Radicals of gamma rings

By William E. COPPAGE and Jiang LUH

(Received March 16, 1970)

§1. Introduction

Let M and Γ be additive abelian groups. If for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$, the following conditions are satisfied,

(1) $a\alpha b \in M$

(2) $(a+b)\alpha c = a\alpha c + b\alpha c$ $a(\alpha+\beta)b = a\alpha b + a\beta b$ $a\alpha(b+c) = a\alpha b + a\alpha c$

(3) $(a\alpha b)\beta c = a\alpha(b\beta c)$,

then, following Barnes [1], M is called a Γ -ring. If these conditions are strengthened to,

(1') $a\alpha b \in M$, $\alpha a\beta \in \Gamma$

- (2') same as (2)
- (3') $(a\alpha b)\beta c = a(\alpha b\beta)c = a\alpha(b\beta c)$

(4') $x\gamma y = 0$ for all $x, y \in M$ implies $\gamma = 0$,

then M is called a Γ -ring in the sense of Nobusawa [5].

Any ring can be regarded as a Γ -ring by suitably choosing Γ . Many fundamental results in ring theory have been extended to Γ -rings: Nobusawa [5] proved the analogues of the Wedderburn-Artin theorems for simple Γ rings and for semi-simple Γ -rings (but see [4]); Barnes [1] obtained analogues of the classical Noether-Lasker theorems concerning primary representations of ideals for Γ -rings; Luh [3, 4] gave a generalization of the Jacobson structure theorem for primitive Γ -rings having minimum one-sided ideals, and obtained several other structure theorems for simple Γ -rings.

In this paper the notions of Jacobson radical, Levitzki nil radical, nil radical and strongly nilpotent radical for Γ -rings are introduced, and Barnes' [1] prime radical is studied further. Inclusion relations for these radicals are obtained, and it is shown that the radicals all coincide in the case of a Γ -ring which satisfies the descending chain condition on one-sided ideals. The other usual radical properties from ring theory are similarly considered.

For all notions relevant to ring theory we refer to [2].

§2. Preliminaries

If A and B are subsets of a Γ -ring M and $\Theta, \Phi \subseteq \Gamma$, then we denote by $A\Theta B$, the subset of M consisting of all finite sums of the form $\sum_{i} a_i \alpha_i b_i$, where $a_i \in A$, $b_i \in B$, and $\alpha_i \in \Theta$. We define $\Theta A \Phi$ analogously in case M is a Γ -ring in the sense of Nobusawa. For singleton subsets we abbreviate these notations to, for example, $\{a\}\Theta B = a\Theta B$.

A right (left) ideal of a Γ -ring M is an additive subgroup I of M such that $I\Gamma M \subseteq I$ ($M\Gamma I \subseteq I$). If I is both a right ideal and a left ideal then we say that I is an ideal, or redundantly, a two-sided ideal, of M.

For each a of a Γ -ring M, the smallest right ideal containing a is called the principal right ideal generated by a and is denoted by $|a\rangle$. We similarly define $\langle a|$ and $\langle a\rangle$, the principal left and two-sided (respectively) ideals generated by a. We have $|a\rangle = Za + a\Gamma M$, $\langle a| = Za + M\Gamma a$, and $\langle a\rangle = Za + a\Gamma M$ $+ M\Gamma a + M\Gamma a\Gamma M$, where $Za = \{na : n \text{ is an integer}\}.$

Let I be an ideal of Γ -ring M. If for each a+I, b+I in the factor group M/I, and each $\gamma \in \Gamma$, we define $(a+I)\gamma(b+I) = a\gamma b+I$, then M/I is a Γ -ring which we shall call the difference Γ -ring of M with respect to I.

Let M be a Γ -ring and F the free abelian group generated by $\Gamma \times M$. Then

$$A = \{ \sum_{i} n_{i}(\gamma_{i}, x_{i}) \in F : a \in M \Rightarrow \sum_{i} n_{i}a\gamma_{i}x_{i} = 0 \}$$

is a subgroup of F. Let R = F/A, the factor group, and denote the coset $(\gamma, x)+A$ by $[\gamma, x]$. It can be verified easily that $[\alpha, x]+[\beta, x]=[\alpha+\beta, x]$ and $[\alpha, x]+[\alpha, y]=[\alpha, x+y]$ for all $\alpha, \beta \in \Gamma$ and $x, y \in M$. We define a multiplication in R by

$$\sum_{i} [\alpha_{i}, x_{i}] \sum_{j} [\beta_{j}, y_{j}] = \sum_{i,j} [\alpha_{i}, x_{i}\beta_{j}y_{j}].$$

Then R forms a ring. If we define a composition on $M \times R$ into M by $a \sum_{i} [\alpha_i, x_i] = \sum_{i} a \alpha_i x_i$ for $a \in M$, $\sum_{i} [\alpha_i, x_i] \in R$, then M is a right R-module, and we call R the right operator ring of the Γ -ring M. Similarly, we may construct a left operator ring L of M so that M is a left L-module. Clearly I is a right (left) ideal of M if and only if I is a right R-module (left L-module) of M. Also if A is a right (left) ideal of R(L) then MA(AM) is an ideal of M. For subsets $N \subseteq M$, $\Phi \subseteq \Gamma$, we denote by $[\Phi, N]$ the set of all finite sums $\sum_{i} [\gamma_i, x_i]$ in R, where $\gamma_i \in \Phi$, $x_i \in N$, and we denote by $[(\Phi, N)]$ the set of all elements $[\varphi, x]$ in R, where $\varphi \in \Phi$, $x \in N$. Thus, in particular, $R = [\Gamma, M]$.

A Γ -ring M is said to be simple if $M\Gamma M \neq 0$ and 0 and M are the only

ideals of M. M is said to be right primitive if R is a right primitive ring and $M\Gamma x = 0 \Rightarrow x = 0$ (see [3, 4]). M is said to be completely prime if $a\Gamma b = 0$, with $a, b \in M$ implies a = 0 or b = 0. Following Nobusawa [5], M is semisimple if $a\Gamma a = 0$, with $a \in M$, implies a = 0.

For $S \subseteq R$ we define $S^* = \{a \in M : [\Gamma, a] = [\Gamma, \{a\}] \subseteq S\}$. It then follows that if S is a right (left) ideal of R, then S^* is a right (left) ideal of M. Also for any collection C of sets in R, $\bigcap_{S \subseteq C} S^* = (\bigcap_{S \subseteq C} S)^*$.

If M_i is a Γ_i -ring for i=1, 2, then an ordered pair (θ, ϕ) of mappings is called a homomorphism of M_1 onto M_2 if it satisfies the following properties:

- (i) θ is a group homomorphism from M_1 onto M_2 .
- (ii) ϕ is a group isomorphism from Γ_1 onto Γ_2 .
- (iii) For every $x, y \in M_1, \gamma \in \Gamma_1$,

$$(x\gamma y)\theta = (x\theta)(\gamma\phi)(y\theta)$$
.

This concept is a generalization of the definition of homomorphism for Γ rings given by Barnes [1]. The kernel of the homomorphism (θ, ϕ) is defined to be $K = \{x \in M : x\theta = 0\}$. Clearly K is an ideal of M. If θ is a group isomorphism, i.e., if K = 0, then (θ, ϕ) is called an isomorphism from the Γ_1 ring M_1 onto the Γ_2 -ring M_2 .

Let I be an ideal of the Γ -ring M. Then the ordered pair (ρ, ι) of mappings, where $\rho: M \to M/I$ is defined by $x\rho = x+I$, and ι is the identity mapping of Γ , is a homomorphism called the natural homomorphism from M onto M/I.

We omit the proof, which is precisely analogous to that for rings, of the following fundamental theorem of homomorphism for Γ -rings.

THEOREM 2.1. If (θ, ϕ) is a homomorphism from the Γ_1 -ring M_1 onto the Γ_2 -ring M_2 with kernel K, then M_1/K and M_2 are isomorphic.

Finally, we remark that the analogues of the other homomorphism theorems (Theorems 2 and 3 in Barnes [1]) remain true under the modified definition of homomorphism for Γ -rings.

§ 3. Γ -rings in the sense of Nobusawa

Every ring A is a Γ -ring if we take $\Gamma = A$ and interpret the ternary operation in the natural way; but A may not be a Γ -ring in the sense of Nobusawa. It is of interest to know if every ring is a Γ -ring in the sense of Nobusawa for *some* choice of Γ . In this section we establish an affirmative answer to this question by proving

THEOREM 3.1. Every Γ -ring M is a Γ' -ring in the sense of Nobusawa for some abelian group Γ' .

PROOF. We first construct $\Gamma' = \Phi/K$, where Φ is the free abelian group generated by $\Gamma \times M \times \Gamma$ and K is the subgroup consisting of all elements $\sum_{i} n_i(\alpha_i, a_i, \beta_i)$ of Φ with the property that $\sum_{i} n_i(x\alpha_i a_i)\beta_i y = 0$ for every $x, y \in M$.

We write $[\alpha, a, \beta]$ for the coset $(\alpha, a, \beta)+K$. For subsets $\Theta, \Phi \subseteq \Gamma, N \subseteq M$, we define $[(\Theta, N, \Phi)] = \{[\theta, x, \varphi] \in \Gamma' : \theta \in \Theta, x \in N, \varphi \in \Phi\}$. Then for $\sum_{i} [\alpha_{i}, a_{i}, \beta_{i}]$ and $\sum_{j} [\gamma_{j}, b_{i}, \delta_{j}]$ in Γ' and $x, y \in M$, we define $x(\sum_{i} [\alpha_{i}, a_{i}, \beta_{i}])y = \sum_{i} (x\alpha_{i}a_{i})\beta_{i}y$ and $(\sum_{i} [\alpha_{i}, a_{i}, \beta_{i}])x(\sum_{j} [\gamma_{j}, b_{j}, \delta_{j}]) = \sum_{i,j} [\alpha_{i}, (a_{i}\beta_{i}x)\gamma_{j}b_{j}, \delta_{j}]$. These two compositions are well-defined and M is a Γ' -ring in the sense of Nobusawa. Note in passing that for subsets A, B of $M, A\Gamma'B = A\Gamma M\Gamma B$. Also, if M is already a Γ -ring in the sense of Nobusawa, then the Γ' -ring Mwhich we have constructed is isomorphic to M considered as a $(\Gamma M\Gamma)$ -ring.

It can be shown that complete primeness, simplicity, semi-simplicity and primitivity are hereditary under the transition of M to a Γ' -ring in the sense of Nobusawa.

§4. The Prime Radical

Following Barnes [1], an ideal P of a Γ -ring M is prime if for any ideals $A, B \subseteq M, A\Gamma B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. A subset S of M is an m-system in M if $S = \phi$ or if $a, b \in S$ implies $\langle a \rangle \Gamma \langle b \rangle \cap S \neq \phi$. The prime radical of M, which we denote by $\mathcal{P}(M)$, is defined as the set of elements x in M such that every m-system containing x contains 0. Barnes [1] has characterized $\mathcal{P}(M)$ as the intersection of all prime ideals of M, has shown that an ideal P is a prime if and only if its complement P^c is an m-system, and that an ideal P of a Γ -ring M in the sense of Nobusawa is prime if and only if $a\Gamma b \subseteq P$ implies $a \in P$ or $b \in P$.

THEOREM 4.1. If $\mathcal{P}(R)$ is the prime radical of the right operator ring R of the Γ -ring M, then $\mathcal{P}(M) = \mathcal{P}(R)^*$.

Our proof requires a lemma which is of interest in its own right:

LEMMA 4.1. If P is a prime ideal of R then P^* is a prime ideal of M.

PROOF OF LEMMA. Suppose $A\Gamma B \subseteq P^*$ where A and B are ideals of M. Then $[\Gamma, A][\Gamma, B] = [\Gamma, A\Gamma B] \subseteq P$. By the primeness of P, either $[\Gamma, A] \subseteq P$ or $[\Gamma, B] \subseteq P$. This means that either $A \subseteq P^*$ or $B \subseteq P^*$.

PROOF OF THEOREM. If Q is an ideal of M then

$$P = \{ \sum_{i} [\alpha_{i}, a_{i}] \in R : M(\sum_{i} [\alpha_{i}, a_{i}]) \subseteq Q \}$$

is an ideal of R. If Q is prime and A, B are ideals of R such that $AB \subseteq P$ then also $ARB \subseteq P$, hence $MA\Gamma MB \subseteq MP \subseteq Q$. Since MA and MB are ideals

of M, it follows that $MA \subseteq Q$ or $MB \subseteq Q$. Thus $A \subseteq P$ or $B \subseteq P$ and we may conclude that P is prime. Note also that $P^* = \{x \in M : [\Gamma, x] \subseteq P\} = \{x \in M : M\Gamma x \subseteq Q\}$. Thus if Q is a prime ideal of M then $Q = P^*$. It follows that $\mathcal{P}(M)$, which is the intersection of all prime ideals of M, contains $\bigcap_{P \in \mathcal{D}} P^* = (\bigcap_{P \in \mathcal{D}} P)^*$, where \mathcal{D} is a certain collection of prime ideals of R. But $(\bigcap_{P \in \mathcal{D}} P)^*$ $\cong \mathcal{P}(R)^*$ so we may conclude that $\mathcal{P}(M) \supseteq \mathcal{P}(R)^*$.

On the other hand, $\mathscr{P}(R^*) = (\bigcap P)^* = (\bigcap P^*)$, where the intersection is taken over all prime ideals of R. Since, by Lemma 4.1., each P^* is a prime ideal of M, and since $\mathscr{P}(M)$ is the intersection of all prime ideals of M, it follows that $\mathscr{P}(M) \subseteq \mathscr{P}(R)^*$.

THEOREM 4.2. If I is an ideal of the Γ -ring M then $\mathcal{P}(I) = I \cap \mathcal{P}(M)$, where $\mathcal{P}(I)$ denotes the prime radical of I considered as a Γ -ring.

We begin by proving

LEMMA 4.2. If P is a prime ideal of M then $P \cap I$ is a prime ideal of I. PROOF OF LEMMA. Let A, B be ideals of I such that $A\Gamma B \subseteq P \cap I$. If $\langle A \rangle = A + A\Gamma M + M\Gamma A + M\Gamma A\Gamma M$ and $\langle B \rangle = B + B\Gamma M + M\Gamma B + M\Gamma B\Gamma M$, then $I\Gamma \langle A \rangle \Gamma I \subseteq A$ and $\langle A \rangle \subseteq I$. Thus, and similarly,

$$(\langle A \rangle \Gamma \langle A \rangle \Gamma \langle A \rangle) \Gamma (\langle B \rangle \Gamma \langle B \rangle \Gamma \langle B \rangle) \subseteq A \Gamma B \subseteq P.$$

Since P is prime in M and $\langle A \rangle \Gamma \langle A \rangle \Gamma \langle A \rangle$, $\langle B \rangle \Gamma \langle B \rangle \Gamma \langle B \rangle$ are ideals of M, we conclude that $\langle A \rangle \Gamma \langle A \rangle \Gamma \langle A \rangle \subseteq P$ or $\langle B \rangle \Gamma \langle B \rangle \Gamma \langle B \rangle \subseteq P$. By repeated use of the primeness of P we get $\langle A \rangle \subseteq P$ or $\langle B \rangle \subseteq P$, hence $A \subseteq P$ or $B \subseteq P$. Therefore either $A \subseteq P \cap I$ or $B \subseteq P \cap I$ and $P \cap I$ is a prime ideal of I.

PROOF OF THEOREM. $\mathcal{P}(I)$ is the set of all elements x in I such that every *m*-system of I which contains x contains 0. Every *m*-system of I is certainly also an m-system of M. It follows that $\mathcal{P}(I) \supseteq I \cap \mathcal{P}(M)$. By Lemma 4.2, $\mathcal{P}(I) \subseteq I \cap \mathcal{P}(M)$. Thus $\mathcal{P}(I) = I \cap \mathcal{P}(M)$.

§5. The Strongly Nilpotent Radical

An element a of a Γ -ring M is strongly nilpotent if there exists a positive integer n such that $(a\Gamma)^n a = (a\Gamma a\Gamma a\Gamma \cdots a\Gamma)a = 0$. A subset S of M is strongly nil if each of its elements is strongly nilpotent. S is strongly nilpotent if there exists a positive integer n such that $(S\Gamma)^n S = (S\Gamma S\Gamma \cdots S\Gamma)S$ = 0. Clearly a strongly nilpotent set is also strongly nil.

THEOREM 5.1. If M is a Γ -ring in the sense of Nobusawa and $a \in M$, then the following are equivalent:

- (i) a is strongly nilpotent
- (ii) $\langle a \rangle$ is strongly nil
- (iii) $\langle a \rangle$ is strongly nilpotent

PROOF. That (iii) implies (ii) and (ii) implies (i) is trivial. The proof that (i) implies (iii) is left to the reader.

We define the strongly nilpotent radical, $\mathfrak{S}(M)$, of the Γ -ring M to be the sum of all strongly nilpotent ideals of M.

THEOREM 5.2. If A and B are strongly nilpotent ideals of a Γ -ring M, then their sum is a strongly nilpotent ideal of M.

PROOF. If $(A\Gamma)^n A = 0$ then $((A+B)\Gamma)^n (A+B) = (A\Gamma)^n A + B_1 = B_1$, where $B_1 \subseteq B$. If $(B\Gamma)^m B = 0$ then $((A+B)\Gamma)^{mn+m+n}(A+B) = (((A+B)\Gamma)^n (A+B)\Gamma)^m ((A+B)\Gamma)^n (A+B)\Gamma)^m (A+B) = (B_1\Gamma)^m B_1 = 0$, hence A+B is strongly nilpotent.

THEOREM 5.3. If M is a Γ -ring then $\mathfrak{S}(M)$ is a strongly nil ideal of M.

PROOF. Each element x of $\mathfrak{S}(M)$ is in a finite sum of strongly nilpotent ideals of M, which, by Theorem 5.2, is strongly nilpotent. Therefore x is strongly nilpotent, whence $\mathfrak{S}(M)$ is strongly nil.

THEOREM 5.4. If A and B are strongly nil ideals of a Γ -ring M, then their sum is a strongly nil ideal of M.

PROOF. The proof parallels that of Theorem 5.2 and is left to the reader. THEOREM 5.5. If M is a Γ -ring in the sense of Nobusawa then $\mathfrak{S}(M)$ is the sum, S, of all strongly nil ideals of M.

PROOF. By Theorem 5.3, $\mathfrak{S}(M) \subseteq S$. On the other hand, if $a \in S$ then *a* belongs to a finite sum of strongly nil ideals of *M*, which, by Theorem 5.4, is a strongly nil ideal of *M*. By Theorem 5.1, $\langle a \rangle$ is strongly nilpotent. Therefore $\langle a \rangle \subseteq \mathfrak{S}(M)$, hence $a \in \mathfrak{S}(M)$, whence $S \subseteq \mathfrak{S}(M)$.

THEOREM 5.6. If M is a semi-simple Γ -ring then $\mathfrak{S}(M) = 0$.

PROOF. Let $a \in \mathfrak{S}(M)$ and $(a\Gamma)^n a = 0$. We may assume that $n = 2^m - 1$ where *m* is a positive integer. If $A = (a\Gamma)^{2^{m-1}-1}a$ then $A\Gamma A \subseteq (a\Gamma)^n a = 0$. Because *M* is semi-simple, A = 0; i. e., $(a\Gamma)^{2^{m-1}-1}a = 0$. Continuing this argument we finally obtain $a\Gamma a = 0$, hence a = 0.

THEOREM 5.7. If M is a Γ -ring in the sense of Nobusawa, then M is semisimple if and only if $\mathfrak{S}(M) = 0$.

PROOF. If M is not semi-simple then there exists $0 \neq a \in M$ such that $a\Gamma a = 0$. But then $\langle a \rangle \Gamma \langle a \rangle = 0$ so $\langle a \rangle$ is strongly nilpotent and therefore $\mathfrak{S}(M) \neq 0$.

The necessity follows from Theorem 5.6.

THEOREM 5.8. If I is an ideal of the Γ -ring M then $\mathfrak{S}(I) = I \cap \mathfrak{S}(M)$.

PROOF. If S is a strongly nilpotent ideal of I with $(S\Gamma)^n S = 0$, then $T = S + M\Gamma S + S\Gamma M + M\Gamma S\Gamma M$ is an ideal of M and $(T\Gamma)^2 T \subseteq S$. Hence $(T\Gamma)^{3n+2}T = 0$ and T is a strongly nilpotent ideal of M. It follows that $T \subseteq \mathfrak{S}(M)$, hence $S \subseteq I \cap \mathfrak{S}(M)$. Thus $\mathfrak{S}(I) \subseteq I \cap \mathfrak{S}(M)$.

On the other hand, if $a \in I \cap \mathfrak{S}(M)$ then $\langle a \rangle$ is a strongly nilpotent ideal of M. Since the principal ideal (of I) generated by a in I is contained in

 $\langle a \rangle$, $a \in \mathfrak{S}(I)$. Thus $I \cap \mathfrak{S}(M) \subseteq \mathfrak{S}(I)$.

§6. The Nil Radical

An element x of a Γ -ring M is nilpotent if for any $\gamma \in \Gamma$ there exists a positive integer $n = n(\gamma)$ such that $(x\gamma)^n x = (x\gamma)(x\gamma) \cdots (x\gamma)x = 0$. A subset S of M is nil if each element of S is nilpotent. The nil radical of M is defined as the sum of all nil ideals of M, and is denoted by $\mathcal{N}(M)$.

THEOREM 6.1. If A and B are nil ideals of the Γ -ring M, then their sum is a nil ideal of M.

PROOF. The proof parallels that of Theorem 5.2 and is left to the reader.

THEOREM 6.2. If M is a Γ -ring then $\mathcal{N}(M)$ contains $\mathcal{N}(R)^*$, where $\mathcal{N}(R)$ denotes the upper nil radical of R.

PROOF. Let $a \in \mathcal{N}(R)^*$. If $b \in \langle a \rangle$ and $\gamma \in \Gamma$ then $[\gamma, b] \in \mathcal{N}(R)$, so there exists a positive integer *n* such that $[\gamma, b]^n = 0$. Hence $(b\gamma)^n b = 0$, whence *b* is nilpotent and consequently $\langle a \rangle$ is nil. Therefore $a \in \mathcal{N}(M)$.

THEOREM 6.3. If M is a Γ -ring then $\mathfrak{N}(M/\mathfrak{N}(M)) = \mathfrak{N}(M)$, the zero ideal of $M/\mathfrak{N}(M)$.

PROOF. Let $a + \mathcal{N}(M) \in \mathcal{N}(M/\mathcal{N}(M))$ and let $b \in \langle a \rangle$. Then $b + \mathcal{N}(M)$ is in the nil principal ideal of $M/\mathcal{N}(M)$ generated by $a + \mathcal{N}(M)$. Hence for any $\gamma \in \Gamma$ there exists a positive integer *n* such that $((b + \mathcal{N}(M))\gamma)^n(b + \mathcal{N}(M)) =$ $\mathcal{N}(M)$; i.e., $(b\gamma)^n b \in \mathcal{N}(M)$. Since $\mathcal{N}(M)$ is a nil ideal of *M*, there exists a positive integer *m* such that $((b\gamma)^n b\gamma)^m((b\gamma)^n b) = 0$, or $(b\gamma)^{nm+m+n}b = 0$. Hence *b* is nilpotent, whence $\langle a \rangle$ is nil and $a \in \mathcal{N}(M)$.

THEOREM 6.4. If I is an ideal of the Γ -ring M then $\mathfrak{N}(I) = I \cap \mathfrak{N}(M)$.

PROOF. Every principal ideal generated in I by a is contained in the principal ideal generated in M by a, so $I \cap \mathcal{N}(M) \subseteq \mathcal{N}(I)$.

To show $\mathcal{N}(I) \subseteq I \cap \mathcal{N}(M)$, let $a \in \mathcal{N}(I)$ and $b \in \langle a \rangle$, the principal ideal generated in M by a. For any $\gamma \in \Gamma$, $(b\gamma)^2 b$ belongs to the nil principal ideal generated in I by a, so $((b\gamma)^2 b\gamma)^n (b\gamma)^2 b = 0$, or $(b\gamma)^{3n+2}b = 0$ for some $n = n(\gamma)$. Thus $\langle a \rangle$ is nil and $a \in \mathcal{N}(M)$. Clearly $a \in I$, so $a \in I \cap \mathcal{N}(M)$.

§7. The Levitzki Nil Radical

A subset S of a Γ -ring M is locally nilpotent if for any finite set $F \subseteq S$ and any finite set $\Phi \subseteq \Gamma$, there exists a positive integer n such that $(F\Phi)^n F$ = 0. By taking $F = \{x\}$ and $\Phi = \{\gamma\}$ we see that a locally nilpotent set is nil. The Levitzki nil radical of M is the sum of all locally nilpotent ideals of M, and is denoted by $\mathcal{L}(M)$.

LEMMA 7.1. If A_1 and A_2 are locally nilpotent ideals of a Γ -ring M then their sum is a locally nilpotent ideal of M. PROOF. If F, Φ are finite subsets of A_1+A_2 , Γ , respectively, then there exist finite subsets F_1 of A_1 and F_2 of A_2 such that $F \subseteq F_1+F_2$. Since A_1 is locally nilpotent, there exists $n = n(F_1, \Phi)$ such that $(F_1\Phi)^nF_1 = 0$. It follows that $((F_1+F_2)\Phi)^n(F_1+F_2) \subseteq (F_1\Phi)^nF_1+F_2 \subseteq F_2$. There exists $m = m(F_2, \Phi)$ such that $(F_2\Phi)^mF_2 = 0$. It follows that $((F_1+F_2)\Phi)^{nm+n+m}(F_1+F_2) = 0$.

THEOREM 7.1. If M is a Γ -ring then $\mathcal{L}(M)$ is a locally nilpotent ideal.

PROOF. It suffices to note that each element of a finite subset F of $\mathcal{L}(M)$ lies in a finite sum of locally nilpotent ideals of M, hence F lies in a finite sum of locally nilpotent ideals of M, which by an extension of Lemma 7.1 is a locally nilpotent ideal of M.

LEMMA 7.2. If I is a locally nilpotent ideal of the right operator ring R of a Γ -ring M, then I* is a locally nilpotent ideal of M.

PROOF. Let F and Φ be finite subsets of I^* and Γ respectively. Then $[(\Phi, F)]$ is a finite subset of I, hence there exists n such that $[(\Phi, F)]^n = 0$, so $[\Phi, F]^n = 0$. It follows that $(F\Phi)^n F = 0$ so I^* is locally nilpotent.

LEMMA 7.3. If I is a locally nilpotent (right) ideal of a Γ -ring M, then there exists a locally nilpotent (right) ideal J of R, the right operator ring of M, such that $I \subseteq J^*$.

PROOF. If $J = [\Gamma, I]$ then clearly J is an (a right) ideal of R and $I \subseteq J^*$. To show that J is locally nilpotent let F be a finite subset of J. Then there are finite subsets $F_1 \subseteq I$, $\Phi_1 \subseteq \Gamma$, such that $F \subseteq [\Phi_1, F_1]$. Since I is locally nilpotent, $(F_1\Phi_1)^nF_1 = 0$ for some n. It follows that $MF^{n+1} \subseteq M[\Phi_1, F_1]^{n+1} = M\Phi_1(F_1\Phi_1)^nF_1 = 0$. Hence $F^{n+1} = 0$ and J is locally nilpotent.

THEOREM 7.2. If M is a Γ -ring then $\mathcal{L}(M) = \mathcal{L}(R)^*$, where $\mathcal{L}(R)$ is the Levitzki nil radical of the right operator ring R of M.

PROOF. Since $\mathcal{L}(R)$ is locally nilpotent, $\mathcal{L}(R)^* \subseteq \mathcal{L}(M)$ by Lemma 7.2. $\mathcal{L}(M) \subseteq \mathcal{L}(R)^*$ by Theorem 7.1 and Lemma 7.3.

REMARK. Since $\mathcal{L}(R)$ contains all locally nilpotent right ideals of R, Theorem 7.2 implies that $\mathcal{L}(M)$ contains all locally nilpotent right ideals of M. Since $\mathcal{L}(M)$ is itself a locally nilpotent right ideal of M, we see that $\mathcal{L}(M)$ can be characterized as the sum of all locally nilpotent right ideals of M. By the left-right symmetry of the definition of local nilpotency, $\mathcal{L}(M)$ may also be characterized as the sum of all locally nilpotent left ideals of M.

THEOREM 7.3. If I is an ideal of the Γ -ring M then $\mathcal{L}(I) = I \cap \mathcal{L}(M)$.

PROOF. $I \cap \mathcal{L}(M) \subseteq \mathcal{L}(I)$ because $I \cap \mathcal{L}(M)$ is a locally nilpotent ideal of I as a Γ -ring.

To see that $\mathcal{L}(I) \subseteq I \cap \mathcal{L}(M)$ we consider an arbitrary locally nilpotent ideal S of I. $T = S + S\Gamma M$ is a right ideal of M containing S. Since $T \subseteq I$ we are done if we show $T \subseteq \mathcal{L}(M)$. Let F and Φ be finite subsets of T and Γ respectively. Then $F\Phi F$ is contained in a subgroup of M generated by a finite subset, F_1 , of S, hence there exists $n = n(F_1, \Phi)$ such that $(F_1 \Phi)^n F_1 = 0$ so $(F\Phi)^{2n+1}F = 0$. Thus T is locally nilpotent and by the remark preceding the theorem, $T \subseteq \mathcal{L}(M)$.

THEOREM 7.4. If M is a Γ -ring then $\mathcal{L}(M/\mathcal{L}(M)) = \mathcal{L}(M)$, the zero ideal of $M/\mathcal{L}(M)$.

PROOF. It suffices to show that for $a + \mathcal{L}(M) \in \mathcal{L}(M/\mathcal{L}(M)) | a \rangle$ is locally nilpotent, hence $a \in \mathcal{L}(M)$.

Let F and Φ be finite subsets of $|a\rangle$ and Γ respectively. Let $\overline{F} = \{\overline{x} = x + \mathcal{L}(M) : x \in F\}$. Then \overline{F} is a finite subset of the principal right ideal generated by $a + \mathcal{L}(M)$ in $M/\mathcal{L}(M)$, hence $(\overline{F}\Phi)^n\overline{F} = 0$ or $(F\Phi)^nF \subseteq \mathcal{L}(M)$ for some n. Since $(F\Phi)^nF$ is contained in a subgroup of M generated by a finite set, F_1 , and since $\mathcal{L}(M)$ is locally nilpotent, there exists m such that $(F_1\Phi)^mF_1 = 0$. Thus $(F\Phi)^{mn+m+n}F = 0$, proving that $|a\rangle$ is locally nilpotent as desired.

§8. The Jacobson Radical

An element a of a Γ -ring M is right quasi-regular (abbreviated rqr) if, for any $\gamma \in \Gamma$, there exist $\eta_i \in \Gamma$, $x_i \in M$, $i=1, 2, \dots, n$ such that

$$x\gamma a + \sum_{i=1}^n x\eta_i x_i - \sum_{i=1}^n x\gamma a\eta_i x_i = 0$$
 for all $x \in M$.

A subset S of M is rqr if every element in S is rqr. $\mathcal{J}(M) = \{a \in M : \langle a \rangle \text{ is } rqr\}$ is the right Jacobson radical of M.

THEOREM 8.1. Every nilpotent element in a Γ -ring M is rqr.

PROOF. If $a \in M$ is nilpotent and $\gamma \in \Gamma$, then $(a\gamma)^n a = 0$ for some *n*. Let $\eta_1 = \eta_2 = \cdots = \eta_n = \gamma$ and let $x_1 = -a$, $x_i = -(a\gamma)^{i-1}a$ for $i = 2, 3, \cdots, n$. Then

$$x\gamma a + \sum_{i=1}^{n} x\eta_i x_i - \sum_{i=1}^{n} x\gamma a\eta_i x_i = x\gamma (a\gamma)^n a = 0$$
 for all $x \in M$.

Hence a is rqr.

LEMMA 8.1. An element a of a Γ -ring M is rqr if and only if, for all $\gamma \in \Gamma$, $[\gamma, a]$ is rqr in the right operator ring R of M.

PROOF. Left to the reader.

THEOREM 8.2. If M is a Γ -ring then $\mathcal{J}(M) = \mathcal{J}(R)^*$, where $\mathcal{J}(R)$ denotes the Jacobson radical of the right operator ring R of M.

PROOF. In R, $|[\gamma, a]\rangle = \{[\gamma, b] \in R : b \in |a\rangle\}$. If $a \in \mathcal{J}(M)$ then $\langle a \rangle$ is rqr, hence $|a\rangle$ is rqr. Thus by Lemma 8.1, $|[\gamma, a]\rangle$ is rqr in R for all γ , and therefore $a \in \mathcal{J}(R)^*$.

If $a \in \mathcal{J}(R)^*$ then $\langle [\gamma, a] \rangle$ is rqr in R for all $\gamma \in \Gamma$, hence $[\gamma, b]$ is rqr in R for all $\gamma \in \Gamma$, $b \in \langle a \rangle$. Thus by Lemma 8.1, $\langle a \rangle$ is rqr, hence $a \in \mathcal{J}(M)$ proving that $\mathcal{J}(R)^* \subseteq \mathcal{J}(M)$.

48

It follows from Theorem 8.2 that $\mathcal{J}(M)$ is an ideal of M and contains all rqr right ideals of M. Thus $\mathcal{J}(M)$ may be characterized as the sum of all rqr right ideals of M.

THEOREM 8.3. If M is a Γ -ring in the sense of Nobusawa then $\mathcal{J}(M)$ is the sum of all rqr left ideals of M.

PROOF. It suffices to show that every rqr principal left ideal of M is contained in $\mathcal{J}(M)$. Let $\gamma \in \Gamma$ and let $b \in \langle a |$ where $\langle a |$ is rqr. Since M is a Γ -ring in the sense of Nobusawa, every element in $\langle [\gamma, b] |$ can be expressed as $n[\gamma, b] + \sum_{i} [\lambda_i, x_i][\gamma, b] = [n\gamma + \sum_{i} \lambda_i x_i \gamma, b]$, where n is an integer. By Lemma 8.1 every element in $\langle [\gamma, b] |$ is rqr in R so $\langle [\gamma, b] | \subseteq \mathcal{J}(R)$. Since γ was arbitrary, $b \in \mathcal{J}(R)^* = \mathcal{J}(M)$.

THEOREM 8.4. If I is an ideal of a Γ -ring M then $\mathcal{J}(I) = I \cap \mathcal{J}(M)$.

PROOF. To show that $I \cap \mathcal{J}(M) \subseteq \mathcal{J}(I)$, we prove that $I \cap \mathcal{J}(M)$ is a rqrideal of I. Let $a \in I \cap \mathcal{J}(M)$ and $\gamma \in \Gamma$. Since $a \in \mathcal{J}(M)$ there exist $x_i \in M$, $\eta_i \in \Gamma$, such that $x\gamma a + \sum x\eta_i x_i - \sum x\gamma a\eta_i x_i = 0$ for all $x \in M$. Then $x\gamma a\gamma a$ $+ \sum x\eta_i x_i \gamma a - \sum x\gamma a\eta_i x_i \gamma a = 0$ and $x\gamma a + (\sum x\eta_i (x_i \gamma a) - x\gamma a) - (\sum x\gamma a\eta_i (x_i \gamma a) - x\gamma a\gamma_i) = 0$. Since $a \in I$ and each $x_i \gamma a \in I$, we see that a is rqr in I.

To prove that $\mathcal{J}(I) \subseteq I \cap \mathcal{J}(M)$, let $a \in \mathcal{J}(I)$ and $b \in |a\rangle$. Then for any $\gamma \in \Gamma$, $(b\gamma)^2 b$ is in the principal right ideal in I generated by a. Hence $(b\gamma)^2 b$ is rqr in I, say $y\gamma(b\gamma)^2 b + \sum y\delta_j y_j - \sum y\gamma(b\gamma)^2 b\delta_j y_j = 0$ for all $y \in I$, where $\delta_j \in \Gamma$, $y_j \in I$. If $x \in M$ then $x\gamma b \in I$, so $(x\gamma b)\gamma(b\gamma)^2 b + \sum x\gamma b\delta_j y_j - \sum x\gamma b\gamma(b\gamma)^2 b\delta_j y_j = 0$ or $x(\gamma b)^4 + \sum x\gamma b\delta_j y_j - \sum x(\gamma b)^4\delta_j y_j = 0$. This may be written as $x\gamma b + (\sum x(\gamma b)^3\delta_j y_j + \sum x(\gamma b)\delta_j y_j - x(\gamma b)^3 - x(\gamma b)^3 - x(\gamma b)^2 - x\gamma b) - (x(\gamma b)^4\delta_j y_j + \sum x(\gamma b)^3\delta_j y_j + \sum x(\gamma b)^3\delta_j y_j - x(\gamma b)^3 - x(\gamma b)^2 - x\gamma b) = 0$, which is of the form

$$x\gamma b + \sum x\lambda_k z_k - \sum x\gamma b\lambda_k z_k = 0$$
.

Hence b is rqr in M, whence $|a\rangle$ is rqr in M, thence $a \in \mathcal{J}(M)$.

THEOREM 8.5. If M is a Γ -ring then $\mathcal{J}(M/\mathcal{J}(M)) = \mathcal{J}(M)$, the zero ideal of $M/\mathcal{J}(M)$.

PROOF. If $a+\mathcal{J}(M) \in \mathcal{J}(M/\mathcal{J}(M))$ and $b \in |a\rangle$, $\gamma \in \Gamma$, then $b+\mathcal{J}(M)$ belongs to the rqr principal right ideal generated in $M/\mathcal{J}(M)$ by $a+\mathcal{J}(M)$, hence $b+\mathcal{J}(M)$ is rqr in $M/\mathcal{J}(M)$. It follows that there exist $\eta_i \in \Gamma$, $x_i \in M$, i=1, $2, \cdots, n$, such that $x\gamma b+\sum x\eta_i x_i - \sum x\gamma b\eta_i x_i \in \mathcal{J}(M)$ for all $x \in M$. Put $x=b\gamma b$. Then $c=b(\gamma b)^2+\sum_i b\gamma b\eta_i x_i - \sum_i b(\gamma b)^2\eta_i x_i \in \mathcal{J}(M)$. If $y \in M$ then $y\gamma b \in M$ and hence $(y\gamma b)\gamma c+\sum_j (y\gamma b)\lambda_j z_j - \sum_j (y\gamma b)\gamma c\lambda_j z_j = 0$. Substituting for c and rearranging terms, we obtain $y\gamma b+(-y\gamma b-y(\gamma b)^2-y(\gamma b)^3+\sum_i y(\gamma b)^3\eta_i x_i$ $-\sum_{i,j} y(\gamma b)^3\eta_i x_i\lambda_j z_j + \sum_j y\gamma b\lambda_j z_j + \sum_j y(\gamma b)^2\lambda_j z_j + \sum_j y(\gamma b)^3\lambda_j z_j) - (-y(\gamma b)^2 - y(\gamma b)^3$ $-y(\gamma b)^4 + \sum_i y(\gamma b)^4\eta_i x_i - \sum_{i,j} y(\gamma b)^4\eta_i x_i\lambda_j z_j + \sum_j y(\gamma b)^2\lambda_j z_j + \sum_j y(\gamma b)^3\lambda_j z_j + \sum_j y(\gamma b)^4\lambda_j z_j)$ = 0, hence b is rqr. Therefore $|a\rangle$ is rqr and $a \in \mathcal{J}(M)$. We note in passing that we can also define left quasi-regularity and the left Jacobson radical for Γ -rings. It is unlikely that the left Jacobson radical is equal to $\mathcal{J}(M)$.

§9. Relations among the Radicals

We will prove:

THEOREM 9.1. If M is a Γ -ring then $\mathfrak{S}(M) \subseteq \mathfrak{L}(M) \subseteq \mathfrak{I}(M) \subseteq \mathfrak{I}(M) \subseteq \mathfrak{J}(M)$. THEOREM 9.2. If M is a Γ -ring which satisfies the descending chain condition on right ideals, then $\mathfrak{S}(M) = \mathfrak{L}(M) = \mathfrak{I}(M) = \mathfrak{I}(M) = \mathfrak{J}(M)$.

PROOF OF THEOREM 9.1. From ring theory it is known that $\mathcal{P}(R) \subseteq \mathcal{L}(R)$ $\subseteq \mathcal{J}(R)$. By Theorems 4.1, 7.2, and 8.2, it follows that $\mathcal{P}(M) \subseteq \mathcal{L}(M) \subseteq \mathcal{J}(M)$.

Evidently, every strongly nilpotent ideal is contained in any prime ideal, so $\mathfrak{S}(M) \subseteq \mathfrak{L}(M)$.

It is also clear that every locally nilpotent ideal is nil, so $\mathcal{L}(M) \subseteq \mathcal{N}(M)$. By Theorem 8.1, every nil ideal is rqr, hence $\mathcal{N}(M) \subseteq \mathcal{J}(M)$.

PROOF OF THEOREM 9.2. It suffices to show $\mathscr{J}(M) \subseteq \mathfrak{S}(M)$. For convenience, let $J = \mathscr{J}(M)$. Consider the chain $J \supseteq J\Gamma J \supseteq (J\Gamma)^2 J \supseteq \cdots$ of ideals. By the descending chain condition, $(J\Gamma)^n J = (J\Gamma)^{n+1} J = \cdots$ for some *n*. Denote $(J\Gamma)^n J$ by *I*. Clearly $I\Gamma I = I$.

If $I \neq 0$ then the set \mathscr{R} , of all right ideals A of M contained in I such that $A\Gamma I \neq 0$, is non-empty. By the descending chain condition, \mathscr{R} contains a minimal element, B. Then there exist $b \in B$, $\delta \in \Gamma$ such that $b\delta I \neq 0$. Thus $(b\delta I)\Gamma I = b\delta I \neq 0$, and $b\delta I \subseteq B \in \mathscr{R}$. Consequently $b\delta I = B$, and there exists $a \in I$ such that $b\delta a = b$. But $a \in J$ is rqr so there exist $\eta_i \in \Gamma$, $x_i \in M$ such that $x\delta a + \sum x\eta_i x_i - \sum x\delta a\eta_i x_i = 0$ for all $x \in M$. Putting x = b we obtain $b + \sum b\eta_i x_i - \sum b\eta_i x_i = 0$, or b = 0, a contradiction. Hence I = 0; i. e., $(J\Gamma)^n J = 0$. Therefore $J = \mathscr{G}(M)$ is strongly nilpotent and $\mathscr{G}(M) \subseteq \mathfrak{S}(M)$.

It can be shown that $\mathcal{P}(M)$, $\mathfrak{S}(M)$, $\mathcal{L}(M)$, and $\mathcal{J}(M)$ are invariant under the transition of M to a Γ' -ring in the sense of Nobusawa. Moreover, $\mathcal{N}(M)$ contains $\mathcal{N}'(M)$, the nil radical of M as a Γ' -ring; and if M is already a Γ ring in the sense of Nobusawa, then $\mathcal{N}(M) = \mathcal{N}'(M)$.

Finally, we remark that Theorem 9.1 remains true if we replace $\mathcal{J}(M)$ by the left Jacobson radical of M. Moreover if M satisfies the descending chain condition on left ideals, then the left Jacobson radical of M coincides with $\mathfrak{S}(M)$. Hence if M satisfies the descending chain conditions on both left ideals and right ideals then the right Jacobson radical and the left Jacobson radical coincide.

§10. Concluding Remarks

By virtue of Theorems 8.5, 7.4 and 6.3 every Γ -ring M has a homomorphic image with zero radical, where radical can be taken as $\mathcal{J}(M)$, $\mathcal{L}(M)$ or $\mathcal{I}(M)$. Barnes [1] established this fact for $\mathcal{P}(M)$.

Although it is true that any ring M can be regarded as a Γ -ring by taking $\Gamma = M$, it is not necessarily true that M can be regarded as a Γ -ring in the sense of Nobusawa by taking $\Gamma = M$. But if M is a simple ring then $M^2 = M$, and considered as a Γ -ring with $\Gamma = M$, M is simple. Also if M is a semi-simple ring and $a\Gamma a = 0$ with $\Gamma = M$, then $(a)^3 = 0$, where (a) denotes the principal ideal generated in the ring M by a. This says (a) is nilpotent; but in a semi-simple ring there are no nonzero nilpotent ideals. Therefore a=0, and M is semi-simple when regarded as a Γ -ring. Finally we note that if the ring M satisfies the descending chain condition on one-sided ideals, then regarded as a Γ -ring with $\Gamma = M$, M also satisfies the descending chain condition of the Wedderburn-Artin Theorems for Γ -rings obtained by Nobusawa [5] are indeed generalizations of the corresponding theorems for rings.

Nobusawa [5] defined a Γ -ring M to be semi-simple if $a\Gamma a = 0$ for $a \in M$ implies a = 0, and this is the definition of semi-simplicity used in this paper. However, a ring M regarded as a Γ -ring with $\Gamma = M$ which is semi-simple in the sense of Nobusawa may not have zero Jacobson radical. The simple radical rings due to Sasiada [6] are such examples. Therefore it would seem preferable to define a Γ -ring M to be semi-simple if $\mathcal{J}(M) = 0$. Since $\mathfrak{S}(M)$ $\subseteq \mathcal{J}(M)$, a Γ -ring in the sense of Nobusawa with the property that $\mathcal{J}(M) = 0$ would be semi-simple in the sense of Nobusawa, hence Nobusawa's proof of the analogue of the Wedderburn-Artin Theorem would apply. Further justification for redefining semi-simplicity by $\mathcal{J}(M) = 0$ comes from the following

THEOREM 10.1. If M is a ring with Jacobson radical J, then regarded as a Γ -ring with $\Gamma = M$, $\mathcal{J}(M) = J$.

PROOF. J is an ideal of the ring M, hence is an ideal of the Γ -ring M with $\Gamma = M$. If $a \in J$ and $g \in M$ then $ga \in J$, hence ga+y-gay=0 and therefore xga+xy-xgay=0 for all $x \in M$. Since $y = (ga)y-ga \in M^2$, we see that a is rqr in M as a Γ -ring with $\Gamma = M$. Thus $J \subseteq \mathcal{J}(M)$.

For the opposite inclusion it suffices to show that $\mathcal{J}(M)$ is a rqr left ideal of M. Consider $|ba\rangle$, where $a \in \mathcal{J}(M)$, $b \in M$. Every element of $|ba\rangle$ can be written as be, where $e = na + \sum au_j z_j \in \mathcal{J}(M) + \mathcal{J}(M)\Gamma M \subseteq \mathcal{J}(M)$. Let $g \in \Gamma$ = M. Then $gb \in \Gamma$ also, and since e is rqr, there exist $v_i \in \Gamma$, $y_i \in M$ such that $x(gb)e + \sum xv_i y_i - \sum x(gb)ev_i y_i = 0$ for all $x \in M$. But this may also be interpreted as $xg(be) + \sum xv_i y_i - \sum xg(be)v_i y_i = 0$ for all $x \in M$, hence be is rqr in M as a Γ -ring with $\Gamma = M$. Therefore $|ba\rangle$ is rqr and $ba \in \mathcal{J}(M)$, proving that $\mathcal{J}(M)$ is a left ideal of M.

If $a \in \mathcal{J}(M)$ then there exist $p_i \in \Gamma$, $w_i \in M$, such that

 $xaa + \sum_{i} xp_iw_i - \sum_{i} xaap_iw_i = 0$ for every x in M.

Letting $\sum_{i} p_i w_i = c$ for convenience, we see that $a^2 + c - a^2 c$ belongs to the right annihilator of M, which is a nilpotent ideal of index two; hence $a^2 + c - a^2 c \in J$. But if $a^2 \circ c \in J$ then there exists d such that $a^2 \circ c \circ d = 0$; i. e., a^2 is rqr in M. This implies that a is rqr in M, hence $\mathcal{J}(M)$ is a rqr left ideal of M and we are done.

Wright State University

Wright State University and North Carolina State University

References

- [1] W.E. Barnes, On the Γ -rings of Nobusawa, Pacific J. Math., 18 (1966), 411-422.
- [2] N. Jacobson, Structure of rings, revised ed., Amer. Math. Soc. Colloquium Publ. 37, Providence, 1964.
- [3] J. Luh, On primitive Γ-rings with minimal one-sided ideals, Osaka J. Math., 5-(1968), 165-173.
- [4] J. Luh, On the theory of simple Γ -rings, Michigan Math. J., 16 (1969), 65-75.
- [5] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math., 1 (1964), 81-89.
- [6] E. Sasiada, Solution of the problem of existence of a simple radical ring, Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys., 9 (1961), 257.