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§0. Introduction.

Let G, and G, be locally compact abelian groups, and let LY(G,) and M(G,)
be the group algebra of G, and the measure algebra of G,, respectively.
Homomorphisms of L}G,) into M(G,) have been studied by H. Helson, W.
Rudin, J. P. Kahane, Z. L. Leibenson, P.J. Cohen and others; and P.J. Cohen
[1], [2] determined all the homomorphisms of LYG,) into M(G,) by the notion
of the coset ring and piecewise affine maps. He also proved that every
homomorphism of L'G,) into M(G,) has a natural norm-preserving extension
to a homomorphism of M(G,) into M(G,), but in general an extension to a
homomorphism of M(G,) into M(G,) is not unique.

The purpose of this paper is to introduce some closed subalgebra L*(G,)
of M(G,), which contains L(G,) properly if G, is not discrete, to determine
the maximal ideal space of L*(G,), and to determine all the homomorphisms
of L*(G,) into M(G,) as a generalization of P.J. Cohen’s theorem.

We give in §1 some preliminaries, and in § 2 we introduce a closed sub-
algebra L*(G,) of M(G,). In §3 we investigate the maximal ideal space of
L*(G,), and obtain it as a semi-group. Finally we determine in §4 all the
homomorphisms of L*(G,) into M(G,) as a generalization of P.]. Cohen’s
theorem:.

§1. Preliminaries.

Throughout this paper G, and G, denote locally compact abelian groups
(=LCA groups), and I', and I, denote their dual groups, respectively. The
notations G° and I'. are also used to express an LCA group with underlying
group G and topology 7z, and its dual group, respectively. Thus by G° and
G*', we mean that they have the same underlying group G.

LY(G,) is the group algebra of G,, i.e. the Banach algebra of all the Haar
integrable functions on G, under convolution multiplication, and M(G,) is the
measure algebra of G,, the Banach algebra of all the regular bounded complex
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Borel measures on G, under convolution multiplication.
If f is an element of LY(G,), and if we define ,uf(E)szf(x)dx for each
Borel set E in G;, ps is a regular bounded complex Borel measure on G, and
LGy 3 f— py € M(G,)

is a norm-preserving isomorphism of L*G,) into M(G,). Through this iso-
morphism we identify L(G,) with a subset of M(G,), and then LG, is a
closed ideal of M(G,). The set LY(G,) is characterized as the set of all abso-
lutely continuous measures in M(G,) with respect to the Haar measure of G,
(cf. [4] Chap. 1).

B(I')) denotes the set of all the Fourier Stieltjes transforms of elements
in M(G)).

DEFINITION 1.1. We mean by an open coset of /', a coset of some open
subgroup of I',. The coset ring of I', is the smallest collection 2 of subsets
of I’, which satisfies the following conditions:

1) 2 contains all the open cosets of [,.

2) If Y= A, B then AUB, A 2.

DEFINITION 1.2. If E is an open coset of /', and « is a continuous mapping
from E into I',, then « is called affine if '

a(r+7r'—r") = a()+a()—a”) (7, r" € E)
holds. Suppose that

(a) } S, S;, -+, S, are pairwise disjoint sets belonging to the coset ring of I',.

(b) Each set S; is contained in an open coset K; of I',.

(c) For each i, a; is an affine map of K; into [',.

(d) «a is the map of Y=S,US,U -.-\US, into I';, which coincides on S;

with a; ¢0=1,2,---, n).
Then « is said to be a piecewise affine map of Y into I',.

THEOREM 1 (Cohen). Suppose Y belongs to the coset ving of I',, and a is
a piecewise affine map from Y into I,.

(i) For each fe LYG,), put

. fla@); reY
(foa)r)=
; re&Y,

where f is the Fourier transform of f. Then foa belongs to B(I',), and ther -

exists a unique element h(f) of M(G,) such that foa is the Fourier-Stieltjes

transform of h(f). The mapping h of LYG,) into M(G,) is a homomorphism,

and conversely every homomorphism of LNG,) into M(G,) is obtained in this way.
(ii) For each p< M(G,), put

Ma(); reY
(foa)(r)=

; reY,
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where £ is the Fourier-Stieltjes transform of pu. Then we have poa < B(l'y),
and we can choose a unique element h,(y) of M(G,) such that foa is the
Fourier-Stieltjes transform of h,(y). h, is a norm-preserving extension of h to
a homomorphism of M(G,) into M(G,) (cf. [1], [2] and [4] Chap. 4).

§2. A closed subalgebra L*(G,) of M(G,).

We denote by C the complex number field, and by T the set of all the
complex numbers of absolute value 1. T is an LCA group with respect to
multiplication and usual topology.

PROPOSITION 2.1. Let G, and G, be two LCA groups, and let  be a con-
tinuous isomorphism of G, onto G,. Then

(i) There exists a natural norm-preserving isomorphism n of M(G,) into
M(G,), given by

r()(E) = p(p~(E)) (E: Borel set of G,; pe MG),)).
(i) If ve M(G,), v belongs to n(M(G))) if and only if there exists a o-
compact subset K of G, such that v is concentrated in n(K).
PROOF. (i) Suppose g M(G,). Choose a g-compact open subset K of G,,

in which g is concentrated. Since % is continuous, »(K) is also o-compact ir
G,, and hence 7(K) is a Borel set in G,. Choose compact sets Q; in G, such

that p Q;=K. Let U be an open set in G, which is contained in K. Then
=1

7(Q;—U) isicompact, and 7(Q; \U) (:1=1,2,---) is a Borel set in G,, and hence

p(U)zg;n(QinU) is a Borel set in G,. Thus if we put

Q2={E: E is a Borel set in G, and »(E\ K) is a Borel set in G,},

then 2 contains all the Borel sets in G,. Therefore we see that a subset E
of K is a Borel set in G, if and only if n(E) is a Borel set in G,.
Define n(y) by

r()(E)=p(n~'(E))  (E; Borel set of G,)

then #(y) is an element of M(G,), and from the above discussion we see that
w(y) has the same norm as g, and hence

m: MGy > p— () € M(G,)

is a norm-preserving isomorphism, and this completes the proof of (i).

(i) Necessity is clear from the definition of the mapping x. Suppose
that K is a g-compact set in G, such that v & M(G,) is concentrated in 7n(K).
We can assume without loss of generality that K is open in G,. By the
paragraph in (i), 2(ENK) is a Borel set in G, for each Borel set E of G,.
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We put
v (E)=v(np(ENK)) (E; Borel set in G,).

‘Then v, is a bounded complex Borel measure on G,.

To show the regularity of v,, we remark here that the total variation of
v, is associated to the total variation of v, that is |v,|(E)=|v|(n(E N K)) holds
for each Borel set E in G,, and thus we can assume without loss of generality
that v is a positive measure.

Let Q; ¢:=1,2,---) be a sequence of compact subsets of K such that

Q,CQ,Cc@;c -+, and GQ,-::K. Given ¢ >0 and a Borel set E in G,, which
i=1

is contained in K, choose a compact subset F of 7n(E) such that y(9(E)—F)
= ¢/2, and choose a positive integer n such that v,(p '(F))—e/2 S v,(p ' (F)NQL),
and then we have

Vi MEF)IN Qn) = v, (F))—e/2
=y(F)—e/2
=v(E)N—v(Y(E)—F)—¢/2
= v(p(E))—e |
=y,(E)—c¢.

Since the restriction of 7 to Q; is a homeomorphism for each ¢ (=1,2,3,---),
' (F)NQ, is a compact subset of E, and hence v, is inner regular. Since
v, is bounded, v, is also outer regular and this shows that vy, is an element
of M(G,) and v = n(y,) € n(M(G))).

DEFINITION 2.1. Let G and G be two LCA groups with the same under-
lying group G and z £ z’. By Proposition 2.1 we can define the norm-preserv-
ing isomorphism = of M(G®) into M(G®). We identify L'(G") and M(G"") with
:subalgebras of M(G®) through =z, respectively.

DEFINITION 2.2. If A and g are elements of M(G"), we say that A and g
are orthogonal each other (notation 4| p) if there exist two disjoint Borel
sets A and B in G7 such that 2 is concentrated in A and g is concentrated
in B. If 4 and A’ are subsets of M(G?), we say that /4 and A’ are orthogonal
each other if 2| ¢ for each pair (4, y), where 1€ 4, pcs A'.

PROPOSITION 2.2. Let G and G* be two LCA groups with the same under-
lying group G with S v/, and let v be the natural continuous isomorphism of
G™ onto G*. If pis an element of M(G®), following a), b) and c) are equivalent
each other.

a) pl MG™),

b) p=p+p,, poe M(GT) and p, ) p, implies p, =0,

c) |pl(p(K))=0 for every compact set K in G, where |p| is the total
variation of p.
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PROOF. a) implies b); Suppose a), and if p=p,+p,, 21y, and 0+ p,
€ M(G™), then g and g, are not orthogonal each other and this contradicts a).

b) implies c¢); Suppose b), and if there exists a compact set K in G withr
| | (p(K)) # 0, we set g, the restriction of x# to n(K), that is

t(EY=pp(K)NE) (E; Borel set of G%)

then we have p, € M(G™) by Proposition 2.1 (ii), and that pg=(u—p)+p,,
¢, #0 and g, | (u—p,), contradicting b).

¢) implies a); Soppose c), and let 2 be an element of M(G"). There
exists a o-compact subset E of G*' such that 2 is concentrated in 7n(E). Then
by ¢), |¢|(m(E))=0 and this implies ¢ ] 2. Since 2 was an arbitrary element
of M(G®), we have p | M(G™).

DEFINITION 2.3. Let G be an LCA group. We denote by Z(G°) the class of
all locally compact group topologies of G, which are equal or stronger than 7.

LEMMA 2.3. Let G* be an LCA group and let I(G*)>D ty, 7, with 7, & 7,. If
7% is the natural continuous isomorphism of G onto G2, then ropg (rel’,)
is an element of I'.,, which we denote by ¢3(r). ¢33 is a continuous isomorphism
of I'., onto a dense subgroup of I':,.

PrROOF. It is clear that ¢ is an isomorphism of [';, into I';,. Let W be
a neighbourhood of 0 in I';,. There exists a compact subset K of G™ and
e>0 such that NK, e)={rel,,; |(x,n)—1|<e, x€ K} S W. Since 9i(K) is
also compact in G2, V= N(7»(K), ¢) is a neighbourhood of 0 in I';, and that
eAV)SW. This shows that ¢} is continuous.

Suppose that 21 )=H% I';,. I'.,/H is a non-trivial LCA group and
there exists a continuous homomorphism B+0 of I',,/H into T. J induces
a non-trivial continuous homomorphism j3 of [I';, into T such that

/9(7) = E(F) (re Frl) ’

where 7 is a coset of H which contains . There exists 0+ x € Gt such that
BN =7 (el.),

and hence we have

2.0 1= Bl =(x, oZN=H(x), n (@rel,.

From (2.1) we have 7%2(x)=0 and this is a contradiction. This proves that

o2 ,)=H=TI,, and thus ¢, is a dense subgroup of [',.

DEFINITION 2.4. Let GF be an LCA group and let 2(G%)> 7,, 7, with 7, 2 7,,.
and let 7% be the natural continuous isomorphism of G onto G*2. By the

Lemma 2.3 we define the natural continuous isomorphism ¢ of I';, onto a
dense subgroup of I'., such that

H@, N=(x, pi() (G, rely).
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THEOREM 2.4. Suppose G* is an LCA group and I(G) D 74, 7,. If LY(G™)
N LY{(G™) == {0}, then we have LY(G™)= L'(G™).

PrROOF. Put LGN\ LY (G?)=I=+0. Since L}G™) and L*(G"?) are trans-
lation invariant closed subspaces of M(G®), I is also a translation invariant
closed subspace of M(G®), and hence of L(G%%) (i=1,2). Therefore [ is a
closed ideal of LYG™) (i=1,2). Set ZU)={rel.: f(X=0, feI}, where f
denotes the Fourier transform of f. If »r=I';, we have LG )¢%,(r) S L}(G")
(#=1,2), and hence Jpf(r)=1. This implies that

Z) i, (r)=2Z() rel,).

Since ¢L,(I'.) is dense in [, Z(I) is either ¢ or I'., and since I=#0 we
conclude that Z(I)=¢. By the general Tauberian theorem, we get = L*(G™).
In the same way we have I = L'(G™2) and this completes the proof.

THEOREM 2.5. Let G be an LCA group and IT(G*)> 1y, 7,. If M(G™)
2 LY(G™), then we have 7,< t,.

PROOF. Let n be the natural isomorphism from G™ onto G*:. We shall
prove that » is continuous, and this will complete the proof.

Let r = I'.,, and there exists a unique ¢(») € I',, such that

[ or(—ndp={ r—ndptx (neLG).
G*2 GT1

We shall show that ¢ is continuous, and that » and ¢(*) induce the same
function on the underlying group G. If these are proved, we can easily show
that » is continuous. Thus for each neighbourhood N(X,e)={xeG:
|(x,N—1|<e, re K} of 0 in G7!, where K is a compact subset of /', and
e>0, (K) is a compact set in [';,, and 7(N(p(K), €))= N(XK, ¢), and hence %
is continuous.

Let p= LY(G™) and let £y, and f,, be the Fourier-Stieltjes transform of
¢ into I'.,, and the Fourier transform of yu into ['.,, respectively. Thus we
have the relation

PalpM) =)  (rels).

If U is an open set in C, then a2g(U)=¢ Y(gEU)) is an open set in I,
Since gz (U) is open and the topology of /', is the weakest one such that
each £, is continuous, we conclude that ¢ is continuous.

If reei,(l'y), it is clear that » and ¢(») induce the same function on G.
For r,e ', and x € G2, let N(K, ¢)+¢(r,) be a neighbourhood of ¢(7,), where
¢>0 and K is a compact set in G2, which contains x. Since ¢ is continuous,
there exist a compact set K’ in G™* and ¢’ > 0 such that o(N(K'\U n(x), e/)+7r,)
c N(K, &)+ ¢(r,). Since ¢, (') is dense in [';,, we can choose an element 7,
in (N(K"\J 5(x), e)+ro) N (l':), and we have
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[ (), r)—(0(x), ro)| < e’
[(x, prd)—(x, p(ro))| <e.
The fact that », € ¢f,(I';) gives
2.3) (), r) =(x, p(ry) .
From (2.2) and (2.3), we get
|(1(x), ro)—(x, p(ro))|
= (), 7o) — (), 7|+ | (x, p(r))—(x, p(ro)|

<ete.

2.2)

Since we can take ¢ and &’ arbitrary, we have

(%), ) =(x, p(r))  (x€G™),

and hence 7, and ¢(7,) induce the same function on G. This completes the
proof of the theorem.

COROLLARY 2.6. If I(G*)>D7,, t, and LY(G™t)= L¥G™), then we have t,=7,.

COROLLARY 2.7. If 7, 7, 3(G") and t,+ 7, then we have L}(G™) ]| L}(G*).

PROOF. Suppose that L!(G"t) and L'(G™) are not orthogonal each other,
and choose g L'(G™) and v L'(G™) such that g is not orthogonal to v.
By Proposition 2.1 there exists a o-compact set K in G* such that g is con-
centrated in 7%, (K). If v, is the restriction of v to %I(K), then we have
0+v, € M(G™Y). Let y,=y{+y{ be the Lebesgue decomposition of v, such that
vi< p, v L p. Then v{#0 and v € LY(G™) N\ L(G™), that is LY(G™)n LY (G 2)+0.
From Theorem 2.4 we have L(G™)= L'(G"2), and from Corollary 2.6 we have
7,=71,, and this is a contradiction.

THEOREM 2.8. If t,, v, Z(G"), then there exists a unique z,< I(G*) such
that LY(G™)* LY(G™2) & LY(G™). Moreover t, enjoys the additional property such
that 7, S 7,, T4, and if t,€ I(G) with 7S 7,5, T,, then 7,S 75

To prove the theorem we provide the following lemma. R™ denotes the
n-dimensional Euclidean space, and Z denotes the discrete group of all rational
integers.

LEMMA 29. Let H=R?XK,, H,=R*XK, and H=H,XH,/K be LCA
groups, where p and q are non-negative integers, K, and K, are compact groups,
and K is a closed subgroup of H,xX H,. B, denotes the ring of all the bounded
Borel sets of H, and f denotes the natural homomorphism of H,X H, onto H.

(i) If ¢ denotes the projection of H X H, onto R? X R?, then ¢(K) is a closed .

subgroup of RP?X R, and hence there exists a basis {uy, -+, Upy, ** , Uny, *** , Upsg)
ny n2

of the vector space R?XR?® over R such that ¢(K)= 2 Ru;+ 3 Zu;.

=1

j=n1+1

+
(i) Put V={xesH,xXH,: go(x)zLZ:aiui, 0=a; <1 t=1,2, - ,n,), la;| <7
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G=ny+1, -, p+q)}, for each positive number r. If E is an element of B,, and
if v and v’ are positive numbers such that f(V)2E, (V@) 2 E, then

FUEYNV®=fYE)YNVT.

(iii) For each E < B,, choose a positive number r such that (V)2 E, and

put
m*(E)=m(f(E)NVT").

Then m* is well defined by (ii), and m* is a non-negative finite translation
invariant measure on B,.

(iv) We can extend m* to a Borel measure m* of H in a unique way, and
m* is the Haar measure of H.

PROOF. (i) Since the latter of (i) is well known, we only prove that ¢(K)
is closed. Suppose x is an element of p(K)—¢(K). We can choose a sequence
{x:}, of elements in K such that lim ¢(x;)==x. Let ¢ be the projection of

H,XH, onto K;xK,. Then we have either {¢(x;): i=1,2,---} is a finite set,
or {¢(x;): i=1,2,---} has accumulating points in K,XK,. In either cases
{x;} = {p(x)+¢(x;)} has an accumulating point z in H,XH,, and since K is
closed, z belongs to K. Thus we have x=¢(2) € ¢(K). This is a contradiction
and hence we have ¢(K)=¢(K).

(i) Suppose ' =r and x is an element of f"(E)N\V“"”. Then f(x) belongs
to E, and since f(V™)2 E there exists an element y of V¢ such that f(x)
=f(y). We have x—y < K and so ¢(x) and ¢(y) differ only on u,, -, Uy,
components, therefore x = V°. This shows that f (E)N V™ =Y E)NV®.

(iii) That m* is a non-negative finite measure is clear, and we only prove
that m* is translation invariant. Let E < B,, and let ; be a positive number
such that f(V?™) 2 E, E+%, where ¥ € H. If we choose an element x in f~'(%),
we have (f"(E)+x)NVP=f"YE+X)NV™, and hence

m*(E)=m(f " E)NV)=m{(fE)+x)NV?)
=m(fE+B) N\V)=m*E+7).

(iv) Since m* is a finite non-negative translation invariant measure on
B,, we can extend m* uniquely to a o-finite translation invariant measure m*
on S(B,), the o-ring generated by B,. Since H is o-compact, S(B,) is the class
of all the Borel sets in H, and hence m* is a Borel measure on H.

To prove that 7i* is the Haar measure of H, we have only to prove that m*

is regular in the sense:
(a) For every open set U in H, we have

m*(U) =sup {m*(F): F is compact and FE U},
(b) For each Borel set A in H, we have
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M*(A) = inf {@*(U): U is open and U2 A}.

Suppose first that E is a bounded Borel set in H, r is a positive number such
that f(V®)2 E, and ¢>0. There exists a compact subset F of f~(E)nV®™
such that

m(fHEYNV?)=m(F)+e.

Then f(F) is a compact subset of H and #*(f(F))+e=m*(E). Since H is
o-compact, this proves (a) for every open set in H. Next choose a bounded
open set W which contains E, and by what we have proved in (a) there exists
a compact set F, S W—E such that m*(F,)+e=m*(W—E)=m*W)—m*E),
and so we have m*(E)+4-¢e=m*(W—F),), and again this proves (b) for every
Borel set £ in H.

PROOF OF THEOREM 2.8. Let H; be an open subgroup of G*¢ (i=1, 2) such
that

H, = R?XK,, H,= R*XK,,

where K, and K, are compact groups. We identify H, and H, with R?Xx K,
and R*X K,, respectively. Let f be a continuous homomorphism of H,x H,
into G°,

f; HXH,>(x,y)—> x+yeG.

We can introduce in H= H,+H,= f(H,X H,) a locally compact group topology
74 in H such that f becomes an open continuous map of H,X H, onto H®'s,
This topology 75 in H can be extended uniquely to a locally compact group
topology 7, in G such that H is open in G™® and 73|y =r7}i. We shall show
that if 2 LY(G™), p e LY(G™), then A*p = L'(G™) and this will complete the
proof.

First suppose that A is concentrated in H, and ¢ is concentrated in H,.
Then A%y is concentrated in H. Since 73 < 7, 7, and by Proposition 2.1 we
have LY(G)* LY(G™®) & M(G™®). Thus we have only to show that A%y is abso-
Iutely continuous with respect to the Haar measure of G*3. We remark here
that the Haar measure of H7's is obtained by restricting the Haar measure
of G® to H. The same relation also holds between G** and H; (i=1, 2). We
apply the preceding lemma for the present H,, H, and the closed subgroup
K={(x,y) € HiXH,: x+y=0} of H,XH, and introduce the Haar measure 7*
on HixH,/ K=~ H"s. We extend m* to the Haar measure of G and we also
represent it by m*.

To prove that A*p is absolutely continuous with respect to m*, suppose
first that £ is a bounded Borel set in H®'s with m*(E)=0. We can suppose
without loss of generality that A=0 and ¢=0. For each ¢>0, there exist a
compact set C; in H; (i=1, 2), 2’ € L"(G%), ¢’ € L'(G™®), and d >0, such that
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dmylc, =4 =0,
dmz;C’zg#,zO’
2% p—2* il <e,

where m; denotes the Haar measure of H; (i=1,2), and dm,|., (i=1,2)
denotes the restriction of dm; to C;. Choose a positive number » such that
F(V®)2E, and a finite number of elements x,, X, -, x, € H;XH, such that

&_jl( VP+x)2C,xC, Then

Axu(E)YS Vs p/(E)+¢
= (dmy | ¢)*(dm, | ¢o)(E)+-¢
= d*(m, | ) X (M| co)(Exy)+e
=d*m,Xm)(fHE)NCXCp)+e

< ; (M X m)(fHE) A (VO+x)+e
= d* 3 (X m)(fE—=FE) AV )+e

< d* 3 mHE—f(x)+e

I

€,

where we put E,, = {(x,y) € G*xXG™®: x+y< E}. Since ¢>0 was arbitrary,
we have Axu(E)=0. If m*(E)=0 for a Borel set in G73, then £ is a union
of a subset of G**—H and a countably many bounded Borel sets in H®'s, and
so Axpu(E)=0. ,

Next let us consider the general case. Since A and g are regular, they
are concentrated in at most countably many cosets of H, and H,, respectively.
Thus we may assume without loss of generality that A2 is concentrated in
H,+x, and g is concentrated in H,+y, where x= G, and y= G™. Let 1—x
and p—y be the translations of 2 and ¢ by x and y respectively, that is
A—x)(E—x)=A(E), etc. Then we have
24 2k p(E) = ((A—x)* (u—y)NE—x—Y)
and if m*(E)=0, the right side of is 0 by the above result, and hence
Ax p e LY(G™). The uniqueness of 7, follows from Corollary 2.7.

Now let us prove the remainder of the assertions of the theorem and
complete the proof.

Suppose that 7,=3(G") and 7,Z 7, 7,. Then we have M(G®) D LYG™),
L'(G™), and hence M(G™)D LYG™)*xL(G™2). Let A be the closed subspace
generated by {Axp: A€ LY(G™), p= LY(G™®)}. N is a translation invariant
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subspace and hence an ideal of L}(G®®). It is easy to see that ZD)={rel',:
(=0, veN}=¢, and from the general Tauberian theorem we have A=
LY(G™), and so LY(G"®)C M(G®). From Theorem 2.5 we get 7,7, and this
completes the proof of Theorem 2.8.

DEFINITION 2.5. Let G° be an LCA group. By Theorem 2.8 X LYG%)

o/ €T(GT)

is a subalgebra and hence >} )L’(G") is a closed subalgebra of M(G®), which

! €L (GT
we denote by L*(G%). L*(G®) contains the identity of M(G®), and hence L*(G%)
properly contains L(G®) if G° is not discrete.

§3. The maximal ideal space of L*(G").

If ¢ is an element of L*(G"), we denote by Z the Gelfand transform of .

DEFINITION 3.1. Let G° be an LCA group. We introduce a partial order
= in 3(G®) such that, if z,, 7, € I(G*) then 7,=17, if and only if z,C 7,. (G
is a directed set under this binary relation =, that is for each pair 7,, 7,€3(GY),
there exists 7;€3I(G) such that zy=17,,7, (cf. Theorem 2.8). A directed
subset S of I(G%) is a non-empty subset of F(G") such that; 1) S is itself a
directed set under = ; 2) If S 7,, 3(G*)> 7, and 7, =7,, then we have 7, S.

PROPOSITION 3.1. Let G* be an LCA group and let h be a non-zero complex
homomorphism of L*(G*). Then

1) S={"I(G"): h| 1@, # 0} is a directed subset of I(G%).

2) If t, v, S and 7,= 7, with

K= ro(-0di@) Qe LG,

W= {  rel—0dpx) (g LG,

where 1o, € 'y, ey €1y, then @(1e) =7,
3) Conversely if Sis a directed subset of I(G*), and if (re)ees 1S an element
of TI I'. such that

'8

(/7%(7’1‘1) - 7’-,-2 (le 7-2 S S and Tl ; z.2) ’
then (re)res induces a non-zero complex homomorphism h’/ of L¥(G?) such that
j re(—x)dA(x): A€ LXG), ' S,
3.1 h(A)= 6"
0 : A€ LY(G™), '« S.
PROOF. 1) Since h =0, it is clear that S is not empty. If S= 7,, 7, then
there exist 1« LY(G™) and p < L'(G™2) such that A(4)+#0, h(y) #0, and hence

h(2* ) #0. By Theorem 2.8 there exists 7, = Z(G") such that z,=17,, 7, and
Axp e LY(G™), and so 7, S.
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If 7,8, 7,=3(G%) and 7,=17,, then there exist »,, € [',, and 2, & LY(G™)
such that
mA)=[ ro(—0dix) @eL(G™),
G

hA) = ra(—2dax+0.
G'1
Choose u, = L'(G™%) such that
J (2B (=2dp(x) 0.

Then we have

3-2) h(ADA(gey) = h(A, % p1)

= el 0dan ()
={ ral=0dd@ | ra(—ndm@
G*1 Gt

=f ¢ Fe(—2)d2,(x) f P Te)(— ) dpy(x)
G'1 ¢33
#0.

Therefore we have A(y;,) #0, and hence 7, belongs to S.
2 If 7,7, S and 7, =17, then we have from

W= [ o8r)—0dp) (s LG

and hence we have ¢%i(r.,) =ru,.
3) Since L¥GH= X )L‘(G”), it is obvious from Corollary 2.7 that there

o/ eX(GT

exists a linear functional 4’ such that holds. We shall show that A’ is
a complex homomorphism of L*(G%).

Let 7,,7,€%(G"), and let 1€ LY(G™*) and p< LY(G™). We have only to
prove that A/(A% )= h’/(A)h’(¢r). By Theorem 2.8 there exists 7, € I(G") such
that Axp e LY(G™) and t,=1,, 7,. If 7,& S, then 7, does not belong to S, and
we have

(3.3) B(A% ) = h'(Dh/ () =0.

If 7,& S, we can prove the same relation as If ;=S and 7, S, then
by Theorem 2.8 7, belongs to S, and

WQx )= [ re(—x)dx p(x)

= j T2 dA) j e ()
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= re(—0d®| _rel—2)dpx)
Gct1 G2
= h'(Dh' (),

and this completes the proof.
DEFINITION 3.2. If S is a directed subset of 3(G"), then

FS = {(rr')r’es = :’[_EISFt, : QD%(?’rl) = 7’1-2, lf (31 Z T2 : T1s Ts = S}
T

forms a group with respect to the pointwise addition. By Proposition 3.1,

F*:S k{c I's constitutes the maximal ideal space of L*(G?).
Cg(GT)

If Sis a directed subset of I(G?) and 7, S, we denote by ¢, the natural
homomorphism of I's into I',,, given by

34 3 ((redees) =7 ((redves €15).

PROPOSITION 3.2. For each I's, XI5, 2 (*e)resy, (Fi)wesy), we define

(35) (r'r’)r'ES 1+ (T '{")r'ESz - (Tr' + v ;')r’ESH\Sz .

Then I'* becomes a semi-group with unit.

PROOF. Since intersection of two directed subsets of %(G*) is again a
directed subset of I(G%), it is obvious that I'* forms a semi-group with unit
(0.)rexn, where 0. is the unit of ..

PROPOSITION 3.3. Suppose that '*21's>r,. For each t,€S, a neigh-
bourhood U of ¢S,(ry) in I'¢, and a finite subset {r,, Ty =, Tm} of T(G")—S, and
a compact subset K; of I'; (i=1,2,---,m), put

(3.6) U%n.rl).(xg.rg).---. (KmeTtm)

S’ D

= \U {rels: ¢$(nel, and if S'>7; then ¢f(N&K; (=1,--,m}.
0

Then the class of all the sets of the form (3.6) constitutes a basis of neigh-
bourhoods of r, with respect to the Gelfand topology of I'*.
PrROOF. The Gelfand topology of I'* is the weakest one such that every

Gelfand transform ﬁ(peL*(G’)) is continuous on I'*. Since each elemeI}t

2 (g € L*(G")) is a uniform limit of some sequence of elements in {f:
ie X )L‘(Gf')}, it can be said that the Gelfand topology of I'* is the

o/ €T(GT
weakest one such that each A2 (ze LY(G™): 7/ € 3(GY)) is continuous on I'*.
Suppose 74 € T(G), p = L(G™), and W is a neighbourhood of f(ry) in C,
where W0 if f(r)#0. If roa& S, p#)=0 for every rels. If tx€S,
then ﬁ(r):ﬁ(gofﬁ(r)), where 2 is the Fourier transform of g into I',,. Thus
we have



Closed subalgebras 291

G TsIVL {rels: gin e pr Wz if Ar)=0
@7 A= L
U {rels: gh(ep(W)}: if i) +0.

S'Sry
Suppose T1:Te ", Tm € EE:(Gr)_sx Tm+1s Tm-kz: L Ta € S (m < n) and JURS
LY(G™), -, o€ LG, and let W; be an open neighbourhood of A,(ro)
(=1,2,:--,n). Let t,&3(G") be the least upper bound of {z,4,, -, 7,} (cf.
Theorem 2.8). Since ¢ is continuous and ¢Xo ¢S, = ¢f;,, U= (n\ e a7 (W)
. . f=m+1
is a neighbourhood of ¢$(r,), and we have from (3.7)

"~
X~

G Ua=\ trels: oSN U} S AW N - N AW

Put (27" (W))=K; (j=1,2,---,m), and since W; is an open neighbourhood of
00GU=L12,.-,m), K; is a compact subset of I'-,. By (3.7) we have

3.9 ﬁ;l(Wj):(S/g I's)\V [S/\_J {rels: o)« K;}1] (=12, ,m).
Tj -_91']'
If we put U&Evmo-»&Emtmw ag (3.6), we get from and (3.9)
) ﬁ,;l(Wj)'

Conversely, let 7, S, 74, -+, T € T(G")—S, and let U be a neighbourhood
of ¢%,(r,), and suppose Kj; is a compact subset of F,j (G=12,.--,m). Then
we can choose p; = LY(G™) (i=0,1,---,m) and a neighbourhood V of ﬁo(r(,) eC
such that

D:

U (BHtDre s Emetm) C
70 =

1

AlgSr) 0,

U2 V), V30,

ANz eek), (=12-,m.
Then we get

U e 2L\ AT AT,

where d={a C: |a| <1}, and hence the set of the form (3.6) is a neigh-

bourhood of 7,.
What we have proved above and the fact that

(£~ W) pe LNG™), v/ e UG, W > i(ry)}

forms a sub-basis of neighbourhoods of », show that the class of the set of
the form (3.6) constitutes a basis of neighbourhoods of », in ['*.

REMARK. If 7, is an element of Z(G%), then S,,={r'€Z(G"): v/ =7,} is
a directed subset of I(G*?). It is easy to see from Proposition 3.3 that @3 is
a homeomorphic isomorphism from [I’s., (as a subspace of I'*) onto [ .,
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PROPOSITION 3.4. Suppose S is a directed subset of ZT(G®) and p is an
element of M(G?). Then there exists a unique decomposition p= p,+ p,, where

wme W and p, 1 rgMTC_?’_'i

PROOF. We can assume without loss of generality that p¢=0. Put
X={p e ES—M(G—”S ¢ 1 (p—p)}. It is clear that Y is an inductive set with
respect tof the usual partial order in M(G®), and so there exists a maximal

element in 3. Let g, be a maximal element in %, and put p,= p—pu,.

If there exists 7, = S such that g, is not orthogonal to M(G), then by
Proposition 2.2, there is a decomposition

pe=patps, O0Fpe MG™), mlpy.
Then p,+pied, and p,+p= gy, and this contradicts the maximality of g,
and thus pg= pu,+pu, is the desired decomposition.
THEOREM 3.5. Each complex homomorphism of L*(G*) can be extended to

a complex homomorphism of M(G?), and so I'* is contained in the maximal
ideal space of M(G").

PROOF. Let S be a directed subset of Z(G®), and suppose p< M(G).
Then by Proposition 3.4, we have a decomposition

U=t s, JRS E MG™), sl X M(GT).
NEYH4 So¢
¢, has an expres§ion ,u1=1(im ti, where p,, e M(G™), S37; (1=1,2, ).
Define a function 2 by

B1)  A=lim| oL-Ddus® (els, psMGY).

It is clear that the above definition is well posed and A is equal to the

Gelfand transform of g if x is an element of L*(G%). For each fixed reI'*,
the mapping

M(G) > p— ) e C

is a complex homomorphism, and hence I'* is contained in the maximal ideal
space of M(G").

§4. Homomorphisms of L*(G") into M(G,).

Let A be a homomorphism of L*(G%) into M(G,). For each rel’,, we

have either h@)(r) =0 for every p e L*G"), or there exists a unique a(r)eI'*
such that

@1 K@) =fa®)  (ze L*G?)).
We put
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(4.2) Y={rel,: *uec LXG"), h)@) +0}.
For each 7/ € I(G%), we define

(4.3) Yo= N {(reY: a®)els}

o3(a(r): reY,.
re&Y..

ar’(r) =

THEOREM 4.1. (i) Let h be a homomorphism of L*(G%) into M(G,), and let
{(Y, @), (Yo, an); v/ € 2(G7)} be defined by (A1), (4.2) and [(4.3). Then

1) Y. is an element of the coset ring of I';, and a. is a piecewise affine
map of Y. into I',.

2) If we express by h.. a homomorphism of LYG®) into M(G,) determined by
(Yo, a), then {|ho|: /€Z(GY)} is bounded, where ||h.| denotes #sgg;tlllh,/(p)ll/llyll,

(ii) Conversely, let Y be a subset of I'y and let a be a map of Y into I'*.
We define Y., a. (z/ € XG?)) by [43). Suppose that {(Yu, ar): v/ € (G}
satisfies 1), 2) of (i). Then for each p< L*G), there exists an element h'(y)
of M(G,) such that

o= Halds TEY ey
0 T regeY
and h’ is a homomorphism of L*(G*) into M(G,).

PrROOF. (i) For each 7/ € Z(G%), let h, be the restriction of A to L'(G™).
By Theorem 1, there exists an element Y. of the coset ring of ', and a
piecewise affine map a’ of Y% into I'.. such that

4.4) KGO = () =

A(P): re Y
[ e T (e LG™).

re&Yhn

On the other hand, we have from the definition of Y. and a.,

N Aatr) = ploS(a®): re Ve
45) Koo = { ! “ pee Ly (L,
R

From [(4.4) and [45), we have Y. =Y. and a} = a,, and 1) follows from this,
and since 2) is trivial, this completes the proof of (i).
(ii) For each gy e L*GY), put
fla(): reY

ar)= rel,).
0 crgY
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Suppose 7, is an element of T(G®), and g e LY(G™). Then by the definition
of (Y;, ar,), we have
{ Hag(n): rE€Y,,

ay(r)=
crgY,,,

and by the condition 1) of (i), @, € B(I',). Therefore we have a, < B(I";) for
each pe= 3 LYG™).

o/ €T (GY)

If pe L*(G), choose a sequence of elements y; € > LY G) (i=1,2,--)

! €T(GY)
such that lim p;= g, and since a, is the uniform limit of {a,: i=1,2,-},
1—00

we have a, < B(I'),).
Thus for each p e L*(G), there exists a unique h'(p) € M(G,) such that

a#:h@z), and it is easy to see that
R i L¥G) > pr— (1) € M(G,)

is the desired homomorphism of L*(G%) into M(G,) and this completes the
proof of the theorem.

REMARKS. If G7 is not discrete, it is easy to see that L*(G®) is symmetric,
and hence L*(G®) is contained properly in M(G®). Thus L*(G%) contains LYG%)
properly, and is contained in M(G*) properly, if G° is not discrete.

It is natural to think about how large the set Z(G°) is. For this we can
refer to [5].

Department of Mathematics,
Hokkaido University
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