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The axiomatic research of non-negative superharmonic functions on a
harmonic space has been treated by M. Brelot, R. M. Herve, H. Bauer, and
C. Constantinescu and A. Cornea. In the study of elliptic or parabolic dif-
ferential equations we can find many applications of their theory ([4], [10]).

Our motivation in the present paper is related to the study of elliptic dif-
ferential equations with certain lateral conditions. What lateral conditions
may be considered on a harmonic space? The problem of this sort was first
considered by R. S. Martin in connection with the Dirichlet problem and by
Z. Kuramochi in connection with the Neumann problem. In the case of axio-
matic theory of harmonic functions K. Gowrisankaran made a study of the
Dirichlet problem. The axiomatic formulation of Kuramochi’s theory was
given by F. Y. Maeda [15]. It seems that many known lateral conditions
may be considered within the framework of fullharmonic structure introduced
by Maeda. (We can give the fullharmonic structure that corresponds to the
solutions of an elliptic differential equation with a Wentzel’s boundary con-
dition lacking the term that indicates, in a probability language, the jumps
to the interior.)

Starting from a given fullharmonic structure on a Brelot’s harmonic space,
we shall make a research of many properties of fullsuperharmonic functions
(that is to say, supersolutions of an elliptic differential equation with a lateral
condition). Many properties of superharmonic functions that were studied
extensively by Brelot and Herve are also valid for fullsuperharmonic functions
(Minimum principle, etc.). They are studied by F. Y. Maeda. Maeda has
proved a partition theorem, which, in the case of Brelot’s theory, was obtained
by Herve and is called by the name of Herve’s partition theorem. We shall
further develop his results, and shall construct potential kernels. We shall
give a submarkov resolvent such that the excessive functions relative to this
resolvent are exactly the non-negative fullsuperharmonic functions (Sections

3 and 4). P. A. Meyer is the first who constructed a resolvent such that the
excessive functions relative to the resolvent are the non-negative super-
harmonic functions in the axiomatic theory of Brelot. This problem has been
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studied by N. Boboc, C. Constantinescu and A. Cornea, and W. Hansen in the
case of axiomatic theory of Bauer or others.

Every non-negative fullsuperharmonic function is decomposed (uniquely)
to the sum of a harmonic fullsuperharmonic function and a fullsuperharmonic
function which is \’etranger to this function relative to the order induced by
the cone of non-negative fullsuperharmonic functions. These two functions
are characterized as follows: The latter has a Riesz-Martin type integral
representation with the aid of a measure on the harmonic space, the first
with the aid of a measure on an ideal boundary. The extreme points of a
compact base of the cone of non-negative harmonic fullsuperharmonic func-
tions are homeomorphically embedded into this ideal boundary. This bound-
ary of the harmonic space is Kuramochi boundary with respect to the full-
harmonic structure. These are studied in sections 5, 6 and 7.

It should be noted that our theory of fullsuperharmonic functions is a
slightly different one from that considered by Maeda. We start with the
assumption of the existence of a non-zero P-function on the harmonic space
(Section 1), while Maeda considered a subdomain of the given harmonic space
where the existence of a non-zero P-function was assumed. It can be proved
that, if every P-function is zero, then every fullsuperharmonic function on
the whole space is fullharmonic there and mutually proportional. Maeda’s
procedure corresponds to the routine method in function theory of taking off
a closed ball from the considering Riemann surface.

The main results of sections 3 and 4 were announced ip- [11] and [12].

The result in [12] as for the construction of a semigroups of submarkov
kernels was false.

\S 1. Preliminaries and basic properties.

Let $X$ be a locally compact, not compact, connected Hausdorff space with
a countable base. We adopt a Brelot’s harmonic structure. Namely we
suppose that we are given a sheaf $\mathcal{H}$ of real vector spaces of real continuous
functions such that;

(1) there is a base for the topology of $X$ which is formed by regular
domains (for $\mathcal{H}$), $i$ . $e$ . relatively compact domains $G$ such that any continuous
function $f$ on $\partial G$ has a unique continuous extension $H^{G}f$ in $\mathcal{H}(G)$ which is
non-negative if $f$ is non-negative;

(2) the upper envelope of any upper directed family of functions in $\mathcal{H}(G)$

where $G$ is a domain is either $+\infty$ or an element of $\mathcal{H}(G)$ .
Any function in $\mathcal{H}(G)$ is said to be harmonic on $G$ . We denote by $S(G)$

the set of the superharmonic functions on an open set $G$ .
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A fullharmonic structure subordinate to the harmonic structure $\mathcal{H}$ is intro-
duced as follows. Let $\mathcal{D}$ be the family of domains $D$ in $X$ such that $D$ is
not relatively compact and the boundary $\partial D$ of $D$ is compact, and let $\mathcal{G}$ be
the family of open subsets with compact boundary. We assume that we are
given a class $\tilde{\mathcal{H}}$ of linear subspaces $\tilde{\mathcal{H}}(D)$ of $\mathcal{H}(D)$ where $D\in \mathcal{D}$ such that;

(3) if $D,$ $D^{\prime}\in \mathcal{D},$ $D^{\prime}\subset D$ , and $u\in\tilde{\mathcal{H}}(D)$ , then the restriction $u|_{D}$ of $u$ on
$D^{\prime}$ belongs to $\tilde{\mathcal{H}}(D^{\prime})$ ; if $u\in \mathcal{H}(D)$ and there is a compact set $K$ such that
$K^{o}$ (the interior of $K$) $\supset\partial D$ and $u|_{D- K}\in\tilde{\mathcal{H}}(D-K)$ , then $u\in\tilde{\mathcal{H}}(D)$ .

$D\in \mathcal{D}$ is said to be regular (for St) if any continuous function $f$ on $\partial D$

possesses a unique continuous extension to $\overline{D}$ whose restriction $\tilde{H}^{D}f$ to $D$

belongs to $\tilde{\mathcal{H}}(D)$ , and is non-negative if $f$ is non-negative. A set $G\in \mathcal{G}$ is
regular if every component of $G$ is either regular for $\mathcal{H}$ or regular for $\tilde{\mathcal{H}}$ .
We suppose that $\tilde{\mathcal{H}}$ satisfies the following axiom;

(4) for any compact set $K_{0}$ , there is another compact set $K$ such that
$K^{o}\supset K_{0}$ and $X-K$ is regular.

For $G\in \mathcal{G}$ , we define the set of fullharmonic functions on $G$ as follows;

$\tilde{\mathcal{H}}(G)=\{u\in \mathcal{H}(G)$ ; $u|_{D}\in\tilde{\mathcal{H}}(D)$

for each component $D$ of $G$ such that $D\in \mathcal{D}$ }.

A superharmonic function $s$ on $G\in \mathcal{G}$ is said to be fullsuperharmonic on $G$

if, for any regular set $D\in \mathcal{D},\overline{D}\subset G$ , and for any continuous function $f$ on
$\partial D$ , the relation $f\leqq s$ on $\partial D$ implies the relation $\tilde{H}^{I)}f\leqq s$ . We denote by $\tilde{S}(G)$

the set of fullsuperharmonic functions on $G\in \mathcal{G}$ . If $G\in \mathcal{G}$ is relatively com-
pact we have $\tilde{\mathcal{H}}(G)=\mathcal{H}(G),\tilde{S}(G)=S(G)$ .

Throughout this paper we will assume that the constant function 1 is
fullsuperharmonic on $X$ ;

(5) $1\in\tilde{S}(X)$ .
From this assumption we see that every fullharmonic function on $G$ is

bounded continuous for any $G\in \mathcal{G}_{\gamma}$ .
$C(X),$ $C_{b}(X),$ $B_{b}(X)$ respectively are the spaces of continuous functions,

bounded continuous functions, bounded Borel measurable functions on $X$.
$C_{c}(X)$ is the space of continuous functions of compact support. The support

of $f$ is denoted as $Supp[f]$ . For any set of functions $A$ we denote by $A_{+}$

or $A^{+}$ the set of positive elements of $A$ .
We can prove many properties of fullsuperharmonic functions that are

similar to those of superharmonic functions. We shall give some of them
that will be frequently used. The proofs of these are found in [15].

(a) The upper envelope of any upper directed family of fullsuperharmonic

functions (resp. fullharmonic functions) is either the constant $+\infty$ or a full-
superharmonic function (resp. fullharmonic function).
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(b) The lower semi-continuous regularization of the greatest lower bound
of a family of fullsuperharmonic functions, that are locally uniformly bounded
from below, is a fullsuperharmonic function.

(c) (Minimum Principle) A fullsuperharmonic function $u$ on $G\in \mathcal{G}$ with
the property;

$\lim_{G\ni x}\inf_{\sim}u(x)\geqq 0$ for any $y\in\partial G$ ,

is non-negative.
(d) Let $u$ be a fullsuperharmonic function on $X$ and $v$ be a fullsuper-

harmonic function on $G\in \mathcal{G}$ . If

$\lim_{(^{\tau_{\Sigma x}}}\underline{\inf_{y}}v(x)\geqq u(y)$ for any $y\in\partial G$ ,

then

$w=\left\{\begin{array}{l}\inf(u,v) on\\u on\end{array}\right.$ $X-GG$

is a fullsuperharmonic function $or_{\wedge}X$.
(e) (Perron) Let $\mathcal{U}$ be a family of fullsuperharmonic functions on $G\in \mathcal{G}$.

Suppose that $\mathcal{U}$ is a Perron’s family1) on $G$ and that, for each compact set
$K$ such that $K^{o}\supset\partial G$ and $G-K$ is regular, $u\in \mathcal{U}$ implies $u^{K}\in \mathcal{U}$ , where

$ u^{K}=\left\{\begin{array}{l}H^{G- K}u on G-K\\u on G\cap K.\end{array}\right.\sim$

Then $\inf\{v;v\in \mathcal{U}\}$ is fullharmonic on $G$ .
Let $f$ be a non-negative function on $X$ and $F$ be a subset of $X$. We define

the reduced function of $f$ on $F$ as follows;

$ R^{F}f=\inf$ { $v\in\tilde{S}_{+}(X),$ $v\geqq f$ on $F$ }.

The lower semi-continuous regularization $\hat{R}^{F}f$ of $R^{F}f$ is called the balayage
of $f$ on $F$.

(f) Let $u$ be a non-negative fullsuperharmonic function on $X$.
$(f-1)$ $\hat{R}^{F}u\in\tilde{S}_{+}(X)$ . $R^{F}u$ is harmonic on $X-\overline{F},$ $R^{F}u$ is fullharmonic on

$X-\overline{F}$ if $F$ is relatively compact.
$(f-2)$ $\hat{R}^{F}u=u$ on $F^{o},\hat{R}^{\phi}u=0$.
$(f-3)$ For any $G\in \mathcal{G}_{r}^{2)}$ we have

$\hat{R}^{X-G}u=\left\{\begin{array}{l}H^{o}u on\\u on\end{array}\right.\sim$ $GX-G$
.

1) As for Perron’s family, see [1], [10], [15].
2) $\underline{c},_{\mathcal{T}},$ $I\bigcap_{r}$ are the families of regular sets in $\mathcal{G}$ and $\mathcal{D}$ respectively.
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Let $\mathcal{P}$ be the set of all non-negative fullsuperharmonic functions $p$ on $X$

with the following property; if a fullsuperharmonic function $u$ on $X$ satisfies
$p+u\geqq 0$ , then $u\geqq 0$ . Any function in $\mathcal{P}$ is called a P-function. Any non-
negative fullsuperharmonic function $u$ has a unique decomposition $u=p+h$

with $h$ fullharmonic on $X$ and $p\in \mathcal{P}$ (Riesz decomposition). In fact let

$ h=\sup$ { $t;-t\in\tilde{S}(X)$ and $u\geqq t$ }

$=-\inf$ { $s;s\in\tilde{S}(X)$ and $u+s\geqq 0$}.

The family $\mathcal{U}=\{s\in\tilde{S}(X);u+s\geqq 0\}$ satisfies the conditions of (e) and there-
fore $h$ is fullharmonic on $X$. Let $p=u-h$ . $p\in\tilde{S}_{+}(X)$ . If $v\in\tilde{S}(X)$ is such
that $p+v\geqq 0$ , we have $v-h\in \mathcal{U}$ , so $v-h\geqq-h$ and $v\geqq 0$ . Hence $p\in \mathcal{P}$ . We
have the decomposition $u=p+h,$ $p\in \mathcal{P},$ $h\in\tilde{\mathcal{H}}_{+}(X)$ . The uniqueness is easily
proved.

$\mathcal{P}$ is a convex cone. An order defined by the cone $\mathcal{P}$ is called the specific
order in $\mathcal{P}$ , and is denoted by $\prec$ .

We adopt the following assumption:
(6) For any point $x$ of $X$ there is a $p\in \mathcal{P}$ which is strictly positive at $x$ .
The following properties (g) and (h) can be shown by a well-known

argument (See, for example, Section 5, Chap. II, [1]).
(g) Let $f\in C_{c}^{+}(X)$ . We have

$Rf\equiv R^{X}f\in \mathcal{P}\cap C(X)\cap\tilde{\mathcal{H}}(X-Supp[f])$ .
(h) For any $x,$ $y\in X,$ $x\neq y$ , there are $p,$ $q\in \mathcal{P}\cap C_{b}(X)$ such that $p(x)q(y)$

$\neq q(x)p(y)$ .
THEOREM 1.1.

$\tilde{S}(X)=\tilde{S}_{+}(X)=\mathcal{P}$ , $\tilde{\mathcal{H}}(X)=\{0\}$ .
PROOF. Let $u\in\tilde{S}(X)$ and let $x_{0}$ be a point of $X$. From (6) there is a

P-function $p$ such that $p(x_{0})>0$ . Since $-u(x_{0})<\infty$ we can find a number
$\lambda>0$ such that $-u(x_{0})<\lambda p(x_{0})$ . Applying the minimum principle to the func-
tion $\lambda p+u\in\tilde{S}(X-\{x_{0}\})$ and the domain $X-\{x_{0}\}\in \mathcal{D}$ , we have $\lambda p+u\geqq 0$ on $X$.
$\lambda p$ being a P-function we have $u\geqq 0$ . Therefore $\tilde{S}(X)=\tilde{S}_{+}(X)$ . From this it
follows $\tilde{S}_{+}(X)=\mathcal{P}$ and $\tilde{\mathcal{H}}(X)=\{0\}$ .

We shall give some definitions as for the decomposition of P-functions.
We set:

$\mathcal{P}_{b}=\mathcal{P}\cap \mathcal{H}(X)$ ,

$\mathcal{P}_{i}=$ { $p\in \mathcal{P}$ ; if there is a $w\in \mathcal{P}_{b}$ such that $w\prec p$ , then $w=0$} ,

$\mathcal{P}_{c}=$ { $p\in \mathcal{P};p$ is fullharmonic out of some compact set}.

Functions in $\mathcal{P}_{b}$ and $\mathcal{P}_{i}$ are called $P_{b}$ -functions and $P_{i}$-functions respectively.
Any P-function $p$ has a unique decomposition $p=q+r$ with $q\in \mathcal{P}_{i}$ and $r\in \mathcal{P}_{b}$ .
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For any $p\in \mathcal{P}$ , put

$Bp=\sup\{w\in \mathcal{P}_{b} ; w\prec p\}$ .
(i) [15] $Bp\in \mathcal{P}_{b},$ $Bp\prec p$ , and $Bp$ is the least upper bound of { $w\in \mathcal{P}_{b}$ ;

$w\prec p\}$ with respect to the specific $order\prec$ . Any $p\in \mathcal{P}$ belongs to $\mathcal{P}_{b}$ (resp.
$\mathcal{P}_{i})$ if and only if $Bp=p$ (resp. $Bp=0$). We have; $B(p+q)=Bp+Bq$ .

PROPOSITION 1.2. For any $u\in \mathcal{P}$ there is an increasing sequence of func-
tions $p_{n}\in \mathcal{P}_{c}\cap C_{b}(X)$ such that $p_{n}\uparrow u$ .

PROOF. Let $f_{n}$ be a sequence of continuous functions of compact support
such that $f_{n}\uparrow u$ . The functions $p_{n}=Rf_{n}$ respond to our proposition in view
of (g).

LEMMA 1.3. Let $p_{n}$ be a sequence of P-functions such that it decreases to
$0^{-}with$ the specific $ order\prec$ . Let $p_{m}=p_{n}+u_{m,n}$ with $u_{m.n}\in \mathcal{P}(n\geqq m)$ . If $Bu_{m,n}$

$=0$ for any $m$ and $n,$ $n\geqq m$ , then $Bp_{n}=0$ for any $n$ .
PROOF. From the property (i) we have, for any $m,$ $Bp_{m}=Bp_{n}+Bu_{m,n}=$

$Bp_{n}\leqq p_{n}(n\geqq m)$ . Tending $n$ to infinity we have $Bp.=0$.
The next lemma is an immediate consequence of the definition.
LEMMA 1.4. Let $p,$ $q\in \mathcal{P}$ . Then $p\succ q$ implies $Bp\succ Bq$ and $p-Bp\succ q-Bq$ .
LEMMA 1.5. Let $u\in \mathcal{P}_{b}$ . If $v\prec u$ then $v\in \mathcal{P}_{b}$ .
PROOF. Let $h\in \mathcal{P}$ be such that $u=v+h$ . From the assumption $-h=v-u$

$\in S(X)$ , we have $h\in \mathcal{H}(X)$ . Hence $v\in \mathcal{P}\cap \mathcal{H}(X)=\mathcal{P}_{b}$ .
In the above proof we have seen that, for $p,$ $q\in \mathcal{P}_{b}$ , the relation $q\prec p$ is

equivalent to the relation $p-q\in \mathcal{P}_{b}$ . Hence the order $\prec$ restricted on $\mathcal{P}_{b}$ is
the order induced by the cone $\mathcal{P}_{b}$ itself. Also we can easily verify that the
order $\prec$ restricted on $\mathcal{P}_{i}$ is the same as the order induced by the cone $\mathcal{P}_{i}$ .

THEOREM 1.6. $\mathcal{P},$ $\mathcal{P}_{i}$ , and $\mathcal{P}_{b}$ are lattices with respect to the specific $ order\prec$ .
PROOF. Let $p,$ $q\in \mathcal{P}$ . Consider the family

$\mathcal{U}=$ { $u\in \mathcal{P};u\succ p$ and $u\succ q$ }.

Let $ r=\inf \mathcal{U}\wedge$ (the lower semi-continuous regularization of the greatest lower
bound of the functions of $\mathcal{U}$). $r$ is a non-negative fullsuperharmonic function,
so $r\in \mathcal{P}$ . We set

$u=\inf\{v\in \mathcal{P};\wedge v+p\succ q\}$ .
Then we have $u+p=r$ and $u\in \mathcal{P}$ , so $r\succ p$ . Similarly we have $r\succ q$ . Now
let $s\in \mathcal{P}$ be such that $s\succ p$ and $s\succ q$ . Put

$ t=\{s-r\infty$

if $ r<\infty$

if $\gamma=\infty$ .
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Obviously $t\geqq 0$ . We shall prove that $t$ is nearly fullsuperharmonic3). It is
enough to prove that

$t(x)\geqq\tilde{H}^{G}t(x)$

holds for any $G\in \mathcal{G}_{r}$ and any $x\in G$ at which $t$ is finite. Take a continuous
function $\varphi$ such that $\varphi\leqq s$ on $\partial G$ , and let

$ f=\left\{\begin{array}{l}\inf(s-H^{o}\varphi+H^{G}r,r) on\\r on\end{array}\right.\sim$ $GX-G$

.
From (d), $f\in\tilde{S}_{+}(X)=\mathcal{P}$ . Similarly

$g=\left\{\begin{array}{l}\inf(w-H^{G}\varphi+H^{G}r,u) on\\u on\end{array}\right.$ $X-GG$

is a P-function, where $w$ is the P-function such that $s=p+w$ . Since $g+p=f$

we have $f\succ p$ . We have also $f\succ q$ and $f\in \mathcal{U}$ . Thus $r\leqq f$, that is,

$ s+\tilde{H}^{G}r\geqq r+\tilde{H}^{\sigma}\varphi$ .
Since

$\tilde{H}^{\sigma}s=\sup$ { $\tilde{H}^{G}\varphi;\varphi$ is continuous and $\varphi\leqq s$ on $\partial G$ },

we have
$s+\tilde{H}^{G}r\geqq r+\tilde{H}^{o_{S}}$ .

If $ t(x)<\infty$ at $x\in G$ , we have

$t(x)=s(x)-r(x)\geqq\tilde{H}^{G}s(x)-\tilde{H}^{G}r(x)=\tilde{H}^{G}t(x)$ .
Thus $t$ is nearly fullsuperharmonic, $\geqq 0$ . It holds that $t\in\wedge \mathcal{P}$ and $s=t^{\wedge}+r$, so
$s\succ r$. $r$ is the least upper bound $p\backslash (q$ of $p$ and $q$ relative to the order $\prec$ .
We have proved that $(\mathcal{P}, \prec)$ is an upper semi-lattice. Since $\mathcal{P}$ is a convex
cone, it is a lattice.

Let $p$ and $q$ be two $\mathcal{P}_{b}$ -functions and $r=p\backslash (q$ . From the property (i) it
follows $Br\succ p$ and $Br\succ q$ , so $Br\succ p\backslash (q=r$. Hence $r=Br\in \mathcal{P}_{b}$ . $\mathcal{P}_{b}$ is a lattice.

Finally let $p$ and $q$ be two $P_{i}$-functions and $r=p\backslash (q$ . We have r–Br
$\succ p-Bp=p$ and $r-Br\succ q$ from Lemma 1.4, so $r-Br\succ pYq=r$. $Br$ must be
$0$ and $r\in \mathcal{P}_{i}$ . This proves that $\mathcal{P}_{i}$ is a lattice.

We shall proceed to the problem; how many P-functions have we? We
shall prove that there are so many functions in $\mathcal{P}_{c}$ that the linear closure of
them relative to the topology of uniform convergence may contain at least
the set of all continuous functions of compact support. We denote by $\tilde{\mathcal{P}}$ the

3) A function $g$ on $G\in \mathcal{G}$ is said to be nearly fullsuperharmonic if it is nearly
superharmonic on $G$ , and for any $D\in \mathcal{D}_{r},\overline{D}\subset G$ , it holds $g(x)\geqq\tilde{H}^{D}g(x)$ for all $x\in D$ .
If $g$ is nearly fullsuperharmonic then $\hat{g}$ is fullsuperharmonic.
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set of bounded continuous P-functions, and by $\tilde{\mathcal{P}}-\tilde{\mathcal{P}}$ the functions of the
form $p-q,$ $p$ and $q\in\tilde{\mathcal{P}}$ .

PROPOSITION 1.7. Let $K$ be a compact set. Every continuous function on
$K$ may be approximated by the functions in $\tilde{\mathcal{P}}-\Phi$ uniformly on $K$

PROOF. Let $\mathcal{E}$ be the set of all functions on $K$ that are restrictions on $K$

of functions from $\tilde{\mathcal{P}}-\tilde{\mathcal{P}}$ . Obviously $\mathcal{E}$ is a linear subspace of $C(K)$ , and from
the property (h) $\mathcal{E}$ separates the points of $K$. Let $d\in \mathcal{E},$ $d=p-q$ , then $|d|$

$=p+q-2\inf(p, q)$ , so $|d|\in \mathcal{E}$ , this proves that $\mathcal{E}$ is a lattice. Since $1\in\tilde{\mathcal{P}}$ ,
applying Stone-Weierstrass’ theorem, we have our result, that is, $\mathcal{E}$ is dense
in $C(K)$ .

For any compact subset $K$ of $X$ such that $X-K$ is regular, we set

$E^{K}=C(X)\cap\tilde{\mathcal{H}}(X-K)$ .
$E^{K}$ is a Banach subspace of $C_{b}(X)$ . By virtue of the above proposition, we
can find, for any $f\in E^{K}$ and an $\epsilon>0$, two functions $p,$ $q\in\tilde{\mathcal{P}}$ such that
$\sup_{K}|f-(p-q)|<\epsilon$ . Since $f-(\hat{R}^{K}p-R^{K}q)=\tilde{H}^{X-K}(f-(p-q))$ on $X-K$, we have
$|f-(\hat{R}^{K}p-\hat{R}^{K}q)|<\epsilon$ uniformly on $X$. Hence the set of all functions of the
form $\hat{R}^{K}p-\hat{R}^{R}q$ , where $p,$ $q\in\tilde{\mathcal{P}}$ , is dense in the Banach space $E^{K}$ . $C(K)$ being
separable we have the following proposition.

PROPOSITION 1.8. Let $K$ be a compact set such that $X-K$ is regular.
There is a countable collection $(p_{n}^{K})$ of functions in $\mathcal{P}\cap C(X)\cap \mathscr{B}(X-K)$ such
that the differences of these functions are dense in the Banach space $E^{K}$.

Let $(K_{n})_{n\geqq 1}$ be an exhaustion of $X$ by compact sets $K_{n}$ with $X-K_{n}$ being
regular, and let $E$ be the set of all continuous functions that are fullharmonic
out of some $K_{n}$ . $E$ is a $(LB)$-space as the strict inductive limit of the sequence
of Banach spaces $E^{K_{n}}[21]$ . From the above proposition there is a countable
collection $Q_{n}$ of functions in $\mathcal{P}\cap C(X)\cap\tilde{\mathcal{H}}(X-K_{n})$ such that $Q_{n}$ – $Q_{n}$ is dense
in $E^{x_{n}}$ . We put $Q=\bigcup_{n}Q_{n}=(p_{i})_{i\underline{Z}_{1}},$ $p_{i}\in \mathcal{P}_{c}\cap C(X)$ .

THEOREM 1.9. $Q-Q$ is dense in the $(LB)$-space E. $Q-Q$ is also dense in
the uniform closure of the set $E$.

COROLLARY 1.10. Any continuous function of compact support can be
approximated uniformly on $X$ by the functions in $Q-Q$ .

Let
$p_{0}=\sum_{k=1}^{\infty}\frac{1}{2^{k}}\frac{p_{k}}{\sup p}-k$ $p_{k}\in Q$ .

This series converges uniformly on $X$, and from the property (a) and Theorem
1.1 it follows $p_{0}\in \mathcal{P}\cap C_{b}(X)$ .

PROPOSITION 1.11. $p_{0}$ is strictly fullsuperharmonic on $X$, and therefore, $is$

strictly positive.
PROOF. If, for some regular set $G\in g$ and $x\in G$ , it holds that $\tilde{H}^{o}p_{0}(x)$
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$=p_{0}(x)$ , then $\tilde{H}^{o}p_{n}(x)=p_{n}(x)$ for all $n$ . From Corollary 1.10 it follows that
$\tilde{H}^{G}f(x)=f(x)$ for any $f\in C_{c}(X)$ . Since $\tilde{H}^{G}(x, )$ is a Radon measure concen-
trated on $\partial G$ , this relation is absurd. Hence $p_{0}$ is strictly fullsuperharmonic.

REMARK. $p_{0}\in \mathcal{P}_{i}$ is proved as follows. Later we will prove the relation
$\mathcal{P}_{c}\subset \mathcal{P}_{i}$ . From this we have $Bq_{n}=0$ , where

$q_{n}=\sum_{k=1}^{n}2^{k^{-\frac{p_{k}}{\sup p_{k}}}}1$

It can be shown that the P-functions $p_{0}-q_{n}$ decrease to $0$ in the specific
order and that $B(q_{n}-q_{m})=0(n\geqq m)$ . Hence we have from Lemma 1.3
$B(p_{0}-q_{n})=0$ . Thus $Bp_{0}=0$ and $p_{0}\in \mathcal{P}_{i}$ .

PROPOSITION 1.12. Let $\Phi=\mathcal{P}\cap C_{b}(X)$ . $(\tilde{\mathcal{P}}-\Phi)\cap C_{c}(X)$ is dense in $C_{c}(X)$

with respect to the compact convergence topology on $X$.
PROOF. Let

$A=\{p_{p_{0}}-q$ ; $p,$ $q\in\Phi,$ $p-q\in C_{c}(X)\}$ .

$A$ is a linear subspace of $C_{c}(X)$ . In the same way as in Proposition 1.7 we
can verify that $A$ is a lattice. For $d=\frac{1}{p_{0}}(p-q)\in A$ we have

$\inf(1, d)=\frac{1}{p_{0}}\{\inf(p_{0}+q, p)-q\}\in A$ .

We shall prove that $A$ separates the points of $X$. Let $x\in X$ and $U$ be a
neighborhood of $x$ . Let $V$ be a relatively compact regular neighborhood of
$x$ contained in $U$, and let

$d=p_{0}^{1_{-(p_{0}-\hat{R}^{X-V}p_{0})}}$ .

From the property (f), $d\in A$ and $d=0$ out of $V$ . Since $p_{0}$ is strictly full-
superharmonic $d(x)>0$ . Thus $A$ separates the points of $X$. These being so,
applying Stone-Weierstrass’ theorem, we conclude that $A$ is dense in $C_{c}(X)$ .
Since $p_{0}$ is a bounded function we have proved our assertion.

LEMMA 1.13. Let $p$ and $q$ be two functions in $\tilde{\mathcal{P}}$ such that $p-q\in C_{c}^{+}(X)$ .
Then for any open neighborhood $U$ of the support of $p-q$ there exist two
functions $p^{J}$ and $q^{\prime}$ of $\mathcal{P}$ such that $p^{f}-q^{\prime}=p-q$ and such that $p^{\prime}$ and $q^{\prime}$ are
fullharmonic out of $\overline{U}$.

PROOF. Let $g\in C_{c}(X)$ , $0\leqq g\leqq 1$ , equals 1 on the support $K$ of $p-q$ ,

and equals $0$ out of $U$ . The functions $p^{\prime}=R(pg)$ , $q^{\prime}=R(qg)$ belong to
$\tilde{\mathcal{P}}\cap\tilde{\mathcal{H}}(X-\overline{U})$ and are equal to $p$ and $q$ on $K$ respectively (Properties (f), $(g)$).

We shall prove $p^{\prime}=q^{\prime}$ on $X-K$. Obviously $p^{\gamma}\geqq q^{\prime}$ . The function

$u=\left\{\begin{array}{lllll} & & & & p^{\prime}=p\\ & & & & q^{\prime}\end{array}\right.$ $onon$ $KX-K$
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is non-negative fullsuperharmonic on $X$ (Property $(d)$). Since $pg=qg$ on $X-K$ ,
we have $q^{\prime}\geqq\hat{R}^{X-K}qg=\hat{R}^{X-K}pg\geqq pg$ on $X-K$ and $u\geqq pg$ on $X$. Thus $q^{\prime}\geqq p^{J}$

on $X-K$
COROLLARY 1.14. $(\tilde{\mathcal{P}}_{c}-\tilde{\mathcal{P}}_{c})\cap C_{c}(X)$ is dense in $C_{c}(X)$ , where $\tilde{\mathcal{P}}_{c}=\mathcal{P}_{c}\cap C_{b}(X)$ .

\S 2. $Q$-compactification of $X$. Extension of fullsuperharmonic functions.

Let $E$ be the space of continuous functions on $X$ which are fullharmonic
out of some compact set, and let $Q=(p_{n})_{n\geqq 1}$ be a family of functions in
$\mathcal{P}_{c}\cap C(X)$ such that $Q-Q$ is dense in $E$ with respect to the uniform conver-
gence topology. For any finite subfamily $F$ of functions in $E$ and for any
$\epsilon>0$, let

$U_{F,\epsilon}=$ { $(y,$ $ z)\in X\times X;|f(z)-f(y)|<\epsilon$ for all $f\in F$ }.

The collection $\mathcal{U}_{B}$ of all such sets $U_{F,\epsilon}$ forms a fundamental system of en-
tourages of some uniformity $\mathcal{U}$ on $X$. Since $Q-Q$ is dense in $E$, the metric
defined by

$d(x, y)=\sum_{k=\iota}^{\infty}-\frac{1}{2^{k}}-\frac{|p_{k}(x)-}{+|p_{k}(x)}-\frac{(}{p}1-k(y^{1})|^{-}p_{k}y)$

induces the same uniformity on $X$ as the uniformity $\mathcal{U}$ . Also we have, by

virtue of Corollary 1.10, the equivalence of the topology induced by the uni-
formity $\mathcal{U}$ and the initial topology on $X$.

Let $\hat{X}$ be the completion of $X$ with respect to the uniformity $\mathcal{U}$ (or

equivalently with respect to the metric $d$ ). The above consideration yields
the following theorem.

THEOREM 2.1. The metric completion $\hat{X}$ of (X, d) is a unique (up to a
homeomorphism) compactification of $X$ with the following properties:

(a) Each $f\in E$ can be continuously extended over $\hat{X}$.
(b) The extensions of the functions of $Q$ separate the points of $\hat{X}$.
Let

$p_{0}=\sum_{n=1}^{\infty}-2^{n}1$
$\overline{\sup_{x}}(\overline{x})\frac{p}{p}n_{n}$

$q^{N}=\sum_{n=1}^{N}2^{n}\overline{\sup_{x}}\overline{p}_{n}^{n_{-}}(x)1p-$

$p_{0}$ is a uniform limit on $X$ of uniformly continuous functions $q^{N}$ , and so $p_{0}$ is
uniformly continuous and can be continuously extended over $\hat{X}$.

Since the possibility of the continuous extension over $\hat{X}-X$ of any func-
tion depends only on the behavior of the function near the boundary $\hat{X}-X$,

any function which is not necessarily continuous on $X$ but is fullharmonic
out of some compact set can also be extended uniquely to a function on $\hat{X}$
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such that it is continuous near the boundary $\hat{X}-X$. By the same reason if
a sequence of functions such that they can be continuously extended over
$\hat{X}$ converges uniformly on the complement of some compact set to a function,
then the limit function can be extended over $\hat{X}$ to be continuous near the
boundary $\hat{X}-X$.

COROLLARY 2.2. Any function of $\mathcal{P}_{c}$ can be extended over $\hat{X}$ such that it
is continuous near the boundary $\hat{X}-X$.

REMARK. $\hat{X}$ is the compactification introduced by C. Constantinescu and
$A$ . Cornea [7] and they defined it as Kuramochi’s compactification. But this
is not Kuramochi’s original compactification that was introduced in order to
get integral representations of $P_{b}$-functions. We shall give in section 7 a
compactification such that $P_{b}$-functions are represented by measures on the
ideal boundary.

\S 3. Specific restrictions of fullsuperharmonic functions to subsets of $X$.
F. Y. Maeda proved a partition theorem of fullsuperharmonic functions

and introduced the concept of specific restrictions of fullsuperharmonic func-
tions to the sets of $\mathcal{G}$ . In this section we shall develop the result and get
some properties of the specific restrictions of fullsuperharmonic functions.
Things are different from the situation treated by Herve. Namely the specific
restriction of a P-function to a set of $\mathcal{D}$ contains a so-called boundary part
\langle Proposition 3.11).

DEFINITIONS. (1) For any $p\in \mathcal{P},$ $G\in \mathcal{G}$ , put

$\mathcal{B}_{G}(p)=$ { $u\in \mathcal{P};u=p+s$ on $G$ for some $s\in\tilde{S}(G)$ }
$p_{G}=\inf\{u;u\in \mathcal{B}_{G}(p)\}$ .

THEOREM 3.1 (F. Y. Maeda). Let $p\in \mathcal{P}$ and $G\in \mathcal{G}$ .
(i) $p_{G}$ is a P-function and is harmonic on $X-\overline{G}$ .
(ii) $p_{G}\prec p$ , more precisely, $p=p_{G}+w$ with a $w\in \mathcal{P}\cap\tilde{\mathcal{H}}(G)$ .
PROOF. (i) $\hat{p}_{G}\in\tilde{S}_{+}(X)=\mathcal{P}$ follows from the property (b) in section 1.

Let $\mathcal{U}$ be the family of fullsuperharmonic functions $s$ on $G$ such that $u=p+s$

on $G$ for some $u\in \mathcal{B}_{G}(p)$ . Then we can verify, by virtue of the property (e)

in section 1, that $s_{0}=\inf \mathcal{U}$ is fullharmonic on $G$ . We have $\hat{p}_{G}=p+s_{0}$ on $G$

and $\hat{p}_{G}\in \mathcal{B}_{G}(p)$ , hence $\hat{p}_{G}\geqq p_{G}$ . Therefore $p_{G}=\hat{p}_{G}\in \mathcal{P}$ . $p_{G}\in \mathcal{H}(X-\overline{G})$ follows
also from the property (e) in section 1.

(ii) Let

$t=\left\{\begin{array}{lll} & & p-p_{G} if p_{G}<\infty\\ & & \infty if p_{G}=\infty.\end{array}\right.$

Take a domain $D\in \mathcal{G}_{\gamma}$ and a continuous function $h$ on $\partial D$ such that $h\leqq p$ on
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$\partial D$ . We set

$g=\left\{\begin{array}{l}\inf(p-\tilde{H}^{D}h+\tilde{H}^{D}p_{G},p_{G}) on D\\p_{G} on X-D.\end{array}\right.$

From the property (d) of section 1 it follows $g\in \mathcal{P}$ . Similarly

$f=\left\{\begin{array}{l}\inf(-\tilde{H}^{D}h+\tilde{H}^{D}p_{G},s_{0})\\s_{0}\end{array}\right.$ $onon$ $G-DG\cap D$

is a fullsuperharmonic function on $G$ . Since $g=f+p$ on $G$ it follows $g\in \mathcal{B}_{G}(p)$

and $g\geqq p_{G}$ . Therefore $p-\tilde{H}^{D}h+\tilde{H}^{D}p_{G}\geqq p_{G}$ on $G$ . Since $p=\sup\{h\in C(\partial D)$ ;
$h\leqq p\}$ on $\partial D$ we have $p+\tilde{H}^{D}p_{G}\geqq p_{G}+\tilde{H}^{D}p$ . Thus $t$ is nearly fullsuperharmonic
and $t\in \mathcal{P}$ . From $p_{G}+t=p$ it follows $f=-s_{0}$ on $G$ . The function $w=t$ re-
sponds to the question.

From this theorem, for any compact subset $K$, there is a P-function $p_{K}$

such that $p=p_{X-K}+p_{K}$ and $p_{K}\in\tilde{\mathcal{H}}(X-K)$ .
PROPOSITION 3.2. (i) Let $p\in \mathcal{P}$ and $G\in \mathcal{G}$ . $p_{G}$ is the greatest lower bound

of $\mathcal{B}_{G}(p)$ with respect to the specific order $\prec$ .
(ii) $p_{K}$ is the greatest specific minorant of $p$ which is fullharmonic out of

the compact set $K$.
PROOF. Let $u\in \mathcal{B}_{G}(p)$ . $u=p+s$ on $G$ for some $s\in\tilde{S}(G)$ . $p=p_{G}+w$ for

a $w\in \mathcal{P}\cap \mathscr{B}(G)$ . We have $u=p_{G}+s+w$ on $G$ . Let $D\in \mathcal{D}_{r}$ and let $h$ be a
continuous function such that $h\leqq u$ on $\partial D$ . We set

$g=\left\{\begin{array}{l}\inf(u-H^{D}h+\tilde{H}^{D}p_{G},p_{G})\\p_{G}\end{array}\right.$ $onon$ $DX-D$ .
We can verify from the property (d) that $g\in\tilde{S}_{+}(X)=\mathcal{P}$ and $g\leqq p_{G}$ . Similarly,
the function

$ f=\left\{\begin{array}{l}\inf(s-H^{D}h+H^{D}p_{G},-w) on\\-w on\end{array}\right.\sim$ $D\bigcap_{-}GGD$

is fullsuperharmonic on G. (Note that $1m.\inf_{D^{\frac{i}{\supset}}x-y^{\prime}\partial D}(s-\tilde{H}^{D}h+\tilde{H}^{D}p_{G})(x)+w(y)$

$\geqq u(y)-h(y)\geqq 0.)$ Since $g\in \mathcal{P}$ and $g=f+p$ on $G$ , we have $g\in \mathcal{B}_{G}(p)$ , so $g\geqq p_{G}$ .
Hence $g=p_{G}$ and

$u+\tilde{H}^{D}p_{G}\geqq p_{G}+\tilde{H}^{D}h$ .
$h$ being arbitrary continuous function such that $h\leqq u$ on $\partial D$ , we have

$u+\tilde{H}^{D}p_{G}\geqq p_{0}+\tilde{H}^{D}u$ .
Therefore the function

$v=\left\{\begin{array}{l}u-p_{G} if p_{G}<\infty\\\infty if p_{G}=\infty\end{array}\right.$
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is nearly fullsuperharmonic on $X$ and $\hat{v}+p_{G}=u$ . We have $u\succ p_{G}$ and $p_{G}$ is
a lower bound of $\mathcal{B}_{G}(p)$ . Obviously it is the greatest lower bound. (ii) follows
from (i).

COROLLARY 3.3. If $p\in \mathcal{P}\cap\tilde{\mathcal{H}}(G),$ $G\in \mathcal{G}$, then $p_{G}=0$, in particular, if
$p\in \mathcal{P}\cap\tilde{\mathcal{H}}(X-K)$ for a compact set $K$ then $p=p_{K}$ .

PROPOSITION 3.4. Let $p,$ $q\in \mathcal{P}$ and $\alpha\geqq 0$ . We have;

$(P+q)_{G}=P_{G}+q_{G}$ ; $(\alpha p)_{G}=\alpha p_{G}$ $(G\in \mathcal{G})$

$(p+q)_{K}=p_{K}+q_{K}$ ; $(\alpha p)_{K}=\alpha p_{K}$ ($K$ is compact).

PROOF. First we shall show that the relation $p\succ q$ implies the relation
$p_{G}\succ q_{G}$ . Let $p=q+u,$ $u\in \mathcal{P}$ , and $p=p_{G}+w,$ $w\in \mathcal{P}\cap\tilde{\mathcal{H}}(G)$ . We have $p_{G}=$

$q+u-w$ on $G$ and $u-w\in\tilde{S}(G)$ , so $p_{G}\in \mathcal{B}_{G}(q)$ . Hence $q_{G}\prec p_{G}$ .
From this remark there is a $u\in \mathcal{P}$ such that $(p+q)_{G}=p_{G}+u$ . By virtue

of Theorem 3.1, $(p+q)=(p+q)_{G}+s$ and $p=p_{G}+w$ with $s,$ $w\in \mathcal{P}\cap\tilde{\mathcal{H}}(G)$ . On
$G$ we have $u=q+w-s$ . Hence $u\in \mathcal{B}_{G}(q)$ . Proposition 3.2 yields $q_{G}\prec u$ . Then
$p_{G}+q_{G}\prec(p+q)_{G}$ . Similarly $p_{G}+q_{G}\in \mathcal{B}_{G}(p+q)$ can be verified, and from Prop-
osition 3.2 we have $p_{G}+q_{G}\succ(p+q)_{G}$ . Thus $p_{G}+q_{G}=(p+q)_{G}$ . The rest is
proved in the same way.

PROPOSITION 3.5. Let $p\in \mathcal{P}$ , and $G,$ $G_{i}\in \mathcal{G}$ and let $K,$ $K_{i}$ be compact
$(i=1,2)$ . We have;

$K\subset G=>p_{K}\prec p_{G}$ ; $G\subset K=>p_{G}\prec p_{K}$ ,

$G_{1}\subset G_{2}\Rightarrow p_{G_{1}}\prec p_{c_{2}}$ ; $K_{1}\subset K_{2}\Rightarrow p_{K_{1}}\prec p_{K_{2}}$ .
PROOF. Let $K\subset G$ , and let

$t=\left\{\begin{array}{lllll} & & & & p_{G}-p_{K} if p_{K}<\infty\\ & & & & \infty if p_{K}=\infty\end{array}\right.$

For $x\in G$ at which $p_{K}(x)$ is finite we have $t(x)=p_{X-K}(x)-w(x)$ , where $ w\in$

$\mathcal{P}\cap \mathscr{B}(G)$ is such that $p=p_{G}+w$ . Hence $t$ is nearly fullsuperharmonic on $G$

and $f\in\tilde{S}(G)$ . On the other hand, $p_{K}$ being fullharmonic on $X-K$, we have
$f=p_{G}-p_{K}\in\tilde{S}(X-K)$ and $f\in\tilde{S}(X-K)$ . Thus $\hat{t}\in\tilde{S}(X)$ . The relations $p_{K}\in \mathcal{P}$

and $\hat{t}+p_{K}=p_{G}\geqq 0$ imply the relation $t\geqq 0$ . Hence $t\in\tilde{S}_{+}(X)=\mathcal{P}$ and $p_{K}\prec p_{G}$ ,
which proves the first assertion. The rest is easily proved.

PROPOSITION 3.6. Let $p\in \mathcal{P}$ , and $G,$ $G^{\prime}\in \mathcal{G}$ and $K$ be compact. We have;

$K\subset G=>p_{K}=(p_{G})_{K}$

$G\subset G^{\gamma}=>p_{G}=(p_{G},)_{G}$ .
PROOF. Since $p_{K}\prec p_{G}\prec p$ , we have $(p_{K})_{K}\prec(p_{G})_{K}\prec p_{K}$ . But $(p_{K})_{K}=p_{K}$ is

a consequence of Corollary 3.3, so $(p_{G})_{K}=p_{K}$ . The proof of the second part
is as follows. We have $p_{G}\succ(p_{G},)_{G}$ from $p\succ p_{G^{t}}$ . Choose an element $q$ of
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$\mathcal{B}_{G}(p_{G},)$ . Since $q=p_{G^{\prime}}+s$ on $G$ for some $s\in\tilde{S}(G)$ , and $p_{G},$ $=p-w$ on $G$ for
some $w\in\tilde{\mathcal{H}}(G^{\prime})$ , we have $q=p+(s-w)$ on $G$ , and $q\in \mathcal{B}_{G}(p)$ follows. Hence
$q\succ p_{G}$ from Proposition 3.2. $q\in \mathcal{B}_{G}(p_{G},)$ being arbitrary, $p_{G}$ is a lower bound
of $\mathcal{B}_{G}(p_{G^{\prime}})$ , and the same proposition yields $(p_{G^{t}})_{G}\succ p_{G}$ . Thus $(p_{G},)_{G}=p_{G}$ .

It was shown in [15] that

$Bp=\inf_{n}p_{X- Kn}$ ,

where $(K_{n})$ is an exhaustion of $X$ by compact sets $K_{n}$ such that $X-K_{n}$ is
regular. This fact and Corollary 3.3 yield

$\mathcal{P}_{c}\subset \mathcal{P}_{i}$ .
Moreover we have:
PROPOSITION 3.7.

$\mathcal{P}_{i}=\{p\in \mathcal{P};p=\sum_{n=1}^{\infty}p_{n}$ with $(p_{n})\subset \mathcal{P}_{c}\}$ .

PROOF. For every $n$ , there is a $p_{n}\in \mathcal{P}$ such that $p_{Kn}=p_{K_{n- 1}}+p_{n}$ . Both
$p_{K_{n}}$ and $p_{K_{n- 1}}$ being fullharmonic on $X-K_{n},$ $p_{n}$ is fullharmonic on $X-K_{n}$ , so
$p_{n}\in \mathcal{P}_{c}$ . $p=\sum_{n=1}^{N}p_{n}+p_{X- Kn}$ , where $p_{i}=p_{K_{i}}$ . If $p\in \mathcal{P}_{i}$ we have $p_{X-Kn}\downarrow Bp=0$

and $p=\sum_{n=\iota}^{\infty}p_{n}$ . Conversely, suppose that $p\in \mathcal{P}$ is written in the form $p=\sum_{n=1}^{\infty}p_{n}$

with $(p_{n})\subset \mathcal{P}_{c}$ . Obviously $B(\sum_{k=1}^{n}p_{k})=0$ for any $n$ . Applying Lemma 1.3 to
the series

$\{q_{n}=\sum_{k=n}^{\infty}p_{k}$ ; $n=1,2,$ $\cdots\}\subset \mathcal{P}$ ,

we have $Bq_{n}=0$ for all $n$ . Therefore

$Bp=B(\sum_{k=\iota}^{n-1}p_{k})+Bq_{n}=0$ ,

and $p\in \mathcal{P}_{i}$ .
Carriers of $P_{i}$-functions.
The carrier of $p\in \mathcal{P}_{i}$ is defined as the smallest closed set $F$ such that

$X-F\in \mathcal{G}$ and $p\in\tilde{\mathcal{H}}(X-F)$ . We denote it by Carr $(p)$ or $C(p)$ .
LEMMA 3.8. If a $P_{i}$-function $u$ is harmonic on $G\in \mathcal{G}$ , then it is full-

harmonic on $G$ .
PROOF. It is enough to prove our lemma for $G\in \mathcal{D}$ . Let $K$ be a compact

set such that $X-K$ is regular and is contained in $G$ . Let $U$ be a regular
relatively compact set in $G$ . We have $u_{X-K}\geqq H^{U}u_{X-K}=u-H^{U}u_{K}\geqq u-u_{K}$

$=u_{X-K}$ on $U$ , and $u_{X-K}\in \mathcal{H}(G)$ . Since $u_{X-K}\in \mathcal{H}(K^{o})$ we have $u_{X-K}\in \mathcal{H}(X)|$

and $u_{X-K}\in \mathcal{P}_{b}$ . Hence $u_{X-K}\prec u\in \mathcal{P}_{i}$ implies $u_{X-K}=0$ and $u=u_{K}\in \mathscr{B}(X-K)$ .
$u\in\tilde{\mathcal{H}}(G)$ follows from Axiom (3).

This lemma says that Carr $(p),$ $p\in \mathcal{P}_{i}$ , is the smallest closed set with
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compact boundary such that $p$ is harmonic out of the set.
PROPOSITION 3.9. The map $p\rightarrow Carr(p)$ possesses the following properties;
(i) $ p=0\Leftrightarrow Carr(p)=\phi$ ,
(ii) $p\prec q=>Carr(p)\subset Carr(q)$ ,
(iii) for any $p\in \mathcal{P}_{i}$ and for any compact subset $K$, there exist two $P_{i^{-}}$

functions $p_{1}$ and $p_{2}$ such that $p=p_{1}+p_{2},$ $Carr(p_{1})\subset K,$ $Carr(p_{2})\subset X-K^{o}$.
(iv) $C(p_{1}+p_{2})=C(p_{1}Yp_{2})=C(p_{1})\cup C(p_{2})$ ,
(v) $C(p_{1})_{\backslash }p_{2})\subset C(p_{1})\cap C(p_{2})$ ,

where $p_{1^{\backslash }}$( $p_{2}$ (resp. $p_{1}$)) is the maximum (resp. minimum) of $p_{1}$ and $p_{2}$ with
respect to the specific order.

These properties are given in [2] as the theory of abstract carriers and
can be proved in the same way. Namely the pair $(\mathcal{P}_{i}, p\rightarrow C(p))$ is an abstract
carrier.

N. Boboc, C. Constantinescu, A. Cornea [2] and W. Hansen [9] developed
the theory of abstract carriers and gave a method of constructing potential
kernels in connection with H. Bauer’s (or some other) axiomatic theory of
harmonic functions. Though their method is applicable for our theory [12],

we shall here follow R. M. Herve’s method for the construction of potential
kernels.

LEMMA 3.10. $Bp=B(p_{G})\prec p_{G}$ , for any $G\in \mathcal{D}$ , in particular, $p_{A}\prec p-Bp$,

for any relatively compact open set $A$ .
PROOF. We have, from Proposition 3.6, $(p_{G})_{X- K}=p_{X-K}$ for sufficiently

large compact set $K$. Therefore $Bp=\inf p_{X-K}=\inf(p_{G})_{X-K}=B(p_{G})\prec p_{G}$ .
The second assertion follows from the first and the relation $p_{A}\prec p_{\overline{A}}$ .

PROPOSITION 3.11. Let $G\in \mathcal{G}$ and $G_{n}$ be an increasing sequence of domains
in $G$ such that $G=\cup G_{n}$ .

(i) If either $G_{n}\in \mathcal{D}$ for some $n$ , or $G$ is relatively compact, then

$p_{G}=\sup p_{Gn}$ .
(ii) If all $G_{n}’ s$ are relatively compact but $G\in \mathcal{D}$ , then

$p_{G}-Bp=\sup p_{Gn}$ .
Moreover $\sup$ in the above can be taken relative to the specific order.

PROOF. Let $q=\sup p_{G_{n}}$ . Then $q\in\tilde{S}_{+}(X)=\mathcal{P}$ . Let $p_{Gn}=p_{Gm}+u_{m,n}$ with
$u_{m,n}\in \mathcal{P}(n\geqq m)$ (Proposition 3.5). We have $q=p_{Gn}+u_{m},$ $u_{m}=\sup u_{m,n}\in \mathcal{P}$ .
Hence $q$ is a specific majorant of any $p_{Gm}$ . It can be proved similarly that
any specific majorant of $\{p_{Gm} ; m\geqq 1\}$ is a specific majorant of $q$ . $q$ is the
supremum of the $p_{G_{n}}’ s$ relative to the order $\prec$ . Let $p=p_{c_{n}}+w_{n}$ with a
$w_{n}\in \mathcal{P}\cap\tilde{\mathcal{H}}(G_{n})$ . We have $p=q+w,$ $w=\sup w_{n}\in P$. $w$ is also harmonic on $G$ .

(i) If $G_{n}\in \mathcal{D}$ for some $n$ then $w$ is fullharmonic on $G$ , and therefore
$q\in \mathcal{B}_{G}(p)$ . Hence $q\geqq p_{G}$ . On the other hand $p_{Gn}\prec p_{G}$ for every $n$ implies
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$q\prec p_{G}$ . Thus $q=p_{G}$ . The same argument holds when $G$ is a relatively
compact set.

(ii) We have $p_{G}-Bp=p_{G}-B(p_{G})\succ(p_{G})_{Gn}=p_{Gn}$ from Lemma 3.10 and
Proposition 3.6. Hence $p_{G}-Bp\succ q$ . We shall prove the converse. $p_{G}$ being
a specific minorant of $p$ , we have from just the above $p-Bp\succ q$ . Let $u\in \mathcal{P}$

be such that $u+q=p-Bp$ . $u\prec p-Bp$ implies $u\in \mathcal{P}_{i}$ . Since $u+q=q+w-Bp$ ,
$w\in \mathcal{H}(G)$ , we have $u=w-Bp\in \mathcal{H}(G)$ . From Lemma 3.8 $u\in\tilde{\mathcal{H}}(G)$ . Hence
$q+Bp\in \mathcal{B}_{G}(p)$ and $q+Bp\geqq p_{G}$ . Thus $q+Bp=p_{G}$ .

COROLLARY 3.12. Let $K$ be the intersection of a decreasing seque $nce$ of
compact sets $K_{n}$ . Then $p_{K}=\inf p_{K_{n}}$ .

PROPOSITION 3.13.
(i) $ p_{G}=\sup$ { $p_{K}$ ; $K$ compact $\subset G$ } $+B(p_{G})$ ,
(ii) $p_{K}=\inf\{p_{G} ; G open\supset K\}$ .

The supremum and the infimum in the above can be taken with regard to the
specific order.

PROOF. It can be verified that, for any compact set $K$ and $G\in \mathcal{G}$ with
$K\subset G,$ $p_{K}\prec p_{K}=(p_{G})_{K}\prec p_{G}$ $B(p_{G})$ . This and Proposition 3.11 prove our as-
sertion.

PROPOSITION 3.14. Let $G,$ $G^{\prime}\in \mathcal{G}$ and $K,$ $K^{\prime}$ be compact. Then $(p_{K})_{K},$ $=$

$p_{K\cap K},$ , and $(p_{G})_{G^{\prime}}=p_{G\cap G^{\prime}}$ .
PROOF. We have, from Corollary 3.12, $p_{K\cap K^{t}}=p_{K})_{\backslash }p_{K},$ . $p_{K\cap K^{t}}$ being a

specific minorant of $p_{K}$ which is fullharmonic out of $K^{\prime}$ , we have $p_{K\cap K^{\prime}}\prec(p_{K})_{K},$ .
Hence $p_{K\cap K^{\prime}}\prec(p_{K})_{K^{\prime}}\prec p_{K}$ A $p_{K^{\prime}}=p_{K\cap K^{\prime}}$ , that is, $(p_{K})_{K^{\prime}}=p_{K\cap K},$ . We shall prove
the second equality. Let $(K_{n})$ and $(K_{n^{\prime}})$ be increasing sequences of compact
sets such that $G=\cup K_{n},$ $G‘=\cup K_{n^{\prime}}$ respectively. In the following argument
$p_{G},$ $p_{G},,$ $p_{\kappa_{n}},$ $p_{K_{n}^{\prime}},$ $p_{G\cap G^{\prime}},$ $p_{Kn\cap K_{n}^{\prime}}$ are written by $q,$ $r,$ $q_{n},$ $r_{n},$ $s,$ $s_{n}$ respectively.
It can be verified easily that $s\prec q_{G^{\prime}}\prec q$ A $r$ . On the other hand we have the
equality:

$s-Bs=\backslash (s_{n}=\backslash ((q_{n} A r_{n})=(Yq_{n}))_{\backslash }(Y^{\gamma_{n}})=(q-Bq))_{\backslash }(r-Br)$ ,

from Proposition 3.13. To prove our assertion we consider the following four
cases: (1) $G,$ $G^{\prime}\in \mathcal{D},$ (2) $G,$ $G^{\prime}$ are relatively compact sets, (3) $G\in \mathcal{D}$ and $G^{\prime}$ is
relatively compact, (4) $G^{\prime}\in \mathcal{D}$ and $G$ is relatively compact.

Case (1): We have $Bs=Bq=Br=Bp$ and $s$ – $Bp=(q-Bp))\backslash (t^{\prime}-Bp)=$

$q)_{\backslash }r-Bp$ , so $s=q$ A $r$ . We have $s=q_{G^{\prime}}=q$ )$\backslash r$ .
Case (2): $Bs=Bq=Br=0$ and $s=q$ )$\backslash r=q_{G^{t}}$ .
Case (3) : We have $Bs=Br=0$ and $s=(q-Bq))\backslash r$ . From Lemma 3.10 it

follows that $q_{G},$ $\prec q-Bq$ , so $q_{G’}\prec(q-Bq))\backslash r=s$ . Hence $q_{G^{\prime}}=s$ .
Case (4) : In this case $Bs=Bq=0,$ $Br=Bp$ , and we have $s=q$ )$\backslash (r-Bp)$ .

Lemma 3.10 yields $r-q_{G^{\prime}}=(p-q)_{G^{\prime}}\succ B(p-q)=Br$ , that is, $q_{G’}\prec r-Br$ . There-
fore $q_{G^{\prime}}\prec s$ and $s=q_{G’}$ .
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Now we shall prove the additivity of the maps $K\rightarrow p_{K}$ and $G\rightarrow p_{G}$ .
PROPOSITION 3.15. Let $G_{i}\in \mathcal{G}$ and $K_{i}$ be compact sets $(i=1,2)$ . We have:

$P_{G_{1}\cup G_{2}}+P_{G_{1}\cap G_{2}}=P_{G_{1}}+P_{G_{2}}$ ,

$P_{K_{1}\cup K_{2}}+P_{K_{1}\cap K_{2}}=P_{K_{1}}+P_{K_{2}}$ .
PROOF. First we note the following fact, which is easily verified: For

$G,$ $G^{\prime}\in \mathcal{G}$ , if $q\in \mathcal{P}\cap\tilde{\mathcal{H}}(G)$ and if $q=q_{G^{t}}+w$ with $w\in\tilde{\mathcal{H}}(G^{\prime})\cap \mathcal{P}$ then $ w\in \mathcal{P}\cap$

$\tilde{\mathcal{H}}(G\cup G^{\prime})$ . Let $p=p_{G_{1}}+u$ with $u\in \mathcal{P}\cap\tilde{\mathcal{H}}(G_{1})$ and $u=u_{G_{2}}+v$ with $ v\in \mathcal{P}\cap$

$\tilde{\mathcal{H}}(G_{2})$ (Theorem 3.1). From the above it follows $v\in\tilde{\mathcal{H}}(G_{1}\cup G_{2})$ . Since $u\prec p$ ,

we have $u_{G_{2}}\prec p_{G_{2}}$ and $p=p_{G_{1}}+u_{G_{2}}+v\prec p_{G_{1}}+p_{G_{2}}+v$ . Hence $p_{G_{1}}+p_{c_{2}}\in \mathcal{B}_{G_{1}\cup G_{2}}(p)$ .
From Proposition 3.2 we have $p_{G_{1}}+p_{G_{2}}\succ p_{Gl\cup G_{2}}$ . Let $s\in \mathcal{P}$ be such that
$s+p_{G_{1}\cup G_{2}}=p_{G_{1}}+p_{G_{2}}$ . In view of Proposition 3.4 and Proposition 3.14, $s_{G_{2}}+p_{G_{2}}$

$=p_{G_{1}\cap G_{2}}+p_{G_{2}}$ , so we have $s\succ s_{G_{2}}=p_{Gl\cap G_{2}}$ . Therefore $p_{G_{1}\cap G_{2}}+p_{G_{1}\cup G_{2}}\prec p_{c_{1}}+p_{c_{2}}$ .
Conversely, if $t\in \mathcal{P}$ is such that $p_{G_{1}\cup G_{2}}+p_{G_{1}\cap G_{2}}=p_{G_{1}}+r$ , we have, like the
above, $p_{G_{2}}=t_{G_{2}}\prec t$ and $p_{G_{2}}+p_{Gl}\prec p_{G_{1}\cup G_{2}}+p_{G_{1}\cap G_{2}}$ . Thus we have $p_{G_{1}}+p_{G_{2}}=$

$P_{G_{1}UG_{2}}+P_{G_{1}\cap G_{2}}$ .
We have seen that, for any $x\in X$, the function $K\rightarrow p_{K}(x)$ defined on the

compact sets is positive, increasing, right continuous and additive. Hence it
may be extended over all subsets of $X$ as a right continuous Choquet’s
capacity. If $p(x)$ is finite the restriction of this capacity to the Borel subsets
of $X$ is a bounded Radon measure on $X$. We shall denote this measure by
$V^{p}(x, dy)$ .

Let $p$ be a finite P-function. Since $V^{p}(\cdot, K)=p_{K}$ is Iower semi-continuous
for any compact set $K,$ $V^{p}(\cdot, A)$ is Borel measurable for any Borel set $A$ , that
is, $V^{p}(x, dy)$ is a kernel.

Let $A$ be a Borel set. From the relation

$ V^{p}(\cdot, A)=\sup$ { $V^{p}(\cdot,$ $K);K$ compact $\subset A$ }

$=\sup$ { $p_{K}$ ; $K$ compact $\subset A$ } ,

it follows that $V^{p}(\cdot, A)$ is a P-function dominated by $p$ and is fullharmonic
out of $\overline{A}$ if $A$ is relatively compact (Property (a) in section 1). Similarly, for
any non-negative measurable function $g$ , the function

$V^{p}g=\int_{X}g(y)V^{p}(\cdot, dy)$

is a P-function if $ V^{p}g\frac{-\neq}{\tau-}\infty$ . It is fullharmonic out of the support of $g$ if $g$

has a compact support. From Proposition 3.11 (ii) we have $V^{p}1=p-Bp$ . We
shall prove that, for any non-negative measurable function $g$, the function
$V^{p}g$ is a $P_{i}$-function if $ V^{p}g\not\equiv\infty$ . In case of $g\in B_{b}^{+}(X),$ $V^{p}g$ is a specific
minorant of $(\sup_{X}g)\cdot V^{p}1=(\sup_{X}g)(p-Bp)$ , and so it is a $P_{i}$-function. In
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general $V^{p}(\min(g, N))$ is a $P_{i}$-function. Let $q_{N}=V^{p}(g-\min(g, N))$ . $q_{N}’ s$ are
P-functions and, by virtue of Lemma 1.3 applied to the sequence $q_{N}$ , we have
$Bq_{N}=0$ for every $N$. Hence $V^{p}g=V^{p}(\min(g, N))+q_{N}\in \mathcal{P}_{i}$ .

THEOREM 3.16. (i) Let $p$ be a finite P-function. There is a kernel $V^{p}$

which satisfies the following properties:
(a) For every non-negative measurable function $g$, the function $V^{p}g$ is a

$P_{i}$-function whenever $ V^{p}g\not\equiv+\infty$ . $V^{p}g$ is fullharmonic out of the support of
$g$ if $g$ is of compact support.

(b) $V^{p}1=p-Bp$ .
(ii) If a kernel $V$ on $X$ has the property;
$(a)^{\prime}$ $ V1<\infty$ and, for every $g\in C_{c}^{+}(X)$ , the function $Vg$ is a P-function

which is fullharmonic out of $Supp[g]$ , then there is a finite $P_{i}$-function $p$

such that $V=V^{p}$ .
PROOF. It remains for us to prove (ii). From the above condition $(a)^{\prime}$

and the property (a) in section 1, $Vg$ is a P-function whenever $g$ is a lower
semi-continuous function such that $ Vg\not\equiv+\infty$ . In particular $V1=p\in \mathcal{P}$ . We
shall prove that the relation $V1_{K}=p_{K}$ holds for any compact set $K$. Let $K_{1}$

be a compact set such that $K\subset K_{1}^{o}$ and $X-K_{1}$ is regular. Let $\mathcal{A}$ be the family
of continuous functions $f$ such that $0\leqq f\leqq 1$ and $f=1$ on $K$ and $f=0$ out of
$K_{1}$ . Further let $\mathcal{U}=\{Vf;f\in \mathcal{A}\}$ . Then $V1_{K}=\inf \mathcal{U}$ is nearly fullsuper-
harmonic4) and is equal to the difference $p-V1_{X-K}$ , hence $V1_{K}$ is a P-function
and $V1_{K}\prec p$ . Moreover the family $\mathcal{U}$ restricted on $X-K_{1}$ satisfies the con-
ditions of (e) in section 1, and therefore $V1_{K}=\inf \mathcal{U}\in\tilde{\mathcal{H}}(X-K_{1})$ . $K_{1}$ being
arbitrary compact set such that $K\subset K_{1}^{o}$ and $X-K_{1}$ is regular, we have
$V1_{K}\in\tilde{\mathcal{H}}(X-K)$ . Thus $V1_{K}$ is a specific minorant of $p$ which is fullharmonic
out of $K$, hence Proposition 3.2 yields $V1_{K}\prec p_{K}$ . In view of this inequality
and Proposition 3.13 we have

$ p=V1=\sup\{V1_{H} ; Hcompact\}\leqq\sup$ { $p_{H}$ ; $H$ compact} $=p-Bp$ ,

hence $Bp=0$ and $p\in \mathcal{P}_{i}$ . Now we have

$ V1_{X-K}=\sup$ { $V1_{H}$ ; $H$ compact $\subset X-K$ }

$\leqq\sup$ { $p_{H}$ ; $H$ compact C $X-K$ }

$=p_{X-K}-Bp$

$=P_{X-K}$ ,

4) The greatest lower bound of a family of nearly fullsuperharmonic functions,
that are locally uniformly bounded from below, is nearly fullsuperharmonic. If the
difference of two finite fullsuperharmonic functions is nearly fullsuperharmonic, then
it is fullsuperharmonic.
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that is, $V1_{K}\geqq p-p_{X- K}=p_{K}$ . Therefore $V1_{K}=p_{K}$ for any compact set $K$, and
the kernel $V$ and $V^{p}$ are identical.

DEFINITION. A kernel with the properties (a) and (b) of Theorem 3.16 is
called the potential kernel associated with $p$ .

Let $p$ be a finite P-function. The potential kernel associated with $p$ is
unique. The proof is as follows. Let $V$ be a kernel with the properties $(a)^{\gamma}$

and (b), and let $q=p-Bp$ , then $V=V^{q}$ from Theorem 3.16 (ii) and its proof.

Since $(Bp)_{K}=0$ (Corollary 3.10), we have $q_{K}=p_{K}-(Bp)_{K}=p_{K}$ and the kernels
$V^{p}$ and $V^{q}$ coincide. Thus we have $V=V^{p}$ . We have also shown $V^{p}=V^{p-Bp}$ .

PROPOSITION 3.17. If $p$ is a continuous P-function, the potential kernel $V^{p}$

maps $B_{b}(X)$ into $C(X)$ .
The proof follows from the fact that if $q$ is a specific minorant of $p$ then

$q$ is also continuous.
Let $p\in \mathcal{P}_{i}$ . If the carrier of $p$ is the whole space $X$, then, for each $x\in X$,

the support of the measure $V^{p}(x, dy)$ is the whole space. In fact, suppose
that $V^{p}(x, U)=0$ for some relatively compact open set $U$ , then $p_{U}(x)=0$ and
so $p_{U}=0$ on $X$. Therefore $p=p-p_{U}$ is fullharmonic on $U$ (Theorem 3.1),

which contradicts to the fact that the carrier of $p$ is the whole space. Now
suppose that the carrier of $p$ is a compact set $K$ The above argument
applied to $p=p_{K}$ yields that, for each $x$ , the support of the measure $V^{p}(x, dy)$ ,

contains the compact set $K$ (Note that $(p_{K})_{U}=p_{U}$ for every open set con-
tained in $K.$) On the other hand, let $U$ be a relatively compact open set
such that $ K_{\cap}\overline{U}=\phi$ , then

$V^{p}(x,\overline{U})=p_{\overline{U}}(x)=(p_{K})_{\overline{U}}(x)=p_{K\cap\overline{U}}(x)=0$ .
Hence the support of $V^{p}(x, dy)$ is precisely the carrier of $p$ . Applying the
above to the function $p$– $Bp$ whenever $p$ is any P-function, we have the
following proposition.

PROPOSITION 3.18. For every $p\in \mathcal{P}$ and $x\in X$, the support of the measure
$V^{p}(x, dy)$ is exactly the carrier of p–Bp.

PROPOSITION 3.19. Let $p_{n}\in P,$ $n\geqq 1$ , and $p=\sum_{n=1}^{\infty}p_{n}\in \mathcal{P},$ $ p<\infty$ , then we have:

$Bp=\sum_{n=1}^{\infty}Bp_{n}$ ,

$V^{p}=\sum_{n=1}^{\infty}V^{p_{n}}$ .

PROOF. We have already known that, for any $p,$ $q\in \mathcal{P},$ $B(p+q)=Bp+Bq_{r}$

and $V^{p+q}=V^{p}+V^{q}$ (Proposition 3.4). These are also true for finite summand.
To prove the first part, put $q=\sum Bp_{n}$ . As an increasing limit of $P_{b}$ -functions,
$q$ is also a $P_{b}$-function. On the other hand, applying Lemma 1.3 to the
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sequence $\{q_{n}=\sum_{k=n}^{n}(p_{k}-Bp_{k})\in \mathcal{P};n\geqq 1\}$ , we have $Bq_{n}=0$, hence $B(p-q)=0$,

and $Bp=Bq=q$ . Now let $V$ be the kernel $V=\sum V^{p_{n}}$ . Obviously $V$ satisfies
condition $(a)^{J}$ of Theorem 3.16. From the above it follows that

$V1=\sum V^{p_{n}}1=\sum(p_{n}-Bp_{n})=p-\sum Bp_{n}=p-Bp$ ,

that is, $V$ satisfies condition (b) of Theorem 3.16. Hence $V=V^{p}$ from the
uniqueness of the potential kernel.

REMARK. Let $p$ be a P-function (not necessarily finite). $p_{K}(x)$ is finite
for $x\not\in K$, so we can associate a Radon measure $W^{p}(x, dy)$ on $X-\{x\}$ such
that $W^{p}1_{K}(x)=p_{K}(x)$ for any compact set such that $K*x$ . The support of
$W^{p}(x, dy)$ is Carr $(p)-\{x\}$ .

Let $x_{0}\in X$ and $\delta_{0}$ be a regular (relatively compact) neighborhood of $x_{0}$ .
The function $K\rightarrow H^{\delta_{0}}p_{K}(x_{0})$ defined on the compact sets defines a bounded
Radon measure on $X$ whose total mass is equal to $H^{\grave{o}_{0}}p(x_{0})-Bp(x_{0})$ .

\S 4. Resolvents associated with potential kernels. Excessive functions.

This section is devoted to the investigation of the submarkov resolvent
$V_{\lambda}^{p}$ associated with the potential kernel $V^{p}$ , and also to the investigation of
the relation between excessive functions with respect to this resolvent and
P-functions. We shall show that, for an appropriately chosen $p\in \mathcal{P}$ , the range
of $V_{\lambda}^{p}$ and $E$ have the same uniform closure ($E$ is the space introduced in
section 2).

DEFINITION. Let $W$ be a kernel. A function $d\in B_{+}(X)$ is called a W-
dominant function if, for every pair $(f, g)$ of positive measurable functions,
the relation

$d+Wf\geqq Wg$ on $\{x\in X;g(x)>0\}$

implies the relation

$d+Wf\geqq Wg$ on $X$ .
It is well-known that if the function $(1+\lambda W)u$ is a W-dominant function

for a $\lambda>0$ then $u$ is non-negative.
PROPOSITION 4.1. Let $p\in \mathcal{P}\cap C(X)$ . Every P-function is a $V^{p}$ -dominant

function.
PROOF. We may suppose $p\neq 0$ . Since $V^{p}$ is a strictly positive continuous

kernel it is enough to prove that; for every pair $(f, g)$ of non-negative con-
tinuous functions of compact support, the relation

$s\in \mathcal{P}$ and $s+V^{p}f\geqq V^{p}g$ on $\{g>0\}$

implies the relation
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$s+V^{p}f\geqq V^{p}g$ everywhere.

There is a sequence $(q_{n})\subset C(X)\cap \mathcal{P}_{c}$ such that the carrier of $q_{n}$ is contained
in $\{g>0\}$ and $q_{n}\uparrow V^{p}g$ (For instance $q_{n}=V^{p}(g\cdot 1_{tg\geqq 1/n1})$). For these $q_{n}$ it holds

$s+V^{p}f-q_{n}\geqq 0$ on Carr $(q_{n})$ ,
and

$s+V^{p}f-q_{n}\in\tilde{S}$ ($X-$Carr $(q_{n})$).

The minimum principle yields $s+V^{p}f-q_{n}\geqq 0$ , and consequently, $s+V^{p}f\geqq V^{p}g$.
In particular $V^{p}$ satisfies the complete maximum principle from the as-

sumption (5). Hence, if $p\in \mathcal{P}\cap C_{b}(X)$ there is a submarkov resolvent $(V_{\lambda}^{p})_{\lambda>\alpha}$

such that
$V^{p}-V_{\lambda}^{p}=\lambda V^{p}V_{\lambda}^{p}=\lambda V_{\lambda}^{p}V^{p}$

(Th. 10, Chap. X, [17]). In this case every P-function $s$ on $X$ is $(V_{\lambda}^{p})$ -super-
median, that is, $\lambda V_{\lambda}^{p}s\leqq s$ for all $\lambda>0$ . In fact, take a $q\in \mathcal{P}_{c}\cap C(X)$ such that
$q\leqq s$ . The function $V^{p}q$ is bounded, so the function $h=\lambda(q-\lambda V^{p_{\lambda}}q)$ has the
finite potential that equals $\lambda V_{\lambda}^{p}q$ . We have $s\geqq\lambda V_{\lambda}^{p}q=V^{p}h$ on the set
$\{s-\lambda V_{\lambda}^{p}q>0\}$ , in particular, on the set $\{h>0\}$ . So $s\geqq\lambda V_{\lambda}^{p}q$ everywhere on
$X$, and $s$ being equal to $\sup\{q\in \mathcal{P}_{c}\cap C(X);q\leqq s\}$ (Proposition 1.2), it follows
$s\geqq\lambda V^{p_{\lambda}}s$ .

Since $V^{p}f\in \mathcal{P}_{i}$ whenever $f$ is non-negative measurable and $ V^{p}f\overline{\mp}’+\infty$ ,
every $(V_{\lambda}^{p})$-excessive function is a P-function as an increasing limit of finite
potentials. But the converse does not hold in general. (Take a $p\in \mathcal{P}_{b}$ , then
$V^{p}\equiv 0.)$ We shall prove that for a suitably chosen $p\in \mathcal{P}$ every P-function
is $(V_{\lambda}^{p})$-excessive.

LEMMA 4.2. Let $p\in \mathcal{P}\cap C_{b}(X)$ and let $q$ be a specific minorant of $p$ . Then
(i) $V_{\lambda}^{p}s\geqq V_{\lambda}^{q}s$ for any $s\in \mathcal{P}$ and $\lambda>0$ ,
(ii) $V_{\lambda}^{p}g\leqq V_{\lambda}^{q}g+V_{\lambda}^{p-q}g$ for any $g\in B_{b}^{+}(X)$ .
PROOF. From $p\in C_{b}(X)$ and $q\prec p$ it follows that $q$ and $p-q$ are bounded

continuous P-functions, so $V_{\lambda}^{q}$ and $V_{\lambda}^{p-q}$ are defined. (i) It is enough to prove
the relation for $s\in \mathcal{P}_{c}\cap C(X)$ (Proposition 1.2). In this case $V^{p}s$ and $V^{q}s$ are
bounded. Let $t=V_{\lambda}^{p}s-V_{\lambda}^{q}s$ . The resolvent equations for $(V_{\lambda}^{p})$ and $(V_{\lambda}^{q})$ imply
$t=-\lambda V^{p}t+(V^{p}-V^{q})h=-\lambda V^{p}t+V^{p-q}h$ where $h=s-\lambda V_{\lambda}^{q}s\geqq 0$ . $V^{p- q}h-\lambda V^{p}t\geqq C$

on $\{t>0\}$ . $V^{p-q}h$ is a $(V^{p})$ -dominant function from Proposition 4.1. Therefore
$V^{p-q}h-\lambda V^{p}t\geqq 0$ everywhere. Thus $t\geqq 0$ . (ii) Let $u=V_{\lambda}^{q}g+V_{\lambda}^{p-q}g-V_{\lambda}^{p}g$. In
view of the resolvent equations for these potential kernels and the relation
$V^{p}=V^{q}+V^{p-q}$ , we have the equality;

$(I+\lambda V^{p})u=\lambda V^{q}V_{\lambda}^{p-q}g+\lambda V^{p- q}V_{\lambda}^{q}g$ .

Since the right hand side belongs to $\mathcal{P},$ $(I+\lambda V^{p})u$ is a $V^{p}$ -dominant function.
Therefore $u\geqq 0$ .
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Let $K_{m}$ be a compact exhaustion of $X$ such that $X-K_{m}$ is regular for
every $m$ , and let $E^{m}$ be the space of continuous functions fullharmonic out
of $K_{m}$ . Let $E=\bigcup_{m}E^{m}$ . From Proposition 1.8 and Theorem 1.9 there is a
countable family $Q=(p_{k})_{k\geqq 1}$ of functions in $\mathcal{P}_{c}\cap C(X)$ such that $Q\cap E^{n}-$

$Q\cap E^{n}$ is dense in $E^{n}$ , and $Q-Q$ is dense in $E$ (relative to the uniform
convergence topology on $X$). We set

$p_{0}=\sum_{k=1}^{\infty}-2^{k}\sup p_{k}^{-}1_{---}p_{k}$ $(P_{k})=Q$ ,

and

$q_{n}=\sum_{r\in Q\ovalbox{\tt\small REJECT} 1B^{n}}---2^{k(r)}\overline{\sup}^{r}r^{-}$

1

where $k(r)=k$ if $r=p_{k}\in Q$ . $p_{0}\in \mathcal{P}_{i}\cap C_{b}(X)$ and $q_{n}\in \mathcal{P}\cap E^{n}$ and $q_{n}\prec p_{0}$ .
We shall denote the potential kernels $V^{p_{0}}(x, dy)$ and $V^{q_{n}}(x, dy)$ simply by
$V(x, dy)$ and $V^{n}(x, dy)$ and their associated resolvents by $(V_{\grave{A}})$ and $(V_{\lambda^{n}})^{5)}$ .

LEMMA 4.3. For any $f\in E^{n}$ , the function $\lambda V_{\lambda^{n}}f$ converges to $f$ at every
point of $X$ as $\lambda$ tends to infinity.

PROOF. Let $x\in X$ and let $\nu_{\lambda}$ be the measure $\lambda V_{\lambda^{n}}(x, dy),$ $\lambda>0$ . $\nu_{\lambda}$ is con-
centrated on the compact set $K_{n}$ and its total variation is less than 1 because
$\lambda V_{\lambda^{n}}1\leqq 1$ . For each $\lambda_{0}>0$, let $M(\lambda_{0})$ be the closure (in the weak topology
of the space of measures on $K_{n}$) of $\{\nu_{\lambda} ; \lambda\geqq\lambda_{0}\}$ . $M(\lambda_{0}),$ $\lambda_{0}>0$, forms a nested
family of non-empty compact sets and hence have non-empty intersection $M$.
Let $\mu\in M$. From Proposition 5.1 it follows $\mu(r)\leqq r(x)$ for every $r\in Q\cap E^{n}$

and $\mu(q_{n})\leqq q_{n}(x)$ . But, since $\mu(q_{n})=\lim\lambda V_{\lambda^{n}}q_{n}(x)=\lim\lambda V_{\lambda^{n}}V^{n}1(x)=q_{n}(x),$ $\mu(r)$

$\lambda-$ $\lambda-$

$=r(x)$ for all $r\in Q\cap E^{n}$ . $Q\cap E^{n}$ being total in $E^{n}$ we have $\mu(f)=f(x)$ for
any $f\in E^{n}$ . Thus $\lim_{\lambda-}\lambda V_{\lambda^{n}}f(x)=f(x)$ for any $f\in E^{n}$ and $x\in X$.

THEOREM 4.4. The excessive functions with respect to the resolvent $(V_{\lambda})$

are exactly the cone $\mathcal{P}$ .
PROOF. It remains for us to prove that any P-function $s$ is $(V_{\lambda})$-excessive.

By virtue of Proposition 1.2 we may suppose $s\in \mathcal{P}_{c}\cap C(X)$ . Let $x\in X$ and
let $n$ be a sufficiently large number such that $s\in E^{n}$ . We have $\varliminf_{\lambda}\lambda V_{\lambda^{n}}s(x)$

$=s(x)$ from Lemma 4.3. From Lemma 4.2 we have
$0\leqq s(x)-\lambda V_{\lambda}s(x)\leqq s(x)-\lambda V_{\lambda^{n}}s(x)\rightarrow 0$ $(\lambda\rightarrow\infty)$ .

Thus $s$ is $(V_{\lambda})$-excessive.
THEOREM 4.5. The space $E$ and the range of the resolvent $(V_{\lambda})$ operating

on $B_{b}(X)$ have the same uniform closure.
PROOF. Since $q_{n}\uparrow p_{0}$ uniformly, $V^{n}f\rightarrow Vf$ uniformly on $X$ for any $f\in B_{b}(X)$ .

5) From Proposition 3.8 the support of the measure $V_{\lambda}(x, dy)$ is the whole space
$X$ , and the support of $V_{\lambda}^{n}(x, dy)$ is contained in $K_{n}$ , for every $x\in X$ .
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From $V^{n}f\in E^{n}\subset E$ it follows $\overline{V(B_{b}(X))}\subset\overline{E.}$ Conversely let $g\in E$ . $g\in E^{n}$

for some $n$ , and we can find, for any $\epsilon>0$ , two functions $u,$ $v\in Q\cap E^{n}$ such
that $|g-(u-v)|<\epsilon$ uniformly on $X$. Hence $\lambda V_{\lambda}(|g-(u-v)|)<\epsilon$ . On the other
hand Theorem 4.4 and Dini’s convergence theorem imply that $ 0\leqq u-\lambda V_{\lambda}u<\epsilon$

uniformly on $K_{n}$ for sufficiently large $\lambda$ . Since $\epsilon+\lambda V_{\lambda}u-u=\epsilon+\lambda V(u-\lambda V_{\lambda}u)$

$-u\in\tilde{S}(X-K_{n})$ , we have, from the minimum principle, $\epsilon+\lambda V_{\lambda}u-u\geqq 0$ on
$X-K_{n}$ , hence $ 0\leqq u-\lambda V_{\lambda}u\leqq\epsilon$ uniformly on $X$. Similarly $ 0\leqq v-\lambda V_{\lambda}v\leqq\epsilon$

uniformly on $X$ for sufficiently large $\lambda$ . Thus we have $|\lambda V_{\lambda}g-g|<4\epsilon$ uni-
formly on $X$ for large $\lambda$ . $g\in\overline{V(B_{b}(X))}$ . Hence $\overline{E}\subset\overline{V(B_{b}(X))}$.

COROLLARY 4.6. For every $f\in C_{c}(X)$ , the function $\lambda V_{\lambda}f$ converges to $f$

uniformly on $X$ as $\lambda$ tends to infinity.

\S 5. Integral representation of $P_{i}$-functions.

P.-functions of one-point carrier are introduced and the integral repre-
sentation of $P_{i}$-functions with the aid of these one-point carrier $P_{i}$-functions
is discussed. The proofs are in parallel with those of Chap. III of [10].

The following lemma is a consequence of axiom (2), [14].

LEMMA 5.1. Let $G$ be a domain of $X$.
(1) The set $\{h\in \mathcal{H}_{+}(G);h(x_{0})=1\},$ $x_{0}\in G$ , is equicontinuous at $x_{0}$ .
(2) For any compact subset $K$ of $G$ there is a constant $M\geqq 1$ such that for

every $h\in \mathcal{H}_{+}(G)$ and every pair of points $x_{1}$ and $x_{2}$ in $K$ the relation

$\frac{1}{M}h(x_{1})\leqq h(x_{2})\leqq Mh(x_{1})$

holds.
(3) The set of non-negative harmonic functions on $G$ that are uniformly

bounded is relatively compact with respect to the compact convergence topology
on $G$ .

PROPOSITION 5.2. Let $x_{0}\in X$. For any $y\in X-\{x_{0}\}$ there is a $P_{i}$-function
$q_{y}$ such that Carr $(q_{y})=\{y\}$ and $q_{y}(x_{0})=1$ .

PROOF. Let $p\in \mathcal{P},$ $>0$ . For any $y\neq x_{0}$ , let $U_{n}$ be a sequence of relatively
compact open neighborhood of $y$ that decreases to $y$ . If we set, for each $n$ ,

$q_{n}(x)=\frac{\hat{R}^{Un}p(x)}{\hat{R}^{\sigma_{n}}p(x_{0})}$ ,

we have $q_{n}\in \mathcal{P}\cap\tilde{\mathcal{H}}(X-\overline{U}_{n}),$ $q_{n}(x_{0})=1$ . From Lemma 5.1 we can choose, for
any $n\geqq 1$ such that $x_{0}\not\in U_{n}$ , a subsequence of $\{q_{m} ; m\geqq n\}$ which converges
uniformly on every compact subset of $X-\overline{U}_{n}$ . By the diagonal procedure we
can extract a subsequence $q_{n^{\prime}}$ that converges uniformly on any compact sub-
set of $X-\{y\}$ to a fullharmonic function on $X-\{y\}$ . Let
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$ q_{y}=nli\underline{rn}\inf q_{n^{\prime}}\wedge$ .

$q_{y}\in \mathcal{P}$ . Hence $q_{y}\in \mathcal{P}\cap\tilde{\mathcal{H}}(X-\{y\})$ . Obviously $q_{y}(x_{0})=1$ . From Lemma 5.1
there is a constant $\alpha>0$ such that $ q_{n}(x)\geqq\alpha q_{n}(x_{0})=\alpha$ for sufficiently large $n$

whenever $x\neq y$ , so $q_{y}(x)>0$ whenever $x\neq y$ . Thus we get a $P_{i}$-function with
the carrier $\{y\}$ .

PROPOSITION 5.3. Let $\mu$ be a Radon measure, $\geqq 0$, on $X$ and let $g(x, y)$ be
a function defined on the set $X\times(X-N)$ , where $N$ is a $\mu$-measure null set.
Suppose that the function $g(x, y)$ has the following properties:

(1) There is an increasing sequence of compact subset $K_{n}$ such that, for
1each $n,$ $\mu(X-K_{n})\leqq n$ and such that the restriction $ofg(x, y)$ on $X\times K_{n}$ is a

lower semi-continuous function of $(x, y)$ which is continuous for $x\neq y$ .
(2) For each $y\in X-N,$ $g$ ( $\cdot$ , y) is a $P_{i}$-function with the carrier $y$ .
(3) There is a denumerable dense subset $(x_{j})$ of $X$ such that the function

$j^{f}\rightarrow g(x_{J’\sim}\tau))$ is $\mu$-integrable. Then the function

$u(x)=\int g(x, y)\mu(dy)$

is a $P_{i}$-function and is fullharmonic out of $Supp[\mu]$ if $X-Supp[\mu]\in 9$.
Moreover we have, for any compact set $K$,

$u_{K}(x)=\int_{K}g(x, y)\mu(dy)$ .
PROOF. Let

$I_{n}(x)=\int_{K_{n}}g(x, y)\mu(dy)$ .

$I_{n}$ is a lower semi-continuous function (Fatou’s theorem). Fubini’s theorem
yields, for every $G\in \mathcal{G}_{r}$ and $x\in G$ ,

$(\tilde{H}^{G}1_{n})(x)=\int_{K_{n}}(\tilde{H}^{G}g(\cdot, y))(x)\mu(dy)$

$\leqq I_{n}(x)$ .
From (3) $ I_{n}(x_{j})\leqq u(x_{j})<\infty$ on the dense points $x_{j}$ , hence every $I_{n}$ , and
$u=\lim_{n-}\uparrow I_{n}$ are non-negative fullsuperharmonic functions. It also follows from

(2) that $I_{n}\in\tilde{\mathcal{H}}(X-K_{n})$ and $u$ is harmonic out of $Supp[\mu]$ . $u$ is fullharmonic
out of $Supp[\mu]$ if $X-Supp[\mu]\in \mathcal{G}$ . Let

$q_{n}=\int_{X-Kn}g(\cdot, y)\mu(dy)$ .

The P-functions $q_{n}$ satisfy the condition of Lemma 1.3, so $Bq_{n}=0$ . Hence
$Bu=Bq_{n}+B1_{n}=0$ and $u\in \mathcal{P}_{i}$ . Let $K$ be a compact set. The function
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$I_{K}(x)=\int_{K}g(x, y)\mu(dy)$

is a $P_{i}$-function which is fullharmonic out of $K$, and it is a specific minorant
of $u$ . From Proposition 3.2 we have $I_{K}\leqq u_{K}$ . We have also

$ u_{X- K}=\sup$ { $u_{H}$ ; $H$ compact $\subset X-K$ }

$\geqq\sup$ { $I_{H}$ ; $H$ compact $\subset X-K$ }

$=\int_{X-K}g(\cdot, y)\mu(dy)$ .
Here we used Proposition 3.13 (i). Therefore $u_{K}=I_{K}$ .

COROLLARY 5.4. Carr $(u)=Supp[\mu]$ .
PROOF. Carr $(u)\subset Supp[\mu]$ follows from the above. Suppose that there

is a relatively compact regular domain $U$ such that $\mu(U)>0$ and $u\in \mathcal{H}(U)$ .
Since $g(\cdot, y)\geqq H^{U}g(\cdot, y)$ on $U$ , we have $g(\cdot, y)=H^{U}g(\cdot, y)$ on $U$ for $\mu$-almost
all $y$ . Take a $y\in U$ where $g(x, y)=(H^{U}g(\cdot, y))(x)$ holds for any $x\in U$ . Then
$y=Carr(g(\cdot, y))\subset X-U$. This is absurd. We have Carr $(u)=Supp[\mu]$ .

COROLLARY 5.5. We have, for every relatively compact regular domain $\delta$ ,

$(H^{\delta}u_{K})(x)=\int.(H^{0}g(\cdot, y))(x)\mu(dy)$ .
(See the remark at the end of section 3.) If the function $y\rightarrow g(x, y)$ is $\mu-$

integrable for every $x\in X$, we have

$V^{u}(x, A)=\int_{A}g(x, y)\mu(dy)$ .

The following lemma is a more perspicuous form of a result of R. M.
Herve (Lemma 17.2 and Proposition 8.1 of [10]).

LEMMA 5.6. Let $A$ be a subset of $X$ with $ A^{o}\neq\phi$ , and let $\{k_{y} ; y\in A\}$ be a
family of superharmonic functions, $>0$ , such that $k_{y}\in \mathcal{H}(X-\{y\})$ . If there is
a dense subset $B$ of $X$ such that, for every $x\in B$ , the function $y\rightarrow k_{y}(x)$ is
continuous on $A-\{x\}$ , then the function $(x, y)\rightarrow k_{y}(x)$ is lower semi-continuous
on $X\times A$ , and is continuous for $x\neq y$ .

PROOF. Let $(a, b)\in X\times A,$ $a\neq b$ , and let $U$ and $V$ be disjoint neigh-
borhoods of $a$ and $b$ respectively. Let $\epsilon>0$ . From Lemma 5.1 there is a
neighborhood $U^{\prime}$ of $a,$ $U^{\prime}\subset U$, such that

$ 1-\epsilon\leqq\frac{u(x)}{u(x’)}\leqq 1+\epsilon$

for any $u\in \mathcal{H}_{+}(U)$ and $x,$
$x^{\prime}\in U^{\prime}$ . In particular

$ 1-\epsilon\leqq\frac{k_{y}(x)}{k_{y}(x)}\leqq 1+\epsilon$ ,
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and

$1-\epsilon\leqq\frac{k_{b}}{k_{b}}\frac{x^{\prime})}{a)}\leqq 1+\epsilon(($

for any $x\in U^{\prime},$ $x^{\prime}\in U^{\prime}\cap B$ and $y\in A\cap V$ . From the assumption there is a
neighborhood $V^{\prime}$ of $b,$ $V^{\prime}cV$ , such that

$ 1-\epsilon\leqq\frac{k_{y}(x^{\prime})}{k_{b}(x)}\leqq 1+\epsilon$

for any $y\in V^{\prime}\cap A$ . Therefore we have, for $x\in U^{\prime}$ and $y\in V^{\prime}\cap A$ , the relation

$(1-\epsilon)^{9}\leqq\frac{k_{y}(x)}{k_{b}(a)}\leqq(1+\epsilon)^{a}$ .

We see that $(x, y)\rightarrow k_{y}(x)$ is continuous for $x\neq y$ . Now we shall prove the
lower semi-continuity. It is enough to prove that, for any $a\in X$ such that
$k_{a}(a)>\lambda>0$ , we can find a neighborhood $V$ of $a$ such that $x\in V$ and $y\in V\cap A$

imply $ k_{y}(x)>\lambda$ . Let $G$ be a sufficiently small regular neighborhood of $a$ such
that $(H^{G}k_{a})(a)>\lambda$ and let $ 2\epsilon=(H^{G}k_{\alpha})(a)-\lambda$ . Since $(x, y)\rightarrow k_{y}(x)$ is continuous
for $x\neq y$ , there is a neighborhood $U$ of $a,\overline{U}\subset G$ , such that

$|k_{y}(\xi)-k_{a}(\xi)|<\epsilon\cdot(H^{G}1(a))^{-1}$

for all $\xi\in\partial G$ and $y\in U\cap A$ . We have

$(H^{G}k_{y})(a)>\lambda+\epsilon$

for all $y\in U\cap A$ . On the other hand the family

$\{-\frac{H^{o}k}{Gk_{y}}\nu iH(a\overline{)}y\in U\cap A\}$

being equicontinuous at $a$ , we can find a neighborhood $U^{\prime}$ of $a,\overline{U}^{\prime}\subset G$ , such
that

$\lambda$

$H^{G}k_{y}(x)>\lambda+\epsilon H^{G}k_{y}(a)$

for all $x\in U^{\prime}$ . Thus we have
$ k_{y}(x)\geqq H^{G}k_{y}(x)>\lambda$

for all $(x, y)\in V\times V$, where $V=U\cap U^{\prime}$ .
Before we proceed to the representation theorem of $P_{i}$-functions we make

a remark. Let $\delta$ be a (relatively compact) regular domain and $ x\in\delta$ . For
any $p\in \mathcal{P}$ , the set function $K\rightarrow(H^{\delta}p_{K})(x)$ defined on the compact subsets of
$X$ is extended to a Radon measure, $\geqq 0$, on $X$. We denote it by $\mu^{\delta.x}$ (Remark

$after_{\&}^{\tau}section3)$ . Two such measures $\mu^{\delta.x}$ and $\mu^{\delta^{\prime}.x^{\prime}}$ are mutually absolutely

continuous. In fact if $\mu^{\delta.x}(A)=0$ for a Borel set $A$ then $\inf\{H^{\delta}p_{G}(x);G$ open
and $G\supset A$ } $=0$ . There is a decreasing sequence of open subsets $G_{n}$ such that
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$\lim H^{\delta}p_{G_{n}}(x)=0$ . We have $H^{\delta}(\lim p_{Gn})(x)=0$ . Hence $\lim p_{Gn}\wedge=0$ on $X$. Thus
$\mu^{\delta^{t}.x^{\prime}}(A)\leqq\lim H^{\delta^{\prime}}p_{Gn}(x^{\prime})\leqq\lim p_{c_{n}}(x^{\prime})\wedge=0$ .

THEOREM 5.7. Let $p\in \mathcal{P}_{i},$ $>0$ , and $x_{0}\in X$ and $\delta_{0}$ be a relatively compact
regular domain containing $x_{0}$ . The function $p$ admits an integral representation
of the form

$p(x)=\int g(x, y)\mu(dy)$

where $\mu$ is a finite measure, $\geqq 0$, on $X$ and $g(x, y)$ is a function with the
properties (1) $\sim(3)$ of Proposition 5.3. $g(x, y)$ satisfies

$H^{\delta_{0}}g(\cdot, y)(x_{0})=1$ .
$/x$ is uniquely determined by the relation;

$\mu(A)=\mu^{\delta_{0}.x_{0}}(A)$ .
PROOF. The uniqueness follows from Corollary 5.5 and the remark after

section 3. The existence of $g(x, y)$ and $\mu$ is proved as follows. Let $A=(x_{j})$

be a countable dense subset of $X$ with $\mu^{\delta_{0\prime}x_{0}}(x_{j})=0$ and $ p(x_{j})<\infty$ , and let
$\mathcal{B}=(\delta_{j})$ be a base formed by relatively compact regular domains $\delta_{j}$ with
$4\alpha^{\delta_{0},x_{0}}(\partial\delta_{j})=0$ (Such a base $\mathcal{B}$ does exist from Proposition 7.2 of [10]). We
set $\mu_{0}=\mu^{\delta_{0}.x_{0}}$ and $\mu_{i,j}=\mu^{\delta_{i}.x_{j}}$ whenever $x_{j}\in\delta_{i}$ . The support of the measures
$du_{0}$ and $\mu_{i,j}$ are the carrier of $p$ and $\mu_{i,j}$ is absolutely continuous relative to
$\mu_{0}$ . Applying a theorem on the differentiation of measures, we can find a
$\mu_{0}$-negligeable set $N$ and, for each $y\in X-N$, a sequence of compact neigh-
borhoods $B_{n}(y)$ of $y$ such that; $B_{n}(y)\downarrow\{y\},$ $\mu_{0}(B_{n}(y))>0$ and the limit

(1) $\varliminf_{n}\frac{\mu_{i,j}(B_{n}(y))}{\mu_{0}(B_{n}(y))}$

exists for every $i$ and $j$ with $x_{j}\in\delta_{i}$ . This limit function defines a density
function of $\mu_{i,j}$ relative to $\mu_{0}$ . (We may suppose $N\supset X-$ Carr $(p).$) For every
$y\in X-N$ we set

$g_{n}(x, y)=\frac{1}{\mu_{0}(B_{n}(y))}p_{B_{n}(y)}(x)$ .

$g_{n}(\cdot, y)$ is fullharmonic on $X-B_{n}(y)$ , and the relation

(2) $(H^{\delta_{i}}g_{n}(\cdot, y))(x_{j})=\frac{\mu_{i,j}(B_{n}(y))}{\mu_{0}(B_{n}(y))}$ , $x_{j}\in\delta_{i}$ ,

holds for each $n$ . If $\overline{\delta}_{i}\cap B_{n}(y)=\phi$ it follows

$g_{n}(x_{j}, y)=\frac{\mu_{i,j}(}{\mu_{0}(}B\frac{B_{n}(y}{n(y})))\underline{)}$ $x_{j}\in\delta_{i}$

and $g_{n}(\cdot, y)$ converges at $x_{j}$ . Moreover $g_{n}(\cdot, y)$ converges uniformly on every
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compact subset of $X-\{y\}$ to a fullharmonic function, $\geqq 0$ on $X-\{y\}$ (Lemma

5.1). Let $g(x, y)=\lim_{mr}\inf_{m\geqq n}^{\wedge}g_{n}(x, y),$ $y\in X-N$, where the operation $\wedge$ is taken

with regard to the variable $x$ . The following properties are verified:
(a) $g(\cdot, y)\in \mathcal{P}\cap\tilde{\mathcal{H}}(X-\{y\})$ .
(b) $g(x, y)>0$ . In fact let $x\in X$ and $\delta$ be a regular neighborhood of $x_{-}$

Lemma 5.1 applied to the domain $\delta\cup\delta_{0}$ yields the existence of a constant $\alpha>0$

such that $p_{B_{n}(y)}(x)\geqq\alpha\mu_{0}(B_{n}(y))$ for every $n$ with $ B_{n}(\uparrow/)\cap\overline{\delta}=\phi$ . Thus $g_{n}(x, y)\backslash $

$\geqq\alpha$ for large $n$ if $x\neq y$ , so $ g(x, y)\geqq\alpha$ .
(c) There is a sequence of compact subset $K_{n}$ such that $\mu_{0}(X-K_{n})\leqq- 1$

$n$

and such that, for each $n$ , the restriction of $g(x, y)$ on $X\times K_{n}$ is lower semi-
continuous and is continuous for $x\neq y$ . The proof is as follows. Since $\mu_{0}$ is
a bounded Radon measure we can find, for each $n$ , a compact set $K_{n}$ with

1
$\mu_{0}(X-K_{n})\leqq-n$ such that the restriction of the function $y\rightarrow g(x_{j}, y)$ on $Y_{n}$ is $\cdot$

continuous for every $x_{j}\in A,$ $[19]$ . (We may suppose $K_{n}\subset X-N.$) By virtue
of Lemma 5.6 we have the assertion.

(d) $g(x_{j}$ , $\cdot$ $)$ is $\mu_{0}$-integrable and $H^{\delta_{i}}g(\cdot, y)(x_{j})$ is a density function of $\mu_{i,j}$

relative to $\mu_{0}$ . In fact, since the measure $H^{\delta_{i}}(x_{j}, dz)$ is concentrated on $\partial\delta_{i}$

and $g_{n}(\cdot, y)$ converges uniformly on $\partial\delta_{i}$ if $y\not\in\partial\delta_{i}$ , we have

$(H^{\delta}{}^{t}g(\cdot, y))(x_{j})=\lim_{n}(H^{\delta_{i}}g_{n}(\cdot, y))(x_{j})$ for $ye\partial\delta_{i}$ .

But $\mu_{0}(\partial\delta_{i})=0$ implies the validity of this equality for all $y$ up to a $\mu_{0^{-}}$

measure null set. From (1) and (2) $\lim_{\mathfrak{n}}(H^{\delta_{i}}g_{n}(\cdot, y))(x_{j})$ is a density functioIr
of $\mu_{i,j}$ relative to $\mu_{0}$ , so we have

(3) $H^{\delta_{i}}p(x_{j})=\mu_{i,j}(X)=\int H^{\delta_{i}}g(\cdot, y)(x_{j})\mu_{0}(dv)$

and

$\int_{X-\delta_{i}}g(x_{j}, y)\mu_{0}(dy)\leqq H^{\delta_{i}}p(x_{j})\leqq p(x_{j})<\infty$ .

This is true for any $\delta_{i}\in \mathcal{B}$ such that $x_{j}\in\delta_{i}$ . We can verify the $\mu_{0}- inte-$

grability of $y\rightarrow g(x_{j}, y)$ if we note $\mu_{0}(x_{j})=0$ .
We have seen that the function $g(x, y)$ satisfies the conditions of Prop-

osition 5.3. Hence the function

$u(x)=\int g(x, y)\mu_{0}(dy)$

is a $P_{i}$-function. We have

$H^{\delta_{i}}u(x_{j})=\int H^{\delta_{i}}g(\cdot, y)(x_{j})\mu_{0}(dy)$

for any $\delta_{i}\in \mathcal{B}$ and $x_{j}\in\delta_{i}$ . From (3) we have $H^{\delta_{i}}p(x_{j})=H^{\delta_{i}}u(x_{j})$ . $\mathcal{B}=(\delta_{i})$

being a regular base for the topology of $X$, the superharmonic functions $u$
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and $p$ are identical. It remains for us to prove;
(e) $(H^{\delta_{0}}g(\cdot, y))(x_{0})=1$ .

For, $(H^{\delta_{0}}g_{n}(\cdot, y))(x_{0})=1$ implies $(H^{\delta_{0}}g(\cdot, y))(x_{0})\leqq 1$ and the equality follows from

$\mu_{0}(X)=H^{\delta_{0}}p(x_{0})=\int(H^{\delta_{0}}g(\cdot, y))(x_{0})\mu_{0}(dy)$ .

In the rest of this section we treat the case when the following assump-
tion is satisfied.

(7) For every $y\in X$, the $P_{i}$-functions with the carrier $\{y\}$ are mutually
proportional.

From Proposition 5.2, given a point $y\in X$, there is a $P_{i}$-function $q_{y}$ with
its carrier $\{y\}$ . Let $(x_{0}, \delta_{0})$ be the pair stated in Theorem 5.7. We may
suppose $H^{\delta_{0}}q_{y}(x_{0})=1$ for every $y$ . Then, for any $x\in X,$ $q_{y}(x)$ is a continuous
function of $y\in X-(\{x_{0}\}\cup\{x\})$ . In fact let $y_{0}$ be a limit point in $X-\{x_{0}\}$ of
a sequence $y_{n}$ . Suppose that, for a $x\neq y_{0}$ , there is a subsequence $n^{\prime}$ and an
$a>0$ such that

$|q_{y0}(x)-q_{y_{n^{\prime}}}(x)|>\alpha$ .
For large $n^{\prime}$ , the functions $q_{yn}$ , is fullharmonic out of some neighborhood of
$-y_{0}$ , and is equal to 1 at $x_{0}$ . Hence, applying Lemma 5.1 and the diagonal
procedure, we can find a subsequence $n^{\prime\prime}$ such that $q_{y_{n}}$ , converges locally

uniformly on $X-\{y_{0}\}$ to a fullharmonic function on $X-\{y_{0}\}$ . $Iim_{\prime},\underline{\inf}q_{y_{n}}\bigwedge_{n}$ . is

a P-function with its carrier $y_{0}$ , and is equal to 1 at $x_{0}$ . Our assumption (7)

yields $ q_{y_{0}}=\lim_{n^{\prime\prime}}\underline{\inf}q_{yn’}\wedge$ and $q_{y_{0}}(x)=\varliminf_{n^{\prime\prime}}q_{y_{n}},(x)$ . This is a contradiction, and

$y\rightarrow q_{y}(x)$ is continuous on $X-(\{x_{0}\}\cup\{x\})$ for every $x\in X$.
PROPOSITION 5.8. We can take, for every $y\in X$, a $P_{i}$-function $p_{y}$ with the

carrier $\{y\}$ such that; $(x, y)\rightarrow p_{y}(x)$ is lower semi-continuous on $X\times X$, and is
continuous for $x\neq y$ .

PROOF. Let $(\delta_{0}, x_{0})$ and $(\delta_{1}, x_{1})$ be two pairs of relatively compact regular
domains $\delta_{0}$ and $\delta_{1}$ such that $\delta_{0}\ni x_{0},$ $\delta_{1}\ni x_{1}$ and $\overline{\delta}_{0}\cap\overline{\delta}_{1}=\phi$ . Let $q_{y}$ and $r_{y}$ be
$P_{i}$-functions with their carriers $\{y\}$ such that $H^{\delta_{0}}q_{y}(x_{0})=1$ and $H^{\delta_{1}}r_{y}(x_{1})=1$ .
We have $r_{y}(x)=q_{y}(x)H^{\delta_{0}}r_{y}(x_{0})$ . Take an open set $U$ such that $\overline{\delta}_{0}\subset U\subset\overline{U}\subset$

$X-\overline{\delta}_{1}$ and put

$p_{y}(x)=\left\{\begin{array}{lllll} & & & & r_{y}(x)\\ & & & & q_{y}(x)\cdot c(y)\end{array}\right.$ $ifif$ $y\in X-\overline{U}y\in U$

where $c(y)$ is a continuous function $>0$ on $X-\overline{\delta}_{0}$ which coincides with
$H^{\delta_{0}}r_{y}(x_{0})$ on $\overline{U}-\overline{\delta}_{0}$ . $p_{y}$ is a $P_{i}$-function with the carrier $y$ and the function
$y\rightarrow p_{y}(x)$ is continuous on $X-\{x\}$ . Applying Lemma 5.6 we have our result.

THEOREM 5.9. Let $q_{y}$ and $p_{y}$ be the $P_{i}$-functions in the above.
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(a) Every $P_{i}$-function $p$ has a unique integral representation of the form.

$p(x)=\int q_{y}(x)\mu(dy)$

by a measure $\mu\geqq 0$ on $X(\mu=\mu^{\delta_{0}.x_{0}})$ .
(b) $p$ has a unique integral representation of the form:

$p(x)=\int p_{y}(x)\lambda(dy)$

by a measure $\lambda\geqq 0$ on $X,$ $\lambda$ is given by

$\lambda(dy)=$
$\mu(dy)-$

$(H^{\delta_{0}}p_{y})(x_{0})$

PROOF. Theorem 5.7 and Corollary 5.4 yield our theorem. (Note $g(x,$ $ y\rangle$

$=q_{y}(x)$ where they are defined.)

\S 6. Locally convex topology on the cone $\mathscr{P}$ . Integral representation of
$P$-functions by measures on the extreme elements of a base of $\mathscr{P}$ .

In order to get a representation theorem of Martin type for the cone $\mathscr{P}_{r}$

we shall proceed in the following way: 1) $\mathscr{P}$ is embedded into a locally
convex separated topological vector space. It is proved that $\mathscr{P}$ has a compact

base. 2) Applying Choquet’s representation theorem [20], we prove that;
for a given compact base $X$ of $\mathscr{P}$ , every P-function $p$ admits a unique integral
representation;

$p(x)=\int u(x)d\nu(u)$ ,

by a Radon measure $\nu\geqq 0$ on $X$ which is supported by the extreme points
of $K$.

First we shall introduce a vector lattice of which the positive elements
are exactly $\mathscr{P}$ . The relation

$(p, p^{\gamma})\sim(q, q^{\prime})$

defined by $p+q^{\prime}=q+p^{\prime}$ is an equivalence relation of $\mathscr{P}\times \mathscr{P}$ . We denote by
$[\mathscr{P}]$ the quotient set of $\mathscr{P}\times \mathscr{P}$ with respect to this relation and by $[p, p^{\prime}]$ the
equivalence class of the element $(p, p^{\prime})$ . Defining the sum of two elements of
$[\mathscr{P}]$ by

$[p, p^{\prime}]+[q, q^{\prime}]=[p+q, p^{\prime}+q^{\prime}]$

and the multiplication with a real number by

$\alpha[p, p^{\prime}]=[\alpha p, \alpha p^{\prime}]$

$-\alpha[p, p^{\prime}]=[\alpha p^{\gamma}, \alpha p]$
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for $\alpha\geqq 0,$ $[\mathcal{P}]$ becomes a real vector space. We shall identify $\mathcal{P}$ with the
set $\{[p, 0] ; p\in \mathcal{P}\}$ and consider as $\mathcal{P}\subset[\mathcal{P}]$ . The specific order in $[\mathcal{P}]$ is
defined by the cone $\mathcal{P};[p, p^{\prime}]\succ[q, q^{\prime}]$ if $[p, p^{\prime}]=[q, q^{\prime}]+u$ for some $u\in \mathcal{P}$ .

THEOREM. $[\mathcal{P}]$ with the specific order is a conditionally complete vector
lattice (espace de Riesz compl\‘etement r\’eticul\’e), $[2, 10]$ .

Before we introduce a locally convex topology on $[\mathcal{P}]$ we shall extend
the notion of potential kernels. Let $X_{0}=X\cup\{\partial\}$ be a one point compacti-
fication of $X$. Let $p\in \mathcal{P},$ $x\in X$ and $f\in C_{+}(X_{0})$ . We set

$U^{p}f(x)=\int g(x, y)f(y)d\mu(y)+f(\partial)Bp(x)$ ,

where $\mu$ is a Radon measure $\geqq 0$ on $X$ representing the $P_{i}$ -function $p-Bp$ ;

$p-Bp=\int g(\cdot, y)d\mu(y)$ (Theorem 5.7).

From the remark at the end of section 3 we have

$U^{p}f(x)=W^{p}f(x)+f(\partial)Bp(x)$

whenever $x\not\in Supp[f]^{6)}$ , and, for a finite valued $p\in \mathcal{P}$ , we have
$U^{p}f=V^{p}f+f(\partial)Bp$ .

The map $L=U^{p}$ from $C_{+}(X_{0})$ into $\mathcal{P}$ satisfies the following properties:
(a) $f\rightarrow Lf$ is a linear map from $C_{+}(X_{0})$ into $\mathcal{P}$ , (b) $Lf\in \mathcal{P}_{i}$ if $Supp[f]\subset X$,
(c) $Lf$ is harmonic on $X-Supp[f]$ , (d) $L1=p$ , and (e) for any $f,$ $g\in C_{+}(X_{0})$

and $q=U^{p}f$, we have $U^{q}g=U^{p}(f\cdot g)$ .
PROPOSITION 6.1. Let $L$ be a linear map from $C_{+}(X_{0})$ into $\mathcal{P}$ . $L$ is given

by the form $L=U^{p}$ with a $p\in \mathcal{P}$ if and only if $L$ satisfies the above properties
$(a)\sim(c)$ .

PROOF. We shall prove ‘if’ part only. For each $x\in X$, the linear form
$f\rightarrow Lf(x),$ $f\in C_{+}(X_{0})$ , is extended to a measure $L_{x}$ on $X_{0}$ . Let $p=L1\in \mathcal{P}$ and
let $\mu$ be the Radon measure on $X$ which represents the $P_{i}$-function $p-Bp$ ;

$p-Bp=\int_{X}g(\cdot, y)\mu(dy)$ .

For any $f\in C_{c}^{+}(X)$ we have $Lf\in \mathcal{P}_{i}\cap \mathcal{H}(X-Supp[f])$ , so from Lemma 3.8,
$Lf\in \mathcal{P}_{i}\cap\tilde{\mathcal{H}}(X-Supp[f])$ . We have, like the proof of Theorem 3.16,

$L1_{K}=p_{K}=\int_{K}g(\cdot, y)d\mu(y)$

for any compact subset $K$ of $X$. Hence we have;

$L(f|_{X})=\int_{X}g(\cdot, y)f(y)d\mu(y)$ ,

6) Here $Supp[f]$ is considered in $X_{0}$ , so $Supp[f]\subset X$ means $f\in C_{c}(X)$ .
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$L(1_{X})=p-Bp$ ,
and

$L(1_{t\text{{\it \^{a}}}\}})=L1-L(1_{X})=Bp$ .
Therefore

$Lf=\int_{X}g(\cdot, y)f(y)\mu(dy)+f(\partial)Bp$

$=U^{p}f$ .
R. M. Herve has shown that; if a sequence of non-negative superharmonic

functions $s_{n}$ is such that, for each $x\in X$, their associated measures $\mu_{s_{n}}^{x}$

converge vaguely in the space of measures on $X_{0}-\{x\}$ , then the map
$f\rightarrow\lim_{n-\infty}\inf\mu_{s_{n}}^{x}\wedge(f)$ is linear and positively homogeneous on $C_{+}(X_{0})$ . (Proposition

21.1 of [10].) An adaptation of her proof shows the following:
LEMMA 6.2. Let $l_{n,x},$ $n\geqq 1,$ $\chi\in X$, be a family of measures on $X_{0}$ such that

$l_{n}.(f)\in S_{+}(X)\cap \mathcal{H}(X-Supp[f])$ for any $f\in C_{+}(X_{0})$ .
Suppose that; for each $x\in X$, the measures $\{l_{n,x} ; n\geqq 1\}$ converges vaguely in
the space of measures on $X_{0}-\{x\}$ . Then the map

$f\rightarrow Uf=\lim_{n\rightarrow\infty}\inf l_{n}(f)\wedge,$.

from $C_{+}(X_{0})$ into $S_{+}(X)$ satisfies
$U(af+bg)=aUf+bUg$ ,

for any $a,$ $b\geqq 0$ and $f,$ $g\in C_{+}(X_{0})$ .
The next lemma is a general version of Lemma 21.2 of [10]. Herve’s

proof is applicable without any change.
LEMMA 6.3. Let $l_{n,x},$ $n\geqq 1,$ $x\in X$, be the same as above. Suppose that,

for a number $\alpha>0$ and a relatively compact regular domain $\delta_{0}$ with a point
$x_{0}\in\delta_{0}$ , it holds

$(H^{\delta_{0}}l_{n}.(1))(x_{0})\leqq\alpha$ .

Then there is a subsequence $n^{\prime}$ such that, for each $x\in X$, the measures $l_{n^{t},x}$

converges vaguely in the space of measures on $X_{0}-\{x\}$ to a measure $\nu_{x}$ .
Now we shall introduce a locally convex topology on $[\mathcal{P}]$ . The pair

$(f, x)$ with $f\in C_{c}^{+}(X_{0}-\{x\})$ is called a couple $(f, x)$ . For any couple $(f, x)$ the
map

$[p, p^{\prime}]\rightarrow U^{P}f(x)-U^{p^{t}}f(x)$

is a linear form on $[\mathcal{P}]$ . We denote by $\tilde{T}$ the least fine topology on $[\mathcal{P}]$ for
which all these linear forms are continuous. $[\mathcal{P}]$ provided with this topology
is a locally convex separated topological vector space. From the propert.y
(e) of $U^{p}$ listed previous to Proposition 6.1 we see that the map $P\rightarrow U^{p}f$ is
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continuous on $(\mathcal{P},\tilde{T})$ for any $f\in C_{+}(X_{0})$ .
Let $\mathcal{X}=(x_{j})$ be a countably dense subset of $X$ and $F$ be a countable

family of continuous functions on $X_{0}$ with the following properties: For any
$x\in \mathcal{X}$ and $f\in C_{c}^{+}(X_{0}-\{x\})$ and any compact neighborhood $K$ of $x$ such that
$ K\cap Supp[f]=\phi$ , and for an $\epsilon>0$ , one can find two functions $f_{i}$ and $f_{j}$ of
$F$ such that they vanish on $K$ and such that

$f_{j}\leqq f\leqq f_{i}$ and $|f-f_{k}|<\epsilon$ on $X_{0}(k=i, j)$ .
We can verify that the family of all sets

$\{p\in \mathcal{P};|U^{p}f_{n}(x_{j})|\leqq r^{-}1\}$ , $f_{n}\in F$ , $x_{j}\in \mathcal{X}$ and $r>0$ ,

forms a subbase of a fundamental system of neighborhoods of $0$ of the
topology $\tilde{T}$ induced on the positive cone $\mathcal{P}$ . Hence $(\mathcal{P},\tilde{T})$ is metrisable.

PROPOSITION 6.4. Let $p_{n}\in \mathcal{P},$ $n\geqq 1$ . If, for each $x\in X$, the measure
$U^{p_{n}}(x, dy)$ considered on $X_{0}-\{x\}$ converges vaguely to a measure on $X_{0}-\{x\}$ ,

then the functions $p_{n}$ are T-convergent to $\lim^{\wedge}\inf p_{n}$ . In particular if $p_{n}’ s$ are
$n-$–

T-convergent in $\mathcal{P}$ the limit is equal to $\lim\inf p_{n}$ .
PROOF. From Lemma 6.2 the map $f\rightarrow Uf=\lim\inf U^{p_{n}}f\wedge,$

$f\in C_{+}(X_{0})$ , is
linear. $Uf$ is a P-function and $U^{p_{n}}f$ converges locally uniformly on $X-$

$Supp[f]$ to a harmonic function on $X-Supp[f]$ . If $Supp[f]$ is contained
in $X$ every $U^{p_{n}}f$ is fullharmonic on $X-Supp[f]$ , and hence, $Uf$ is so. Thus
$U$ satisfies the conditions of Proposition 6.1 and we have from this proposition

$U=U^{p}$ with $p=\lim^{\wedge}\inf p_{n}$ . Let $(f, x)$ be a couple. $U^{p_{n}}f$ being convergent on
$X-Supp[f]$ to $Uf=U^{p}f$, we have $\lim U^{p_{n}}f(x)=U^{p}f(x)$ . Hence $p_{n}’ s$ are $\tilde{T}-$

convergent to $p$ .
Let $x_{0}\in X$ and let $\delta_{0}$ be a relatively compact regular domain containing

$x_{0}$ . Let $D(u)$ denote $H^{\delta_{0}}u(x_{0})$ for $u\in \mathcal{P}$ . Let

$\mathcal{P}^{\alpha}=\{u\in \mathcal{P};D(u)\leqq\alpha\}$ , $\alpha>0$ .

If $p_{n}$ is a sequence of functions of $\mathcal{P}^{\alpha}$ , then $\lim_{n}\underline{\inf}p_{n}\wedge\in \mathcal{P}^{\alpha}$ . For,

$H^{\delta_{0(\lim\inf p_{n})(x_{0})}^{\wedge}}=H^{\delta_{0}}(\lim\inf p_{n})(x_{0})$

$\leqq\lim\inf p_{n}(x_{0})$

$\leqq\alpha$ .
THEOREM 6.5. (1) $\mathcal{P}^{\alpha}$ is compact in $(\mathcal{P},\tilde{T})$ . (2) The cone $\mathcal{P}$ has a compact

$17ase$ . The set

$JC=\{p\in \mathcal{P};U^{p}f(x_{1})+U^{p}(1-f)(x_{2})=1\}$ ,
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where $f\in C_{+}(X_{0}),$ $0\leqq f\leqq 1,$ $f=0$ on a neighborhood of $x_{1}$ and $f=1$ on a
neighborhood of $x_{2}$ , is a compact base of $\mathcal{P}$ .

PROOF. (1) follows from Lemma 6.3, Proposition 6.4 and the above remark.
Let $p\in JC$ and let $\delta_{1}$ and $\delta_{2}$ be regular neighborhoods ot $x_{1}$ and $x_{2}$ respectively
such that $f=0$ on $\delta_{1}$ and $f=1$ on $\delta_{2}$ . From Lemma 5.1 there is a constant
$\alpha>0$ such that

$D(U^{p}f)\leqq\alpha H^{\delta_{1}}U^{p}f(x_{1})=\alpha U^{p}f(x_{1})$ ,

and
$D(U^{p}(1-f))\leqq\alpha U^{p}(1-f)(x_{2})$ ,

hence it follows
$D(p)\leqq\alpha(U^{p}f(x_{1})+U^{p}(1-f)(x_{2}))$ .

From this we see $Jf\subset P^{a}$ . $J\zeta$ is T-closed, and compact in $\mathcal{P}$ from (1). We
shall show that $JC$ is a base. $U^{p}f(x_{1})+U^{p}(1-f)(x_{2})=0$ implies $p=U^{p}f+$

$U^{p}(1-f)=0$ . Therefore we have $\alpha p\in K$ with $\alpha=(U^{p}f(x_{1})+U^{P}(1-f)(x_{2}))^{-1}$

for every $p\in \mathcal{P},$ $p>0$ .
THEOREM 6.6. (1) $\mathcal{P}$ is complete.
(2) $\mathcal{P}_{b}$ is closed in $\mathcal{P}$ .
PROOF. (1) Let $p_{n}$ be a Cauchy sequence in $\mathcal{P}$ . Let $(x, f)$ be a couple.

Then there is a number $\alpha>0$ such that $D(p_{n})\leqq\alpha U^{p_{n}}f(x)$ for all $n$ (Lemma
5.1). Since the set $(p_{n})$ is bounded in $\mathcal{P},$

$\sup_{n}U^{p_{n}}f(x)<\beta$ for some $\beta>0$ ,

hence $\sup D(p_{n})<\alpha\cdot\beta$ , and $(p_{n})\subset P^{\gamma}$ , where $\gamma=\alpha\cdot\beta$ . $\mathcal{P}^{\gamma}$ being compact there
is a subsequence $p_{n}$ , which converges in $\mathcal{P}^{\gamma}$ . Since $p_{n}$ is a Cauchy sequence
$p_{n}$ converges to the same limit.

(2) Let $p_{n}\in \mathcal{P}_{b}$ and let $p_{n}$ be T-convergent to a limit $p\in \mathcal{P}$ . We have
$p_{n}=U^{p_{n}}f$ for any $f\in C_{+}(X_{0})$ which is equal to 1 at $\{\partial\}$ . Hence $(p_{n})$ is con-
vergent pointwisely on $X$. From Lemma 5.1 this convergence is uniform on
every compact subset, and the limit is a $P_{b}$-function $q$ . Therefore we have
$U^{p}f(x)=f(\partial)q(x)$ for any couple $(f, x)$ . We shall show $p=q$ . Let $x$ be a
point such that $ p(x)<\infty$ and $\mu^{\delta_{0}.x_{0}}(x)=0$ , and let $f_{n}\in C_{c^{+}}(X-\{x\}),$ $n\geqq 1$ , be
such that $f_{n}\uparrow 1_{x_{0}-tx},$ . The measure $U^{p}(x, dy)$ being absolutely continuous
relative to $\mu^{\delta_{0}.x_{0}}(dy)$ , we have $p(x)=U^{p}1_{xo-\{x\}}=\lim U^{p}f_{n}(x)=q(x)$ . Since the
points where $\mu^{\delta_{0}.x_{0}}(\{x\})>0$ are at most countable and the set of points of
infinity of $p$ is a polar set, we have $p=q$ .

REMARK. T-topology induced on $\mathcal{P}_{b}$ coincides with the compact conver-
gence topology on $X$.

We have seen that $\mathcal{P}$ is a metrisable convex cone with a compact base
in the locally convex separated topological vector space $[\mathcal{P}]$ and $\mathcal{P}$ is a lattice
relative to the specific order defined in $[\mathcal{P}]$ . Thus we can apply Choquet’s
representation theorem.
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THEOREM 6.7. Let $\sigma\chi$ be a compact base of $\mathcal{P}$ . Every $p\in \mathcal{P}$ has a unique
representation

(6.1) $p=\int u\nu(du)$

with the aid of a Radon measure $\nu\geqq 0$ on $Jt$ which is supported by the set $oJ$

extreme points of $JC^{7)}$ .
The vectorial integral (6.1) means that, if $[p, p^{\prime}]\rightarrow L(p, p^{\prime})$ is a continuous

linear form on $[\mathcal{P}]$ , we have

$L(p)=\int L(u)\nu(du)$ .

REMARK. From a general property as for semi-continuous affine func-
tionals over a compact base of a convex cone in a locally convex space
(Lemma 9.7 of [20]) we have the following formula:

(6.1) $\Phi(p)=\int\Phi(u)\nu(du)$

for any affine lower (or upper) semi-continuous functional $\Phi$ on Jkr whenever
$p\in \mathcal{P}$ is represented as (6.1).

Here we shall study the extreme rays of $\mathcal{P}$ .
A ray $\rho$ of a convex cone $C$ is a set of the form $R^{+}x=\{\lambda x;\lambda\geqq 0\}$ where

$x\in C,$ $x\neq 0$ . A ray $\rho$ of $C$ is called an extreme ray of $C$ if whenever $ x\in\rho$

and $x=\lambda y+(1-\lambda)z,$ $(y, z\in C)$ , then $y,$ $ z\in\rho$ . We denote by $(C)_{ex}$ the union of
extreme rays of $C$ ; this set has the following useful descriptions: Suppose
$x\in C$ , then $x$ is in an extreme ray if and only if $x=y+z(y, z\in C)$ implies
$y,$ $z\in R^{+}x$ . Let $\prec$ denote the partial ordering induced by the cone $C$ on the
linear space $C-C$ . $x\in C$ is an extreme ray of $C$ if and only if $y=\lambda x$ (for

some $\lambda\geqq 0$) whenever $O\prec y\prec x$ . If $C$ has a base $B$ then $\rho$ is an extreme ray
of $C$ if and only if $\rho$ intersects $B$ in an extreme point of $B$ . It holds that
the intersection of extreme rays with $B$ is exactly the extreme points of $B$ ;

ex $B=B\cap(C)_{ex}$ .
In the sequel we denote the set $(^{c}P)_{ex},$ $(\mathcal{P}_{i})_{ex}$ and $(\mathcal{P}_{b})_{ex}$ by $\mathcal{E},$ $\mathcal{E}_{i}$ and $\mathcal{E}_{b}$

respectively. Let $p\in \mathcal{E}$ . Then from the above description of extreme rays
it follows that $p-Bp,$ $Bp\in R^{\llcorner}p$ . Hence $p$ must be either in $\mathcal{P}_{b}$ or in $\mathcal{P}_{i}$ .

PROPOSITION 6.8.
$\mathcal{E}=\mathcal{E}_{i}\cup \mathcal{E}_{b}$ , $\mathcal{E}_{i}=\mathcal{E}\cap \mathcal{P}_{i}$ , $\mathcal{E}_{b}=\mathcal{E}\cap \mathcal{P}_{b}$ .

PROOF. Let $p\in \mathcal{E}_{i}$ and $p=\alpha r+(1-\alpha)s$ for some $r,$ $s\in \mathcal{P}$ and $0<\alpha<1$ .
It follows $\alpha r\prec p$ and $(1-\alpha)s\prec p$ . These relations are also true for the order
induced by the cone $\mathcal{P}_{i}$ ($T$heorem 1.6), so we have $r,$ $s\in R^{+}p$ . Thus $\mathcal{E}_{i}C\mathcal{E}\cap \mathcal{P}_{i}$ .

7) The extreme points of $\sigma X$ is a $G_{\delta}$ -set.
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The converse is obvious and we have $\mathcal{E}_{i}=\mathcal{E}\cap \mathcal{P}_{i}$ . Now let $p\in \mathcal{E}_{b}$ and $p=\alpha r$

$+(1-\alpha)s$ for $r,$ $s\in \mathcal{P}$ and $0<\alpha<1$ . From Lemma 1.5 we have $\alpha r,$ $(1-\alpha)s\in \mathcal{P}_{b}$ .
Hence $r,$ $s\in R^{\succ}p$ . $\mathcal{E}_{b}C\mathcal{E}\cap \mathcal{P}_{b}$ . The converse is obvious and we have $\mathcal{E}_{b}=$

$\mathcal{E}\cap \mathcal{P}_{b}$ .
Every element $p\in \mathcal{E}_{i},$ $>0$ , is of one-point carrier. In fact, suppose that

Carr $(p)$ contains two distinct points $y_{1}$ and $y_{2}$ . We have, for a compact set
$K$ such that $y_{1}\in K^{o}$ and $y_{2}\not\in K,$ $p=p_{K}+p_{X-K}$ . Since $p\in \mathcal{E},$ $p_{X-K}$ must be
proportional to $p$ . It follows $p\in \mathcal{H}(K^{Q})$ and $y_{1}\in\mathring{K}_{\cap}$ Carr $(p)=\phi$ , this is a
contradiction. Conversely every point $y\in X$ is the carrier of an element of
$\mathcal{E}_{i}$ . Because the set of all $P_{i}$-functions with carrier $\{y\}$ , which are equal to
1 at a point $x_{0}\neq y$ , forms a closed convex subset of $\mathcal{P}_{i}\cap \mathcal{P}^{1}=\{p\in \mathcal{P}_{i}$ ; $D(p)$

$\leqq 1\}$ , hence this is a compact convex set and has an extreme point.

We shall study the topology $\tilde{T}$ induced on $\mathcal{E}$ or on $\mathcal{E}\cap JC$ for some com-
pact base $JC$ of $\mathcal{P}$ . In the sequel we define, for the convenience, the carrier
of a $P_{b}$-function as the point $\{\partial\}$ ; $C(p)\in X$ if $p\in \mathcal{E}_{i}$ and $C(p)=\{\partial\}$ if $p\in \mathcal{P}_{b}$ .
Let $p\in \mathcal{E}$ . We have

$U^{p}f(x)=W^{p}f(x)+f(\partial)Bp(x)$

$=\{f(C(p))p(x)0$
if $x=C(p)\in X$

if $x\neq C(p)$ ,
for any couple $(f, x)$ .

PROPOSITION 6.9. (a) The map $c;p\rightarrow C(p)$ from $\mathcal{E}_{i}\cup \mathcal{P}_{b}$ to $X_{0}$ is continuous.
(b) $p\rightarrow p(x)$ is continuous on $\mathcal{E}_{i}\cup \mathcal{P}_{b}$ for $x\neq c(p)$ .
PROOF. (a) Let $p_{0}\in \mathcal{E}_{i}$ and $K$ be a compact neighborhood of $C(p_{0})$ in $X$.

We take a point $x\in X-K$ and a continuous function $f$ which vanishes on
$X-K$ and $>0$ at $C(p_{0})$ . $U^{p_{0}}f(x)=p_{0}(x)\cdot f(C(p_{0}))>0$ . Hence $\mathcal{V}=\{p\in \mathcal{E}_{i}$ ;
$U^{p}f(x)=p(x)f(C(p))>0\}$ is a neighborhood of $p_{0}$ and $p\in \mathcal{V}$ implies $C(p)\in K$

Thus $p\rightarrow c(p)$ is continuous at $p_{0}$ . For $p_{0}\in \mathcal{P}_{b}$ we can prove by the same
way if we take a $G\in \mathcal{D},$ $x\in X-G$ , and a $f\in C_{c}^{+}(X_{0})$ with $f(\partial)>0$ and $f=0$

on $X-\overline{G}$ . (b) Let $x\neq C(p_{0})$ and $G$ be a neighborhood of $C(p_{0})$ in $X_{0}$ such that
$x\not\in\overline{G}$ . Let $f\in C_{c}^{+}(X_{0}-\{x\})$ be such that $f=1$ on G. $\mathcal{V}=\{p\in \mathcal{E}_{i}\cup \mathcal{P}_{b}$ ;
$|U^{p}f(x)-U^{p_{0}}f(x)|<\epsilon\}\cap\{p\in \mathcal{E};C(p)\in G\}$ is a neighborhood of $p_{0}$ . We have,
for $p\in \mathcal{V},$ $U^{p}f(x)=p(x)f(C(p))=p(x)$ , so we have $|p(x)-p_{0}(x)|<\epsilon$ .

From the above (a) and (b) we see that;
(c) the map $(p, x)\rightarrow p(x)$ is lower semi-continuous on $(\mathcal{E}_{t}\cup \mathcal{P}_{b})\times X$ and is

continuous for $x\neq C(p)$ . (The proof is the same as Lemma 5.7).

PROPOSITION 6.10. Let $p_{y}$ be a $P_{i}$ -function of carrier $\{y\}$ such that, for
any $x\in X$, the map $y\rightarrow p_{y}(x)$ is continuous on $X-\{x\}$ . If $p_{y}\in \mathcal{E}_{i}$ for any $y\in X$,

the map $y\rightarrow p_{y}$ from $X$ into $\mathcal{E}_{i}$ is continuous.
PROOF. Let $y_{n}$ be a sequence that converges to $y_{0}$ in $X$. For any $x\neq)_{0}$
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and any $f\in C_{c^{+}}(X_{0}-\{x\})$ , we have $U^{p_{n}}f(x)=f(y_{n})p_{n}(x)\rightarrow f(y_{0})p_{0}(x)=U^{p_{0}}f(x)$ ,
where $p_{n}=p_{y_{n}}$ and $p_{0}=p_{y_{0}}$ . For $x=y_{0}$ and $f\in C_{c}^{+}(X_{0}-\{y_{0}\})$ we have $U^{p_{n}}f(x)$

$=U^{p_{0}}f(x)=0$ for large $n$ . Therefore $y\rightarrow p_{y}$ from $X$ to $\mathcal{E}_{i}$ is continuous.
In the following we shall prove that the formula (6.1) holds as a function

on $X$ (Theorem 6.13).

PROPOSITION 6.11. Let $JC$ be a compact base of $\mathcal{P}$ and let $\nu$ be a Radon
measure, $\geqq 0$ , on $JC\cap \mathcal{E}$ . Then we have;

$\int u\nu(du)\in \mathcal{P},$ $\int_{\mathcal{E}_{i}\cap JC}u\nu(du)\in \mathcal{P}_{i}$ ,

$\int_{\mathcal{E}_{b}\cap X}u\nu(du)\in \mathcal{P}_{b}$ .

PROOF. From Proposition 6.9 (c) the function

$q(x)=\int u(x)\nu(du)$

is lower semi-continuous. If

$\int H^{\delta}u(x)\nu(du)<\infty$

for any $x$ and any regular neighborhood $\delta$ of $x$, we have, by using Fubini’s
theorem, $q\in S_{+}(X)$ . We have also $q\in\tilde{S}_{+}(X)=\mathcal{P}$ . The finiteness of

$\int H^{\delta}u(x)\nu(du)$

is verified as follows. Let $f,$ $x_{1},$ $x_{2}$ be the same as in Theorem 6.5. From
Lemma 5.1 there is a constant $\alpha>0$ such that $H^{\delta}(U^{p}f)(x)\leqq\alpha U^{p}f(x_{1})$ and
$H^{\delta}(U^{p}(1-f))(x)\leqq\alpha U^{p}(1-f)(x_{2})$ for any $p\in \mathcal{P}$ . Since $p\rightarrow U^{p}f(x_{1})$ and $ p\rightarrow$

$U^{p}(1-f)(x_{2})$ are continuous, they are bounded on $JC$ . Hence $H^{\delta}p(x)$ is also
bounded on $JC$ , and it follows the finiteness of the above integral. Fubini’s
theorem also yields

$\int_{\mathcal{E}_{b}\cap JC}u\nu(du)\in \mathcal{P}_{b}$

and

$\int_{C^{-1}(A)}u\nu(du)\in \mathcal{P}\cap\tilde{\mathcal{H}}(X-A)$ ,

where $A$ is a compact subset of $X$ and $C^{-1}(A)=\{u\in \mathcal{E}\cap JC;C(u)\in A\}$ . We
have

(1) $Bq\succ\int_{\mathcal{E}_{b^{\gamma Jt}}}u\nu(du)$ ,

and

$q_{A}\succ\int_{C^{-1}(A)}u\nu(du)$
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(The property (i) in section 1 and Proposition 3.2). It follows from Lemma
3.10 that

$q-Bq\succ\int_{C^{-1}(A)}u\nu(du)$ .
Therefore

(2) $q-Bq\geqq\int_{C^{-1}(X)}u\nu(du)$

$=\int_{\mathcal{E}_{2\cap X}}u\nu(du)$ .
The inequalities (1) and (2) imply

$Bq=\int_{\mathcal{E}_{b\cap.K}}u\nu(du)$ ,

and

$q-- Bq=\int_{e_{i}n.\kappa}u\nu(du)\in \mathcal{P}_{i}$ .
COROLLARY 6.12.

$q_{K}(x)=\int_{C^{-1}(K)}u(x)\nu(du)$

for any compact set $K$ of $X$ and $xeK$

$W^{q}f(x)=\int_{\mathcal{E}_{i}\cap X}f(C(u))u(x)\nu(du)$

for any couple $(f, x)$ .
The proof is the same as Proposition 5.4.
THEOREM 6.13. Let.$JC$ be a compact base of $\mathcal{P}$ . Every $p\in \mathcal{P}$ has a unique

representation;

(6.2) $p(x)=\int u(x)\nu(du)$ , $x\in X$ ,

by a Radon measure $\nu\geqq 0$ on Jkr, which is supported by $\mathcal{E}\cap JC$ .
PROOF. Let $\nu$ be the Radon measure on $JC$ which appeared in the formula

(6.1). We have, for any couple $(f, x)$ ,

$U^{p}f(x)=\int U^{q}f(x)\nu(dq)$

$=\int q(x)f(C(q))\nu(dq)$ .

For every $x\in X$ let $f_{n}\in C_{c}^{+}(X_{0}-\{x\})$ be such that $f_{n}\uparrow 1_{x_{0}-tx\}}$ . If $x$ is a point
of $X$ such that $ p(x)<\infty$ and such that $H^{\delta_{0}}U^{p}1_{1x\}}(x_{0})=0$ and $\nu(\mathcal{E}\cap JC\cap C^{-1}(x))$

$=0$ , we have $p(x)=U^{p}1_{x_{0- txI}}(x)=\lim\uparrow U^{p}f_{n}(x)=\lim\uparrow\int q(x)f_{n}(C(q))\nu(dq)$

$=\int q(x)\nu(dq)$ . Here we have used the fact that $U^{p}(x, dy)$ is absolutely con-
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tinuous relative to the measure $H^{\delta_{0}}U^{p}(\cdot, dy)(x_{0})$ . The points of $X$ where
$\nu(\mathcal{E}\cap JC\cap C^{-1}(x))>0$ or $H^{\delta_{0}}U^{p}1_{tx\}}(x_{0})>0$ holds are at most countable, and the
set of points of infinity of $p$ is a polar set. Therefore the superharmonic

functions $p$ and $\int q\nu(dq)$ must be identical. We shall prove the uniqueness

part of the theorem. Suppose $p\in \mathcal{P}$ is represented as

$p(x)=\int.q(x)\mu(dq)$ .

For any couple $(f, x)$ we have, from Proposition 6.11 and Corollary 6.12,

$U^{p}f(x)=W^{p}f(x)+f(\partial)Bp(x)=\int f(C(q))q(x)\mu(dq)$

$=\int U^{q}f(x)\mu(dq)$ .

Hence we have, for any continuous linear form $L$ on $[\mathcal{P}]$ ,

$L(p)=\int L(q)\mu(dq)$ .

Choquet’s theorem (Theorem 6.7) yields the uniqueness of $\mu$ .
COROLLARY 6.14. Every $p\in \mathcal{P}_{b}$ admits a unique representation;

(6.3) $p(x)=\int_{\mathcal{E}_{b}\cap,K}q(x)\nu(dq)$ ,

and every $p\in \mathcal{P}_{i}$ admits a unique representation;

(6.4) $p(x)=\int_{\mathcal{E}_{i^{q_{j\zeta}}}}q(x)\nu(dq)$ .

Further properties of the topology T.
Let $p_{y}$ be a $P_{i}$-function with carrier at $y$ such that $y\rightarrow p_{y}(x)$ is continuous

on $X-\{x\}$ for every $x$. Let a $P_{i}$-function $p$ be represented by

$p=\int p_{y}\lambda_{p}(dy)$ , $\lambda_{p}=\frac{\mu^{\delta_{0},x_{0}}}{D(p_{y})}$

(Theorem 5.9). We know Carr $(p)=Supp[\lambda_{p}]$ . Consider the map $p\rightarrow\lambda_{p}$ from
$\mathcal{P}_{i}$ into the set of Radon measures $\geqq 0$ on $X$ . This map is bijective, (Theo-

rem 5.9).

(6.5) Let $K$ be a compact set of X. The topology on the set $C^{-1}(K)=\{p\in \mathcal{P}_{i}$ ;

Carr $(p)\subset K$ } induced by $\tilde{T}$ is the inverse image by the map $p\rightarrow\lambda_{p}$ of
the vague topology on the space of Radon measures $\geqq 0$ on $K$

First we note that $U^{p}f(x)=\int p_{y}(x)f(y)\lambda_{p}(dy)$ for any couple $(f, x)$ and

$p\in \mathcal{P}_{i}$ . Since $y\rightarrow p_{y}(x)$ is continuous on $X-\{x\}$ the map $\lambda(dy)\rightarrow p_{y}(x)\lambda(dy)$
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from $\mathcal{M}_{+}(K)$ into $\mathcal{M}_{+}(X_{0}-\{x\})^{8)}$ is continuous whenever these spaces are given
the vague topologies. Hence the map $p\rightarrow p_{y}(x)\lambda_{p}(dy)$ from $C^{-1}(K)$ into
$\mathcal{M}_{+}(X_{0}-\{x\})$ is continuous whenever $C^{-1}(K)$ is given the inverse image of the
vague topology on $\mathcal{M}_{+}(K)$ . This topology is finer than T-topology on $C^{-1}(K)$ .
Conversely, choose a point $x\in X-K$, and let $\varphi_{x}(y)=(p_{y}(x))^{-1},$ $y\in K$. Since

the topology $\tilde{T}$ lets the map $p\rightarrow U^{p}(\varphi_{x}\cdot f)(x)=\int f(y)\lambda_{p}(dy)$ continuous for any

$f\in C_{+}(K),\tilde{T}$ is finer than the inverse image of the vague topology on $\mathcal{M}_{+}(K)$ .
(6.6) Let $p_{n}\in \mathcal{P}$ be a decreasing sequence (resp. increasing sequence with

$\sup_{n}p_{n}\in \mathcal{P})$ . Then $p_{n}$ is T-convergent to $\inf_{n}^{\wedge}p_{n}$ (resp. $\sup p_{n}$).

Every $p_{n}$ belongs to $\mathcal{P}^{\alpha}$ for some $\alpha>0$ . Hence there is a subsequence
$p_{n^{\prime}}$ which is T-convergent to $\lim\inf p_{n’}\wedge$ . This proves (6.6).

(6.7) Let $JC$ be a compact base of the cone $\mathcal{P}$ . For every $p\in \mathcal{E}_{b}\cap JC$ , there is
a sequence $p_{n}\in \mathcal{E}_{i}\cap JC$ such that it is T-convergent to $p$ .

Since $p\in \mathcal{E}_{b}\cap JC$ is an extreme point of the compact convex set $JC$ , the
traces on $\mathcal{E}\cap JC$ of the open half-spaces in $[\mathcal{P}]$ that contain $p$ form a funda-
mental system $\mathcal{V}(p)$ of neighborhoods in $\mathcal{E}\cap JC$ of $p$ ([6], p. 108). Let $\mathcal{V}\in$

$\mathcal{V}(p)$ be such that; $\mathcal{V}=\{q\in JC\cap \mathcal{E};\varphi(q)>\alpha\}$ , where $\varphi$ is a continuous linear
form, $\neq 0$ , on $[\mathcal{P}]$ and $\alpha>0$ . By virtue of Proposition 1.2 and (6.6) we can
find a $q\in \mathcal{P}_{i}\cap \mathcal{V}$ . $q$ is represented as

$q=\int u\nu(du)$

by a probability measure on $JC$ which is supported by $\mathcal{E}_{i}\cap JC$ (Corollary 6.15
and Proposition 6.7). If $\mathcal{E}_{i}\cap JC\cap \mathcal{V}=\phi$ then

$\alpha<\varphi(q)=\int\varphi(u)\nu(du)\leqq\alpha$

which is contradictory. $\mathcal{E}_{i}\cap JC\cap \mathcal{V}\neq\phi$ for any $\mathcal{V}\in \mathcal{V}(p)$ . Hence there is
a sequence $p_{n}\in \mathcal{E}_{i}\cap JC$ that converges to $p$ .

\S 7. Representation of $P_{b}$-functions. Ideal boundary of $X$.
In this section we shall adopt the hypothesis of proportionality, that is,

for every point $y$ of $X$ all $P_{i}$-functions $>0$ with carrier at $y$ are proportional.
In this case we can identify $X$ homeomorphically with the extreme $P_{i}$-func-
tions of some compact base of $P$, and the closure of this set contains the

8) $\mathcal{M}_{+}(A)$ is the set of finite measures $\geqq 0$ on the locally compact space $A$ .
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extreme $P_{b}$-functions of the compact base. This is Kuramochi compactifica-

tion of $X$ with respect to the fullharmonic structure il.
Let $\chi_{1}$ and $x_{2}$ be two distinct points of $X$ and let $\delta_{1}$ and $\delta_{2}$ be disjoint

regular neighborhoods of $x_{1}$ and $x_{2}$ respectively. Let $f_{0}\in C_{+}(X_{0})$ be such that
$f_{0}=0$ on $\delta_{1}$ , and $f_{0}=1$ on $\overline{\delta}_{2}$ , and $0<f_{0}<1$ on $X_{0}-\overline{\delta}_{1}\cup\overline{\delta}_{2}$ . The set

$JC_{0}=\{p\in \mathcal{P};U^{P}f_{0}(x_{1})+U^{P}(1-f_{0})(x_{2})=1\}$

forms a compact base of $\mathcal{P}$ as we have seen in Theorem 6.5. We define a
function $\alpha_{0}(y)$ on $X$ as follows;

$\alpha_{0}(y)=|_{1}^{-}--\overline{f}_{0}(y\overline{)p_{y}}(x_{1})\mp(1-f_{0})(\overline{y})p_{y}(\overline{x}_{2})1$

for $y\neq x_{1},$ $y\neq x_{2}$

for $y=x_{1}$

$|p_{x_{2}}^{x_{1}}(\overline{x}_{1}^{2})^{-}p_{-}(x)1$

for $y=x_{2}$ .

$\alpha_{0}(y)$ is a continuous function and $\alpha_{0}(y)p_{y}\in JC_{0}\cap \mathcal{E}_{i}$ for $anyy\in X$. We shall
denote it by $k_{y}(\cdot)$ .

PROPOSITION 7.1. The correspondence $y\rightarrow k_{y}$ gives a homeomorphism from
$X$ onto $\mathcal{E}_{i}\cap JC_{0}$ .

PROOF. Let $y\in X$. The set of all functions $p\in JC_{0}\cap \mathcal{P}_{i}$ with $c(p)=\{y\}$

is not empty and forms a closed convex subset of $JC_{0}$ , hence this set is com-
pact convex and has an extreme point $q\in \mathcal{E}_{i}\cap JC_{0}$ . From our assumption
(7) $q$ is written as $q=\beta(y)p_{y}$ . It is easy to see $\beta(y)=\alpha(y)$ . Thus $y\rightarrow\alpha(y)p_{y}$

$=k_{y}$ is bijective. From Propositions 6.9 and 6.10 this map is a homeomor-
phism from $X$ onto $\mathcal{E}_{i}\cap JC_{0}$ .

We recall that, for any subset $\mathcal{A}$ of $\mathcal{P}$ , the collection of all sets in $\mathcal{A}\times \mathcal{A}$

of the form
$\{(p, q)\in \mathcal{A}\times \mathcal{A};|U^{p}f_{j}(x_{j})-U^{q}f_{j}(x_{j})|<\epsilon, 1\leqq j\leqq n\}$ ,

where each $(f_{j}, x_{j})$ is a couple and $\epsilon>0$ , forms a fundamental system of
entourages of the uniformity induced on $\mathcal{A}$ by that of $[\mathcal{P}]$ . This uniformity

defines T-topology on $\mathcal{A}$ and the T-closure $\overline{\mathcal{A}}$ is complete (Theorem 6.6).

Let $\mathcal{U}^{*}$ be the uniformity on $X$ which is the inverse image of the uni-
formity on $\mathcal{E}_{i}\cap JC_{0}$ under the map $y\rightarrow k_{y}$ , that is, $\mathcal{U}^{*}$ is the coarest uniformity
on $X$ for which the map $y\rightarrow k_{y}$ is uniformly continuous. The fundamental
system of entourages of $\mathcal{U}^{*}$ is given by the sets of the form

$\{(y_{1}, y_{2})\in X\times X;|f_{f}(y_{1})k_{y_{1}}(x_{j})-f_{j}(y_{2})k_{y_{2}}(x_{j})|<\epsilon, 1\leqq j\leqq n\}$ ,

where $(f_{j}, x_{j})s$ are couples and $\epsilon>0$ . The topology on $X$ induced by $\mathcal{U}^{*}$ is
the inverse image under the map $y\rightarrow k_{y}$ of $\tilde{T}$-topology, hence this topology
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is the original topology on $X$. Since $y\rightarrow k_{y}$ is bijective from $X$ onto $\mathcal{E}_{i}\cap JC_{0}$ ,
the entourages on $\mathcal{E}_{i}\cap JC_{0}$ are the direct images under this map of the entou-
rages in $\mathcal{U}^{*}$ , hence $X$ and $\mathcal{E}_{i}\cap JC_{0}$ are isomorphic as uniform spaces. It fol-
lows that the inverse of the map $y\rightarrow k_{y}$ is also uniformly continuous [5,
Chap. II, 2.4].

Let $x*$ be the completion of $X$ with respect to $\mathcal{U}^{*}$ . The isomorphism
of $X$ onto $E_{i}\cap K_{0}$ extends to an isomorphism of $x*$ onto $\overline{\mathcal{E}_{i}\cap JC_{0}}[5$ , Chap. II,
3.6]. In particular $x*$ and $\overline{\mathcal{E}_{i}\cap JC_{0}}$ are homeomorphic. The map $y\rightarrow k_{y}$ is
continuously extended over $x*$ , which we shall denote by $\xi\rightarrow k_{\xi},$ $\xi\in x*$ .

THEOREM 7.2. (1) $x*$ is a compactification of $X$.
(2) The function $\xi\rightarrow k_{\xi}(x)$ is continuous on $X^{*}-\{x\}$ , for every $x\in X$.
(3) $\mathcal{E}_{b}\cap JC_{0}\subset\{k_{\xi} ; \xi\in X^{*}-X\}\subset \mathcal{P}_{b}\cap JC_{0}$ .
(4) There is a constant $\gamma>0$ such that

$\frac{1}{\gamma}\leqq D(k_{\xi})\leqq\gamma$ for every $\xi\in x*$ .

PROOF. We have already proved (1). We shall prove (3). The first inclu-
sion relation follows from (6.7). For any $\xi\in X^{*}-X,$ $k_{\xi}$ is a T-limit of a
Cauchy sequence $k_{\nu_{n}},$ $y_{n}\in X$, such that $y_{n}$ has no accumulation point in $X$ .
We see from the remark after Theorem 6.6 that $k_{\nu_{n}}$ converges locally uni-
formly on $X$. Hence $k_{\xi}$ is harmonic and $k_{\xi}\in \mathcal{P}_{b}\cap JC_{0}$ . (2) From Proposition
6.9 $p\rightarrow p(x)$ is continuous on $\mathcal{E}_{i}\cup \mathcal{P}_{b}$ whenever $x\neq C(p)$ . On the other hand
the map $\xi\rightarrow k_{\xi}$ from $x*$ onto $\overline{\mathcal{E}_{i}\cap JC_{0}}$ is continuous, and $\overline{\mathcal{E}_{i}\cap JC_{0}}\subset \mathcal{E}_{i}\cup \mathcal{P}_{b}$

from the above. Hence $\xi\rightarrow k_{\xi}(x)$ is continuous on $X^{*}-\{x\}$ for any $x\in X$ .
(4) From Lemma 5.1 there is a constant $\gamma>0$ such that

1
$U^{p}f_{0}(x_{1})\leqq H^{\delta_{0}}U^{p}f_{0}(x_{0})\leqq\gamma U^{p}f_{0}(x_{1})$

$\gamma$

and

$\div U^{p}(1-f_{0})(x_{2})\leqq H^{\delta_{0}}U^{p}(1-f_{0})(x_{0})$

$\leqq\gamma U^{p}(1-f_{0})(x_{2})$ .
Therefore we have $\div\leqq D(p)\leqq\gamma$ for any $p\in JC_{0}$ .

DEFINITION.
$\Delta=X^{*}-X$ ,

$\Delta_{1}=\{\xi\in\Delta;k_{\xi}\in \mathcal{E}_{b}\cap X_{0}\}$ .
The function $(x, \xi)\rightarrow k_{\xi}(x)$ on $ X\times\Delta$ is continuous. In fact, let $(a, b)\in X\times\Delta$

and $\epsilon>0$ . Since $k_{\xi},$ $\xi\in\Delta$ , is harmonic, we have, from Lemma 5.1,

$1-\epsilon\leqq\frac{k_{\xi}}{k_{\xi}}\frac{x}{a}-\leqq 1+\epsilon()()$
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on a relatively compact neighborhood $U$ of $a$ for any $\xi\in\Delta$ . Take a neigh-
iborhood $V$ of $b$ in $x*$ such that

$ 1-\epsilon\leqq\frac{k_{\xi}(a)}{k_{b}(a)}\leqq 1+\epsilon$

for every $\xi\in V$ . Then we have

$(1-\epsilon)^{2}\leqq\frac{k_{\xi}(x)}{k_{b}(a)}\leqq(1+\epsilon)^{2}$ .

Thus $(x, \xi)\rightarrow k_{\xi}(x)$ is continuous at $(a, b)$ .
Like the proof of Proposition 5.8, it is verified that $(x, \xi)\rightarrow k_{\xi}(x)$ is lower

semi-continuous on $x\times x*$ .
PROPOSITION 7.3. Let $\mu$ be a Radon measure $\geqq 0$ on $x*$ . Then we have

$p=\int k_{\xi}\mu(d\xi)\in \mathcal{P}$ .

If $\mu$ is supported by the set $\Delta$ we have $p\in \mathcal{P}_{b}$ .
The proof is the same as Proposition 6.11.
THEOREM 7.4. Every $p\in \mathcal{P}$ (resp. $\mathcal{P}_{b}$) has a unique representation

$p=\int k_{\xi}\nu(d\xi)$

by a Radon measure $\nu\geqq 0$ on $x*$ which is supported by $\Delta_{1}\cup X$ (resp. $\Delta_{1}$). The
total variation of $\nu$ is given by

$\nu(X^{*})=U^{p}f_{0}(x_{1})+U^{p}(1-f_{0})(x_{2})$ .
This theorem follows from Theorem 6.13.
The measure $\nu$ is called the canonical measure of $p$ .
LEMMA 7.5. Let $\mu_{n},$

$n\geqq 1$ , be a sequence of Radon measures $\geqq 0$ on $x*$ .
Let

$p_{n}=\int k_{\xi}\mu_{n}(d\xi)$ .

If $\mu_{n}$ converges vaguely to a Radon measure $\mu$ on $x*$ and if $p_{n}$ converges to
a $p\in \mathcal{P}$ in T-topology, then

$p=\int k_{\xi}\mu(d\xi)$ .

PROOF. Let $L$ be a continuous linear form on $[\mathcal{P}]$ of the form $L(p, p/)$

$=U^{p}f(x)-U^{p}’ f(x)$ , for a couple $(f, x)$ . Since $\xi\rightarrow k_{\xi}$ is a continuous map from
$x*$ into $K$, and $p_{n}$ is T-convergent to $p$ , we have

$L(p)=\lim L(p_{n})=\lim\int L(k_{\xi})\mu_{n}(d\xi)$

$=\int L(k_{\hat{\sigma}})\mu(d\xi)=L(\int k_{\xi}\mu(d\xi))$ .



524 T. KORI

Therefore

$p=\int k_{\xi}\mu(d\xi)$

in $[\mathcal{P}]$ . Like the proof of Theorem 6.13 we get the above equality as func-
tiens on $X$.

THEOREM 7.6. Let $p\in \mathcal{P}$ and $F$ be a subset of X. There is a Radon mea-
sure $\mu\geqq 0$ on $x*$ which is supported by the closure of $F$ in $x*$ such that

$R^{P^{\prime}}p=\int k_{\xi}\mu(d\xi)$ .

PROOF. Let $(K_{n})$ be an exhaustion of $X$ by compact sets. We have
$R^{F}p=\lim_{n-}\uparrow R^{F\cap K_{n}}p$ . From (6.6) $R^{F\cap K_{n}}p$ are $\tilde{T}$-convergent to $R^{F}p$ . The fact

that $R^{F\cap K_{n}}p\in \mathcal{P}\cap\tilde{\mathcal{H}}(X-K_{n})$ and Theorem 5.9 imply the existence of a Radon
measure $\mu_{n}$ on $X$ such that

$R^{F\cap K_{n}}p=\int k_{y}\mu_{n}(dy)$ .

Let $\gamma$ be the constant of Theorem 7.2 (4), then we have; the total mass of
$\mu_{n}\leqq\gamma\cdot D(p)$ . Hence we can extract from the sequence $\mu_{n}$ , considered as
measures on $x*$ , a subsequence $\mu_{n}$ that converges vaguely to a Radon mea-
sure $\mu$ on $x*$ . In view of Lemma 7.5 we have

$R^{F}p=\int k_{\xi}\mu(d\xi)$ .

$\mu_{n}$ is supported by $\overline{F\cap K_{n}}$ (Corollary 5.4), so $\mu$ is supported by the closure
of $F$ in $x*$ .

LEMMA 7.7. Let $G$ be an open set of X. Then, for every $x\in X$, the map
$p\rightarrow R^{G}p(x)$ on $\mathcal{P}$ is lower semi-continuous.

PROOF. Let a sequence $p_{n}\in \mathcal{P}$ be convergent to a $p\in \mathcal{P}$ . We have
$p=\lim^{\wedge}\inf p_{n}$ . Let $u_{n}=R^{G}p_{n}$ and $u=\lim\inf u_{n}$ . Then $u_{n}\in \mathcal{P},$ $u_{n}=p_{n}$ on $G$

$\hat{u}\in \mathcal{P}$ . Since $u(y)=\lim\inf p_{n}(y)\geqq p(y)$ for all $y\in G$ , it follows \^u\geqq p on $G$ .
Hence $u\geqq\text{{\it \^{u}}}\geqq R^{G}p$ on $X$. This proves the lower semi-continuity of $p\rightarrow R^{c}p(x)$ .

THEOREM 7.8. Let $G$ be an open set of X. Let $p\in \mathcal{P}$ and let $\nu$ be the
canonical measure of $p$ . Then we have

$R^{G}p=\int R^{o}k_{\xi}\nu(d\xi)$ .

PROOF. The function $q\rightarrow R^{G}q(x)$ being affine lower semi-continuous on
$JC_{0}$ , we have,
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$R^{G}p(x)=\int_{\mathcal{E}\cap Jl_{0}}R^{G}u(x)\nu^{\prime}(du)$

from (6.1), where $\nu^{\prime}$ is the unique measure on $\mathcal{E}\cap JC_{0}$ that represents $p$ .
Therefore

$R^{G}p(x)=\int R^{G}k_{\xi}(x)\nu(d\xi)$ .
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