Radicals of gamma rings

By William E. Coppage and Jiang LuH

(Received March 16, 1970)

§ 1. Introduction

Let M and Γ be additive abelian groups. If for all $a, b, c \in M$ and α, β $\in \Gamma$, the following conditions are satisfied,
(1) $a \alpha b \in M$
(2) $(a+b) \alpha c=a \alpha c+b \alpha c$
$a(\alpha+\beta) b=a \alpha b+a \beta b$
$a \alpha(b+c)=a \alpha b+a \alpha c$
(3) $(a \alpha b) \beta c=a \alpha(b \beta c)$,
then, following Barnes [1], M is called a Γ-ring. If these conditions are strengthened to,
(1') $a \alpha b \in M, \alpha a \beta \in \Gamma$
(2') same as (2)
(3') $(a \alpha b) \beta c=a(\alpha b \beta) c=a \alpha(b \beta c)$
(4') $x \gamma y=0$ for all $x, y \in M$ implies $\gamma=0$,
then M is called a Γ-ring in the sense of Nobusawa [5].
Any ring can be regarded as a Γ-ring by suitably choosing Γ. Many fundamental results in ring theory have been extended to Γ-rings: Nobusawa [5] proved the analogues of the Wedderburn-Artin theorems for simple Γ rings and for semi-simple Γ-rings (but see [4]) ; Barnes [1] obtained analogues of the classical Noether-Lasker theorems concerning primary representations of ideals for Γ-rings; Luh [3, 4] gave a generalization of the Jacobson structure theorem for primitive Γ-rings having minimum one-sided ideals, and obtained several other structure theorems for simple Γ-rings.

In this paper the notions of Jacobson radical, Levitzki nil radical, nil radical and strongly nilpotent radical for Γ-rings are introduced, and Barnes' [1] prime radical is studied further. Inclusion relations for these radicals are obtained, and it is shown that the radicals all coincide in the case of a Γ-ring which satisfies the descending chain condition on one-sided ideals. The other usual radical properties from ring theory are similarly considered.

For all notions relevant to ring theory we refer to [2].

§2. Preliminaries

If A and B are subsets of a Γ-ring M and $\Theta, \Phi \cong \Gamma$, then we denote by $A \Theta B$, the subset of M consisting of all finite sums of the form $\sum_{i} a_{i} \alpha_{i} b_{i}$, where $a_{i} \in A, b_{i} \in B$, and $\alpha_{i} \in \Theta$. We define $\Theta A \Phi$ analogously in case M is a Γ-ring in the sense of Nobusawa. For singleton subsets we abbreviate these notations to, for example, $\{a\} \Theta B=a \Theta B$.

A right (left) ideal of a Γ-ring M is an additive subgroup I of M such that $I \Gamma M \subseteq I(M \Gamma I \cong I)$. If I is both a right ideal and a left ideal then we say that I is an ideal, or redundantly, a two-sided ideal, of M.

For each a of a Γ-ring M, the smallest right ideal containing a is called the principal right ideal generated by a and is denoted by $|a\rangle$. We similarly define $\langle a|$ and $\langle a\rangle$, the principal left and two-sided (respectively) ideals generated by a. We have $|a\rangle=Z a+a \Gamma M,\langle a|=Z a+M \Gamma a$, and $\langle a\rangle=Z a+a \Gamma M$ $+M \Gamma a+M \Gamma a \Gamma M$, where $Z a=\{n a: n$ is an integer $\}$.

Let I be an ideal of Γ-ring M. If for each $a+I, b+I$ in the factor group M / I, and each $\gamma \in \Gamma$, we define $(a+I) \gamma(b+I)=a \gamma b+I$, then M / I is a l-ring which we shall call the difference Γ-ring of M with respect to I.

Let M be a Γ-ring and F the free abelian group generated by $\Gamma \times M$. Then

$$
A=\left\{\sum_{i} n_{i}\left(\gamma_{i}, x_{i}\right) \in F: a \in M \Rightarrow \sum_{i} n_{i} a \gamma_{i} x_{i}=0\right\}
$$

is a subgroup of F. Let $R=F / A$, the factor group, and denote the coset $(\gamma, x)+A$ by $[\gamma, x]$. It can be verified easily that $[\alpha, x]+[\beta, x]=[\alpha+\beta, x]$ and $[\alpha, x]+[\alpha, y]=[\alpha, x+y]$ for all $\alpha, \beta \in \Gamma$ and $x, y \in M$. We define a multiplication in R by

$$
\sum_{i}\left[\alpha_{i}, x_{i}\right] \sum_{j}\left[\beta_{j}, y_{j}\right]=\sum_{i, j}\left[\alpha_{i}, x_{i} \beta_{j} y_{j}\right] .
$$

Then R forms a ring. If we define a composition on $M \times R$ into M by $a \sum_{i}\left[\alpha_{i}, x_{i}\right]=\sum_{i} a \alpha_{i} x_{i}$ for $a \in M, \sum_{i}\left[\alpha_{i}, x_{i}\right] \in R$, then M is a right R-module, and we call R the right operator ring of the Γ-ring M. Similarly, we may construct a left operator ring L of M so that M is a left L-module. Clearly I is a right (left) ideal of M if and only if I is a right R-module (left L module) of M. Also if A is a right (left) ideal of $R(L)$ then $M A(A M)$ is an ideal of M. For subsets $N \subseteq M$, $\Phi \subseteq \Gamma$, we denote by $[\Phi, N]$ the set of all finite sums $\sum_{i}\left[\gamma_{i}, x_{i}\right]$ in R, where $\gamma_{i} \in \Phi, x_{i} \in N$, and we denote by $[(\Phi, N)]$ the set of all elements $[\varphi, x]$ in R, where $\varphi \in \Phi, x \in N$. Thus, in particular, $R=[\Gamma, M]$.

A Γ-ring M is said to be simple if $M \Gamma M \neq 0$ and 0 and M are the only
ideals of $M . \quad M$ is said to be right primitive if R is a right primitive ring and $M \Gamma x=0 \Rightarrow x=0$ (see $[3,4]$). M is said to be completely prime if $a \Gamma b=0$, with $a, b \in M$ implies $a=0$ or $b=0$. Following Nobusawa [5], M is semisimple if $a \Gamma a=0$, with $a \in M$, implies $a=0$.

For $S \cong R$ we define $S^{*}=\{a \in M:[\Gamma, a]=[\Gamma,\{a\}] \cong S\}$. It then follows that if S is a right (left) ideal of R, then S^{*} is a right (left) ideal of M. Also for any collection \mathcal{C} of sets in $R, \bigcap_{S \in C} S^{*}=\left(\bigcap_{S \equiv C} S\right)^{*}$.

If M_{i} is a Γ_{i}-ring for $i=1,2$, then an ordered pair (θ, ϕ) of mappings is called a homomorphism of M_{1} onto M_{2} if it satisfies the following properties:
(i) θ is a group homomorphism from M_{1} onto M_{2}.
(ii) ϕ is a group isomorphism from Γ_{1} onto Γ_{2}.
(iii) For every $x, y \in M_{1}, \gamma \in \Gamma_{1}$,

$$
(x \gamma y) \theta=(x \theta)(\gamma \phi)(y \theta) .
$$

This concept is a generalization of the definition of homomorphism for Γ rings given by Barnes [1]. The kernel of the homomorphism (θ, ϕ) is defined to be $K=\{x \in M: x \theta=0\}$. Clearly K is an ideal of M. If θ is a group isomorphism, i.e., if $K=0$, then (θ, ϕ) is called an isomorphism from the $\Gamma_{1^{-}}$ ring M_{1} onto the Γ_{2}-ring M_{2}.

Let I be an ideal of the Γ-ring M. Then the ordered pair (ρ, ι) of mappings, where $\rho: M \rightarrow M / I$ is defined by $x \rho=x+I$, and ι is the identity mapping of Γ, is a homomorphism called the natural homomorphism from M onto M / I.

We omit the proof, which is precisely analogous to that for rings, of the following fundamental theorem of homomorphism for Γ-rings.

THEOREM 2.1. If (θ, ϕ) is a homomorphism from the Γ_{1}-ring M_{1} onto the Γ_{2}-ring M_{2} with kernel K, then M_{1} / K and M_{2} are isomorphic.

Finally, we remark that the analogues of the other homomorphism theorems (Theorems 2 and 3 in Barnes [1]) remain true under the modified definition of homomorphism for Γ-rings.

§ 3. Γ-rings in the sense of Nobusawa

Every ring A is a Γ-ring if we take $\Gamma=A$ and interpret the ternary operation in the natural way; but A may not be a Γ-ring in the sense of Nobusawa. It is of interest to know if every ring is a Γ-ring in the sense of Nobusawa for some choice of Γ. In this section we establish an affirmative answer to this question by proving

Theorem 3.1. Every Γ-ring M is a Γ^{\prime}-ring in the sense of Nobusawa for some abelian group Γ^{\prime}.

Proof. We first construct $\Gamma^{\prime}=\Phi / K$, where Φ is the free abelian group generated by $\Gamma \times M \times \Gamma$ and K is the subgroup consisting of all elements $\sum_{i} n_{i}\left(\alpha_{i}, a_{i}, \beta_{i}\right)$ of Φ with the property that $\sum_{i} n_{i}\left(x \alpha_{i} a_{i}\right) \beta_{i} y=0$ for every $x, y \in M$.

We write $[\alpha, a, \beta]$ for the $\operatorname{coset}(\alpha, a, \beta)+K$. For subsets $\Theta, \Phi \subseteq \Gamma, N \cong M$, we define $[(\Theta, N, \Phi)]=\left\{[\theta, x, \varphi] \in \Gamma^{\prime}: \theta \in \Theta, x \in N, \varphi \in \Phi\right\}$. Then for $\sum_{i}\left[\alpha_{i}\right.$, $\left.a_{i}, \beta_{i}\right]$ and $\sum_{j}\left[\gamma_{j}, b_{i}, \delta_{j}\right]$ in Γ^{\prime} and $x, y \in M$, we define $x\left(\sum_{i}\left[\alpha_{i}, a_{i}, \beta_{i}\right]\right) y=$ $\sum_{i}\left(x \alpha_{i} a_{i}\right) \beta_{i} y$ and $\left(\sum_{i}\left[\alpha_{i}, a_{i}, \beta_{i}\right]\right) x\left(\sum_{j}\left[\gamma_{j}, b_{j}, \delta_{j}\right]\right)=\sum_{i, j}\left[\alpha_{i},\left(a_{i} \beta_{i} x\right) \gamma_{j} b_{j}, \delta_{j}\right]$. These two compositions are well-defined and M is a Γ^{\prime}-ring in the sense of Nobusawa. Note in passing that for subsets A, B of $M, A \Gamma^{\prime} B=A \Gamma M \Gamma B$. Also, if M is already a Γ-ring in the sense of Nobusawa, then the Γ^{\prime}-ring M which we have constructed is isomorphic to M considered as a ($\Gamma M \Gamma$)-ring.

It can be shown that complete primeness, simplicity, semi-simplicity and primitivity are hereditary under the transition of M to a Γ^{\prime}-ring in the sense of Nobusawa.

§4. The Prime Radical

Following Barnes [1], an ideal P of a Γ-ring M is prime if for any ideals $A, B \cong M, A \Gamma B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. A subset S of M is an m-system in M if $S=\phi$ or if $a, b \in S$ implies $\langle a\rangle \Gamma\langle b\rangle \cap S \neq \phi$. The prime radical of M, which we denote by $\mathscr{P}(M)$, is defined as the set of elements x in M such that every m-system containing x contains 0 . Barnes [1] has characterized $\mathscr{P}(M)$ as the intersection of all prime ideals of M, has shown that an ideal P is a prime if and only if its complement P^{c} is an m-system, and that an ideal P of a Γ-ring M in the sense of Nobusawa is prime if and only if $a \Gamma b \subseteq P$ implies $a \in P$ or $b \in P$.

THEOREM 4.1. If $\mathscr{P}(R)$ is the prime radical of the right operator ring R of the Γ-ring M, then $\mathscr{P}(M)=\mathscr{P}(R)^{*}$.

Our proof requires a lemma which is of interest in its own right:
LEMMA 4.1. If P is a prime ideal of R then P^{*} is a prime ideal of M.
Proof of Lemma. Suppose $A \Gamma B \subseteq P^{*}$ where A and B are ideals of M. Then $[\Gamma, A][\Gamma, B]=[\Gamma, A \Gamma B] \subseteq P$. By the primeness of P, either $[\Gamma, A] \subseteq P$ or $[\Gamma, B] \subseteq P$. This means that either $A \subseteq P^{*}$ or $B \subseteq P^{*}$.

Proof of Theorem. If Q is an ideal of M then

$$
P=\left\{\sum_{i}\left[\alpha_{i}, a_{i}\right] \in R: M\left(\sum_{i}\left[\alpha_{i}, a_{i}\right]\right) \subseteq Q\right\}
$$

is an ideal of R. If Q is prime and A, B are ideals of R such that $A B \subseteq P$ then also $A R B \subseteq P$, hence $M A \Gamma M B \subseteq M P \subseteq Q$. Since $M A$ and $M B$ are ideals
of M, it follows that $M A \subseteq Q$ or $M B \subseteq Q$. Thus $A \subseteq P$ or $B \subseteq P$ and we may conclude that P is prime. Note also that $P^{*}=\{x \in M:[\Gamma, x] \subseteq P\}=\{x \in M$: $M \Gamma x \subseteq Q\}$. Thus if Q is a prime ideal of M then $Q=P^{*}$. It follows that $\mathscr{P}(M)$, which is the intersection of all prime ideals of M, contains $\bigcap_{P \in \mathscr{D}} P^{*}=$ $\left(\bigcap_{P \in \mathscr{D}} P\right)^{*}$, where \mathscr{D} is a certain collection of prime ideals of R. But $\left(\bigcap_{P \in \mathscr{D}} P\right)^{*}$ $\supseteq \mathscr{P}(R)^{*}$ so we may conclude that $\mathscr{P}(M) \supseteqq \mathscr{P}(R)^{*}$.

On the other hand, $\mathscr{P}\left(R^{*}\right)=(\cap P)^{*}=\left(\cap P^{*}\right)$, where the intersection is taken over all prime ideals of R. Since, by Lemma 4.1., each P^{*} is a prime ideal of M, and since $\mathscr{P}(M)$ is the intersection of all prime ideals of M, it follows that $\mathscr{P}(M) \cong \mathscr{P}(R)^{*}$.

THEOREM 4.2. If I is an ideal of the Γ-ring M then $\mathscr{P}(I)=I \cap \mathscr{P}(M)$, where $\mathscr{P}(I)$ denotes the prime radical of I considered as a Γ-ring.

We begin by proving
Lemma 4.2. If P is a prime ideal of M then $P \cap I$ is a prime ideal of I.
Proof of Lemma. Let A, B be ideals of I such that $A \Gamma B \cong P \cap I$. If $\langle A\rangle=A+A \Gamma M+M \Gamma A+M \Gamma A \Gamma M$ and $\langle B\rangle=B+B \Gamma M+M \Gamma B+M \Gamma B \Gamma M$, then $I \Gamma\langle A\rangle \Gamma I \subseteq A$ and $\langle A\rangle \subseteq I$. Thus, and similarly,

$$
(\langle A\rangle \Gamma\langle A\rangle \Gamma\langle A\rangle) \Gamma(\langle B\rangle \Gamma\langle B\rangle \Gamma\langle B\rangle) \cong A \Gamma B \cong P .
$$

Since P is prime in M and $\langle A\rangle \Gamma\langle A\rangle \Gamma\langle A\rangle,\langle B\rangle \Gamma\langle B\rangle \Gamma\langle B\rangle$ are ideals of M, we conclude that $\langle A\rangle \Gamma\langle A\rangle \Gamma\langle A\rangle \cong P$ or $\langle B\rangle \Gamma\langle B\rangle \Gamma\langle B\rangle \cong P$. By repeated use of the primeness of P we get $\langle A\rangle \cong P$ or $\langle B\rangle \subseteq P$, hence $A \subseteq P$ or $B \subseteq P$. Therefore either $A \subseteq P \cap I$ or $B \subseteq P \cap I$ and $P \cap I$ is a prime ideal of I.

Proof of Theorem. $\mathscr{P}(I)$ is the set of all elements x in I such that every m-system of I which contains x contains 0 . Every m-system of I is certainly also an m-system of M. It follows that $\mathscr{P}(I) \supseteqq I \cap \mathscr{P}(M)$. By Lemma 4.2, $\mathscr{P}(I) \subseteq I \cap \mathscr{P}(M)$. Thus $\mathscr{P}(I)=I \cap \mathscr{P}(M)$.

§ 5. The Strongly Nilpotent Radical

An element a of a Γ-ring M is strongly nilpotent if there exists a positive integer n such that $(a \Gamma)^{n} a=(a \Gamma a \Gamma a \Gamma \cdots a \Gamma) a=0$. A subset S of M is strongly nil if each of its elements is strongly nilpotent. S is strongly nilpotent if there exists a positive integer n such that $(S \Gamma)^{n} S=(S \Gamma S \Gamma \cdots S \Gamma) S$ $=0$. Clearly a strongly nilpotent set is also strongly nil.

Theorem 5.1. If M is a Γ-ring in the sense of Nobusawa and $a \in M$, then the following are equivalent:
(i) a is strongly nilpotent
(ii) $\langle a\rangle$ is strongly nil
(iii) $\langle a\rangle$ is strongly nilpotent

Proof. That (iii) implies (ii) and (ii) implies (i) is trivial. The proof that (i) implies (iii) is left to the reader.

We define the strongly nilpotent radical, $\mathfrak{S}(M)$, of the Γ-ring M to be the sum of all strongly nilpotent ideals of M.

Theorem 5.2. If A and B are strongly nilpotent ideals of a Γ-ring M, then their sum is a strongly nilpotent ideal of M.

Proof. If $(A \Gamma)^{n} A=0$ then $((A+B) \Gamma)^{n}(A+B)=(A \Gamma)^{n} A+B_{1}=B_{1}$, where $B_{1} \subseteq B$. If $(B \Gamma)^{m} B=0$ then $((A+B) \Gamma)^{m n+m+n}(A+B)=\left(((A+B) \Gamma)^{n}(A+B) \Gamma\right)^{m}((A$ $+B) \Gamma)^{n}(A+B)=\left(B_{1} \Gamma\right)^{m} B_{1}=0$, hence $A+B$ is strongly nilpotent.

Theorem 5.3. If M is a Γ-ring then $\subseteq(M)$ is a strongly nil ideal of M.
Proof. Each element x of $S(M)$ is in a finite sum of strongly nilpotent ideals of M, which, by Theorem 5.2, is strongly nilpotent. Therefore x is strongly nilpotent, whence $\subseteq(M)$ is strongly nil.

Theorem 5.4. If A and B are strongly nil ideals of a Γ-ring M, then their sum is a strongly nil ideal of M.

Proof. The proof parallels that of Theorem 5.2 and is left to the reader.
Theorem 5.5. If M is a Γ-ring in the sense of Nobusawa then $\mathbb{S}(M)$ is the sum, \mathcal{S}, of all strongly nil ideals of M.

Proof. By Theorem 5.3, $\subseteq(M) \cong \mathcal{S}$. On the other hand, if $a \in \mathcal{S}$ then a belongs to a finite sum of strongly nil ideals of M, which, by Theorem 5.4, is a strongly nil ideal of M. By Theorem $5.1,\langle a\rangle$ is strongly nilpotent. Therefore $\langle a\rangle \subseteq \mathbb{S}(M)$, hence $a \in \mathbb{S}(M)$, whence $\mathcal{S} \subseteq \subseteq(M)$.

Theorem 5.6. If M is a semi-simple Γ-ring then $\subseteq(M)=0$.
Proof. Let $a \in \mathbb{S}(M)$ and $(a \Gamma)^{n} a=0$. We may assume that $n=2^{m}-1$ where m is a positive integer. If $A=(a \Gamma)^{2 m-1-1} a$ then $A \Gamma A \cong(a \Gamma)^{n} a=0$. Because M is semi-simple, $A=0$; i. e., $(a \Gamma)^{2 m-1-1} a=0$. Continuing this argument we finally obtain $a \Gamma a=0$, hence $a=0$.

Theorem 5.7. If M is a Γ-ring in the sense of Nobusawa, then M is semisimple if and only if $\mathfrak{S}(M)=0$.

Proof. If M is not semi-simple then there exists $0 \neq a \in M$ such that $a \Gamma a=0$. But then $\langle a\rangle \Gamma\langle a\rangle=0$ so $\langle a\rangle$ is strongly nilpotent and therefore ऽ $(M) \neq 0$.

The necessity follows from Theorem 5.6.
Theorem 5.8. If I is an ideal of the Γ-ring M then $\mathcal{S}(I)=I \cap \subseteq(M)$.
Proof. If S is a strongly nilpotent ideal of I with $(S \Gamma)^{n} S=0$, then $T=S+M \Gamma S+S \Gamma M+M \Gamma S \Gamma M$ is an ideal of M and $(T \Gamma)^{2} T \cong S$. Hence $(T \Gamma)^{3 n+2} T=0$ and T is a strongly nilpotent ideal of M. It follows that $T \cong \subseteq(M)$, hence $S \subseteq I \cap \subseteq(M)$. Thus $\subseteq(I) \subseteq I \cap \subseteq(M)$.

On the other hand, if $a \in I \cap \mathbb{S}(M)$ then $\langle a\rangle$ is a strongly nilpotent ideal of M. Since the principal ideal (of I) generated by a in I is contained in
$\langle a\rangle, a \in \mathbb{S}(I)$. Thus $I \cap \subseteq(M) \subseteq \subseteq(I)$.

§6. The Nil Radical

An element x of a Γ-ring M is nilpotent if for any $\gamma \in \Gamma$ there exists a positive integer $n=n(\gamma)$ such that $(x \gamma)^{n} x=(x \gamma)(x \gamma) \cdots(x \gamma) x=0$. A subset S of M is nil if each element of S is nilpotent. The nil radical of M is defined as the sum of all nil ideals of M, and is denoted by $\mathscr{N}(M)$.

Theorem 6.1. If A and B are nil ideals of the Γ-ring M, then their sum is a nil ideal of M.

Proof. The proof parallels that of Theorem 5.2 and is left to the reader.
THEOREM 6.2. If M is a Γ-ring then $\mathfrak{N}(M)$ contains $\mathfrak{N}(R)^{*}$, where $\mathfrak{N}(R)$ denotes the upper nil radical of R.

Proof. Let $a \in \mathscr{N}(R)^{*}$. If $b \in\langle a\rangle$ and $\gamma \in \Gamma$ then $[\gamma, b] \in \mathscr{N}(R)$, so there exists a positive integer n such that $[\gamma, b]^{n}=0$. Hence $(b \gamma)^{n} b=0$, whence b is nilpotent and consequently $\langle a\rangle$ is nil. Therefore $a \in \mathscr{N}(M)$.

Theorem 6.3. If M is a Γ-ring then $\mathfrak{n}(M / \mathfrak{n}(M))=\mathfrak{n}(M)$, the zero ideal of $M / \Re(M)$.

Proof. Let $a+\mathscr{N}(M) \in \mathscr{N}(M / \mathscr{N}(M))$ and let $b \in\langle a\rangle$. Then $b+\mathscr{N}(M)$ is in the nil principal ideal of $M / \mathscr{N}(M)$ generated by $a+\mathscr{N}(M)$. Hence for any $\gamma \in \Gamma$ there exists a positive integer n such that $((b+N(M)) \gamma)^{n}(b+N(M))=$ $\mathscr{N}(M)$; i. e., $(b \gamma)^{n} b \in \mathscr{N}(M)$. Since $\Re(M)$ is a nil ideal of M, there exists a positive integer m such that $\left((b \gamma)^{n} b \gamma\right)^{m}\left((b \gamma)^{n} b\right)=0$, or $(b \gamma)^{n m+m+n} b=0$. Hence b is nilpotent, whence $\langle a\rangle$ is nil and $a \in \mathscr{N}(M)$.

Theorem 6.4. If I is an ideal of the Γ-ring M then $\operatorname{Nn}(I)=I \cap \Re(M)$.
Proof. Every principal ideal generated in I by a is contained in the principal ideal generated in M by a, so $I \cap \mathscr{N}(M) \cong \mathscr{N}(I)$.

To show $\mathscr{N}(I) \subseteq I \cap \mathscr{N}(M)$, let $a \in \mathscr{N}(I)$ and $b \in\langle a\rangle$, the principal ideal generated in M by a. For any $\gamma \in \Gamma,(b \gamma)^{2} b$ belongs to the nil principal ideal generated in I by a, so $\left((b \gamma)^{2} b \gamma\right)^{n}(b \gamma)^{2} b=0$, or $(b \gamma)^{3 n+2} b=0$ for some $n=n(\gamma)$. Thus $\langle a\rangle$ is nil and $a \in \mathscr{N}(M)$. Clearly $a \in I$, so $a \in I \cap \Re(M)$.

§ 7. The Levitzki Nil Radical

A subset S of a Γ-ring M is locally nilpotent if for any finite set $F \subseteq S$ and any finite set $\Phi \subseteq \Gamma$, there exists a positive integer n such that $(F \Phi)^{n} F$ $=0$. By taking $F=\{x\}$ and $\Phi=\{\gamma\}$ we see that a locally nilpotent set is nil. The Levitzki nil radical of M is the sum of all locally nilpotent ideals of M, and is denoted by $\mathcal{L}(M)$.

Lemma 7.1. If A_{1} and A_{2} are locally nilpotent ideals of a Γ-ring M then their sum is a locally nilpotent ideal of M.

Proof. If F, Φ are finite subsets of $A_{1}+A_{2}, \Gamma$, respectively, then there exist finite subsets F_{1} of A_{1} and F_{2} of A_{2} such that $F \cong F_{1}+F_{2}$. Since A_{1} is locally nilpotent, there exists $n=n\left(F_{1}, \Phi\right)$ such that $\left(F_{1} \Phi\right)^{n} F_{1}=0$. It follows that $\left(\left(F_{1}+F_{2}\right) \Phi\right)^{n}\left(F_{1}+F_{2}\right) \subseteq\left(F_{1} \Phi\right)^{n} F_{1}+F_{2} \subseteq F_{2}$. There exists $m=m\left(F_{2}, \Phi\right)$ such that $\left(F_{2} \Phi\right)^{m} F_{2}=0$. It follows that $\left(\left(F_{1}+F_{2}\right) \Phi\right)^{n m+n+m}\left(F_{1}+F_{2}\right)=0$.

Theorem 7.1. If M is a Γ-ring then $\mathcal{L}(M)$ is a locally nilpotent ideal.
Proof. It suffices to note that each element of a finite subset F of $\mathcal{L}(M)$ lies in a finite sum of locally nilpotent ideals of M, hence F lies in a finite sum of locally nilpotent ideals of M, which by an extension of Lemma 7.1 is a locally nilpotent ideal of M.

Lemma 7.2. If I is a locally nilpotent ideal of the right operator ring R of a Γ-ring M, then I^{*} is a locally nilpotent ideal of M.

Proof. Let F and Φ be finite subsets of I^{*} and Γ respectively. Then $[(\Phi, F)]$ is a finite subset of I, hence there exists n such that $[(\Phi, F)]^{n}=0$, so $[\Phi, F]^{n}=0$. It follows that $(F \Phi)^{n} F=0$ so I^{*} is locally nilpotent.

Lemma 7.3. If I is a locally nilpotent (right) ideal of a Γ-ring M, then there exists a locally nilpotent (right) ideal J of R, the right operator ring of M, such that $I \subseteq J^{*}$.

Proof. If $J=[\Gamma, I]$ then clearly J is an (a right) ideal of R and $I \subseteq J^{*}$. To show that J is locally nilpotent let F be a finite subset of J. Then there are finite subsets $F_{1} \cong I, \Phi_{1} \cong \Gamma$, such that $F \cong\left[\Phi_{1}, F_{1}\right]$. Since I is locally nilpotent, $\left(F_{1} \Phi_{1}\right)^{n} F_{1}=0$ for some n. It follows that $M F^{n+1} \subseteq M\left[\Phi_{1}, F_{1}\right]^{n+1}$ $=M \Phi_{1}\left(F_{1} \Phi_{1}\right)^{n} F_{1}=0$. Hence $F^{n+1}=0$ and J is locally nilpotent.

THEOREM 7.2. If M is a Γ-ring then $\mathcal{L}(M)=\mathcal{L}(R)^{*}$, where $\mathcal{L}(R)$ is the Levitzki nil radical of the right operator ring R of M.

Proof. Since $\mathcal{L}(R)$ is locally nilpotent, $\mathcal{L}(R)^{*} \cong \mathcal{L}(M)$ by Lemma 7.2. $\mathcal{L}(M) \cong \mathcal{L}(R)^{*}$ by Theorem 7.1 and Lemma 7.3.

REMARK. Since $\mathcal{L}(R)$ contains all locally nilpotent right ideals of R, Theorem 7.2 implies that $\mathcal{L}(M)$ contains all locally nilpotent right ideals of M. Since $\mathcal{L}(M)$ is itself a locally nilpotent right ideal of M, we see that $\mathcal{L}(M)$ can be characterized as the sum of all locally nilpotent right ideals of M. By the left-right symmetry of the definition of local nilpotency, $\mathcal{L}(M)$ may also be characterized as the sum of all locally nilpotent left ideals of M.

Theorem 7.3. If I is an ideal of the Γ-ring M then $\mathcal{L}(I)=I \cap \mathcal{L}(M)$.
Proof. $I \cap \mathcal{L}(M) \cong \mathcal{L}(I)$ because $I \cap \mathcal{L}(M)$ is a locally nilpotent ideal of I as a Γ-ring.

To see that $\mathcal{L}(I) \cong I \cap \mathcal{L}(M)$ we consider an arbitrary locally nilpotent ideal S of I. $T=S+S \Gamma M$ is a right ideal of M containing S. Since $T \cong I$ we are done if we show $T \subseteq \mathcal{L}(M)$. Let F and Φ be finite subsets of T and Γ respectively. Then $F \Phi F$ is contained in a subgroup of M generated by a
finite subset, F_{1}, of S, hence there exists $n=n\left(F_{1}, \Phi\right)$ such that $\left(F_{1} \Phi\right)^{n} F_{1}=0$ so $(F \Phi)^{2 n+1} F=0$. Thus T is locally nilpotent and by the remark preceding the theorem, $T \cong \mathcal{L}(M)$.

Theorem 7.4. If M is a Γ-ring then $\mathcal{L}(M / \mathcal{L}(M))=\mathcal{L}(M)$, the zero ideal of $M / \mathcal{L}(M)$.

Proof. It suffices to show that for $a+\mathcal{L}(M) \in \mathcal{L}(M / \mathcal{L}(M))|a\rangle$ is locally nilpotent, hence $a \in \mathcal{L}(M)$.

Let F and Φ be finite subsets of $|a\rangle$ and Γ respectively. Let $\bar{F}=\{\bar{x}=$ $x+\mathcal{L}(M): x \in F\}$. Then \bar{F} is a finite subset of the principal right ideal generated by $a+\mathcal{L}(M)$ in $M / \mathcal{L}(M)$, hence $(\bar{F} \Phi)^{n} \bar{F}=0$ or $(F \Phi)^{n} F \cong \mathcal{L}(M)$ for some n. Since $(F \Phi)^{n} F$ is contained in a subgroup of M generated by a finite set, F_{1}, and since $\mathcal{L}(M)$ is locally nilpotent, there exists m such that $\left(F_{1} \Phi\right)^{m} F_{1}$ $=0$. Thus $(F \Phi)^{m n+m+n} F=0$, proving that $|a\rangle$ is locally nilpotent as desired.

§ 8. The Jacobson Radical

An element a of a Γ-ring M is right quasi-regular (abbreviated $r q r$) if, for any $\gamma \in \Gamma$, there exist $\eta_{i} \in \Gamma, x_{i} \in M, i=1,2, \cdots, n$ such that

$$
x \gamma a+\sum_{i=1}^{n} x \eta_{i} x_{i}-\sum_{i=1}^{n} x \gamma a \eta_{i} x_{i}=0 \quad \text { for all } x \in M .
$$

A subset S of M is $r q r$ if every element in S is $r q r . ~ g(M)=\{a \in M:\langle a\rangle$ is $r q r\}$ is the right Jacobson radical of M.

Theorem 8.1. Every nilpotent element in a Γ-ring M is rqr.
Proof. If $a \in M$ is nilpotent and $\gamma \in \Gamma$, then $(a \gamma)^{n} a=0$ for some n. Let $\eta_{1}=\eta_{2}=\cdots=\eta_{n}=\gamma$ and let $x_{1}=-a, x_{i}=-(a \gamma)^{i-1} a$ for $i=2,3, \cdots, n$. Then

$$
x \gamma a+\sum_{i=1}^{n} x \eta_{i} x_{i}-\sum_{i=1}^{n} x \gamma a \eta_{i} x_{i}=x \gamma(a \gamma)^{n} a=0 \quad \text { for all } x \in M .
$$

Hence a is $r q r$.
Lemma 8.1. An element a of a Γ-ring M is rqr if and only if, for all $r \in \Gamma,[r, a]$ is rqr in the right operator ring R of M.

Proof. Left to the reader.
Theorem 8.2. If M is a Γ-ring then $g(M)=g(R)^{*}$, where $g(R)$ denotes the Jacobson radical of the right operator ring R of M.

Proof. In $R,|[\gamma, a]\rangle=\{[\gamma, b] \in R: b \in|a\rangle\}$. If $a \in \mathcal{g}(M)$ then $\langle a\rangle$ is rqr, hence $|a\rangle$ is $r q r$. Thus by Lemma 8.1, $|[\gamma, a]\rangle$ is $r q r$ in R for all γ, and therefore $a \in \mathcal{g}(R)^{*}$.

If $a \in \mathscr{g}(R)^{*}$ then $\langle[\gamma, a]\rangle$ is $r q r$ in R for all $\gamma \in \Gamma$, hence $[\gamma, b]$ is $r q r$ in R for all $\gamma \in \Gamma, b \in\langle a\rangle$. Thus by Lemma 8.1, $\langle a\rangle$ is $r q r$, hence $a \in g(M)$ proving that $g(R)^{*} \leqq g(M)$.

It follows from Theorem 8.2 that $g(M)$ is an ideal of M and contains all rqr right ideals of M. Thus $g(M)$ may be characterized as the sum of all rqr right ideals of M.

Theorem 8.3. If M is a Γ-ring in the sense of Nobusawa then $g(M)$ is the sum of all rqr left ideals of M.

Proof. It suffices to show that every rqr principal left ideal of M is contained in $g(M)$. Let $\gamma \in \Gamma$ and let $b \in\langle a|$ where $\langle a|$ is rqr. Since M is a Γ-ring in the sense of Nobusawa, every element in $\langle[\gamma, b]|$ can be expressed as $n[\gamma, b]+\sum_{i}\left[\lambda_{i}, x_{i}\right][\gamma, b]=\left[n \gamma+\sum_{i} \lambda_{i} x_{i} \gamma, b\right]$, where n is an integer. By Lemma 8.1 every element in $\langle[\gamma, b]|$ is $r q r$ in R so $\langle[\gamma, b]| \subseteq \mathcal{g}(R)$. Since γ was arbitrary, $b \in g(R)^{*}=g(M)$.

Theorem 8.4. If I is an ideal of a Γ-ring M then $g(I)=I \cap g(M)$.
Proof. To show that $I \cap \mathcal{g}(M) \subseteq \mathcal{g}(I)$, we prove that $I \cap \mathcal{g}(M)$ is a $r q r$ ideal of I. Let $a \in I \cap \mathcal{g}(M)$ and $\gamma \in \Gamma$. Since $a \in \mathcal{g}(M)$ there exist $x_{i} \in M$, $\eta_{i} \in \Gamma$, such that $x \gamma a+\sum x \eta_{i} x_{i}-\Sigma x \gamma a \eta_{i} x_{i}=0$ for all $x \in M$. Then $x \gamma a \gamma a$ $+\sum x \eta_{i} x_{i} \gamma a-\sum x \gamma a \eta_{i} x_{i} \gamma a=0$ and $x \gamma a+\left(\sum x \eta_{i}\left(x_{i} \gamma a\right)-x \gamma a\right)-\left(\sum x \gamma a \eta_{i}\left(x_{i} \gamma a\right)\right.$ $-x \gamma a \gamma a)=0$. Since $a \in I$ and each $x_{i} \gamma a \in I$, we see that a is rqr in I.

To prove that $\mathcal{g}(I) \cong I \cap \mathcal{g}(M)$, let $a \in \mathcal{g}(I)$ and $b \in|a\rangle$. Then for any $\gamma \in \Gamma,(b \gamma)^{2} b$ is in the principal right ideal in I generated by a. Hence $(b \gamma)^{2} b$ is $r q r$ in I, say $y \gamma(b \gamma)^{2} b+\Sigma y \delta_{j} y_{j}-\Sigma y \gamma(b \gamma)^{2} b \delta_{j} y_{j}=0$ for all $y \in I$, where $\delta_{j} \in \Gamma$, $y_{j} \in I$. If $x \in M$ then $x \gamma b \in I$, so $(x \gamma b) \gamma(b \gamma)^{2} b+\sum x \gamma b \delta_{j} y_{j}-\Sigma x \gamma b \gamma(b \gamma)^{2} b \delta_{j} y_{j}=0$ or $x(\gamma b)^{4}+\sum x \gamma b \delta_{j} y_{j}-\sum x(\gamma b)^{4} \delta_{j} y_{j}=0$. This may be written as $x \gamma b+\left(\sum x(\gamma b)^{3} \delta_{j} y_{j}\right.$ $\left.+\Sigma x(\gamma b)^{2} \delta_{j} y_{j}+\sum x(\gamma b) \delta_{j} y_{j}-x(\gamma b)^{3}-x(\gamma b)^{2}-x \gamma b\right)-\left(x(\gamma b)^{4} \delta_{j} y_{j}+\Sigma x(\gamma b)^{3} \delta_{j} y_{j}\right.$ $\left.+\Sigma x(\gamma b)^{2} \delta_{j} y_{j}-x(\gamma b)^{4}-x(\gamma b)^{3}-x(\gamma b)^{2}\right)=0$, which is of the form

$$
x \gamma b+\sum x \lambda_{k} z_{k}-\Sigma x \gamma b \lambda_{k} z_{k}=0 .
$$

Hence b is $r q r$ in M, whence $|a\rangle$ is $r q r$ in M, thence $a \in \mathscr{g}(M)$.
Theorem 8.5. If M is a Γ-ring then $g(M / g(M))=g(M)$, the zero ideal of $M / \mathcal{g}(M)$.

Proof. If $a+g(M) \in \mathcal{g}(M / \mathcal{g}(M))$ and $b \in|a\rangle, \gamma \in \Gamma$, then $b+g(M)$ belongs to the $r q r$ principal right ideal generated in $M / \mathcal{g}(M)$ by $a+\mathcal{g}(M)$, hence $b+g(M)$ is $r q r$ in $M / g(M)$. It follows that there exist $\eta_{i} \in \Gamma, x_{i} \in M, i=1$, $2, \cdots, n$, such that $x \gamma b+\sum x \eta_{i} x_{i}-\sum x \gamma b \eta_{i} x_{i} \in \mathcal{g}(M)$ for all $x \in M$. Put $x=b \gamma b$. Then $c=b(\gamma b)^{2}+\sum_{i} b \gamma b \eta_{i} x_{i}-\sum_{i} b(\gamma b)^{2} \eta_{i} x_{i} \in g(M)$. If $y \in M$ then $y \gamma b \in M$ and hence $(y \gamma b) \gamma c+\sum_{j}(y \gamma b) \lambda_{j} z_{j}-\sum_{j}(y \gamma b) \gamma c \lambda_{j} z_{j}=0$. Substituting for c and rearranging terms, we obtain $y \gamma b+\left(-y \gamma b-y(\gamma b)^{2}-y(\gamma b)^{3}+\sum_{i} y(\gamma b)^{3} \eta_{i} x_{i}\right.$ $\left.-\sum_{i, j} y(\gamma b)^{3} \eta_{i} x_{i} \lambda_{j} z_{j}+\sum_{j} y \gamma b \lambda_{j} z_{j}+\sum_{j} y(\gamma b)^{2} \lambda_{j} z_{j}+\sum_{j} y(\gamma b)^{3} \lambda_{j} z_{j}\right)-\left(-y(\gamma b)^{2}-y(\gamma b)^{3}\right.$ $\left.-y(\gamma b)^{4}+\sum_{i} y(\gamma b)^{4} \eta_{i} x_{i}-\sum_{i, j} y(\gamma b)^{4} \eta_{i} x_{i} \lambda_{j} z_{j}+\sum_{j} y(\gamma b)^{2} \lambda_{j} z_{j}+\sum_{j} y(\gamma b)^{3} \lambda_{j} z_{j}+\sum_{j} y(\gamma b)^{4} \lambda_{j} z_{j}\right)$ $=0$, hence b is $r q r$. Therefore $|a\rangle$ is $r q r$ and $a \in \mathcal{g}(M)$.

We note in passing that we can also define left quasi-regularity and the left Jacobson radical for Γ-rings. It is unlikely that the left Jacobson radical is equal to $g(M)$.

§ 9. Relations among the Radicals

We will prove:
THEOREM 9.1. If M is a Γ-ring then $\subseteq(M) \subseteq \mathscr{P}(M) \subseteq \mathcal{L}(M) \subseteq \mathscr{N}(M) \subseteq \mathcal{g}(M)$.
Theorem 9.2. If M is a Γ-ring which satisfies the descending chain condition on right ideals, then $\subseteq(M)=\mathscr{P}(M)=\mathcal{L}(M)=\mathscr{N}(M)=\mathscr{g}(M)$.

Proof of Theorem 9.1. From ring theory it is known that $\mathcal{P}(R) \subseteq \mathcal{L}(R)$ $\cong \mathcal{g}(R)$. By Theorems 4.1, 7.2, and 8.2, it follows that $\mathscr{P}(M) \cong \mathcal{L}(M) \cong \mathcal{g}(M)$.

Evidently, every strongly nilpotent ideal is contained in any prime ideal, so $\subseteq(M) \cong \mathscr{P}(M)$.

It is also clear that every locally nilpotent ideal is nil, so $\mathcal{L}(M) \cong \mathscr{N}(M)$. By Theorem 8.1, every nil ideal is rqr, hence $\mathfrak{n}(M) \subseteq \mathcal{g}(M)$.

Proof of Theorem 9.2. It suffices to show $\mathcal{g}(M) \subseteq \subseteq(M)$. For convenience, let $J=g(M)$. Consider the chain $J \supseteq J \Gamma J \supseteq(J \Gamma)^{2} J \supseteq \cdots$ of ideals. By the descending chain condition, $(J \Gamma)^{n} J=(J \Gamma)^{n+1} J=\cdots$ for some n. Denote $(J \Gamma)^{n} J$ by I. Clearly $I \Gamma I=I$.

If $I \neq 0$ then the set \mathcal{R}, of all right ideals A of M contained in I such that $A \Gamma I \neq 0$, is non-empty. By the descending chain condition, \mathcal{R} contains a minimal element, B. Then there exist $b \in B, \delta \in \Gamma$ such that $b \delta I \neq 0$. Thus ($b \delta I) \Gamma I=b \delta I \neq 0$, and $b \delta I \subseteq B \in \mathcal{R}$. Consequently $b \delta I=B$, and there exists $a \in I$ such that $b \delta a=b$. But $a \in J$ is $r q r$ so there exist $\eta_{i} \in \Gamma, x_{i} \in M$ such that $x \delta a+\sum x \eta_{i} x_{i}-\sum x \delta a \eta_{i} x_{i}=0$ for all $x \in M$. Putting $x=b$ we obtain $b+\sum b \eta_{i} x_{i}-\Sigma b \eta_{i} x_{i}=0$, or $b=0$, a contradiction. Hence $I=0$; i. e., $(J \Gamma)^{n} J=0$. Therefore $J=\mathscr{g}(M)$ is strongly nilpotent and $g(M) \cong \subseteq(M)$.

It can be shown that $\mathscr{P}(M), \subseteq(M), \mathcal{L}(M)$, and $g(M)$ are invariant under the transition of M to a Γ^{\prime}-ring in the sense of Nobusawa. Moreover, $\operatorname{n}(M)$ contains $\Re^{\prime}(M)$, the nil radical of M as a Γ^{\prime}-ring; and if M is already a Γ ring in the sense of Nobusawa, then $\Omega(M)=\Omega^{\prime}(M)$.

Finally, we remark that Theorem 9.1 remains true if we replace $g(M)$ by the left Jacobson radical of M. Moreover if M satisfies the descending chain condition on left ideals, then the left Jacobson radical of M coincides with $\mathbb{S}(M)$. Hence if M satisfies the descending chain conditions on both left ideals and right ideals then the right Jacobson radical and the left Jacobson radical coincide.

§ 10. Concluding Remarks

By virtue of Theorems $8.5,7.4$ and 6.3 every Γ-ring M has a homomorphic image with zero radical, where radical can be taken as $\mathcal{f}(M), \mathcal{L}(M)$ or $\mathscr{N}(M)$. Barnes [1] established this fact for $\mathscr{P}(M)$.

Although it is true that any ring M can be regarded as a Γ-ring by taking $\Gamma=M$, it is not necessarily true that M can be regarded as a Γ-ring in the sense of Nobusawa by taking $\Gamma=M$. But if M is a simple ring then $M^{2}=M$, and considered as a Γ-ring with $\Gamma=M, M$ is simple. Also if M is a semi-simple ring and $a \Gamma a=0$ with $\Gamma=M$, then $(a)^{3}=0$, where (a) denotes the principal ideal generated in the ring M by a. This says (a) is nilpotent; but in a semi-simple ring there are no nonzero nilpotent ideals. Therefore $a=0$, and M is semi-simple when regarded as a Γ-ring. Finally we note that if the ring M satisfies the descending chain condition on one-sided ideals, then regarded as a Γ-ring with $\Gamma=M, M$ also satisfies the descending chain condition on one-sided ideals. Thus the analogues of the Wedderburn-Artin Theorems for Γ-rings obtained by Nobusawa [5] are indeed generalizations of the corresponding theorems for rings.

Nobusawa [5] defined a Γ-ring M to be semi-simple if $a \Gamma a=0$ for $a \in M$ implies $a=0$, and this is the definition of semi-simplicity used in this paper. However, a ring M regarded as a Γ-ring with $\Gamma=M$ which is semi-simple in the sense of Nobusawa may not have zero Jacobson radical. The simple radical rings due to Sasiada [6] are such examples. Therefore it would seem preferable to define a Γ-ring M to be semi-simple if $g(M)=0$. Since $\subseteq(M)$ $\subseteq g(M)$, a Γ-ring in the sense of Nobusawa with the property that $g(M)=0$ would be semi-simple in the sense of Nobusawa, hence Nobusawa's proof of the analogue of the Wedderburn-Artin Theorem would apply. Further justification for redefining semi-simplicity by $g(M)=0$ comes from the following

THEOREM 10.1. If M is a ring with Jacobson radical J, then regarded as a Γ-ring with $\Gamma=M, g(M)=J$.

Proof. J is an ideal of the ring M, hence is an ideal of the Γ-ring M with $\Gamma=M$. If $a \in J$ and $g \in M$ then $g a \in J$, hence $g a+y-g a y=0$ and therefore $x g a+x y-x g a y=0$ for all $x \in M$. Since $y=(g a) y-g a \in M^{2}$, we see that a is $r q r$ in M as a Γ-ring with $\Gamma=M$. Thus $J \cong g(M)$.

For the opposite inclusion it suffices to show that $\mathcal{g}(M)$ is a rqr left ideal of M. Consider $|b a\rangle$, where $a \in \mathcal{g}(M), b \in M$. Every element of $|b a\rangle$ can be written as be, where $e=n a+\sum a u_{j} z_{j} \in \mathcal{g}(M)+\mathcal{g}(M) \Gamma M \cong \mathcal{g}(M)$. Let $g \in \Gamma$ $=M$. Then $g b \in \Gamma$ also, and since e is rqr, there exist $v_{i} \in \Gamma, y_{i} \in M$ such that $x(g b) e+\sum x v_{i} y_{i}-\Sigma x(g b) e v_{i} y_{i}=0$ for all $x \in M$. But this may also be interpreted as $x g(b e)+\sum x v_{i} y_{i}-\sum x g(b e) v_{i} y_{i}=0$ for all $x \in M$, hence be is
$r q r$ in M as a Γ-ring with $\Gamma=M$. Therefore $|b a\rangle$ is $r q r$ and $b a \in \mathcal{g}(M)$,. proving that $g(M)$ is a left ideal of M.

If $a \in \mathcal{g}(M)$ then there exist $p_{i} \in \Gamma, w_{i} \in M$, such that

$$
x a a+\sum_{i} x p_{i} w_{i}-\sum_{i} x a a p_{i} w_{i}=0 \quad \text { for every } x \text { in } M .
$$

Letting $\sum_{i} p_{i} w_{i}=c$ for convenience, we see that $a^{2}+c-a^{2} c$ belongs to the right: annihilator of M, which is a nilpotent ideal of index two; hence $a^{2}+c-a^{2} c \in J$. But if $a^{2} \circ c \in J$ then there exists d such that $a^{2} \circ c \circ d=0$; i. e., a^{2} is $r q r$ in M. This implies that a is $r q r$ in M, hence $g(M)$ is a $r q r$ left ideal of M and we are done.

Wright State University

Wright State University and North Carolina State University

References

[1] W.E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math., 18 (1966), 411-422..
[2] N. Jacobson, Structure of rings, revised ed., Amer. Math. Soc. Colloquium Publ. 37, Providence, 1964.
[3] J. Luh, On primitive Γ-rings with minimal one-sided ideals, Osaka J. Math., 5 . (1968), 165-173.
[4] J. Luh, On the theory of simple Γ-rings, Michigan Math. J., 16 (1969), 65-75.
[5] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math., 1 (1964), 81-89.
[6] E. Sasiada, Solution of the problem of existence of a simple radical ring, Bull.. Acad. Polon. Sci. Ser. Math. Astronom. Phys., 9 (1961), 257.

