where A;, j=1, ---, m+2, are constant complex vectors in C™"? such that
Aj‘Aj:Aj'Ak:Aj'Zk:(), ]ik
(8.5) me _ 1
Hard=
and aj, j=1, ---, m+2, are real constants. By of if we put
V2 U . .
o= ~—-—22— oz = V2 ? exp (—ia;){A; exp A(z exp (la;)—Z exp (—ia;))

—A; exp A(—z exp (ia;)+Z exp (—ia,))} ,
then &,-§,=2, U-& =0 and
£o-&p=—4 ? A;- Ay(cos 2a;—i sin 2a;) .

Now, by means of we have inductively
86) &=+2 ? exp (—it+Da){(—1)°A; exp A(z exp (ia;)—Z exp (—ia;))
—A; exp A(—zexp (ia)+Zexp (—ia,)}, for t=0,1,.-,m.

Furthermore, if we set

(8.7) E.=U, Enn,=+V27,

then (8.6) is also true for {= —1 and m-+1. Using and (8.6), we get
(8.8 §i- &= —2((—D"+(~1)") Zj) A;A;{cos (t+s+2)a;—isin ¢+s+2a,}
and

8.9 & &, =201+(=1)"Y) 2 A;- Aj{cos (t—s)a;—isin (t—s)a,} .

Hence, in particular we have

§-8e=—(~1/4 T A, A,lcos @+ Da,~isin 2+ 2at;}

ft'§;:421Aj-A.j:2
and
£,-8,=¢6-E,=0, if t—s=odd.

Taking note of the fact that &,., is real, & given by (8.6) for t=-—1,0, ---,
m+-1, are admissible as the solution of (I) and of in the pre-
sent case, if and only if
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8.10) Z}Aj-ﬁ,-{cos 2ta)—isin Qtay)} =0, t=1,2,--,m+1,
J
and
g (mod ), when m=odd,
(8.11) (m+2a; =
0 (mod =), when m=even.

We have a solution of [(8.10) and (8.11) as follows:

T _ 1

(8.12) A ;= 2m+2)
and

@j—D=_ —

Yy when m=odd,
8.13) a;= .

T —
Sl when m=even,

for j=1,2, -, m+2.

By virtue of [8.1), and [8.4), we get an example of base surfaces W?
in in case Mm™+¥mil—= En+imtl given by

_ V2 o @i—l+en @j—1+er
x= ——v[zj} {Aj exp — <u1 sin T o%(m4-2) +u, cos T 2Am+2) )
+A;exp V2 (u,sin (2]2(_7—},}{25))@ +u, cos ~—~(2é(_mli2€))£ H,

where e=0 or 1 according as m is odd or even.

Tokyo Institute of Technology
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