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Some concepts of recursiveness on admissible ordinals
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There have been proposed several generalized concepts of recursiveness
on domains other than the natural numbers. In this paper we show four of
them virtually coincide over admissible ordinals. Some of the facts presented
below have already been obtained (cf. [4], etc.) but as far as the author
knows their explicit proofs are published for the first time here.

§1. Takeuti-Kino-Tugué’s concept of recursiveness ([9] and [12]).

1.1. Let be given an arbitrary ordinal a. Define TF,(«a) (resp. PF,(«))
to be the set of n-ary total (resp. partial) functions with variables ranging
over a« and with values in a. Fc(a) (resp. Pf(«)) is the set of total (resp.
partial) functions such that a) they have finitely many (possibly zero) function
variables each of which ranges over TF,(a) (resp. PF,(a)) for a fixed n=1;
b) they have finitely many (at least one) number variables ranging over «a;
and c) their values are in «. Hereafter letters q, b, ¢, d, e, a,, by, ¢y, dy, €y, -+~
denote ordinals less than an ordinal « fixed in each context.

If « is an ordinal greater than w and closed under j°, then we can single
out the primitive recursive functions on a from Fc(a) by Schemata I~XII and
XIIlV of [12], 2.1.

1.2. Let « be as in 1.1. We call a function in Pf(«a) T-partial recursive
if it is defined by the schemata obtained from Schemata [~XII, XIII’ by
replacing each occurrence of ‘="’ by ‘=’ and the additional schema XIV.
(cf. [12], 2.1.)

1.3. Again a is greater than o and closed under j. A function in Pf(a)
is T-partial recursive in the classical sense if it is obtained by the schemata
used to introduce the T-partial recursive functions in 1.2 and the additional
schemata (0g) for each g.

(0g). f(a)= B, where B is a fixed ordinal less than a.

The author wishes to thank Professors T. Tugué and K. Namba of Nagoya Uni-
versity, as well as the members of the Mathematical Logic Research Circle in_Tokyo,
for valuable suggestions and encouragement.

1) See, [12].
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§ 2. Kripke’s concept of recursiveness ([4] and [5]).

2.1. Kripke defines, for an arbitrary but fixed ordinal a, a formal calcu-
lation system A (a). For the definition of X(a), see or [5] We mention
only the rules of inference of K(a). We denote by a the numeral cor-
responding to an ordinal a (< ).

R1: to pass from an equation < containing a free variable u to the
equation which results from d by substituting a numeral for u.

R2: to pass from an equation r=s containing no free variables and an
equation t=a where ¢ is a term containing no free variables to the equation
which results from r=s by replacing an occurrence of ¢t in s by a.

R3a: to pass from an equation of the form t,[a]=0 containing no free
variables to the equation Qu < b)t=0, where a <b.

R3b: to pass from a sequence of equations <{{,[al=1|a<b) to the
equation (Ju < b)t =1, where each equation ¢,[a] =1 contains no free variables.

We call a term (an equation) containing no numerals other than 0 and 1
a term (an equation) in the strict sense.

2.2. A function f(e Pf(a)) is K-partial recursive (in the strict sense) if
the following holds in K(a). There exists a system E of equations (in the
strict sense) such that

hy -, h _ _ _
E(r ), E-f@, - a)=a
if and only if f(hy, -, hpm, ay, -, a,) =a. (1)

§ 3. Kripke’s recursiveness comprises Takeuti-Kino-Tugué’s recursiveness.

THEOREM 1. Let a be an ordinal greater than w and closed under j. If
S(€ Pf(a)) is T-partial recursive (T-partial recursive in the classical sense), then
fis K-partial recursive in the strict sense (K-partial recursive).

PrROOF. We can provide in order each of the following functions and
operations on functions with a system of equations for calculating it using
the systems for its predecessors in the list.

a) Aa-0 (Schema Ila). b) Aa-a (III). ¢) sg. d) sg. e Ig AV).
f) Aha,, -, a,- h(a, -,a,) (VIII). g The composition of functions
(IX). h) The additions of a variable (Xa, b; XIa, b). i) Primitive
recursion (XIII). j) The p-operation (XIV). k) Aa-a’ (I). 1) sup*
m) +. n) X. o0) k(=2aia 0). p) j(VD. q) The infinitary
addition. r) The bounded existential quantification. s) The bounded
p-operation (XII). t) Aa-o (Ib). u) g! (VIla). v) g2 (VIIb). w)
Aa - 8 (0p).

‘We use the operation sup* in the following sense.
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sup* { f(hy, =+, bp, @y, =+, ay, b) | b< a} =c¢ if and only if

a) f(hy -+, hp, ay, -, a, b) is defined for every b<a; and

b) ¢ is the least ordinal (less than «) that is greater than or equal to f(h,,
c yhm, ay, -, a,, b) for all b<a.

The infinitary addition 2 is an operation on functions defined as follows.

2{fChy s Ay Gy v 5 gy D) | <0} =0;
2{fChy, s by Gy, -+, ay, ) | < @’}
={flhy -+, hm, Ay, =+, Ay, D) | b< a}+f(hy, -+ ) A, Gy, -+, Ay, Q)5
2{ f(hy -+ Ay gy -+, Gy, b) | b < a}
=sup* {X{ f(hy, -+, hmy ay, =+, Ay, b) | B <c} | c<a},
if a is a limit ordinal.
We exhibit for example a system E of equations for sup*. The principal
function letter and the given function letter of E are f and g respectively.
E,: A system of equations for sg with the principal function letter g‘\'g‘

A
E,: A system of equations for I¢ with the principal function letter Iq.

h(uy, =, U, 0, w)=0

E h(ul’ ttry Up, U, w):%(kl(uly ey, Uny U, 'LU))
kl(uh ey, Uy U, w): (3x< ‘U)k2(x, Uyy o=y Up, w)
N
kz(u’ Uyy -5 Up, w):]q(w, g(ul, ey Up, u))

. E,: A system of equations for the p-operator with the principal function
letter f and the given function letter h.

As for a system of equations for the recursion scheme the system of
can be adopted without any change. We can construct systems for a)~vVv) so
that they are all in the strict sense but for w) this is not necessarily the case.

The proof of the ‘if’ part of § 2(1) is a routine and the ‘only if’ part is
accomplished by Hermes’ semantical method in [2] modified to fit the case
involving partial functions.

§ 4. Admissible ordinals.
4.1. Given a system E of equations of K(a), define, for each ordinal 7,
a set S¥ of equations of K(a) by
SF=F;

and for y >0, SF=FE\ the set of all immediate consequences
(by R1~R3b)
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of members of \/{S%¥|0<y}; when we apply R3b to a subset of U {S7%]|

0 <y} we require that the ordinal bounding the existential quantifier be

less than 7.

We call @ admissible if S£=SE,, for every system E of equations of X(a).

4.2. Consider the system X(«a). We call a recursively regular if sup Rf
< a® for every K-partial recursive function f on a whose domain is a proper
initial segment of a.

4.3. Denote by £ the language of set theory introduced in [1], P.23l.
The 4,, 2 - and 2-formulas of £ are defined there, as well as the notions
of a relation on a set A being 4,2, 2, 4,, 2,, 2) over A. For any 2-formula
¢ of £ and a variable x not occurring in ¢, Rel(x, ¢) is a formula obtained
from ¢ by relativizing to x all the quantifiers of ¢.

We introduce the next schemata in L.

2 ,-replacement-reflection schema:

Vu e xJvplu, v]—3Iy((Vu = x)3v € y)plu, v]

N (Vve y)@3u € x)plu, v])

for all ' -formulas ¢ with ¥ not free in ¢.
2 -reflection schema:

¢—3yRel(y, ¢)
for all Y-formulas ¢ with ¥ not occurring in ¢.
d,-separation schema:

VxIyVu(uey o uesx A plul)
for all 4,-formulas with y not free in ¢.
2 ,-replacement schema:

Yue x3vplu, v]— JyVov ey < Ju € xp[u, v])
for all J,-formulas ¢ with ¥ not free in ¢.

A set A is admissible if it satisfies a)~d). (6], 2.5.)
a) A is non-empty and transitive.
b) If p and ¢ are in A, then {p, ¢} is in A.
¢) If pis in A, then the transitive closure of p is in A.
d) The 2, -replacement-reflection axioms hold in A.
4.4. When we treat an e-structure (U, E[ U?)> (where E is Godel’s E)
for £, we write simply Uk for <U, E[U?)E¢. Hereafter letters p, q, 7, h,

2) For a set X of ordinals, sup X is the least ordinal greater than all the ordinals
in X.
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e, b, q., --- denote elements of the universe of a given structure.

LEMMA 1. Let A be transitive and the X -replacement-reflection axioms hold
in A. If in addition NpVq(p, g A—pqe A), then the d,separation axioms
and X -replacement axioms hold in A. v

LEMMA 2. (cf. [1], 2.1 and 2.2.) Let A be admissible.

i) Every instance of A,-separation, 2 -replacement and X-reflection sche-
mata holds in A.

i) If p,qe A, then Up, {p, q>, PXq, p—q, Dp and Rp are in A.

iii) Every subset of A which is X over A is X, over A.

iv) If a subset X of Ais 4, o0ver Aand X< a for some ac A then X< A.

v) Let G be a function with domain and range subsets of A such that the

(graph of) G is X, over A. If pe A is a subset of the domain of G,
then G[pe A.

4.5. Let F be Godel’s function for generating the constructible sets.

THEOREM 2. (cf. [5].) The next five conditions are equivalent for ordinals
greater than w.

1) a is admissible.
ii) a is recursively regular.
iii). « is closed under j, and for every primitive recursive relation P on «a,
VYa, - Va,VcaddNala<c—3A'bP(a, b, ay, -+, a,))— Va¥bla < c AN P(a, b, a,,
e, Ay)— b < d)).

iv) F“a is admissible and F*a NOn=a.

v) There exists an admissible set A such that AnOn=a.

PRrROOF. 4.5.1. i) implies ii). By reductio ad absurdum. Suppose that
there were a K-partial recursive function f such that ®f=a,(<«) and sup Rf
=a. Let g be defined as g(q, b) = sup* {Iq(f(c),b)| c < a}. By the method used
to prove construct a system E, of equations for g with the princi-
pal function letter L. FE, contains a system of equations for f with the princi-
pal function letter 4. Construct a system E from FE, in the following way.

E,
EJ g,(u, v)=0w< h@)l(u, w)
gw)=Gv<weg,(u, v).

Then, g,(a,)=1 is deducible from E but gy(a,)=1<« S§: Fix an arbitrary
c<a, For any b< f(c), E—I(a,b)=1, since g(a, b)=1 for all b. So we
have the next deduction from FE.



440 M. Fukuvama

\‘é': ~ ; K

8@, =A< D@ ) hO=TD

gl(c—zlv C-) = (aw < j‘(—c_).)l(&lv ‘LU)

Aw < fe)l(a, w)y=1

gi(a,, 5):T

In view of the definition of S¥, we know that the least ordinal y. such that
Au< )@, w=1e SE is not less than f(c), hence so is the least ordinal
d. such that g(a, &)=1& S§. Therefore sup {d.|c< a,} =a. It follows that
(3v < a,)g.(@,, v)=1 does not belong to S¥ for any 7y < a.

4.5.2. ii) implies iii). Suppose that a had its predecessor b. As before
we can construct a system of equations of X(a) computing the function f
such that Df=1 and f(0)=0b (i.e. f(@)= pucla=0Ac=0>5)). This is absurd,
hence a is a limit ordinal. For an arbitrary ordinal a,<a, by the same
method the function g defined as g(a) = pc(a < aj A c = k(a)) is shown to be
K-partial recursive. Therefore a is closed under k. Given q, a,<a, then
b,=max(ay, a))+1<a and j(ay a,)<j(b, 0)=k(b)<a. Thus a is closed
under ;. Let P be primitive recursive and Va(a<c¢—3!bP(a,b, a,, ---, a,)).
Define h as h(a) = pb(P(a, b, a,, ---, a,) Aa<c), then by h is K-
partial recursive and ®h=¢, and so sup Rg< a.

4.6. We need some preparations to prove that iii) implies iv). Through-
out 4.6 a is an ordinal greater than @ and closed under j.

4.6.1. LEMMA 3. ([10].) There exist primitive recursive relations =® and
=¥ on a such that

i) a€b if and only if F(a) = Fb);

ii) a=b if and only if F(a)= F(b).

LEMMA 4. Put u(a)=pb< a’'Ve(c< a A c € a—u(c) < b) and Or(a) — VbVc(b,
c€Ea—bEcvb=cVvceED) AV becNcEa—beEa).

i) u and Or are primitive recursive.

i) Or(a) if and only if F(a) is an ordinal (less than a).

iii) If Or(a), then Va,(a, = a— u(a,) =u(a)) and u(a) = F(a).

iv) If ae F“a, then uw(Od(a))=a. (Od is Godel’s Od.)

LEMMA 5. Put Odr(a, b) < Or(b) A u(b)=a AVc(c < b—7 0r(c) V u(c) # a).

1) Odr is primitive recursive.

ii) If ae F“a, then Od(a)=b < Odr(a, b).

3) See, [10]. We write € for Takeuti’s primitive recursive function < in [10].
We draw no symbolical distinction between the usual set-theoretical notation { , } for
unordered pairs and the corresponding Takeuti’s primitive recursive function; likewise
for {, >, U, N, x and [.
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4.6.2. Let ¥ be the structure {a, €) for L. The notions of a relation
on « being 4,(2,-, etc.) definable in T are defined analogously to [1], P. 231.

LEMMA 6. If a relation P is definable in T by a 4, formula ¢, then P is
primitive recursive.

PROOF. By induction on the construction of ¢. Case 3a. ¢ is of the
form Yveu;p,. Let P, be the relation defined in ¥ by ¢,., By Lemma 1 and
the definition of F,

aca;,—-3bb<a;Na=b). €))
Hence
P(ay, -+, a,) = Va(a € a;— Pya,, -+, s, a))
o Va(e<a,— (@€ a;,— Pay, -+, a, a))) .

(cf. [10], 3.2.4. and 3.2.30.) From this and Proposition 1 of [107], P is primitive

recursive.
LEMMA 7. 1) For an arbitrary formula ¢ of L,

Tkolay, -, a,] if and only if F“ak¢[F(a,), -, Fla,)].

ii) For an arbitrary sentence ¢ of L, Tk if and only if Fak .

ProOOF. By induction on the construction of ¢ using Lemma 3.

4.6.3. LEMMA 8. Let a satisfy Theorem 2, iii). If an n+m-ary (n=1,
m = 0) relation P is definable in I by a 4, formula ¢, then

Vaney - VapenVb3cVa, - Va,({a,, -, a, )Y E¢
o Ay, 0, )EbN P(dl, vy Apam)) -

PROOF. By induction on the construction of ¢. Case la. ¢ is of the form
u; € uy;. In this case P(ay, -+, Gpem) 2 a; €a;. Example 1. n=3, i=1; m=1,
J7=4. Take arbitrary a, and b, and put c=bnN\(a,x D(b))*. Example 2. n=23,
Jj=1; m=1,1=4. Given a,and b, put ¢,=j(2, {a,} X R(®), 0)°, ¢, =R(c'[ {a,})¥
and c=b N\ (c, X D()). The remaining cases are treated similarly. Case 1b.
¢ is of the form 7 ¢, where ¢, is atomic. Let P, be defined by ¢,. By Case
la we obtain, for given a,.y, >, apen, and b, an ordinal ¢, such that

<a1’ R an>.§—clH <a17 Tty dn>_6_b/\ Pl(al) ttt an+m)-

Put c=b—+c¢,Y. Case 3a. ¢ is of the form v =u,p,. Let P, be defined by

©,, then
P(aly Tty an+m> «> aa(a_E_ai N Pl(aly ety Apamy a)) . (2)1

Put

Q:ay, s Gpamy ) o Va(@Ed e aE a; A Pay, -+, Grim @) ;
Qz(aly * Qpaemy d) « Ql(aly **y Qpam, d) /\le(d1<d—"7Q1(al, 5 Qpamy dl))
By and Proposition 1 of [10], @, and Q, are primitive recursive:

3
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(cf. (1)). By Ind. Hyp. Va, - Vap,en31dQ.(a,, -+, Gpam, d). Given Gy, >+, Gram
and b, we obtain by iii) an ordinal d, satisfying
Ya| - Yah ,Vd(a], -+, Qhem < MaxX (Apy1, -+ 5 Apimy, 0)+1
A Qy(a, -+, Gpam, d)—d < d)). 4)
In addition we can assume gy(d,)=0%. Subcase 1. 1=<:=<n. By Ind. Hyp.

there exist ¢, and ¢, such that

Va1 cee VanVa(<a, Ay *°°y an>_E_CI <> <ar Ayy oy an>_§dlxb/\P1(al’ *ty Qptmy (1)),

®

Va,---Va,Va({a, ay,, -, a,) Ec, = {a,a,, -, a0 Ec;, NaE a,).
Assume
<alv AR an>§_b/\a_e..ai/\P(a1’ oty Qpymy a) (6)

There exists d for which Q,(a,, -+, dpem, d). From (6) and (3), aed (7). On

the other hand we can assume a,,---,a,<b since {a,, -,a,) &b (cf. (1)).

From this and (4), d<d, (8). (7) and (8) imply a &€ d, (9), because g,(d,)=0.

Hence {aq, a,, -+, a,> E¢;, by (6), (9 and (5). Noting (2), we have shown that
<a1’ Ty an>_e_b/\P(al’ Sty an+m)—‘) <a17 Tty an>§—D(62)-

The converse implication is obvious. Subcase 2 where n4l=i:=n+4m is
treated similarly. Case 3b is reduced to Case 3a by taking the complement
(cf. Case 1b).
LEMMA 9. If a satisfies Theorem 2, iii), then it satisfies Theorem 2, iv).
PROOF. It is clear that a) and b) of 4.3 hold with respect to F“a. For
d), noting Lemma 7, it suffices to prove that if P is a relation definable in
% by a 2',-formula® ¢, then

VYa(a€c— 3bP(a, b)) —» IdNVa(aEc— Fb(bsd N P(a, b))
AVb(bEd— Ja(aE c N P(a, b))).
Let”¢ be of the form Jv¢p,, where ¢, is 4,. Let P, be defined by ¢,. Put
Q.(a, e;) & 3bTe(Py(a, b, e) Ne,=<b, e3),
Qx(a, e) < Qy(a, e)) A\Ve,(Qy(a, e;) — e, = ey),
Qi a, e, ) (@ascNQa, e))V(7asEcNne;=0),
Q.(b, ¢, dy) > FaTe(asc ANes D) N Pa, b, e)).

Since the existential quantifiers in Q, can be bounded by e, (cf. (1)), Q, is
obtained from a primitive recursive relation by substituting (constant) ordinals
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for some of its variables. Hence so are Q, and Q,. It is clear that @, is
4,-definable in £. Assume Va(a € c— 3b P(a, b)), then Va(a <c—3!e,Q:(a, e,, )
By iii) we obtain d, satisfying VaVe,(a <c A Qya, e, ¢) — e, < dy)
A gy(d)=0. By there exists d such that Vo(bEd—be R(d)
A Qyb, ¢, dy)). Now there is no difficulty in showing that this d is the desired
one.

Next we prove that a S F“a by transfinite induction over a. Suppose
as Fa. By ii) Va,(a, < a—3!bOdr(a,, b)), hence by
iii) there exists d such that Va,Vb(a, < a A Odr(a,, b)—b<d)Ngld)=0. It
follows that a £ F(d). On the other hand from the fact that the X,-replace-
ment-reflection axioms hold in F“a, via Lemma 1, we obtain p(e F“a) such
that FaEVx(x € pox e F(d) ANOrd(x)). Clearly p(=F(d)NOn) is an ordinal
and aSpie a<peF“a so as F“a.

Finally we prove c¢). Note the following facts.

(1) If p= F“a, then there exists a transitive ¢ € F“a such that pSgq.

(Obvious.)
(2 If peF“a, then Upe F“a. (From (1) and the 4,-separation axioms
in Fa; cf. Lemma 1)

@B weF“a (For, wesaZ F a.)

Using (2) and the 3 ,-replacement axioms in F“a (cf. Lemma 1) we can show
that for an arbitrary p € F“a there exists a function G(ES A) such that G is
2, over A; DG=w; G0)=p and G(n+1)=\JG{) for any n<w. By (2),d
and 2,-replacement, \UG“w (=the transitive closure of p) = F“a. (For the
existence of G, cf. the proof of iii).)

4.7. v) implies iii).

47.1. LEMMA 10. If A is admissible and ANOn=a«a, then a 1is closed
under j.

PrROOF. It follows from the admissibility of A that there exists a function
G such that DG=a?; RGZ a and G(ag, b)=sup {G(a,, b)) |<ay, b;><a, b)},
where < is a well-ordering of the pairs of ordinals defined as <{a, b)<<<¢, d)
if and only if max (q, b) < max (¢, d)V (max (a, b)=max (¢, d) AN (b<dV (b=
dNa<c)). By induction over the well-ordered set {a? <>, j[ a*=G. (For
the existence of G, cf. the proof of Lemma 12, iii).)

4.7.2. For a function f on a with Df=TF,,(a)X - XTF,, (@)X a™, let f*
be a function defined by

#:{<d, hly Tty hm’ Ayy oy an> I thPle(a)ﬂA (1§l_£_m)
and <d9 h;‘v Tty hfny Qyy =ty an>Ef} .

‘Z(FOI' he PF[(C(), hc:hu{<0’ Ay, =y al> l <a19 ) al> GE@h}')
The content of the next lemma is virtually included in a result of [8].
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LEMMA 11. Let A be admissible, AnOn=a and f be a primitive recursive
Junction on a with Df=TF (a)X -+ XTF, () Xa".

) DFfF=(PF (a)NnA)X -+ X(PF ()" A)Xa™ and Rf* S «.

ii) If f has no function variables, then f¥ = /.

iii) f%* is X, over A.

PROOF. i) and ii) are obvious. iii). By induction on the construction of
f by Schemata I~XIIl’. All the cases are easy except Cases VI and XIII.
Noting that j is defined by the recursion j(a, b)=sup {j(c, d) | <{c, d)<<<{a, b3},
we can treat Case VI in the similar way to that for Case XIII. Case XIII.
For simplicity, we deal with the case where f is defined from g by f(h, ar
=g(Abf*h, b), h, a) with h unary. Put B={Kh, > | h, l€ PF(a)NA; Dl is am
ordinal less than a, and Vb(b € DI— I(b)=g*(T[ b, h, b)).}.

F={<b, h,a>|3I(h, I)eBALba>e}.

Then we have successively the following facts.

Q) <h,l>eB,{n l,>eB, b a><!l and <{b,, a) <!, imply b=0b,.

(2) F is a function, DF S (PF, ()N A)Xa and RF S a.

(3) B and F are X, over A.

@) DF=(PF(a)NnA)Xa.
(Suppose that there existed a satisfying VIKh, [>e B— 73b(b, a) € ))-
Denote the least such a¢ by a,. Then, Va(a€ a,—3!'I(h, > € BADI=a)).
On the other hand there exists a ¥,-formula ¢ such that <A, [> e BADI=a"
if and only if AFe¢[h, ,a). Therefore, AkVu(uca,—3'velh,v,ul). By 2
replacement, there exists p(e A) for which we have ARVv(v € p—IFu(u s a, N
oLh, v, u])). Putl,=\Up, then [, € PF () A. Hence, there exists b, such that
by ly hyaye g?. Put L,=1\J{{(by, a,>}, then {h, ,> € B, a contradiction.)

(®) F=f* (By induction over a.)

LEMMA 12. Let A be admissible, A~\On=a and P be a primitive recursive
relation on «, then

Va, - Va,Vcadd(Va(a < c—3'bP(a, b, a,, -+, a,))
—VaVbla<c A P(a, b, a,, -, a,)—b<d)).

PrROOF. Let P be primitive recursive. Assume the antecedent. Denote:
by ¢ a 2i-formula defining P in A. (cf. Lemma 11.) Then, A:-Vu(u cc—
3lveplu, v]). From this via 2 -replacement, there exists p A such that
AEVu(u e p—Fvw e c A plu, v])). Up’ is the desired ordinal in A.

473. From Lemmas 10 and 12, we know that Theorem 2, v) implies iii)..
We prove that Theorem 2, iv) implies i) in 5.4.
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§5. Takeuti’s recursiveness comprises Kripke’s recursiveness.

In the remainder of this paper we treat only functions in Pf(a) without
function variables unless otherwise stated.

5.1. We make some preparations for the arithmetization of Kripke’s
system.

51.1. LeEMMA 13. Let «a satisfy Theorem 2, iv) and g be a function such
that a) Dg s an ordinal less than a and RgS a; and b) g Fa.

Put g*={<c, F(j, b, 0)>|<c, b> = g}. Then

i) g* is a function belonging to F“a.

i) If Od(g*)=d, then VYa(la < Dg— gla) =uldt;0, a, O))).

(atb=puc<allc, by < a).)

PROOF. i) Put Dg=a, Since g F“a, so is Rge F“a. On the other
hand, g* S RgXF(j(0, a,, 0)). It remains to show that g* is 4, over F‘a,
but this follows immediately from the fact that F[ a and Aabcj(a, b, ¢) are 4,
over F“a (for F[ a, by the definition of F; for j by Lemma 11).

ii) It is obvious that if p, ¢ = F“a then Od(p, q))=<0d(p), 0d(q)>.

Let a<a; and put b=g(a). <{0d(), j(0, a, 0))>=<0d®), Od(F(F (0, a, O)>
=0d(Kb, F(j(0,a, 0)>)ed (1). Hence, 3b,(b;<dAN{by,j0,a 0>=d), so
<d170,a,0),50,a,0><&d From thisand (1), d77(0, a, 0)=0d(). By Lemma
4, u(d 17, a, 0)) = u(0d(b)) = b.

5.1.2. Let g be a function satisfying the condition a) of Lemma 13. If
there is an ordinal d such that Va(a < Dg— g(a) = u(d i j(0, a, 0))), we call the
least such d the index of g.

5.2. Now we arithmetize Kripke’s system using primitive recursive func-
tions. The arguments that follow are for the most part adaptations from [127].
We can dispense with the axiom of constructibility by the idea of Tanaka [117.

5.2.1. Assignment of ordinals to the primitive symbols.

Symbols Ordinals assigned
i) a (numeral for a) j4, a)
ii) v; (i-th variable) 75, 1)
iii) f; (=-th function letter) Jj(6, 1)
iv) 3<) 7
V) = 8

5.2.2. Assignment of ordinals to the terms etc.

We denote by t7 the ordinal assigned to the entity ¢{. Let ¢ be a term.
i) If t is a numeral or a variable, then Tt7 is already defined.

i) If ¢is fi(ty, =, ta), then Tt =7((6, 1), j("t,7, -, 7 (Tt TH7) -2 ).

iii) If t is Av; <ty then "7 =57, 76, 1), 7(CHT, T, D).

Let e be an equation ¢, =+¢,. Then, Te"=;(8, j("t,7, Tt,M).
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Let e, be a system of equations (e, ---,¢,). Then, e¢,=j(Te,?, -, 7 (e,
Ce, ) =)

5.23. LEMMA 14. Let a satisfy Theorem 2, iv). There exists a primitive
recursive relation D on a such that 3d(D(e,, d) N[d]x=¢e) if and only if e, is
(an ordinal assigned to) a system of equations and e is an equation deducible
from e,.

PrROOF. We can define the primitive recursive relations V, Tm, Eq, etc.
having the same meanings as the corresponding relations in [12]. Using these
we define D by induction.

D(e,, d) < SE(e,)
ALeld)=10 A Egg"@) ATi(0<i< oA (gHd)=[e) 1 Veid) =G, e, )
V gi(d) =11 A (Cny([d]y, [¥v(2, d)1x) V Cnyse([d]y, [¥(2, d)14)) A D (e, v(2, d))
V gi(d)=12 A Cny([d],, [d Jox, [¥(3, d)1s) A D(ey, [d12) A D(ey, v(3, @)
V gi(d) =13 AAc,3cy(ey, ¢ < d N Tm(c,) ANV(ey) ANVe(c < d—c=c, V7 Ctcy, ©))
AYVc{c <v(3, d)— D(ey, u([d1,17(0, ¢, 0))) AJcy(cs < d A Sb(es, ¢y, 7 (4, ©), ¢5)
A Lu(Cd 12170, ¢, )1 =7 (8, jlcs, 7 (4 DN}
ANdLi=7@, j(G (7, jce 714 v(3, d)), cO), j (4, D)] .
g¥d) if g'(d)=10
Here [ Jx is defined as [d]x= { cdl, stherwise .
Note that if d >0, then [d],, v(2, d), v(3, d) < d, and if g*d) >0, then
Ve(e <v(3, d)—u([d1, 170, ¢, )< d).

Obviously 3d(D(e;, d) AN [d]«=e¢e) implies that e, is a system;of equations and
¢ is an equation deducible from e¢,. We prove the converse by induction on
the definition of the deducibility. The initial case and the cases involving
R1, R2 and R3a are easy. For each a <b, let be given an ¢, deducible from

e,, and let ¢ be an immediate consequence of {e,|a<b) by R3b. By Ind.
Hyp. and the definition of R3b, there exist ¢, and ¢, such that

Va(a < b_’ ad(D(elr d) /\ Sb([d]*, cl’ ](41 (1), Cz))) .
Put

R(a, d) < D(e;, d) A\ SH(Ld1x, 1, j(4, @), ¢5) ,

R.(a, d) & R(a, d) NVd,(d, < d—T7R(a, d))).

Then, Ya(a<b—3'dR,(a, d)). Hence, g={{d, a) | R,(a, d)Na<b} is a function
with domain 4. Moreover g is 2, over F“a by Lemma 11 with 4= F“a.
It follows from Lemma 2, v) that g F“a, so g has the index ¢. Put
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d =713, j(e, j(c, L))

5.3. LEMMA 15. Let a be admissible. There exist a primitive recursive
Junction U and a primitive recursive relation S, jfor each n for which the
Jollowing hold.

i) If f(e Pf(a)) is K-partial recursive, then there exists e such that f(a,,
v, ay)=b if and only if 3d(S,(e, a,, -+, a,, d) N\ U(d)=0>b).

i) If fis in addition K-partial recursive in the strict sense, thenithe above
e can be taken from the natural numbers.

PROOF. U and S, are defined analogously to [12]. The e is the ordinal
assigned to the system of equations calculating f. ii) is clear from 5.2.1. and
5.2.2.

THEOREM 3. Let a be admissible. If f(€ Pf(a)) is K-partial recursive in
the strict sense (K-partial recursive), then f is T-partial recursive (T-partial
recursive in the classical sense).

PROOF. Obvious from Lemma 15.

5.4. Now we prove that iv) implies i). Let a satisfy
2, iv). Define a function f(€ Pf(a)) by induction

FO@, d)+1 if g'(d)=11;

max (f([d 1y, f(vG, d))+1 if gi(d)=12;

f(d)=¢ max (sup { f(u(ld]1: 15 (0, ¢, ) | ¢ <3, d)}, »(3, d)+1)
if gid)=13ANg¥d)>0;

L0 otherwise.

Using Lemmata 2 and 11 with A=F“a, we can show, by the same argument
as that for (4) of the proof of Lemma 11, that the above f is total. Next
we know by induction on a that D(e;, d) and f(d)=a imply [d], = S%. Hence
the desired result.

§ 6. Platek’s concept of recursiveness.

We assume that « is admissible throughout the remainder of this paper.
According to and [6] Platek proposes in his unpublished paper the fol-
lowing concept of recursiveness on admissible ordinals.

f(e Pf(a)) is P-partial recursive (in the strict sense) if and only if f is
2, (&) over F“a. ‘

THEOREM 4. If f(€ Pf(a)) is P-partial recursive (P-partial recursive in the
strict sense), then f is T-partial recursive in the classical sense (T-partial recur-
sive).

PrROOF. This is virtually one of the results in [8]. It suffices to show
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that if a relation P on «a is 2, (&, over F“a, then there exists a relation
@, T-recursive (in the classical sense) such that P(a)«3bQ(a, b). Let P be
defined by a 2,- (2,-) formula Jvp, where ¢ is 4, (4,). Then, P(a) if
and only if F“aF3vpla, v] and F“akE3Jve[a, v] if and only if TEIvep[0d(a),
v]. (cf. Lemma 7l) Denote by Q, the relation defined by ¢ in €. By
6 Q, is T-recursive (in the classical sense); and

P(a) « 3bQ,(0d(a), b) < IbIc(Odr(a, c) N\ Q,(c, b)) .

§7. Montague’s concept of recursiveness.

7.1. Denote by M the higher-order language introduced in [7], P. 65.
‘We assume that ¥ has only two predicate constants: I of type <(0,0> and P
of type <(1,0)>. The atomic formulas, the formulas, the elementary formulas
(the counterparts in # of the 4,-formulas of £) and the Y{¥-formulas (the
counterparts in M of the X -formulas of £) are defined in [7], P. 68. We
add the notion of XX-formulas, which correspond to the 2-formulas of _.

i) Atomic formulas are X¥-formulas.

ii) If ¢, and ¢, are J¥-formulas, then ¢, A ¢, and ¢, V¢, are Y¥-formulas.

iii) If ¢ is a X¥-formula, u and v are variables and type (#)+1=type (v),
then Au(uev—og) and Vu(u €v A @) are X¥-formulas.

For the definition of the typed relations R, their types (type (R)) and their
extensions (R¥*), see [7], P. 67.

7.2. Define a denumerable sequence {U,},<co by

UO =a,
Un+1 - %(Un) M Fia.

The variables of type n are taken as ranging over U,. The typed re-
lations Id and Sup interpret the predicate constants I and P respectively.

Id=<0, 0>, Id*>, where Id*={<{a,ad>]lacsU,}.
Sup=2¢<1, 0> Sup*>, where Sup*={(X,a)>| XU, and a=sup X}.

Note that XS a and X F“a imply sup X < a.

Let ¢ be a formula having no free variables other than u,,---,u, If
the assignment of individuals py, -, p, to u,---,u, satisfies ¢, we write
ME @l py, =+, po]- The notions of a typed relation being ¥ (X) definable
are defined analogously to [1], P. 231

7.3. We divert the variables of ¥ to the variables of £ by disregarding
their types.

LEMMA 16. i) For each n, U, S F“a.

ii) For each n, there exists a d,-formula ¢™ such that p= U, if and only
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if Fraf ™[ p].

LEMMA 17. Let ¢ be an elementary (2}) formula having no free variables
other than wu,, - ,u, and type(u)==rk; 1<i=<n). There exists a 4, (2)-
Jormula ¢* for which the followings hold.

i) The free variables of ¢* coincide with those of ¢.

ii) For any py, -+, Pn, Fak @*[ Py, Pnl if and only if p; € Uy, 1=S1=0)
and Mg Ly, -+, bal:

PROOF. The case where ¢ is elementary is by induction on the construc-
tion of the elementary formulas using Lemma 16, whence follows the case
where ¢ is 7.

LEMMA 18. Let ¢ be a 2™-formula having no free variables other than
Ugy ooy Uy, and type (u)=Fk, 1 =<i<n). There exists a 2}¥-formula ¢’ for which
the following hold.

i) The free variables of ¢’ coincide with those of ¢.

i) For any p,e Uy, A=1=n), ME@'[ by, -+, Pa] if and only 1f MELp,,
e, D

PROOF. By induction on the construction of ¢. Case 3a. ¢ is of the
form A w/(uw! euft*— ). (j+1==Fk,;; we denote the type of a variable by its
superscript.) By Ind. Hyp. there exists a Y¥-formula ¢f satisfying i) and ii)
for p=¢,. Let ¢} be of the form Vw*), where ¢ is elementary, and w**!
be not in ¢. Denote by ¢’ the 2¥-formula

VWA wi(u! € uitt— v wk(wt e whtA ).

Then ¢’ is the desired formula. i) and the ‘if’ part of ii) are obvious. Take
the 4d,formula ¢* for which i) and ii) hold with ¢=¢. Let
m}: @[ply Tty pn] Then’

mt: AN uj(uj Epi—' vu’ksb[plr Tty pm uj: wk]) ’
FeakVu e p3w(g*[ by s by 4, WA @PLw]).

By the 2 -replacement-reflection and 4,-senaration axioms in F“a, there
exist ¢ and ¢, in F“a such that

F'a }: Vue pzaw € Q(¢*Ep17 ] pn’ Uu, w] A SD(L)[w:D y
FeakVYww e ¢, o we g e®[w)) .

Now it is obvious that this ¢, is an object in Uy, to be assigned to w*+:,

7.4. We call an n-ary function f(€ Pf(«)), M-partial recursive (in the
n+1
strict sense) if the typed relation <0, ---, 0>, /> is 2 (¥ definable.
THEOREM 5. If f(€ Pf(a)) is M-partial recursive (in the strict sense) then

f is P-partial recursive (in the strict sense).
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PROOF. Immediate from Lemma 17.

7.5. We specialize A to F“a in 4.7.2.

LEMMA 19. If fis a primitive recursive function on a with Df= TF,(a)X
< XTF (@)X a®, then f#CS UyXUgppsyX -+ XUgypeaXUZ). Hence, <0, 21,41,

oy 2p+1,0, .-, 00, f¥> is a typed relation.
LEMMA 20. If f is a primitive recursive function on a with Df= TF(a)X

- XTF(a)Xa", then <0, 2l;+1, -, 2,41, 0, ---, 0>, f¥> is J¥ definable.

PROOF. By induction on the definition of the primitive recursive functions.
Again we treat only Case XIII. It suffices to show that there exists a J¥-
formula ¢[u® v*] such that (A, [>= B if and only if ME@Lh, []. Let a XP-
formula defining g* be 6[u°, u®, v° v°]. Put

Oi[u'] & ANu'@w® € u'— Vw(Av°@° & w'— v°%ul) A Pw'u?));
G, u®] & o [wI A Pulu’;
Polu’ o ANuP® € u®— Vu® Vo'lu = (u’, v°)))
N NANur N v v e u®— \ u® \V v(u® = 2(u?)
ANV =20 A u =)V V u'(u’ = 1(u) A u®=10?)) ;
plu®, v7]  ¢y[u*] A ¢y[0*]
ANNu @ e v®— \ u® \ w'(u® =2u? A ¢,lu, u’]
AN NVQ° e u'— V¥ e v® A 2007 =v0%)
AN e v*— \Vw® Vu® Vo’ = 1(u?) A v° =2u?) A 0[u°, w?, ud, v°]
AN ANV € w*— v2ev® A V(W = 2% A w® < v%))
N NVE(@? € v — Vw(w® = 2(v®) A v° S w) Vv v2ew?)))) .
In the above we must still replace respectively the expressions like wuw™eu™*!,
u® =1(u?), u®=2w?, u*=<u’ v*>, u®+1° and u’<v® by X¥-formulas defining
the typed relations whose extensions are {{(p, ¢>lgs U Apeq}, {Ka, pD]
A0(p=<a, b))}, {Kb, p>13a(p=<aq, b))}, {Kb,a,b)|p=<a,b)}, {{a, b)la+b}
and {{a, b>|a< b}. But this is accomplished easily.
THEOREM 6. If f(€ Pf(a)) is T-partial recursive (T-partial recursive in

the classical sense) then it is M-partial recursive in the strict semse (M-partial
recursive).

PROOF. Let f be T-partial recursive. Then there exists e < w such that
(b, ayy -y Q) € feoAd(S,le, ay, -, an, dY ANU(d)=0"b). Since e<w, Aa,--- a,d,
Snle, a,y, -+, @y, d) and U are primitive recursive. By Lemma 20 there exists
a X¥-formula o[uf, ---, u%, v°, w*] such that S,(e, a,, -+, a, d)ANU@)=0b if
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and only if MEela,, -+, az b, d]. Then, <{b,ay ---,a,><f if and only if
MEvVwielay, -+, a,, b].

The remaining case is similar.

ADDED IN PROOF. The condition F“anOn=a in iv) is
ultimately redundant. After having in the original form we can
prove that if F“a is admissible then F“a \On=a.

Tokyo Kyoiku University
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