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INTRODUCTION

Recent authors dealing with the classification of pseudogroups have
treated the case where the group of first order terms is irreducible. Here
the simplest of the reducible cases is treated; a classification is given of all
pseudogroups whose first order terms generate the entire one dimensional

foliation group (g d‘j;)

These pseudogroups are classified modulo equivalence by coordinate
changes in R?”; there are then 19 major classes of such pseudogroups, of
which 2 are families of pseudogroups parameterized by a real constant, and
3 are families parameterized by a positive integral constant.

The classification proceeds in two steps. Step I is a classification of
certain graded Lie algebras; such algebras appear in most pseudogroup
theories. Step II is a solution of the equivalence problem and the actual
derivation of the pseudogroups; here use is made of a theory due to R.C.
Gunning at Princeton of pseudogroups defined by differential equations with
constant coefficients.

Since Gunning has not published a detailed description of his theory, the
first chapter of this paper contains a summary of his results. This theory
is more restrictive than many recent treatments, but has the advantage of
keeping formulas attractively explicit. Gunning considers the terms of order
=< n in the power series expansions of C> functions at some fixed point x;
these form the elements of a group 5;%. Those terms in ég coming from
the expansion of the functions of a pseudogroup I" form a subgroup GZ? of
GNQ. If the differential equations defining I” have constant coefficients, this
subgroup G” does not vary over the manifold, and so can be used to define
I'. Hence I' can be analyzed indirectly using Lie group methods on G".

For simplicity, Gunning omits terms of order 0; thus all pseudogroups
are transitive. If local coordinates are chosen, the group G™ can be given
very explicitly. In particular, G' is just GL(N, R), and G' is precisely the
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group of all first order terms( ) The classification problem can then

be stated as follows: given the ﬁrst order terms G*, find all possible pseudo-
groups {G"} built over this first order group.

If a new coordinate system is chosen given by a coordinate transforma-
tion ¢, a new pseudogroup ¢ 'ol'o¢ is formed; this pseudogroup is naturally
considered equivalent to I, and the above classification problem is stated
modulo this equivalence relation.

We will constantly use the results of the classification when G'=GL(N, R)
(see Guillemin and Sternberg, [3]); these results are given at the end of
chapter I. All of the results in this paper hold in two cases: one where C*
real manifolds are involved, and all algebras and groups are real, the other
where complex analytic manifolds are involved, and all algebras and groups
are complex. For convenience I shall write only of the first case and let
the reader fill in the details of the second.

The results of this paper were obtained in my thesis, written under
Gunning’s direction; I am grateful to him for help and encouragement.

CHAPTER I: THE THEORETICAL FRAMEWORK
A. Locally-Flat Continuous Pseudogroups
1. Gr

Suppose f=(f*, .-, f¥) is a C> map from R¥ to RY. If x= R¥, we can
consider

<%
0x;
Notice that &% .;. belongs to the space T*N, R) of tensors fully symmetric
in the lower indices. If f is a local diffeomorphism, the matrix &% is non-
singular.

Let G™(N, R) be the set of all elements (&%, ---, &% ;> with &', non-
singular, &%;.;, € T*(N, R). For each local diffeomorphlsm fi: R¥ - R¥ and
x & RY there is an associated element 7,(f) < G" described above. It is pos-
sible to make G" into a (Lie) group so that 7,(fo g) = 9,u(f)o n.(g). We

wish to describe this group operation explicitly. Let 3=¢oy; clearly we
expect 9% .; to be a sum of terms of the form

anl

62fi

’

> <$1J’ T En jn> .

.
b

-
I 0x;, - 0x;,,

k
2 E ky- kqv J1 Jalv fa1+1 Jaytay Y qfa1+--~+aq_1"'jn'
k- kq

However this expression is not necessarily symmetric in j,, -+, j,; We intro-
duce an operator S which, roughly speaking, is a “ minimal symmetrization >
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operator. For example,
i x Ky i k P2
Szgklkz” 11’112’) 21’3" ¢ k1k2¥ xJ‘1J'z” 2:’3
i k k i 2 X
+ 2 &%k Mi15gV T 2 € krkaY g Yy -

The reader can easily write down the general definition of &S.
THEOREM 1. If 3=~¢oy,

i — A k K
19 Jyvin 2 2 S 2 E kl"'kqu 1.71"'-7111 R 4 qia,1+'--"'jn .
¢ 1=a1S--Sag kl"‘kq

01+"‘+uq=n
In particular
. . -
197'j — % Elkv p
; —_ i,k i Kk k
’91111'2 = Zk) §opy je T EZ‘S kikaY 7Y 2y
1

) — T k 1 k k
9 Jijeds — % é 24 Jljzjs+8k§ E k1ka¥ 111” 2]2.7'3
1%2

z k1 ka4 k3
20 Eakangy V25,058
k1kakg

We shall in the main deal with Lie algebras rather than Lie groups.
The Lie algebra £" of G" can be identified with all (A%, -, A% ;> A%,
e T*(N, R), in such a way that if &% ., (2 is a path in G* with £(0) = identity,

then 5*(—3%”) = -gf—fijr..jk(t)]t:o = A%...;,- Moreover, we have
THEOREM 2. If C=[A, B],

+ 3 ’g S{A 51 B 5 pgn—Blasogy Ao}
and in particular
CYy = >3 {A%B*;— B A%}
Cliyp = ZAA%B 5,— B A%;,5,} + S S { A", B*;,— Bk A%}, }
Clitnis= ZAA B 1555,— B'A 15015}
+SZA{AY B 55— B 5,6 A 45}
+S B A{AY 5B 5, — B A%} -
Finally, we have a series of obvious maps ¢ from G to 5"'1,
0 By ey Bl S = (Y e, B S

Of course o(9™,(f)=%""",(f). The ¢ maps induce corresponding maps be-
tween Lie algebras, also denoted o.
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2. Definition and Fundamental Properties of Pseudogroups

A differential equation with no terms of order 0 has the form

{Fk(ﬁs/fi 0*¢* "¢ ):0} l<h<m:

ox; ’ 0x;,0x;, ox;, - 0x;,

we then define a subset G", of G» by
an: {<$ij’ Sty Eijl“'jn>le($ij’ Tty Eijlen)].z‘: 0} .

Clearly ¢ solves the differential equation at x& 7,(¢) € G”,.

If the differential equation has constant coefficients, G, does not depend
on x and we can write simply G". If G™ is a group, the solutions of the
differential equation form a pseudogroup since 7,(¢ o F)= N5z ()0 K(H).
These remarks lead to the following definition:

DEFINITION. Let I' be a C> pseudogroup on a manifold M. We call I’
a continuous locally-flat pseudogroup if at each point of M it is possible to
choose a local coordinate neighborhood (U, x,, ---, xy) and connected Lie sub-
groups G" of 5"(N, R), so that

Q) fel'|Uen(f)e G for all xe U, and all n;

(2) every & G" can be realized by 7,(f) for some xe U, fel'|U;

(3) the natural maps ¢: G®*—G""! are continuous.

The natural map in (3) is defined since (2) clearly implies that the maps
o: G*—=G™ 1 take G™ to G*!. The condition that G™ be connected is chosen
purely for convenience; a weaker assumption could certainly be made. The
purpose of (3) is to insure that the G™s are given a consistent topology.

Since we shall discuss only pseudogroups of the above type in the
remainder of this paper, the term ‘ pseudogroup ” will henceforth be used
for “locally-flat continuous pseudogroup”. We will only deal with the local
situation and so always think of M as an open neighborhood of the origin
in R¥,

It should be noted that (1) automatically guarantees that {f|7.(f) e G*
for all x= U and all n} is a pseudogroup; condition (2) puts very severe
limitations on G™.

Since by this definition G® determines the pseudogroup /', we now shift
our attention to G"; since G" is connected, it is sufficient to study the Lie
algebra g™ of G™

The above conditions limit the possibilities for g"; we give below certain
necessary conditions that g" yield a pseudogroup. In the particular cases
we discuss, it will be a consequence of the classification theorem that these
necessary conditions are also sufficient.

LEMMA 1. If {g™} gives a pseudogroup, the map o: g"—g" ! is onto.
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PROOF. This is an obvious consequence of the definition above.

DEFINITION. Let 1<k =<N. Define zx: T"(N, R)—T" YN, R) by t1(&)%j,-jr-1
= &% irs- Similarly define z,: 8" —g" ! by {ti(A), -+ TalA) j i) = A%,
oy Aljpdney)-

DEFINITION. Let g™ * be a linear subspace of §”~*. Then A"g""?, a linear
subspace of g”, is the set of all A in g" such that

1) oA)eg"?

@) i(A)esg™?! forall ISk N.

LEMMA 2. Let G™ define a pseudogroup, and suppose &€ G". Then (&)
oa(E"Y) e grt. (Composition is in the sense of the group operation in G* 1)

PrROOF. Since £ G" we can find fe ' such that 5,(f)=§&, 7.(f)eCG”
for all xeU. Thus ¢@) =[Nt f)Io[n(f)I € G" for |t|<e. But ¢(0) is

. . d n d — gn-
the identity, so Wrgb(t)lt:oeg , SO "(‘af‘ g[)(t)lt:o) g™l
But
_(9r" A e 0), e
Toweol )= (GOt 0 52 (0 100 0), )
and so

. _( ot 9 :
dt 77(0~--L~--0)(f)lt=0‘—( axkan ’ axkaleaxj2 ’ ) ’
the rest is obvious by inspection.
LEMMA 3. Let {g"} define a pseudogroup and A g™ Then t,(A)esg™ .

PrOOF. If A=g™ we can find &) in G7, %?:A. Then ¢@) = 7,(E(®)

oglé@®] *=g™? for all &. Hence since g" ! is a linear subspace, —dqt—gb(t)lho
< g™ ' This is

(-8 €D im0} 0 SO+ {2lEOD} 0 0ED) ™ |ema

Since ¢(£(0))~! = the identity and 7,(£(0))=0 the lemma is clear.

LEMMA 4. If {g™} defines a pseudogroup, g" < A"g™ ™.

PROOF. A consequence of the above lemmas.

THEOREM 3. If g*, g% ---, g™ --- yields a pseudogroup,

Q) o:g"—g"? is onto

2 grsaArgm.

Let G* be a connected Lie subgroup of GL(N, R); we want to find all
pseudogroups with G! as the group of first order terms. This suggests:

CLASSIFICATION PROBLEM. Given g! a Lie subalgebra of g, R), find
all series of subalgebras g" < g™ satisfying the above conditions.
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3. The Kernel Sequence

Since g"—g" ! is onto, we have an exact sequence
0 kn gn gn—l 0
where k"S T™ N, R). k™ is called the n'* kernel of the pseudogroup; the
sequence of k™s is called the kernel sequence. By definition, k'=g".

In solving the above classification problem, we propose first to classify
all possible kernel sequences and then to classify all extensions 0— k" —?
__)gn—l_>0.

LEMMA 5. A*k"-12 k™,

Proor. If <0, --,0, A%, ;> k"< g" then 7,0, -,0, A% ; >=<0, -,
Alyjpg,-> € 8™ so it belongs to k"%, hence the result.

Consider A=<0, ---, 0, A%,.;,0,--,0> g B=<0, -+, 0, Bijl...,-l, 0,--,0>
egn
LEMMA 6. [A, BYY,.;, is non-zero only if r=k+I—1.

ProOOF. Examine the explicit form of [ A4, B] given previously and notice
that [A, B]fjl...jn involves only terms with m indices multiplied by terms with
n—m-+1 indices.

LEMMA 7. [k* B™] C k™1,

PROOF. A corollary of lemma 6.

THEOREM 4. The kernel sequence g'=Fk*, k% ---, k", --- must satisfy

1) [k" E™]C k™2

2) kP A™E™
Conversely, if this is true and we let g™ be the trivial extension of g™ * via k",
the g™ satisfy the requirements of theorem 3.

Proor. If g has the form described in the last sentence, g"=d{k!, k2, ---,
k™>. It suffices if this is a subalgebra of g" a result holding because of
Lemma 7. Hence

CLASSIFICATION PROBLEM. Find all sequences k"< T™N, R), such that

L k=g

(2) [R, k] c k™t

@) krs A™E™.

LEMMA 8. If Akl and B k", then

PROOF. A calculation, from the results obtained previously.

We denote the above by [dp(A)Bl%,.;,. It is clearly the Lie algebra
representation corresponding to the representation of GL(N, R) on T™(N, R)
given by
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CoE)PT i = 2 E kP s 1msn (G, o (E71)°my

Hence:

LEMMA 9. k™ must be an invariant subspace of T™N, R) under the stan-
dard representation of G'.

(For more on this representation, see chapter 4 of Weyl [9] or chapter
5 of Boerner [2])

Interestingly enough, the kernel sequences appear in almost all approaches
to pseudogroup theory. See, for example, Guillemin and Sternberg [3], Koba-
yashi and Nagano [7].

4. Further Results on g” and k"

LEmMmA 10. If Aeg™, Be g™, then t,[A, B]l="[7(A), o(B)]+[a(A4),
T(B) 1+ Z BT (A)— Aie (D)}

ProoF. Calculate from previous formulas.

LEMMA 11. Let B k2, ---, k" satisfy

Q) [k, PSSk whenever r<n, s<n, r+s—1=n

(2) k'S AR whenever r < n.

Then Rk, k2, -.-, k", A"F1E™, A™F2A™EIRT ... satisfies all requirements for a sequence
of kernels.

PROOF. Define k"= A"A""* ... A™k™ for r>n. Since k* S Ak*~* for all s,
we need only prove that if A< k™ Beck’, then [4, B]e k™71 We prove
this by double induction, the principal induction being on m. If m=1 and
r=mn, then m4+r—1=<n and the result is true by assumption. Retaining the
assumption m =1, we apply a sub-induction to . If »>#n we need only prove
t.[A, Bl k™' by definition of 2. But we can apply lemma 10 since
k™ < g™ for a=0; thus 7,[ A4, B]=[7(A), B]+[A, rk(B)]+27{B’krrA~—A’kz-TB}.

But Aek! so 7,(A)=0; B k™ so by definition 7,(B) € k"~'; then by sub-
induction [A, z,(B)]€ k"1, finally X A%.7,(B) is a linear combination of ele-
ments of £”°', so in k""'. This completes the sub-induction step.

Assume the lemma for m <%, and let m=*%k+1 (m>1). We again use a
sub-induction on ». If »r=1, we are done by the above, reversing the roles
of A and B. If »r>1, and m+r—1=<n, then m=<n, r=n, so [A4, B] k™1
by assumption. If m-+r—1>n, we must prove 7z, 4, B] in £™7"2 or [z,A4, B]
+[A, z:B]+ X {B¥%t,A— A%z, B} in k™72 Since r>1, m>1, B';=A%=0,
and this last term vanishes; [z;4, B] € k™" "% by induction, [A, r,B] e k™" *
by sub-induction.

The above lemma provides a way of constructing a kernel sequence when
part of one is at hand. It is a theorem of Kuranishi (the prolongation theo-
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rem) that every kernel sequence eventually becomes A™*'k™, A™P2A™E", etc.
We do not need that theorem here (indeed our results will constitute a veri-
fication of the theorem in a particular case). However, we shall now show
how in the presence of such a kernel sequence the group G" determines the
pseudogroup (so G™*!, etc., are irrelevant).

LEMMA 12. If g™ is an algebra, so is A"*'g".

PrROOF. Since [A, B]Y;,.;, depends only on terms of degree <&k, if A and
B are in A™'g™ then o[ A, Bl g™ It suffices then if 7,[A, B]=g” for fixed
k. But this is clear from lemma 10.

THEOREM 5. Let B, ---, k", A™*R", ... be a kernel sequence, and let g*, ---,
g™ be a sequence of subalgebras which fit this kernel sequence and satisfy
gk< Akg®-t. Then if g, ---, g" can be extended at all to give a complete series
of algebras, the extension must be A™'g", A™?2A g™ .... However, for this to
work we must have

o Ani-lgn > gn

g: An-g-ZAn+1gn > An+1gn

all onto. (That this is not necessarily so will become apparent later; this con-
dition will lead to integrability conditions for certain differential equations.)
PrROOF. 0—k"—g"—g" !0 is exact. Then consider

Arm—lgn
0 —> Artipr = T \‘g"——>0

gn-H

{The vertical map is given by inclusion.) Since g"*'—g" is required to be
onto, A™'g"—g™ must be onto. Conversely, if this holds and if the top
sequence is exact, the 5-lemma guarantees that g"+'= A"*'g”, But the exact-
ness of the top sequence is clear; indeed if <0, ---, 0, A",-l...jn+1> e A™ig®, for
each fixed k <0, -+, 0, A%;,..;,> is in g7, s0 A%;,.,;, € k", so A% ;. . € A"k

COROLLARY. Let E*, ---, k", A™"'k", --- be a kernel sequence corresponding
to two pseudogroups G*, ---, G¥, --- and G, -, G* - and suppose G*= G, -,
G"=G". Then the two pseudogroups are identical.

PrROOF. g'=g? ---,g"=g" and the theorem then forces g™**=g"** and
S0 GM+ = G,

In this sense, for kernels of the above type finitely many g*s determine
the pseudogroup.
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5. A Well-Known Special Case

Suppose G'< O(n), the orthogonal group. Then A% eg!'=D AY;=—A7,
Hence <Aij’ Aij1j2> e Ag'> Aikj =—Aly=—Alu= Akij = Akji = —Aijk = —Aikj’
so A%;=0. As g?>< A%g!, we conclude that g?= (A%, 0>, and in general that
gn=<{A%,0,--,0>; and so G"=<(G', 0, ---, 0>. Thus the only possible pseudo-
group is

{yizzjaijxj+bi} a; €G'.

This example, included only as a curiosity, illustrates how the conditions
on g" can severely limit the possible pseudogroups.

6. The Equivalence Relation

Let M and N be manifolds, ¢: M— N a diffeomorphism, and I’ a pseudo-
group on M. Then ¢ol o¢~* (the meaning of this notation is obvious) is
clearly a pseudogroup on N.

In particular, if M and N are open neighborhoods of 0 on RY, and ¢(0)
=0, we have a method of going from one pseudogroup I” to another ¢pol 0¢p™?,
both defined in some neighborhood of the origin. Then:

DEFINITION. Let I' and I be (locally-flat continuous) pseudogroups de-
fined (in some neighborhood of the origin) by G™ and Gn respectively. We
say these pseudogroups are equivalent if a diffeomorphism ¢:U—CcY can
be found of sufficiently small neighborhoods of the origin, ¢(0)=0, so that
r'onw=(ol*o¢HlUuna.

We intend to show in chapter 3 that for the pseudogroups we classify,
the various extensions

0 k" ? gr? 0

all yield equivalent pseudogroups, so we may take the trivial extension as
an example of the pseudogroup produced by k™

7. Conclusion

The above remarks constitute in outline Gunning’s general theory. Fur-
ther developments, below, hold only if special assumptions on g! are made.

Clearly a number of questions remain unanswered; the most important
is whether the conditions listed in [Theorem 3 are sufficient. Also unanswered
is the relation of the equivalence problem for pseudogroups to the extension
problem for our algebras. In our case the question of extension of g” to
g™ via k™! is only a matter of equivalent pseudogroups.
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B. Further Developments
1. The Case E=g?

Special formulas of a more precise nature hold in case the identity matrix
E is in the Lie algebra gt

Suppose we first examine 0 —k*—g%?—g!—(0. Then there must be an
element <E, ¢) = g2, since the last map is onto. Since g2 < A2g?!, ¢ € A%k

But we can add to ¢ any element of k2, and so pick only one element in an
211
equivalence class ¢6Ak2k—. Now this ¢ determines g? completely.

LEMMA 13.
8%, ={(AY, Ay | A%y, = —Ldp(A' )¢l 5, + k)
PRrROOF. A simple calculation.
It should be emphasized that g%, need not be an element of a chain, since
A*g?, —g?, need not be onto. If ¢ =0, we have the trivial extension, which

always is part of a chain.
DEFINITION. 6%,: G*—T?*N, R) is defined by

[02¢(Si1’ eihiz)]iiﬂz = 2 giklkz(e_l)kljl(g_l)kzjz+ [p(EiJ')So]ih-fz—'soihjz .
LEMMmA 14.
0% ,(§ © 1) = 0%,(&)+p(5)0° () -

PROOF. A calculation.
THEOREM 6.

Gz;a = {(Eij; Eijljg)léij e G, 02¢(Eij: Eijljz) e k?}
is the Lie group generated by g*,; if G' is connected, so is G*,.

PrOOF. This follows immediately from the lemma above and a little
thought. Connectivity is immediate, for

Eijljz =3 {‘Pik1k25k1j15k2j2+ klixpE1;, 672} =2 Lo )P ikl 15,652,
so a path ¢(¢) joining £, to the identity in G! and a path k(f) joining k%,
to 0 in k* yield a path &%, ;,(t) joining <{&%(1), &%,;,(1)> to <E, O).
THEOREM 7. The pseudogroup defined by G*, is equivalent to the pseudo-
group defined by G?,, provided there is a local diffeomorphism ¢: U—<Y, U and

<y open meighborhoods of 0 in R¥, ¢(0)=0, such that
ot
(2) *(P)—¢p = k* for each x = U.

PrROOF. We must find ¢ so that —éa}-@ggb“)f e G, and 0%,(n.(PgP~ ") sk?
i
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7
for all x@i;f — &G and 6%(7,(g) € k?, for all x.

i
But if -gf— e G, the first part holds. Then the required result is
j

G ((PEP ™) = 0% (no(PEP™ )+ P8P N —¢ € k2 = 07 ((1:8) € k>
The left hand side is

0?6 (Dgp=1a(P) © Ny=1(2x( &) © N2(P™ N+ P(PEL NP— ¢ .
If we apply this becomes

0% (g~ 1ax( PN+ 0oy (PN (=100 )
+ 0 g1 PN OMy=1 (NI (NP~ N+ 0P 2D~ NP—¢ .
However,
0% (g=1a (™ 0 P)) = 6°(KE, 0))
= 0= 0%0a()™ N+ p(2(P~NO* (g1 (¥D)

s0 we may rewrite the left hand side as

{020 eg=1 PN — @} + (P 2D~ N{ 0% (Dy=1c (D)) — 0}
0N o1 (PN (Dg=1(2(&)) -

Now k&% is invariant under the representation dp, so also under the repre-
sentation p; since 7,(¢g¢™!) € G', the lemma is obvious.

LEMMA 15. Let g**={LA,, -+, Ap_D|A, €k, -+, A,_, € k" '}. Then there
exists ¢ € A"E™*/k™ such that

g"={lA,, -, ADIA,, -, Ao > g™ A,
= —— L Tdpadp1+H) .

PrROOF. (E,---,00 g™ so D==KE,0,---,0,¢>=g" Since gr< A"g" !,
@ A"k™'. But ¢—@ < k™ implies <E, 0, ---,0, > g™

Now suppose A =<A,,0,--,0,4,>e=g™ Then [A4, D]=K0, --,0,[4,, E]
+[A,, ¢1>. Hence [A,, E]=n—1A,=—[A,, ¢]+k", so the lemma holds in
this case.

By induction, we assume the lemma if A,—=--- =A4,=0, and prove it if
Ay= - =A,_,=0.

Indeed, then

[-.A; D:l :<O1, Tty Ok—li [Alu E__.I: T [:An’ E]+|:A1’ GD]>

- <01: Ty Ok—l: (k—]-)Ak, Tt (n_l)An+[A1r SD]> .
Hence
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(k—l)A_[Ar D] = <(k'_’1)A1’ 021 E) Olcr Tt (k_l)An—(n_l)An'_[Aly gp]> .

We can apply the induction hypothesis to this element, and conclude that

(k=myA,—[An 1=~ - 1| (=14, I+E"
or

— b—
(h=mAy= "1 LA, 1= T 1A, )R,

which implies the lemma in this case also.
DEFINITION. 6°,: G*—T?*N, R) is defined by
) =23 giklkzks(é-l)kljl(sc-l)kzjz(g-l)ksjg
-8 HZO(S)ijlkgzo(é)kaj;;"' p&)p—¢ .
LEMMA 16.
0° (& o 1) = 0° (&) + p(£)° (N +[62:(£), p(£)G* ()] -
PROOF. A calculation.
THEOREM 8.
G, ={&|& € G, 0°(&) e k2, 0°(§) e k°} .

PrROOF. This is a group, for the composition of two elements is"in it by
the lemma and the fact that %% is invariant under p and [k% R*]JS k% It is
a connected Lie group for essentially the same reason that G* is a connected
Lie group. Finally, it has the correct Lie algebra; indeed if

d d L i
LD =A, 0D =24,—[A,, ¢],

SO
1
Ay= _‘2’[141: otk

THEOREM 9. The pseudogroup defined by G*, is equivalent to the pseudo-
group defined by G®, provided there is a local diffeomorphism ¢: U —<V, U
and <Y open neighborhoods of 0 in R¥, ¢(0)=0, such that

(1) ¢ is in the pseudogroup defined by G2,

2) B (pAP)—¢ = k3, for each x & U.

PrOOF. We want 0°,(7,(¢fd™) € k2= 0*(n(f)) € k°. But

0° (PSP ™)) = O (AL SN+ p(ADSP™No—
= 080(7]f¢‘1(x)(¢))+ P g1 PN ((fP~ 1))
+[é 20(7]f¢—1(x)(¢’)), P(77f¢‘1cx>(¢))020(77x(f ()

+ o APfP=Ne—¢
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= { 630(7]f¢“1<x)(¢)) —pt+ P(’]fgb‘1<z>(¢))030(77¢'1(a:)(f )]
{0161 PN PN g=1 (NG P+ p({L S~}
+ 00 751X PNLO (D=1 N5 LDy=10a (S NO* (=P~

+L0 (D151 DN PO rg=1ey(PNO*(z(SP™N)] -
But

0=0%(72(¢ 0 ¢7) = 6° (g1 PN+ P10 PNF* (™)

+L02%(Ds=1aD)s P21 (PN (P N] -
Also

020(77x(¢ - 1)) =—p (77.75(9[’ ) 620(7]¢_1(x)(¢))

so this last part vanishes and
0% (7:(P ™) = — p(2(p™NO*(g~12(¢)) »
so the formula is
O (PSP~ = {011 PN— P}

+ 0167 1@XPNO° (g1 )
— PP S PO (g—10(P)) — 0}
+ 0 g1 PNLO% (g1 (s OMg=1ax (SN (72(P )]
FLO* (761N P 2=1XPNO(72(FP™N)]

and since everything in sight is in G2, and [k?, k®*] < k%, the theorem is clear.

2. The Classification of Pseudogroups for GL(N, R)

By a previous remark, 2» must be an invariant subspace of T, R)
under the standard representation of GL(N, R). But this standard repre-
sentation splits into two invariant subrepresentations:

DEFINITION.

A—DT™ = {5, € T D%y, = 0}

Vjpin-1 € ST 'V, R), the space of fully
symmetric tensors}.
LEMMA 17. These subspaces are irreducible invariant subspaces and
Tr=1-2(THOLTYH Nz

ProOF. A standard computation.
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Hence k™ can only be T", (1—2)T™, 2(T™, or 0. The conditions [, k*]
< k-1 give still more restrictions, and one easily computes:

THEOREM 10. The following is a complete classification of all kernel
sequences for GL(N, R):

N=1: g K K k* k

c _ 0 — 0 —_— 0 —_— 0

~ c — 0 —_ 0 — 0

N=2:
0 — 0 — 0 — 0
_

L Ty — 0 — 0 — 0
~ A-=2(T?—-A-2)(T*H—-A—-2TH—-A=2XT™)
~

T2 —> T8 — Tt —> T"

Next the equivalence problem must be solved. Here Gunning proves:

THEOREM 11. All extensions 0—k®*—g"—g®»!'—0 are equivalent to the
trivial extension.

It is then a simple matter to compute the pseudogroups; we have:

THEOREM 12. The following is a complete list of all pseudogroups for
GL(N, R), up to equivalence:

N=1: {y=ax+b
(r="td
{y=r0
N=2: {yi:Eaijxj+bi
{y,= 2%+ b;
Sicix+d

{v:=filxy, =+, Xn) det (—g{;—) = constant
{yi:fi(xll Tty xn)

CHAPTER 1I: THE KERNEL SEQUENCES
1. Preliminaries to the Classification Theorem

As a preliminary to the calculation which follows, I collect here several
useful formulas. The Lie algebra of the foliation group consists of all

matrices of the form (8 d2i> 2=Zi=N;2<j=N). The “largest” kernel
j
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sequence is just k', A%F', ---. An element of A"A™ ' ... A’k is a tensor A% .; ;
‘we write this tensor in the form

(Alll...l All-"ljl All"‘ljljg Aljl"'jn
Alyn Alvng, AYvssig, Abjrtn
‘where 1,7, -+, /., = 2.
- LEMMA 18. A™A™ ' -.. A%k*=the set of all
(e €y iy ejr"jn)
0 0 0 et i,
where each element is symmetric in all lower indices. That is, A%.; =0 if
i=2 and at least one j,=1. (We are letting A'y.qjps, =515, (i = 2), A% g,
= eijr“jn (Z = 2’ ji = 2)')
PROOF. Induction on n. If n=1, the lemma is true by the definition of k&'
if the lemma holds for n—1, we have

Ai B ((1)e (l)ej1 (l)ejljg u)ejl”'jn—l

151 T et — .

S O T 0 Wi,

Ai B ((k)e (k)ejl (k)ejljz (k)ejr"jn—l
kit fomey — X
e 0 0 0 Wt s

But A jinae =P =Pe,.5,_,; therefore the top row of the bottom
box, shifted one to the right, is the same as the top row of the top box.
Since A% .;, =0, the lemma also holds for =.

LEMMA 19.

a a e e ey
ol I )]

0 by 0 0 d%,/-
(——ae {—ae—eb*}{ae; ;,—a;,e;,—a,,e; —Se; (b*,,— e, b+ ad?; ;,}

0 0 @p®Ld D4,
Proor. Calculate.
Of course (dp(b)[d])’;,;, means that b*; and d';;, are to be treated as
tensors in RV-1,

The purpose of this chapter is to prove the following theorem:

THEOREM 13. The following is a complete list of all kernels for (g zﬁ )
i

k2 kS k"
o) 0 — 0 —_— 0
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k® R? k"
00 e
@ () 0 — 0
00 O
(0 00 ejljzjs)
—_— 0
000 O
~
(o 0 0 e,.l...,.n)
0---0 0 O
(000 a) (0-~-0 0 a)
—_
) (00 a) e 000 O 0---0 0 O
00 b -~ (000 a) (0---0 0 a)
—
(N=2) 000 » 0--0 0 b
00 ejljz 00 0 ejljzjs .0 0 ejl"‘jn
@ | ) — | ) — | )
00 AT» 000 O -0 0 0
(N>2)
(5) (O O ejljz ) (0 O 0 ejljZJS ) (0 oo 0 0 ejl"'j'n )
00 (A—9QXT? 000 A—92XTH 0--0 0 QA—=9XT™
(N>2)
00 ejljz 000 ej1j2js 0..-0 O ejl"'jn
® | ) — | ) — |
00 T* 000 T* 0. T
(N>2)
O ejl e,-ljz 0 O O ejlj2j3 0 eee O O ejl...jn
@ | ) — | ) — |
00 0 000 0 0---0 0 O
~
(0 0 ejljz ejljm) (O -0 0 ejl...jn
000 0 0.0 0 O
N
(O .. 0 ejl...,-n_l ejl...jn)
0--0 O 0
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k* k® k"
(0 0a b) (0 -0 a b)
® (Oa b) ~— 000 0 0---0 0 0
00 o~ (00(1 b) (0---0 a b)
—
(N =2) 000 c 0---0 0 c
h 0 ejl ej1j2 00 ejljz ejljzjs 0--0 ejl...jn__l ejl...jn
© | ) — | )= | )
00 AT%» 000 0 0---0 O 0
(N >2)
\(10) (O ejl ejljz ) (O O ejljz ejljzjs) (0 cee 0 ejl..._,-n_l ejl"'jn)
00 A—0QXT» 000 Qq—-2XT® 0---0 0 QA—20(T™
(N> 2)
‘(11) (O ejl ehjz) . (0 0 ejljz ehfzia)_) (0 see O ejl"'jn—l ejl...jn)
00 T® 000 TS 0---0 O T"
(N> 2)
(0 ejl ej1j2 efljzjs (O eee ejl"‘j'n‘2ej1'"jn"lejl'“jn
e e e ~— 00 0 0 0---0 0 0
.(12) ( J1 .71.7'2)
O O 0 \ (e ejl ej1j2 ejljzjs) (e e ejl...jn_zejl...jn_lejl...jn
00 O 0 0---0 0 0
(O bc d) (0 b ¢ d)
_—
000 0 0--0 0 0
/ (a b ¢ d) (a--- b ¢ d)
—
ab ¢ " 000 0 0---0 0 0
13) ( )
00 d’ ~ (Obc d) (0---b c d)
—
(N=2) 000 0.0 0 e
(a bc d) (a--- b ¢ d)
—_—>
000 e 0---0 0 e
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k2 ks k‘n
0 ejl ehfz ejljgjs) (O oo ejl...jn_zejl...jn_1611..7“)
ee e W00 0 0 0--0 0 0
14 ( J1 11:2)
00 .Q(T) \ (e ejl ehfz ejszja) (e == ejl...jﬂ_zejl...jn_lejl...jn)
(N>2) 00 O 0 0---0 0 0
(0 eh ejljz e_,ljm ) (0 oo ejl..._,n_zejl...jn_lejl...jn‘)
o (e o S0 0 a—oxrs ‘00 0 A—QXTY
as | )
00 (1—Q)(T2) \(e ejl ejljz ejljzjs ) (e o ej]"'jn—Zejl"'jn'lejl'"jn )
(N>2) 00 0 A—TH lo..0 0 A—DT
0 e_,-l ejljz ejljzjs) (O o ejl...ju_zejl...j”_1311...jﬂ)
ee e; 5.\ ~ ‘00 0 T® 0---0 0 T"
16) ( oo 2)
00 T \. (e ejl efxfz ejljzjs) (e see ejl"'j’n‘2ejl'"jn‘lejl"'jn)
N>2) 00 O T 0.0 0 T"
0 2d®7,, e
an ( 7 “’2) Ak — A% o A3
00 T*
(N>2)
(d® = component of d*; ;, in 2(T?), d*; ;, € T?
Q+0)
(0 00 e) (0---0 0 e
s )
0 2a b _—~ \0 0 0 0 0--0 0 0
N
0 0 a ~ (O 0 ZAa b) (0 -0 Aa b)
(N=2) 000 a 0.0 0 a
(4 fixed, 1+ 0)
0 2d%;; ey, 000 e, 0--0 0 ey,
a9 | )~ | ) — | )
00 2(T?) 000 O 0---0 0 O
(N>2)

(4 fixed, 2+#0)
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HoweveER: In (18) and (19) we have special cases if A= ngl n=2,3,
4, --). If n=2, this takes the form of a new k® sequence:

(18a) 0 djjj 0
(19a) 0 0 «AT»

If n=3, we can replace the n’* kernel by zero and so get:

k2 % B (1< n) k" B (> n)
0 - 0

000 e 0--0 e
( )——»( )\ 0.0 e 0.---0 ¢
0z 57000 0 0.0 0 ( )q( )
(18b) ( 0--0 O 0.---0 0
'\
00 Aa b Q0---Zab 0--2a b Q-«-4a b
W=2) oo o=loo D=l )=l o)
000 a 0.0 a 0--0 a 00 a
(lgb) (0 Zdjjj ejljz)—_)(o 0 O ejijzja)_)(o e 0 ejl'"jl) '_’O —_> O
00 2T 0000 000
!
(N> 2) (o.--o e,-l...,-n) 040 e,l...,l)
0..00 (0...00

2. k?

We now begin the actual calculation of all possible kernel sequences. By
lemma 11 in Chapter I, whenever k!, ---, k" satisfy all requirements that can
be imposed on them, we can extend to A"*'k" ..., and get a valid kernel
sequence. Most sequences are determined by k% and E°.

In this section we compute k2. The only requirements to be met are
k* S A*k* and [RY k*] S k% so it suffices if k? is an invariant subspace of

(e e,; eij )
0 0 eijk .
It is convenient to separate (2 a;' into (¢ 2*)¥and 0 Oi ; h
p (o bj) (o o*)Fand (g b,) ence

LemMmaA 20. %* is admissible if and only if it is invariant under



168 R.M. KocH

)

k
(e e; e ) (-—ae —aje ae;,;, —a;e;, —a;e;, +3ad jljz)
—

00 O 0 0 0
and

@) (e - ) (O —Xexb®; —30e;xb*;,—es,ib"s,
0 O dijljz 0 O [dp(b)d:lijljz

LEMMA 21. An invariant subspace of (8 8" Z‘i’ ) either has e=0, or has
ik

e arbitrary. It either has e;; =0, or e;; all symmetric tensors and arbitrary (that
is, e;; does not depend on e, e;, or d'y).
PrROOF. Under the representation (1) in lemma 20 with a=1, a;=0,

(e e; ey ) (—e 0 ei,)
—_
0 0 d*;e 0 0 0

Under the representation (2) in lemma 20, with b%; =%,

(_e 0 eij) (0 0 —Ze“)
—
0 0 0 0 0 0

Hence if (g (e)‘ Zi‘j is in an invariant subspace, so are ((e) g 8) and
Jjk

(0 0 eij)
00 0/
Under (2) of lemma 20,
(0 0 eij) (0 0 “Eeikbkj*'zekjbki)
—_—
0o 0 0 0 0 0 ,

this is the Lie algebra representation corresponding to the symmetric repre-
sentation of GL(N—1, R), which is well-known to be irreducible. The lemma
follows.

LEMMA 22. If we map an invariant subspace k* to T*(N—1, R) by

e e; e;; .

( ) — a
0 0 dt

the resulting subspace of T*(N—1, R) is either 0, 1—2)T?, Q(T?, or T

Proor. This is obvious by (2) of lemma 20, and theorem 10.

LEMMA 23. Either the e; are arbitrary, or for any basis Ppiy, ---, Py,
of the subspace of T*(N—1, R) described in Lemma 22, there are vectors Ve,
-, Me; such that whenever d*;,= 32,7k, e;=32,e,.

PROOF. Given a basis Py, ---, @n%; of the d*;, space (which is 0, 2(T?),
A—Q)(T?), or (T?), there exist elements of the form
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(0 (j)ei O )
0 0 (j)viks
in %k* because of lemma 21, so if d%;=>4,"n%;, we have

(O Elsmei 0 )

0 0 d*x
in R2
Suppose there is an element (e & e’ij )e k? with e¢; not of this form.
0 0 dY

0 e
OOdl

€, 5,%0. By (2) of lemma 20, (o Zekb 8) < k% Since this

Then by lemma 21, (

O et
00 O
representation is irreducible, e¢; is arbitrary.

LEMMA 24. If e+0, ¢, and e;; must be arbitrary.

10 0yer Then (1) of lemma 20, with =0,

a;=1, gives (8 8’ 8) k% e¢;=—0%, and so ¢; is arbitrary. (1) of lemma

) e k?, and subtracting from the element above,

Proor. By lemma 21, (

20 applied to the above element yields

(O 0 e_,k)
0 0 0

with e;, =20%;0% and so ey is arbitrary.

The calculation of k% will now be completed by examining the various
possibilities case by case.

Case I. d%,=0. Then the possibilities are

e 0 0, ;0 e, 0y /0 0 e\ (@ e, O
(0 0 0) (O 0 0) (0 0 O) (0 0 O)
0
0

(e eij) (0 e; eij) (e e; ei,) (0 0 0)

0 0 0 0 0 0 0 0 0 0 o/ .
Examine lemma 20. The first two are not invariant by (1) of this lemma.
The third is invariant. The next two fail the test of lemma 24. The last
three are invariant. We have just verified k2 for (1), (2), (7), and (12) in the
list of kernels. From now on we tacitly assume d%; = 0.

CASE II. e==0.
By lemma 24, we can only have

e e; €k e ey €k e €; Cix
| ) | ana |
0 0 T2 0 0 (T3 0 0 Q—HTH.
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Each of these is clearly invariant. They account for (13), [(14), (15), and
on the list.

Cask Ill. e=0, ¢;; arbitrary.

One possibility is that e; is also arbitrary. This leads to

0 é; €ij ) (0 €; €;j ) (0 é; eij)
0 0 XT3 0 0 (QA—2(T» 0 0o T,

which are invariant and account for (8), (9), (10), (11) of the list.
Otherwise, we have

( 0 2/23 (s)ej (273 )
O 0 223 (S)vijk

in the notation of lemma 23.
If all 2,=0, we have

0 0 0 0 ik 0 0
0 0 Q‘(g;fz)) (o 0 (1—.9)(T2)) (0 0 ::)

all invariant. These yield (3), (4), 6), and (6) of the list. Otherwise 2, is
not =0.

For every d%, in the appropriate space, 34, ®¢, is an associated vector;
thus we have a linear map from a subspace of T2 to R¥-!; since the most
general such map is

e;= 2 P/,
jxa

we have a new expression for 31,%e;.

Thus
0 2(“2] wdi €k
o= | )
0 0 d’j,,

The only restriction posed by lemma 20 is given by (2) and can be written:

— 2T dlbT = 3 A [dp()d T ks

riks Jks

Caske Illa. N=2.

Then —Adb= A(bd—2bd), and
0 Ad e
p?— ( )
0 0 d

is invariant. This gives (18) and (18b) on the list.
Cask IIIb. N>2, dt, € 2(T?).



Pseudogroups associated with foliation group 171

Then
. 1 . .
d"‘jk e ~2~[51jdkkk+ 5dejjj] .

LEMMA 25. If d has the above form,

[o()dTp = — L85 e )+ 7S deab)]

Proor. Calculate.
Using this result, the boxed-in statement above becomes

jkn

] > T'andkkkbkn = ; nzjjkdkkkbnr
jkn

But
S Wt = 5 Py Galut 0,80 = 2 P,
Jks

ks
If we define ‘A, = 3 'A%, then
k

O 2 1-2.«:618.?3 ez‘j
k%=
0 0 d s
where d*;; € 2(T? and

p rlndkkkbkn = g‘_, "1kdkkkbnr

kn

On the other hand, d*;; can be an arbitrary vector when d%;, € 2(T?%), so let-
ting d¥,, =0 if 2+ s and 1 if 2=s, we have

Erznbsn =3 nzsbn'r .

Letting b%,=0°0";, we have "A,=3%1,. Letting b%; =4%,0°; we have "1, ="°1,0%,
so if r=#s, "2,=0. Hence 3)*2,d%;, = *2,d*;; = Ad*;;, so
0 Adly ey
k? =
0 0 d*i
where d%;, € 2(T*?. But this is invariant, for the last boxed-in formula is
easily verified. We obtain (19) and (19b) on the list.
Case Ille. N>2, diy, e A—2)(T?).
LEMMA 26. Let a+ B, a+v, #v. Then "A%,=0.
PROOF. Say d%,=d%s=1, d%;,=0 otherwise. Then Xd'; =0, so d’;
e (1—2)(T?. The required formula in the box just before case Illa can be
written, for this d,

2R b = 2 S A g b — 2 5 A% b —2 2 A gD -
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Letting b,,=1, b;; =0 otherwise, we obtain
—2°2%gbar =272%, .
If v+ a, "2%,=0. If, however, r=a, it is still true that 72%,=0.
LEMMA 27. Let a# B, a#v. Then "2%,=0.
PROOF. If B#v, this is Lemma 26. Otherwise, let d*p=1, d*;,=0 the

rest of the time. This is in (1—2)(T? and a calculation shows that the re-
quired formula now takes the form

_? s aﬂﬂbsr — % Txmﬁﬁbma"‘z :2 Tlanﬁbﬁn .
Letting bgg=1, b*; =0 otherwise, we have
—'31“,9,955, == —Zrlaﬂlg .
If r+ 8, "A%p=0. If r=_4, it is still true that "2%g3=0.
LEMMA 28. If a+ B, "A%ug =52z,

ProoFr. Let d',,=1, d",,=d",,=—1 (since N>2, we can pick r+1). Then
this is in (1—2)(T?), and the required formula becomes

e 2 (31111_2 82r17)bst = E timnbml

8 m

—2 % LA™ —2 }7_‘,‘ FAN b,
T2 bt 2 Z A ibry
Now we apply *2%, =0 if a+# B8, a#v to conclude that the above is
—2 (A, =252, )b =12, — 2820, b,
s —2 %} L0 42 % LA el .

Letting 6!, =1, b*,;=0 otherwise, we get
_(12111"‘212’11-)513 = 32111_231111_*_2311-" .

Picking s #1, s2%,, =2%4",,, so 32',1:%—"2111 (if s#1). Since 1 and » are not

sacred,
1

vlaaﬁ = Tplﬁﬁﬁ if v+ ﬂ .

Now put b',=1, b*;=0 otherwise, and let s=7. Then
=422, =272, .
Exchanging 1 and 7, and putting the result for "A",, in the above formula, we
1

get 2, =211",, so lxrn=»2—lzlu. Hence the above result holds in general
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and the lemma is proved.
LEMMmA 29.

Wa = g (0 20, o)

PROOF. A consequence of the above lemmas.
LeEMMA 30. Case lllc does not occur.
PROOF.

> 1:/zjk.\xdjks = :/k:l %(ajk ilsss‘i‘ 5js izkkk)djks
== kE izsssdkks .

But dt;, e 1—02)T?), so 2d*,=0, so ¢,=0. However this case has already
been considered.

Case IlId. N>2, d%, eT?
In this case by lemma 17, d=d®%+d®?;, d® e Q—2)T?, d® c 2A(T?.
But we can apply all the restrictions on *2/;, proved in case Illc. Hence
;=2 1:'zsssdkks .
ks

This vanishes for d%¥, so

e g B B+ 5, AP )
:_jziizsssdmsss.
But *A/;, must also satisfy the conditions required when d*;; € 2(T?%. Thus
if ‘2, =%2%,, ‘2;= 20%; for a fixed A. But this is just
k

1 i i N 1

o 2 (0% W5+ 055 A ) = g Ty = 0%
Hence e¢;= Ad®?,,. A simple calculation shows that this gives an invariant

subspace, and yields on the list.
CaAsSE IV. e=0, ¢;,=0.

Suppose e; is arbitrary. Then (8 5(;" 8) e k% so by (1) of lemma 20,
0 0 —20%0% _ 4o . .
0 0 0 >e , for each fixed 17, a contradiction.

2 O Elkkei 0 . R
Hence %k® must be (0 0 > Zkkﬁijljz) in the notation of lemma 23.

We must determine when this subspace is invariant. Consider first the
condition that the representation preserve the relation between e; and d'j;;
but in case III we saw that this can occur only if we have
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0 2?7, 0
0 0 T*

In order that these be invariant it suffices, by lemma 20, if

0 ad’ 0
or | )
0 0 £T?

—ay,e;,—a;,e; +3 a,d*; ;,=0.
Thus if d*;, € T?, we require
—2Aa; d®%2;, . —2a,d®y ; +3 a,d¥; =0,
Say first N=2. Then this condition says
—Aad—Aad+ad =0

or z:%-. This is (18a) on the list.

If N>2, let d%,=1, d%,=d%=—1, all other d;,=0. Then d,,,
e (1—-2)XT?*%, so d*®¥;;=0, and if a,=0%, we get a non-zero term above.
Hence T does not occur.

Finally, let d',;, & 2T, so d',;, = 5(8',d'%,,,+6%,d%,,,). Then

1 1
0= —2a;,d%;,;,—2a;,8"; 5, +—5-0a;,d%;,;,+—5-a;,d"; 5,

or 2=y ; this is (18) on the list.

3. k"

The first step in the computation of £™ is to find A3%k% --- for the k%s
produced in the last section. The results can be seen in the list of kernels;
if k% gives rise to several sequences, it is the last which takes the form
A%k, ---. By lemma 11, each such sequence is admissible.

LEMMA 31. Let (O 0 e’l “in) ek, ej.;,#0. Then all possible symmetric
ejl in OCCUr.

PROOF. Let the above element be B .;. Then

[dp(Aij)lejl,..jn = Z AikBkjl...jn“‘E Bljlmk"-jnAij .

Let A= (O b‘) we obtain —3e; .x.;5,0%,. This representation on sym-
metric tensors is irreducible, so the result follows.

LEMMA 32. Let A= (0 -0 Gron) e kt, B= (o -0 Grim) b, m22, n22.

Then [A, B]=0.
PROOF. Look at A™-.- A%k? for (2) on the list of kernels. Applying lemma

11 of chapter I, we conclude that [A, BJY,.;, (J:=2) is the only non-zero
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component of [ A4, B].
But if n and m are =2,

i — T k i k
[A, B] jl...jn_'_m_l——(SEA kjl"'j'n-lB jn"'jﬂ+m—1_SEB kjl"‘jm—lA Jmointm-1°

Since A%,.;, +0 only if i=1, j,=2 (and similarly for B) the lemma is obvious.

We shall organize our discussion of %" by examining each case of the
list of kernels in turn, breaking our discussion into a series of lemmas. (1)
is done, and (2) is clear by the two lemmas above.

For (3), the top is an admissible sequence by lemma 11 and the fact that
[k2, k?] < R%, since

LA, Bls.o =S8 2 A%, B*),5,— S Z B A%,
= 3(A%;,B%—B%,A%,)=0.

To complete (3), we prove that the requirement [k?% k" ']< k™ forces us to
adopt one of the two sequences listed in (3) of the kernel list.

Look first at the top sequence; let A—(O 0 0) B-—(O'"O V. then

P sed ’ =l o 1) 77000/’

(A4, B1=(3 .0 &) and +=[A, Bl,.;= SE A8y~ SEB .0 A%y = —SBly.s Ay

= —(non-zero constant).
This calculation works for the bottom sequence also, and shows that a

cannot be zero. Now let A:(g 8 (1)), B-——(gg (1)> Aek? Be k™. Say
n—1=3. We prove [A4, B]%.,+ 0, completing the calculation. Indeed

[4, B].=8X% A*yB*y,—S X szzz-uzAkzz

- nAzzszz...z—ﬁ(ﬂ?’—llAzzszz...z .
But n—i(nz——l) =0 n=0 or n=23, whereas we have assumed n=4.

n _/70--00
jl...jn) k™ B= <0 e 0 fifr'dm)E E™ n, m=2.

Then [A,B]= (88 2) where = is simply [d, f] in R¥-L
PROOF.

LEMMA 33. Let A= <8 8 ?ﬁ

, _ : .
I:A, B]ljl“'jn-l-m-l_SEAlkjl“‘jn-lB Inintm—-1
A k
_SZBlkjl"'jm-—lA jm...jn_'_m_l
but AY;..;, = B%,.;,,=0, so the result is obvious.

Because of these lemmas and theorem 10, (4), (5), and (6) are finished

if we only prove:
LEMMA 34. d¥%;, and e;,.;,_, can be chosen so that
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[(0 0 0 ) (O---O ejl...jn_l):l (0---0 *)
0 0 diy) 0.0 0 o0+
with * %0, d';, in Q(T?, A—=2)T?), or T? (provided N=3 in the case d';
e (1—2)(T?).
PROOF.
LA, BT iy = S Z A%, B 1510 S Z Blkspsn-2A" 1011

— 1 k
= Ské:zB kjl"'jn-ZA Jn-1In "

Let e;,.;,=1, A= 08°m+0d%7;, n,=1. Then the above expression is clearly
non-zero, so we are done in the cases (7% and T2

Let d%;=1, d*;; =0 otherwise. This is in (1—2)(T'%), and clearly gives a
non-zero result.

LEMMA 35. Let A= (8 8 8’1 Jn- 1%’! Jn) e k®, B=<gg (e)fl"'jm-leojr".im)e E™,

n=2, m=2. Then [A, B]—(O

Proor. By (7) and lemma 11, we know [A, B]= (O g _g 3 We are

to prove + =0.
[A) lejl"'jn-l'm-l = S %Alkj]'“jn-lBkjn"'jn-!-m—l_'SkE Blkjr"jm.-1Akjm“'f'n+m—1 .
Then k must be 1. Suppose j, =1, all other j;=2. Since A',.;,=0, this is

SAY,y.5. B! —SB

1
Up+1Jn+m-1 ljz"'ij Um+rJn+m-1

(here S means symmetrization of j,, --+,j,am-1). These two are clearly equal,
so the result is zero.
LEMMA 36. It is possible to pick e; and e;,.;,_, so that if

A:(O e; O), B:(O---O )1 imen
0 0 O 0--0 0

with e;...; + 0.
PrROOF. We use the formula above for [A4, B]. Clearly if j; =2,

[A, BlY,.;, = SA";, B*

Jyin

0.-.-0 ejl...,-n)

e

j2"'j’ll.'
The result is then obvious.

LEMMA 37. Let k™ contain all (0 0 i,

and in addition some
B= (0 -0 e’l In- 1571 -’ﬂ), €jpmin-, 7 0. Then it contains all elements of this form.

PROOF. Again we look at [dp(A*)B1Y; -y Ji =2, for A= (0 b‘) It is
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—é}zB‘lh...k...jn_lA"“—ZBlkjl...jn_lA’“l: ~> e ki B, This is again the
symmetric representation which is irreducible, and the result follows.

Clearly, lemmas 31, 35, 36, 37 complete (7).

Now turn to (8). To show that the top occurs, we must prove [k? k%]
c k®; but [A, B]zm:S%)AZ,QB"ZZ*S%)BZ,CZA"H:3(142123122—f—AZZZBZzz—BZZZAZ22
‘_BZmAlzz) =0. .

To complete (8), notice that lemma 33 and theorem 10 show that a occurs
in all 2", n=4, and lemma 36 shows that b always occurs. It suffices if

[(0 0 0) (0---0 1 0)] (0---0 -+ *)
0 0 1/ %00 0! Yo..00 0
with +=0. This is a special case of :

LEMMA 38. [t is possible to pick d*;, € 2(T?), A—2)T?), or T? and ¢;,.;,_,
so that if

(o---o 0 )

A= o, (O 0 fjl“'jngjl"'fn+1
0.0 diy

0--00 0

with f;.;, %0, provided n=2 and, if d*;; e 1-2(T?, N=3.
PROOF. If j,, =+, jp1 =22, ji=1,

1 _ 1 k _ 1 ko
LA, B] j1j2"'jn+1—S§A khB Jordn+ SZB kJr"Jn—lA Indn+t
_ 1 1 _ 1 ) k.

Now Al ;,=0, so this is —8 X B',;,..j,.,A%,7.+» Where S is symmetrization
kz2
of j,, ==+, Jaey; letting e;.; =1 and A%; ;, =0%;7,,+0%;,7, where ;,=1, the
result is true for 2(T% and T2
Letting d%,=1, d%;;=0 otherwise, the result is also true for (1—-2)(T?).
Clearly lemmas 31, 33, 36, 37, and 38 complete (9), (10), and (11).

_ (¢ € €& _(f i Ju _ (0 * x
Lemma 39. If A=(g g ei,) B=(5 fi’j,)’ (A B1=(y o 1)
PROOF. By (16), it suffices if [A4, B]*,.,=0. But[A4, B]1,-1,-21-3=J>’%)Al,cle’Cj2j3
—S zk) BlkhAkaJ'z = ‘SAIIJ'J Bljzj?: +S EZAIWJ Bkizfa —S BlllelJ'zjs —$ ézBlklekajs’
Hence [A, B]',,,=3(4',B",,—B';A)) =0.

Clearly lemmas 33 and 39 prove that all kernel sequences in (12), (13),
(14), (15), and (16) are allowed, since [ k%, k*] & E°.

LEMMA 40. Let k" contain all (8 8 81'1"'1'1 gfr"fn> and some

B:(88 Sil-"fz—l"'gjr"jn) for which e;,.;_,#0. Then 1t contains all such
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elements.
PROOF. Let A= (O b,), and consider [dp(A)BJY,.;, = — 2B kA%
But [dp(A)B1'ytjpsp-y = — 2 Cjpkjy-,0%s, since A*¥,=0; this representation is
kZ2

irreducible, so we are done.
LEmMMA 41. If [+ m—1)—2, it is possible to pick e;.; so that if
/1 0 0 Oe, g 00 (O [y, xR
=@ 0 o) B=(07"0 G 0. 0) LA BI=(g {4 ) with fips 0.
PROOF.
I:A, lejrujn: S%:Alkleka"'fn_SZIc:Blkjr"jn—zAkjn—]jn
= SAlljJBljz"‘J'n—‘SBllfr“J'n—zAlJ'n—1fn :
Now B'; .;,_,# 0 only if precisely [ of the j; are =2. If less than [ of j,---j,
are =2, [A, B)Y,.;, is zero, since for the first term j; =1, so all j;=2 are in
B and there are less than [ such, while in the second term j,., and j, must
be 1, so there are less than [/ terms =2 in B.

If exactly [/ terms are =2, we have

(n=DH(n—=I—=1)
2 .

(n—l)ejl...jl"“ ejl"'jL

This is zero just if (n —1):0, i.e., either /|=n or n—[=3. But

[=<n—1, so the only bad case is n =341 _

Lemmas B3, 40, and A1 clearly complete the top sequences of (12), [(14),
(15), and and the first and third sequences of (13).

LEMMA 42. If l+n—2, it is possible to pick e and Cjpg, SO if

A= <g & 0 ana B=(Q G 0), 14, By= (010 Lo 0) and frposa,
PROOF. As before [A, B1;,.;,=SAY; B jyjn—SB"1jpjp-sA
I+1 j's are =2, this is
8€;.8555y41— 5,855 sy (n—U+1)) .
If ¢;=1, ejl...jlzl, this can only be zero if 1—n+[+1=0, or n=1[+2.
When we put lemmas 41 and 42 together, we discover that if all
e ej e
0 0 ..
lemma 41 allows us to fill in all of k™ except e;,.;, [=n—3, but lemma 42
allows us to fill in everything except [=n—2and [=0. Only if n=3 do we
have trouble, corresponding to the splitting observed.
It is now clear that the above lemmas, together with lemma 33, complete
12), (13), (14), (15), and (16). Let us next discuss (19) and (19b).
LEMMA 43. We can find d';<(T? and e;.;,_, so that when

If exactly

Jn-1Jn’

11 Jn- 1) e k™!, we get all (0 €y gfl'“j" e k", provided n>3, for
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0 Adiy; 0--0 e, ., 0--0 e. . .
A= : d B= jrin-1) th ,Bl= ir+in th
(o “v dﬂc an (0770 ¢™%) then [4, B1= (4 g ¢/7) wi
ejl...jn = 0 = 2 * ‘Iz“’zi.
PRrROOF. We know [A4, B] has this form, and
[A, lejl"'jn - SAllleljz...jn—'S k‘EZBlkjl"'jn-zAkjn—lfn .

This is
EZa’f Sataix-Tatn™ ZCivduoin g L (.4 181535 0%3 5095 5)

SECEL . CETOW

. =,
]].’..]a"-Jn ]aja

= 22 djmjajaejl“'fa"'jn_

= (Z— ngl )Z)dfwjajaejl..;a...jn. The lemma is now obvious.

LEMMA 44. [f 2:1, dijk and fijkEQ(Tz), Zlh.en

[ N I
N

PrOOF. By (19) we need only look at [A, B]'; ;. It is X A%;B*;,;,
k2
—Sk§ Blklekj2j3:O since Alkj:() if ng, ]_2_2.
=2
But these two lemmas together clearly imply (19) and (19b). (18a) and
(19a) are complete as is. Next turn to (17). A calculation shows that

2
A? - AR = (O -0 f<d 3r+in) e“ ’") with f some function we need not give
.71 JIn
more explicitly.

Lemma 45. If A= (§ &1 i) and B= (4 In o e ) then [A, B)=

J1In
E S )
(O O [d, k]/:
PRrROOF. A variant of lemma 33.
n—1

To finish (17), we need only prove lemma 43 without assuming 1 # D)

provided d%j; is allowed to vary through T2.
But N=3, so pick d%;,;=1, d%;;,=0 otherwise. Then look at

I:(O 0 0 ) (0-'-0 ejl...jn)]
0 0 diy/” 0.0 0 -

Using the formula of lemma 43, [A, B]Y,.;,= —S X Cjyjn-s@ jn-1inr Lhis can
clearly be made non-zero and we are done.

Consider (18). The top of (18) is a sequence because [k% k*] < k® by
lemma 45 and theorem 10. Note that lemma 43 holds as Q2(T?*=T? for
N=2. The bottom of (18) is a sequence by lemma 45 and theorem 10.
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Similarly, the top of (18b) is a sequence.

(11
£2]
(3]
4]

(5]

[6]
7]
(8]
£ol

To conclude the discussion of (18) we need:

n_ (020 Aa 0\ - . . . 1
LEMMA 46. k"= (O---O 0 1S not invariant if 2#——7?,
PROOF.
[dpo(A)B),s..=2 AYB*yps—nY Blk22~-~2Ak2
= A12B222...2_nB112...2A12
=AY (a—nia).
Since = = "5 implies n=2, (I18b) is true.
University of Oregon
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