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\S 1. Introduction

Let $M$ and $\Gamma$ be additive abelian groups. If for all $a,$ $b,$ $c\in M$ and $\alpha,$ $\beta$

$\in\Gamma$ , the following conditions are satisfied,
(1) $a\alpha b\in M$

(2) $(a+b)\alpha c=a\alpha c+b\alpha c$

$a(\alpha+\beta)b=a\alpha b+a\beta b$

$a\alpha(b+c)=a\alpha b+a\alpha c$

(3) $(a\alpha b)\beta c=a\alpha(b\beta c)$ ,
then, following Barnes [1], $M$ is called a $\Gamma$ -ring. If these conditions are
strengthened to,

(1) $a\alpha b\in M,$ $\alpha a\beta\in\Gamma$

(2‘) same as (2)
(3’) $(a\alpha b)\beta c=a(\alpha b\beta)c=a\alpha(b\beta c)$

(4) $x\gamma y=0$ for all $x,$ $y\in M$ implies $\gamma=0$,

then $M$ is called a $\Gamma$-ring in the sense of Nobusawa [5].

Any ring can be regarded as a $\Gamma$-ring by suitably choosing $\Gamma$ . Many
fundamental results in ring theory have been extended to $\Gamma$-rings: Nobusawa
[5] proved the analogues of the Wedderburn-Artin theorems for simple $\Gamma-$

rings and for semi-simple $\Gamma$ -rings (but see [4]); Barnes [1] obtained analogues
of the classical Noether-Lasker theorems concerning primary representations
of ideals for $\Gamma$-rings; Luh $[3, 4]$ gave a generalization of the Jacobson struc-
ture theorem for primitive $\Gamma$ -rings having minimum one-sided ideals, and
obtained several other structure theorems for simple $\Gamma$ -rings.

In this paper the notions of Jacobson radical, Levitzki nil radical, nil
radical and strongly nilpotent radical for $\Gamma$-rings are introduced, and Barnes’
[1] prime radical is studied further. Inclusion relations for these radicals
are obtained, and it is shown that the radicals all coincide in the case of a
$\Gamma$ -ring which satisfies the descending chain condition on one-sided ideals.
The other usual radical properties from ring theory are similarly considered.

For all notions relevant to ring theory we refer to [2].
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\S 2. Preliminaries

If $A$ and $B$ are subsets of a $\Gamma$ -ring $M$ and $\Theta,$ $\Phi\subseteqq\Gamma$ , then we denote by
$A\Theta B$ , the subset of $M$ consisting of all finite sums of the form $\sum_{i}a_{i}\alpha_{i}b_{i}$ ,

where $a_{i}\in A,$ $b_{i}\in B$ , and $\alpha_{i}\in\Theta$ . We define $\Theta A\Phi$ analogously in case $M$ is
a $\Gamma$ -ring in the sense of Nobusawa. For singleton subsets we abbreviate
these notations to, for example, $\{a\}\Theta B=a\Theta B$ .

A right (left) ideal of a $\Gamma$ -ring $M$ is an additive subgroup $I$ of $M$ such
that $I\Gamma M\subseteqq I(M\Gamma I\subseteqq I)$ . If $I$ is both a right ideal and a left ideal then we
say that $I$ is an ideal, or redundantly, a two-sided ideal, of $M$.

For each $a$ of a $\Gamma$ -ring $M$, the smallest right ideal containing $a$ is called
the principal right ideal generated by $a$ and is denoted by $|a\rangle$ . We similarly
define \langle $a|$ and $\langle a\rangle$ , the principal left and two-sided (respectively) ideals gen-
erated by $a$ . We have $|a\rangle$ $=Za+a\Gamma M,$ \langle $a|=Za+M\Gamma a$ , and $\langle a\rangle=Za+a\Gamma M$

$+M\Gamma a+M\Gamma a\Gamma M$, where $Za=$ { $na:n$ is an integer}.
Let $I$ be an ideal of $\Gamma$-ring $M$. If for each $a+I,$ $b+Iin$ the factor group

$M/I$, and each $\gamma\in\Gamma$ , we define $(a+I)\gamma(b+I)=a\gamma b+l$, then $M/I$ is a 1 -ring
which we shall call the difference $\Gamma$ -ring of $M$ with respect to $I$.

Let $M$ be a $\Gamma$ -ring and $F$ the free abelian group generated by $\Gamma\times M$ .
Then

$A=\{\sum_{i}n_{i}(\gamma_{i}, x_{i})\in F:a\in M\Rightarrow\sum_{l}n_{i}a\gamma_{i^{X}i}=0\}$

is a subgroup of $F$. Let $R=F/A$ , the factor group, and denote the coset
$(\gamma, x)+A$ by $[\gamma, x]$ . It can be verified easily that $[\alpha, x]+[\beta, x]=[\alpha+\beta, x]$

and $[\alpha, x]+[\alpha, y]=[\alpha, x+y]$ for all $\alpha,$ $\beta\in\Gamma$ and $x,$ $y\in M$. We define a
multiplication in $R$ by

$\sum_{i}[\alpha_{i}, x_{i}]\sum_{J}[\beta_{j}, y_{j}]=\sum_{i_{J}}[\alpha_{i}, x_{i}\beta_{j}y_{j}]$ .

Then $R$ forms a ring. If we define a composition on $M\times R$ into $M$ by
$a\sum_{l}[\alpha_{i}, x_{i}]=\sum_{i}a\alpha_{i}x_{i}$ for $a\in M,$ $\sum_{i}[\alpha_{i}, x_{i}]\in R$ , then $M$ is a right R-module,

and we call $R$ the right operator ring of the $\Gamma$ -ring $M$. Similarly, we may
construct a left operator ring $L$ of $M$ so that $M$ is a left L-module. Clearly
$I$ is a right (left) ideal of $M$ if and only if $I$ is a right R-module (left L-
module) of $M$. Also if $A$ is a right (left) ideal of $R(L)$ then MA$(AM)$ is an
ideal of $M$. For subsets $N\subseteqq M,$ $\Phi\subseteqq\Gamma$ , we denote by $[\Phi, N]$ the set of all
finite sums $\sum_{i}[\gamma_{i}, x_{i}]$ in $R$ , where $\gamma_{i}\in\Phi,$ $x_{i}\in N$, and we denote by $[(\Phi, N)]$

the set of all elements $[\varphi, x]$ in $R$ , where $\varphi\in\Phi,$ $x\in N$. Thus, in particular,
$R=[\Gamma, M]$ .

A $\Gamma$ -ring $M$ is said to be simple if $M\Gamma M\neq 0$ and $0$ and $M$ are the only
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ideals of M. $M$ is said to be right primitive if $R$ is a right primitive ring
and $M\Gamma x=0\Rightarrow x=0$ (see [3, 4]). $M$ is said to be completely prime if $a\Gamma b=0$ ,
with $a,$ $b\in M$ implies $a=0$ or $b=0$ . Following Nobusawa [5], $M$ is semi-
simple if $a\Gamma a=0$ , with $a\in M$, implies $a=0$ .

For $S\subseteqq R$ we define $s*=\{a\in M:[\Gamma, a]=[\Gamma, \{a\}]\subseteqq S\}$ . It then follows
that if $S$ is a right (left) ideal of $R$ , then $s*$ is a right (left) ideal of $M$.
Also for any collection $C$ of sets in $R,\bigcap_{s_{\leftarrow C}^{-}}S^{*}=(\bigcap_{s_{-C}^{-}}S)^{*}$ .

If $M_{i}$ is a $\Gamma_{i}$ -ring for $i=1,2$ , then an ordered pair $(\theta, \phi)$ of mappings is
called a homomorphism of $M_{1}$ onto $M_{2}$ if it satisfies the following properties:

(i) $\theta$ is a group homomorphism from $M_{1}$ onto $M_{2}$ .
(ii) $\phi$ is a group isomorphism from $\Gamma_{1}$ onto $\Gamma_{2}$ .

(iii) For every $x,$ $y\in M_{1},$ $\gamma\in\Gamma_{1}$ ,

$(x\gamma y)\theta=(x\theta)(\gamma\phi)(y\theta)$ .
This concept is a generalization of the definition of homomorphism for $\Gamma-$

rings given by Barnes [1]. The kernel of the homomorphism $(\theta, \phi)$ is de-
fined to be $K=\{x\in M:x\theta=0\}$ . Clearly $K$ is an ideal of $M$. If $\theta$ is a group
isomorphism, $i$ . $e.$ , if $K=0$ , then $(\theta, \phi)$ is called an isomorphism from the $\Gamma_{1}-$

ring $M_{1}$ onto the $\Gamma_{2}$ -ring $M_{2}$ .
Let $I$ be an ideal of the $\Gamma$ -ring $M$. Then the ordered pair $(\rho, \iota)$ of map-

pings, where $\rho:M\rightarrow M/I$ is defined by $x\rho=x+1$, and $\iota$ is the identity map-
ping of $\Gamma$ , is a homomorphism called the natural homomorphism from $M$ onto
$M/I$.

We omit the proof, which is precisely analogous to that for rings, of the
following fundamental theorem of homomorphism for $\Gamma$ -rings.

THEOREM 2.1. If $(\theta, \phi)$ is a homomorphism from the $\Gamma_{1}$ -ring $M_{1}$ onto the
$\Gamma_{2}$ -ring $M_{2}$ with kernel $K$, then $M_{1}/K$ and $M_{2}$ are isomorphic.

Finally, we remark that the analogues of the other homomorphism theo-
rems (Theorems 2 and 3 in Barnes [1]) remain true under the modified de-
finition of homomorphism for $\Gamma$-rings.

\S 3. $\Gamma$-rings in the sense of Nobusawa

Every ring $A$ is a $\Gamma$-ring if we take $\Gamma=A$ and interpret the ternary
operation in the natural way; but $A$ may not be a $\Gamma$ -ring in the sense of
Nobusawa. It is of interest to know if every ring is a $\Gamma$-ring in the sense
of Nobusawa for some choice of $\Gamma$ . In this section we establish an affirma-
tive answer to this question by proving

THEOREM 3.1. Every $\Gamma$ -ring $M$ is a $\tau/$ -ring in the sense of Nobusawa for
some abelian group $\Gamma^{\prime}$ .
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PROOF. We first construct $\Gamma^{\prime}=\Phi/K$, where $\Phi$ is the free abelian group
generated by $\Gamma\times M\times\Gamma$ and $K$ is the subgroup consisting of all elements
$\sum_{i}n_{i}(\alpha_{i}, a_{i}, \beta_{i})$ of $\Phi$ with the property that $\sum_{i}n_{i}(x\alpha_{i}a_{i})\beta_{i}y=0$ for every

$x,$ $y\in M$.
We write $[\alpha, a, \beta]$ for the coset $(\alpha, a, \beta)+K$. For subsets $\Theta,$ $\Phi\subseteqq\Gamma,$ $N\subseteqq M$,

we define $[(\Theta, N, \Phi)]=\{[\theta, x, \varphi]\in\Gamma^{\gamma} : \theta\in\Theta, x\in N, \varphi\in\Phi\}$ . Then for $\sum_{i}[\alpha_{i}$ ,

$a_{i},$ $\beta_{i}$] and $\sum_{j}[\gamma_{j}, b_{i}, \delta_{j}]$ in $\Gamma^{\prime}$ and $x,$ $y\in M$, we define $x(\sum_{i}[\alpha_{i}, a_{i}, \beta_{i}])y=$

$\sum_{i}(x\alpha_{i}a_{i})\beta_{i}y$ and $(\sum_{i}[\alpha_{i}, a_{i}, \beta_{i}])x(\sum_{j}[\gamma_{j}, b_{j}, \delta_{j}])=\sum_{i.j}[\alpha_{i}, (a_{i}\beta_{i}x)\gamma_{j}b_{j}, \delta_{j}]$ . These
two compositions are well-defined and $M$ is a $\Gamma^{\prime}$ -ring in the sense of Nobu-
sawa. Note in passing that for subsets $A,$ $B$ of $M,$ $A\Gamma^{\prime}B=A\Gamma M\Gamma B$ . Also,
if $M$ is already a $\Gamma$-ring in the sense of Nobusawa, then the $\Gamma^{\prime}$ -ring $M$

which we have constructed is isomorphic to $M$ considered as a $(\Gamma M\Gamma)$ -ring.
It can be shown that complete primeness, simplicity, semi-simplicity and

primitivity are hereditary under the transition of $M$ to a $\Gamma^{\prime}$ -ring in the
sense of Nobusawa.

\S 4. The Prime Radical

Following Barnes [1], an ideal $P$ of a $\Gamma$ -ring $M$ is prime if for any ideals
$A,$ $B\subseteqq M,$ $A\Gamma B\subseteqq P$ implies $A\subseteqq P$ or $B\subseteqq P$ . A subset $S$ of Mis an m-system
in $M$ if $ S=\phi$ or if $a,$ $b\in S$ implies $\langle a\rangle\Gamma\langle b\rangle\cap S\neq\phi$ . The prime radical of
$M$, which we denote by $\mathcal{P}(M)$ , is defined as the set of elements $x$ in $M$ such
that every m-system containing $x$ contains $0$ . Barnes [1] has characterized
$\mathcal{P}(M)$ as the intersection of all prime ideals of $M$, has shown that an ideal
$P$ is a prime if and only if its complement $P^{c}$ is an m-system, and that an
ideal $P$ of a $\Gamma$-ring $M$ in the sense of Nobusawa is prime if and only if $a\Gamma b\subseteqq P$

implies $a\in P$ or $b\in P$.
THEOREM 4.1. If $\mathcal{P}(R)$ is the prime radical of the right operator ring $R$ of

the $\Gamma$ -ring $M$, then $\mathcal{P}(M)=\mathcal{P}(R)^{*}$ .
Our proof requires a lemma which is of interest in its own right:
LEMMA 4.1. If $P$ is a prime ideal of $R$ then $P^{*}$ is a prime ideal of $M$.
PROOF OF LEMMA. Suppose $A\Gamma B\subseteqq P^{*}$ where $A$ and $B$ are ideals of $M$.

Then $[\Gamma, A][\Gamma, B]=[\Gamma, A\Gamma B]\subseteqq P$. By the primeness of $P$, either $[\Gamma, A]\subseteqq P$

or $[\Gamma, B]\subseteqq P$. This means that either $A\subseteqq P^{*}$ or $B\subseteqq P^{*}$ .
PROOF OF THEOREM. If $Q$ is an ideal of $M$ then

$P=\{\sum_{l}[\alpha_{i}, a_{i}]\in R : M(\sum_{i}[\alpha_{i}, a_{i}])\subseteqq Q\}$

is an ideal of $R$ . If $Q$ is prime and $A,$ $B$ are ideals of $R$ such that $AB\subseteqq P$

then also $ARB\Leftarrow\subset P$, hence $MA\Gamma MB\subseteqq MP\subseteqq Q$ . Since $MA$ and $MB$ are ideals
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of $M$, it follows that $MA\subseteqq Q$ or $MB\subseteqq Q$ . Thus $A\subseteqq PorB\subseteqq P$ and we may
conclude that $P$ is prime. Note also that $P^{*}=\{x\in M:[\Gamma, x]\subseteqq PI=\{x\in M$ :
$M\Gamma x\subseteqq Q\}$ . Thus if $Q$ is a prime ideal of $M$ then $Q=P^{*}$ . It follows that
$\mathcal{P}(M)$ , which is the intersection of all prime ideals of $M$, contains $\bigcap_{P\in \mathcal{D}}P^{*}=$

$(\bigcap_{P\subset \mathcal{D}}P)^{*}$ , where $\mathcal{D}$ is a certain collection of prime ideals of $R$ . But $(\bigcap_{P\in \mathcal{D}}P)^{*}$

$\supseteqq \mathcal{P}(R)^{*}$ so we may conclude that $\mathcal{P}(M)\supseteqq \mathcal{P}(R)^{*}$ .
On the other hand, $\mathcal{P}(R^{*})=(\cap P)^{*}=(\cap P^{*})$ , where the intersection is

taken over all prime ideals of $R$ . Since, by Lemma 4.1., each $P^{*}$ is a prime
ideal of $M$, and since $\mathcal{P}(M)$ is the intersection of all prime ideals of $M$, it
follows that $\mathcal{P}(M)\subseteqq \mathcal{P}(R)^{*}$ .

THEOREM 4.2. If I is an ideal of the $\Gamma$ -ring $M$ then $\mathcal{P}(I)=I\cap \mathcal{P}(M)$ ,
where $\mathcal{P}(I)$ denotes the prime radical of I considered as a $\Gamma$ -ring.

We begin by proving
LEMMA 4.2. If $P$ is a prime ideal of $M$ then $P\cap I$ is a prime ideal of $I$.
PROOF OF LEMMA. Let $A,$ $B$ be ideals of $I$ such that $A\Gamma B\subseteqq P\cap I$. If

$\langle A\rangle=A+A\Gamma M+M\Gamma A+M\Gamma A\Gamma M$ and $\langle B\rangle=B+B\Gamma M+M\Gamma B+M\Gamma B\Gamma M$, then
$I\Gamma\langle A\rangle\Gamma I\subseteqq A$ and $\langle A\rangle\subseteqq I$. Thus, and similarly,

$(\langle A\rangle\Gamma\langle A\rangle\Gamma\langle A\rangle)\Gamma(\langle B\rangle\Gamma\langle B\rangle\Gamma\langle B\rangle)\subseteqq A\Gamma B\subseteqq P$ .
Since $P$ is prime in $M$ and $\langle A\rangle\Gamma\langle A\rangle\Gamma\langle A\rangle,$ $\langle B\rangle\Gamma\langle B\rangle\Gamma\langle B\rangle$ are ideals of $M$,
we conclude that $\langle A\rangle\Gamma\langle A\rangle\Gamma\langle A\rangle\subseteqq P$ or $\langle B\rangle\Gamma\langle B\rangle\Gamma\langle B\rangle\subseteqq P$. By repeated use
of the primeness of $P$ we get $\langle A\rangle\subseteqq P$ or $\langle B\rangle\subseteqq P$, hence $A\subseteqq P$ or $B\subseteqq P$.
Therefore either $A\subseteqq P\cap I$ or $B\subseteqq P\cap I$ and $P\cap I$ is a prime ideal of $I$.

PROOF OF THEOREM. $\mathcal{P}(I)$ is the set of all elements $x$ in $I$ such that
every m-system of $I$ which contains $x$ contains $0$ . Every m-system of $I$ is
certainly also an m-system of $M$. It follows that $\mathcal{P}(I)\supseteqq I\cap \mathcal{P}(M)$ . By Lem-
ma 4.2, $\mathcal{P}(I)\subseteqq I\cap \mathcal{P}(M)$ . Thus $\mathcal{P}(I)=I\cap \mathcal{P}(M)$ .

\S 5. The Strongly Nilpotent Radical

An element $a$ of a $\Gamma$-ring $M$ is strongly nilpotent if there exists a posi-

tive integer $n$ such that $(a\Gamma)^{n}a=(a\Gamma a\Gamma a\Gamma\cdots a\Gamma)a=0$ . A subset $S$ of $M$ is
strongly nil if each of its elements is strongly nilpotent. $S$ is strongly nil-
potent if there exists a positive integer $n$ such that $(S\Gamma)^{n}S=(S\Gamma S\Gamma\cdots S\Gamma)S$

$=0$ . Clearly a strongly nilpotent set is also strongly nil.
THEOREM 5.1. If $M$ is a $\Gamma$ -ring in the sense of Nobusawa and $a\in M$, then

the following are equivalent:
(i) $a$ is strongly nilpotent

(ii) $\langle a\rangle$ is strongly nil
(iii) $\langle a\rangle$ is strongly nilpotent
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PROOF. That (iii) implies (ii) and (ii) implies (i) is trivial. The proof
that (i) implies (iii) is left to the reader.

We define the strongly nilpotent radical, $\mathfrak{S}(M)$ , of the $\Gamma$-ring $M$ to be
the sum of all strongly nilpotent ideals of $M$.

THEOREM 5.2. If $A$ and $B$ are strongly nilpotent ideals of a $\Gamma$ -ring $M$,

then their sum is a strongly nilpotent ideal of $M$.
PROOF. If $(A\Gamma)^{n}A=0$ then $((A+B)\Gamma)^{n}(A+B)=(A\Gamma)^{n}A+B_{1}=B_{1}$ , where

$B_{1}\subseteqq B$ . If $(B\Gamma)^{m}B=0$ then $((A+B)\Gamma)^{mn+m\}\cdot n}(A+B)=(((A+B)\Gamma)^{n}(A+B)\Gamma)^{m}((A$

$+B)\Gamma)^{n}(A+B)=(B_{1}\Gamma)^{m}B_{1}=0$ , hence $A+B$ is strongly nilpotent.
THEOREM 5.3. If $M$ is a $\Gamma$ -ring then $\mathfrak{S}(M)$ is a strongly nil ideal of $M$.
PROOF. Each element $x$ of $\mathfrak{S}(M)$ is in a finite sum of strongly nilpotent

ideals of $M$, which, by Theorem 5.2, is strongly nilpotent. Therefore $x$ is
strongly nilpotent, whence $\mathfrak{S}(M)$ is strongly nil.

THEOREM 5.4. If $A$ and $B$ are strongly nil ideals of a $\Gamma$ -ring $M$, then
their sum is a strongly nil ideal of $M$.

PROOF. The proof parallels that of Theorem 5.2 and is left to the reader.
THEOREM 5.5. If $M$ is a $\Gamma$-ring in the sense of Nobusawa then $\mathfrak{S}(M)$ is

the sum, $S$ , of all strongly nil ideals of $M$.
PROOF. By Theorem 5.3, $\mathfrak{S}(M)\subseteqq S$ . On the other hand, if $a\in S$ then

$a$ belongs to a finite sum of strongly nil ideals of $M$, which, by Theorem 5.4,
is a strongly nil ideal of $M$. By Theorem 5.1, $\langle a\rangle$ is strongly nilpotent.

Therefore $\langle a\rangle\subseteqq \mathfrak{S}(M)$ , hence $a\in \mathfrak{S}(M)$ , whence $S\subseteqq \mathfrak{S}(M)$ .
THEOREM 5.6. If $M$ is a semi-simple $\Gamma$ -ring then $\mathfrak{S}(M)=0$ .
PROOF. Let $a\in \mathfrak{S}(M)$ and $(a\Gamma)^{n}a=0$ . We may assume that $n=2^{m}-1$

where $m$ is a positive integer. If $A=(a\Gamma)^{2}m-1$ a then $A\Gamma A\subseteqq(a\Gamma)^{n}a=0$ .
Because $M$ is semi-simple, $A=0;i$ . $e.,$ $(a\Gamma)^{2}m-1-1a=0$ . Continuing this argu-
ment we finally obtain $a\Gamma a=0$ , hence $a=0$ .

THEOREM 5.7. If $M$ is a $\Gamma$ -ring in the sense of Nobusawa, then $M$ is semi-
simple if and only if $\mathfrak{S}(M)=0$ .

PROOF. If $M$ is not semi-simple then there exists $0\neq a\in M$ such that
$a\Gamma a=0$ . But then $\langle a\rangle\Gamma\langle a\rangle=0$ so $\langle a\rangle$ is strongly nilpotent and therefore
$\mathfrak{S}(M)\neq 0$ .

The necessity follows from Theorem 5.6.
THEOREM 5.8. If I is an ideal of the $\Gamma$ -ring $M$ then $\mathfrak{S}(I)=I\cap \mathfrak{S}(M)$ .
PROOF. If $S$ is a strongly nilpotent ideal of $I$ with $(S\Gamma)^{n}S=0$ , then

$T=S+M\Gamma S+S\Gamma M+M\Gamma S\Gamma M$ is an ideal of $M$ and $(T\Gamma)^{2}T\subseteqq S$ . Hence
$(T\Gamma)^{3n+2}T=0$ and $T$ is a strongly nilpotent ideal of $M$. It follows that
$T\subseteqq \mathfrak{S}(M)$ , hence $S\subseteqq I\cap \mathfrak{S}(M)$ . Thus $\mathfrak{S}(I)\subseteqq I\cap \mathfrak{S}(M)$ .

On the other hand, if $a\in I\cap \mathfrak{S}(M)$ then $\langle a\rangle$ is a strongly nilpotent ideal
of $M$. Since the principal ideal (of $I$) generated by $a$ in $I$ is contained in
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$\langle a\rangle,$ $a\in \mathfrak{S}(I)$ . Thus $I\cap \mathfrak{S}(M)\subseteqq \mathfrak{S}(I)$ .

\S 6. The Nil Radical

An element $x$ of a $\Gamma$-ring $M$ is nilpotent if for any $\gamma\in\Gamma$ there exists a
positive integer $n=n(\gamma)$ such that $(x\gamma)^{n}x=(x\gamma)(x\gamma)\cdots(x\gamma)x=0$ . A subset $S$ of
$M$ is nil if each element of $S$ is nilpotent. The nil radical of $M$ is defined
as the sum of all nil ideals of $M$, and is denoted by $\mathcal{N}(M)$ .

THEOREM 6.1. If $A$ and $B$ are nil ideals of the $\Gamma$ -ring $M$, then their sum
is a nil ideal of $M$.

PROOF. The proof parallels that of Theorem 5.2 and is left to the reader.
THEOREM 6.2. If $M$ is a $\Gamma$-ring then $\mathcal{N}(M)$ contains $\mathcal{N}(R)^{*}$ , where $\mathcal{N}(R)$

denotes the upper nil radical of $R$ .
PROOF. Let $a\in \mathcal{N}(R)^{*}$ . If $ b\in\langle a\rangle$ and $\gamma\in\Gamma$ then $[\gamma, b]\in \mathcal{N}(R)$ , so there

exists a positive integer $n$ such that $[\gamma, b]^{n}=0$ . Hence $(b\gamma)^{n}b=0$ , whence $b$

is nilpotent and consequently $\langle a\rangle$ is nil. Therefore $a\in \mathcal{N}(M)$ .
THEOREM 6.3. If $M$ is a $\Gamma$ -ring then $\mathcal{N}(M/\mathcal{N}(M))=\mathcal{N}(M)$ , the zero ideal

of $M/\mathcal{N}(M)$ .
PROOF. Let $a+\mathcal{N}(M)\in \mathcal{N}(M/\mathcal{N}(M))$ and let $ b\in\langle a\rangle$ . Then $b+\mathcal{N}(M)$ is in

the nil principal ideal of $M/\mathcal{N}(M)$ generated by $a+\mathcal{N}(M)$ . Hence for any
$\gamma\in\Gamma$ there exists a positive integer $n$ such that $((b+\mathcal{N}(M))\gamma)^{n}(b+\mathcal{N}(M))=$

$\mathcal{N}(M)$ ;i. e., $(b\gamma)^{n}b\in \mathcal{N}(M)$ . Since $\mathcal{N}(M)$ is a nil ideal of $M$, there exists a
positive integer $m$ such that $((b\gamma)^{n}b\gamma)^{m}((b\gamma)^{n}b)=0$ , or $(br)^{nm+m+n}b=0$ . Hence $b$

is nilpotent, whence $\langle a\rangle$ is nil and $a\in \mathcal{N}(M)$ .
THEOREM 6.4. If I is an ideal of the $\Gamma$ -ring $M$ then $\mathcal{N}(I)=I\cap \mathcal{N}(M)$ .
PROOF. Every principal ideal generated in $I$ by $a$ is contained in the

principal ideal generated in $M$ by $a$ , so $I\cap \mathcal{N}(M)\subseteqq \mathcal{N}(I)$ .
To show $\mathcal{N}(I)\subseteqq I\cap \mathcal{N}(M)$ , let $a\in \mathcal{N}(I)$ and $ b\in\langle a\rangle$ , the principal ideal

generated in $M$ by $a$ . For any $\gamma\in\Gamma,$ $(b\gamma)^{2}b$ belongs to the nil principal ideal
generated in $I$ by $a$ , so $((b\gamma)^{2}b\gamma)^{n}(b\gamma)^{2}b=0$, or $(b\gamma)^{3n+2}b=0$ for some $n=n(\gamma)$ .
Thus $\langle a\rangle$ is nil and $a\in \mathcal{N}(M)$ . Clearly $a\in I$, so $a\in I\cap \mathcal{N}(M)$ .

\S 7. The Levitzki Nil Radical

A subset $S$ of a $\Gamma$-ring $M$ is locally nilpotent if for any finite set $F\subseteqq S$

and any finite set $\Phi\subseteqq\Gamma$ , there exists a positive integer $n$ such that $(F\Phi)^{n}F$

$=0$ . By taking $F=\{x\}$ and $\Phi=\{\gamma\}$ we see that a locally nilpotent set is nil.
The Levitzki nil radical of $M$ is the sum of all locally nilpotent ideals of $M$,

and is denoted by $\mathcal{L}(M)$ .
LEMMA 7.1. $1fA_{1}$ and $A_{2}$ are locally nilpotent ideals of a $\Gamma$ -ring $M$ then

their sum is a locally nilpotent ideal of $M$.
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PROOF. If $F,$ $\Phi$ are finite subsets of $A_{1}+A_{2},$ $\Gamma$ , respectively, then there
exist finite subsets $F_{1}$ of $A_{1}$ and $F_{2}$ of $A_{2}$ such that $F\subseteqq F_{1}+F_{2}$ . Since $A_{1}$ is
locally nilpotent, there exists $n=n(F_{1}, \Phi)$ such that $(F_{1}\Phi)^{n}F_{1}=0$ . It follows
that $((F_{1}+F_{2})\Phi)^{n}(F_{1}+F_{2})\subseteqq(F_{1}\Phi)^{n}F_{1}+F_{2}\subseteqq F_{2}$ . There exists $m=m(F_{2}, \Phi)$ such
that $(F_{2}\Phi)^{m}F_{2}=0$ . It follows that $((F_{1}+F_{2})\Phi)^{nm+n+m}(F_{1}+F_{2})=0$ .

THEOREM 7.1. If $M$ is a $\Gamma$-ring then $\mathcal{L}(M)$ is a locally nilpotent ideal.
PROOF. It suffices to note that each element of a finite subset $F$ of $\mathcal{L}(M)$

lies in a finite sum of locally nilpotent ideals of $M$, hence $F$ lies in a finite
sum of locally nilpotent ideals of $M$, which by an extension of Lemma 7.1
is a locally nilpotent ideal of $M$.

LEMMA 7.2. If I is a locally nilpotent ideal of the right operator ring $R$

of a $\Gamma$-ring $M$, then $I^{*}$ is a locally nilpotent ideal of $M$.
PROOF. Let $F$ and $\Phi$ be finite subsets of $I^{*}$ and $\Gamma$ respectively. Then

$[(\Phi, F)]$ is a finite subset of $I$, hence there exists $n$ such that $[(\Phi, F)]^{n}=0$,
so $[\Phi, F]^{n}=0$ . It follows that $(F\Phi)^{n}F=0$ so $I^{*}$ is locally nilpotent.

LEMMA 7.3. If I is a locally nilpotent (right) ideal of a $\Gamma$ -ring $M$, then
there exists a locally nilpotent (right) ideal $J$ of $R$ , the right operator ring of
$M$, such that $I\subseteqq J^{*}$ .

PROOF. If $J=[\Gamma, I]$ then clearly $J$ is an (a right) ideal of $R$ and $I\subseteqq J^{*}$ .
To show that $J$ is locally nilpotent let $F$ be a finite subset of $J$. Then there
are finite subsets $F_{1}\subseteqq I,$ $\Phi_{1}\subseteqq\Gamma$ , such that $F\subseteqq[\Phi_{1}, F_{1}]$ . Since $I$ is locally
nilpotent, $(F_{1}\Phi_{1})^{n}F_{1}=0$ for some $n$ . It follows that $MF^{n+1}\subseteqq M[\Phi_{1}, F_{1}]^{n+1}$

$=M\Phi_{1}(F_{1}\Phi_{1})^{n}F_{1}=0$ . Hence $F^{n+1}=0$ and $J$ is locally nilpotent.
THEOREM 7.2. If $M$ is a $\Gamma$ -ring then $\mathcal{L}(M)=\mathcal{L}(R)^{*}$ , where $\mathcal{L}(R)$ is the

Levitzki nil radical of the right operator ring $R$ of $M$.
PROOF. Since $\mathcal{L}(R)$ is locally nilpotent, $\mathcal{L}(R)^{*}\subseteqq \mathcal{L}(M)$ by Lemma 7.2.

$\mathcal{L}(M)\subseteqq \mathcal{L}(R)^{*}$ by Theorem 7.1 and Lemma 7.3.
REMARK. Since $\mathcal{L}(R)$ contains all locally nilpotent right ideals of $R$ ,

Theorem 7.2 implies that $\mathcal{L}(M)$ contains all locally nilpotent right ideals of
$M$. Since $\mathcal{L}(M)$ is itself a locally nilpotent right ideal of $M$, we see that
$\mathcal{L}(M)$ can be characterized as the sum of all locally nilpotent right ideals of
$M$. By the left-right symmetry of the definition of local nilpotency, $\mathcal{L}(M)$

may also be characterized as the sum of all locally nilpotent left ideals of $M$.
THEOREM 7.3. If I is an ideal of the $\Gamma$-ring $M$ then $\mathcal{L}(I)=I\cap \mathcal{L}(M)$ .
PROOF. $I\cap \mathcal{L}(M)\subseteqq \mathcal{L}(I)$ because $1\cap \mathcal{L}(M)$ is a locally nilpotent ideal of

$I$ as a $\Gamma$-ring.
To see that $\mathcal{L}(I)\subseteqq I\cap \mathcal{L}(M)$ we consider an arbitrary locally nilpotent

ideal $S$ of I. $T=S+S\Gamma M$ is a right ideal of $M$ containing $S$ . Since $T\subseteqq I$ we
are done if we show $T\subseteqq \mathcal{L}(M)$ . Let $F$ and $\Phi$ be finite subsets of $T$ and $\Gamma$

respectively. Then $F\Phi F$ is contained in a subgroup of $M$ generated by a
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finite subset, $F_{1}$ , of $S$ , hence there exists $n=n(F_{1}, \Phi)$ such that $(F_{1}\Phi)^{n}F_{1}=0$

so $(F\Phi)^{2n+1}F=0$ . Thus $T$ is locally nilpotent and by the remark preceding
the theorem, $T\subseteqq \mathcal{L}(M)$ .

THEOREM 7.4. If $M$ is a $\Gamma$ -ring then $\mathcal{L}(M/\mathcal{L}(M))=\mathcal{L}(M)$ , the zero ideal
of $M/\mathcal{L}(M)$ .

PROOF. It suffices to show that for $ a+\mathcal{L}(M)\in \mathcal{L}(M/\mathcal{L}(M))|a\rangle$ is locally

nilpotent, hence $a\in \mathcal{L}(M)$ .
Let $F$ and $\Phi$ be finite subsets of $|a\rangle$ and $\Gamma$ respectively. Let $\overline{F}=\{\overline{x}=$

$x+\mathcal{L}(M):x\in F\}$ . Then $\overline{F}$ is a finite subset of the principal right ideal
generated by $a+\mathcal{L}(M)$ in $M/\mathcal{L}(M)$ , hence $(\overline{F}\Phi)^{n}\overline{F}=0$ or $(F\Phi)^{n}F\subseteqq \mathcal{L}(M)$ for
some $n$ . Since $(F\Phi)^{n}F$ is contained in a subgroup of $M$ generated by a finite
set, $F_{1}$ , and since $\mathcal{L}(M)$ is locally nilpotent, there exists $m$ such that $(F_{1}\Phi)^{m}F_{1}$

$=0$ . Thus $(F\Phi)^{mn+m+n}F=0$, proving that $|a\rangle$ is locally nilpotent as desired.

\S 8. The Jacobson Radical

An element $a$ of a $\Gamma$-ring $M$ is right quasi-regular (abbreviated $rqr$) if,

for any $\gamma\in\Gamma$ , there exist $\eta_{i}\in\Gamma,$ $x_{i}\in M,$ $i=1,2$ , $\cdot$ .. , $n$ such that

$x\gamma a+\sum_{\ell=1}^{n}x\eta_{i}x_{i}-\sum_{i=1}^{n}xr^{a\eta_{i}x_{i}}=0$ for all $x\in M$ .

A subset $S$ of $M$ is $rqr$ if every element in $S$ is $rqr$ . $\mathcal{J}(M)=\{a\in M:\langle a\rangle$ is
$rqr\}$ is the right Jacobson radical of $M$.

THEOREM 8.1. Every nilpotent element in a $\Gamma$ -ring $M$ is $rqr$ .
PROOF. If $a\in M$ is nilpotent and $\gamma\in\Gamma$ , then $(a\gamma)^{n}a=0$ for some $n$ . Let

$\eta_{1}=\eta_{2}=$ $=\eta_{n}=\gamma$ and let $x_{1}=-a,$ $x_{i}$ $=-(a\gamma)^{i}$ a for $i=2,$ 3, $n$ . Then

$x\gamma a+\sum_{\iota=1}^{n}x\eta_{i}x_{t}-\sum_{i=1}^{n}x\gamma a\eta_{i}x_{i}=x\gamma(a\gamma)^{n}a=0$ for all $x\in M$ .

Hence $a$ is $rqr$ .
LEMMA 8.1. An element $a$ of a $\Gamma$-ring $M$ is $rqr$ if and only if, for all

$\gamma\in\Gamma,$ $[\gamma, a]$ is $rqr$ in the right operator ring $R$ of $M$.
PROOF. Left to the reader.
THEOREM 8.2. If $M$ is a $\Gamma$ -ring then $\mathcal{J}(M)=\mathcal{J}(R)^{*}$ , where $\mathcal{J}(R)$ denotes the

Jacobson radical of the right operator ring $R$ of $M$.
PROOF. In $R,$ $|[\gamma, a]\rangle$ $=\{[\gamma, b]\in R:b\in|a\rangle\}$ . If $a\in \mathcal{J}(M)$ then $\langle a\rangle$ is $rqr$,

hence $|a\rangle$ is $rqr$. Thus by Lemma 8.1, $|[\gamma, a]\rangle$ is $rqr$ in $R$ for all $\gamma$ , and
therefore $a\in \mathcal{J}(R)^{*}$ .

If $a\in \mathcal{J}(R)^{*}$ then $\langle[\gamma, a]\rangle$ is $rqr$ in $R$ for all $\gamma\in\Gamma$ , hence $[\gamma, b]$ is $rqr$ in
$R$ for all $\gamma\in\Gamma,$ $ b\in\langle a\rangle$ . Thus by Lemma 8.1, $\langle a\rangle$ is $rqr$ , hence $a\in \mathcal{J}(M)$

proving that $\mathcal{J}(R)^{*}\subseteqq \mathcal{J}(M)$ .
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It follows from Theorem 8.2 that $\mathcal{J}(M)$ is an ideal of $M$ and contains all
$rqr$ right ideals of $M$. Thus $\mathcal{J}(M)$ may be characterized as the sum of all
$rqr$ right ideals of $M$.

THEOREM 8.3. If $M$ is a $\Gamma$ -ring in the sense of Nobusawa then $\mathcal{J}(M)$ is
the sum of all $rqr$ left ideals of $M$.

PROOF. It suffices to show that every $rqr$ principal left ideal of $M$ is
contained in $\mathcal{J}(M)$ . Let $\gamma\in\Gamma$ and let $b\in\langle a|$ where \langle $a|$ is $rqr$ . Since $M$ is
a $\Gamma$-ring in the sense of Nobusawa, every element in \langle $[\gamma, b]|$ can be expressed
as $n[\gamma, b]+\sum_{i}[\lambda_{i}, x_{i}][\gamma, b]=[n\gamma+\sum_{i}\lambda_{i}x_{i}\gamma, b]$ , where $n$ is an integer. By

Lemma 8.1 every element in \langle $[\gamma, b]|$ is $rqr$ in $R$ so \langle $[\gamma, b]|\subseteqq \mathcal{J}(R)$ . Since $\gamma$

was arbitrary, $b\in \mathcal{J}(R)^{*}=\mathcal{J}(M)$ .
THEOREM 8.4. If I is an ideal of a $\Gamma$ -ring $M$ then $\mathcal{J}(I)=I\cap \mathcal{J}(M)$ .
PROOF. To show that $I\cap \mathcal{J}(M)\subseteqq \mathcal{J}(I)$ , we prove that $I\cap \mathcal{J}(M)$ is a $rqr$

ideal of $I$. Let $a\in I\cap \mathcal{J}(M)$ and $\gamma\in\Gamma$ . Since $a\in \mathcal{J}(M)$ there exist $x_{i}\in M$,
$\eta_{i}\in\Gamma$ , such that $x\gamma a+\sum x\eta_{i}x_{i}-\sum x\gamma a\eta_{i}x_{i}=0$ for all $x\in M$. Then $x\gamma a\gamma a$

$+\sum x\eta_{i}x_{i}\gamma a-\sum x\gamma a\eta_{i}x_{i}\gamma a=0$ and $x\gamma a+(\sum x\eta_{i}(x_{i}\gamma a)-x\gamma a)-(\sum x\gamma a\eta_{i}(x_{i}\gamma a)$

$-x\gamma a\gamma a)=0$ . Since $a\in I$ and each $x_{i}\gamma a\in I$, we see that $a$ is $rqr$ in $I$.
To prove that $\mathcal{J}(I)\subseteqq I\cap \mathcal{J}(M)$ , let $a\in \mathcal{J}(I)$ and $ b\in|a\rangle$ . Then for any

$\gamma\in\Gamma,$ $(b\gamma)^{2}b$ is in the principal right ideal in $I$ generated by $a$ . Hence $(b\gamma)^{2}b$

is $rqr$ in $I$, say $y\gamma(b\gamma)^{2}b+\sum y\delta_{j}y_{j}-\sum y\gamma(b\gamma)^{2}b\delta_{j}y_{j}=0$ for all $y\in I$, where $\delta_{j}\in\Gamma$ ,
$y_{j}\in I$. If $x\in M$ then $x\gamma b\in I$, so $(x\gamma b)\gamma(b\gamma)^{2}b+\sum x\gamma b\delta_{j}y_{j}-\sum x\gamma b\gamma(b\gamma)^{2}b\delta_{j}y_{j}=0$

$orx(\gamma b)^{4}+\sum x\gamma b\delta_{j}y_{j}-\sum x(\gamma b)^{4}\delta_{j}y_{j}=0$ . $Thismaybewrittenasx\gamma b+(\sum x(\gamma b)^{3}\delta_{j}y_{j}$

$+\sum x(\gamma b)^{2}\delta_{j}y_{j}+\sum x(\gamma b)\delta_{j}y_{j}-x(\gamma b)^{3}-x(\gamma b)^{2}-x\gamma b)-(x(\gamma b)^{4}\delta_{j}y_{j}+\sum x(\gamma b)^{3}\delta_{j}y_{j}$

$+\sum x(\gamma b)^{2}\delta_{j}y_{j}-x(\gamma b)^{4}-x(\gamma b)^{3}-x(\gamma b)^{2})=0$ , which is of the form

$x\gamma b+\sum x\lambda_{k}z_{k}-\sum x\gamma b\lambda_{k}z_{k}=0$ .
Hence $b$ is $rqr$ in $M$, whence $|a\rangle$ is $rqr$ in $M$, thence $a\in \mathcal{J}(M)$ .

THEOREM 8.5. If $M$ is a $\Gamma$ -ring then $\mathcal{J}(M/\mathcal{J}(M))=\mathcal{J}(M)$ , the zero ideal

of $M/\mathcal{J}(M)$ .
PROOF. If $a+\mathcal{J}(M)\in \mathcal{J}(M/\mathcal{J}(M))$ and $ b\in|a\rangle$ , $\gamma\in\Gamma$ , then $b+\mathcal{J}(M)$ belongs

to the $rqr$ principal right ideal generated in $M/\mathcal{J}(M)$ by $a+\mathcal{J}(M)$ , hence
$b+\mathcal{J}(M)$ is $rqr$ in $M/\mathcal{J}(M)$ . It follows that there exist $\eta_{i}\in\Gamma,$ $x_{i}\in M,$ $i=1$ ,

2, $n$ , such that $x\gamma b+\sum x\eta_{i}x_{i}-\sum x\gamma b\eta_{i}x_{i}\in \mathcal{J}(M)$ for all $x\in M$. Put $x=b\gamma b$ .
Then $c=b(\gamma b)^{2}+\sum_{:}b\gamma b\eta_{i}x_{i}-\sum_{i}b(\gamma b)^{2}\eta_{i}x_{i}\in \mathcal{J}(M)$ . If $y\in M$ then $y\gamma b\in M$

and hence $(y\gamma b)\gamma c+\sum_{J}(y\gamma b)\lambda_{j}z_{j}-\sum_{j}(y\gamma b)\gamma c\lambda_{j}z_{j}=0$ . Substituting for $c$ and

rearranging terms, we obtain $y\gamma b+(-y\gamma b-y(\gamma b)^{2}-y(\gamma b)^{8}+\sum_{i}y(\gamma b)^{8}\eta_{i}x_{\overline{\iota}}$

$-\sum_{i.j}y(\gamma b)^{3}\eta_{i}x_{i}\lambda_{j}z_{j}+\sum_{j}y\gamma b\lambda_{j}z_{j}+\sum_{j}y(\gamma b)^{2}\lambda_{j}z_{j}+\sum_{j}y(\gamma b)^{s}\lambda_{j}z_{j})-(-y(\gamma b)^{2}-y(\gamma b)^{a}$

$-y(\gamma b)^{4}+\sum_{i}y(\gamma b)^{4}\eta_{i}x_{i}-\sum_{i,j}y(\gamma b)^{4}\eta_{i}x_{i}\lambda_{j}z_{j}+\sum_{j}y(\gamma b)^{2}\lambda_{j}z_{j}+\sum_{j}y(\gamma b)^{3}\lambda_{j}z_{j}+\sum_{j}y(\gamma b)^{4}\lambda_{j}z_{j}\rangle$

$=0$ , hence $b$ is $rqr$ . Therefore $|a\rangle$ is $rqr$ and $a\in \mathcal{J}(M)$ .
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We note in passing that we can also define left quasi-regularity and the
left Jacobson radical for $\Gamma$-rings. It is unlikely that the left Jacobson radical
is equal to $\mathcal{J}(M)$ .

\S 9. Relations among the Radicals

We will prove:
THEOREM 9.1. $1fM$ is a $\Gamma$-ring then $\mathfrak{S}(M)\subseteqq \mathcal{P}(M)\subseteqq \mathcal{L}(M)\subseteqq \mathcal{N}(M)\subseteqq \mathcal{J}(M)$ .
THEOREM 9.2. If $M$ is a $\Gamma$ -ring which satisfies the descending chain con-

dition on right ideals, then $\mathfrak{S}(M)=\mathcal{P}(M)=\mathcal{L}(M)=\mathcal{N}(M)=\mathcal{J}(M)$ .
PROOF OF THEOREM 9.1. From ring theory it is known that $\mathcal{P}(R)\subseteqq \mathcal{L}(R)$

$\subseteqq \mathcal{J}(R)$ . By Theorems 4.1, 7.2, and 8.2, it follows that $\mathcal{P}(M)\subseteqq \mathcal{L}(M)\subseteqq \mathcal{J}(M)$ .
Evidently, every strongly nilpotent ideal is contained in any prime ideal,

so $\mathfrak{S}(M)\subseteqq \mathcal{P}(M)$ .
It is also clear that every locally nilpotent ideal is nil, so $\mathcal{L}(M)\subseteqq \mathcal{N}(M)$ .

By Theorem 8.1, every nil ideal is $rqr$, hence $\mathcal{N}(M)\subseteqq \mathcal{J}(M)$ .
PROOF OF THEOREM 9.2. It suffices to show $\mathcal{J}(M)\subseteqq \mathfrak{S}(M)$ . For conveni-

ence, let $J=\mathcal{J}(M)$ . Consider the chain $ J\supseteqq J\Gamma J\supseteqq(J\Gamma)^{2}J\supseteqq\ldots$ of ideals. By
the descending chain condition, $(J\Gamma)^{n}J=(J\Gamma)^{n+1}J=\ldots$ for some $n$ . Denote
$(J\Gamma)^{n}J$ by 1. Clearly $I\Gamma I=1$.

If $I\neq 0$ then the set $R$ , of all right ideals $A$ of $M$ contained in $I$ such
that $A\Gamma I\neq 0$, is non-empty. By the descending chain condition, Yl contains
a minimal element, $B$ . Then there exist $b\in B,$ $\delta\in\Gamma$ such that $b\delta I\neq 0$ . Thus
$(b\delta I)\Gamma I=b\delta I\neq 0$ , and $b\delta I\subseteqq B\in R$ . Consequently $b\delta I=B$ , and there exists
$a\in I$ such that $b\delta a=b$ . But $a\in J$ is $rqr$ so there exist $\eta_{i}\in\Gamma,$ $x_{i}\in M$ such
that $x\delta a+\sum x\eta_{i}x_{t}-\sum x\delta a\eta_{i}x_{i}=0$ for all $x\in M$. Putting $x=b$ we obtain
$b+\sum b\eta_{i}x_{i}-\sum b\eta_{i}x_{t}=0$ , or $b=0$, a contradiction. Hence $I=0;i$ . $e.,$ $(J\Gamma)^{n}J=0$ .
Therefore $J=\mathcal{J}(M)$ is strongly nilpotent and $\mathcal{J}(M)\subseteqq \mathfrak{S}(M)$ .

It can be shown that $\mathcal{P}(M),$ $\mathfrak{S}(M),$ $\mathcal{L}(M)$ , and $\mathcal{J}(M)$ are invariant under
the transition of $M$ to a $\Gamma^{\prime}$ -ring in the sense of Nobusawa. Moreover, $\mathcal{N}(M)$

contains $\mathcal{J}1^{\prime}(M)$ , the nil radical of $M$ as a $\Gamma^{\prime}$ -ring; and if $M$ is already a $\Gamma-$

ring in the sense of Nobusawa, then $\mathcal{N}(M)=\mathcal{N}^{\prime}(M)$ .
Finally, we remark that Theorem 9.1 remains true if we replace $\mathcal{J}(M)$

by the left Jacobson radical of $M$. Moreover if $M$ satisfies the descending
chain condition on left ideals, then the left Jacobson radical of $M$ coincides
with $\mathfrak{S}(M)$ . Hence if $M$ satisfies the descending chain conditions on both
left ideals and right ideals then the right Jacobson radical and the left
Jacobson radical coincide.
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\S 10. Concluding Remarks

By virtue of Theorems 8.5, 7.4 and 6.3 every $\Gamma$ -ring $M$ has a homomor-
phic image with zero radical, where radical can be taken as $\mathcal{J}(M),$ $\mathcal{L}(M)$ or
$X(M)$ . Barnes [1] established this fact for $\mathcal{P}(M)$ .

Although it is true that any ring $M$ can be regarded as a $\Gamma$-ring by
laking $\Gamma=M$, it is not necessarily true that $M$ can be regarded as a $\Gamma$-ring
in the sense of Nobusawa by taking $\Gamma=M$. But if $M$ is a simple ring then
$M^{2}=M$, and considered as a $\Gamma$ -ring with $\Gamma=M,$ $M$ is simple. Also if $M$ is
a semi-simple ring and $a\Gamma a=0$ with $\Gamma=M$, then $(a)^{3}=0$ , where $(a)$ denotes
the principal ideal generated in the ring $M$ by $a$ . This says $(a)$ is nilpotent;
but in a semi-simple ring there are no nonzero nilpotent ideals. Therefore
$a=0$ , and $M$ is semi-simple when regarded as a $\Gamma$-ring. Finally we note
that if the ring $M$ satisfies the descending chain condition on one-sided ideals,
then regarded as a $\Gamma$-ring with $\Gamma=M,$ $M$ also satisfies the descending chain
condition on one-sided ideals. Thus the analogues of the Wedderburn-Artin
Theorems for $\Gamma$-rings obtained by Nobusawa [5] are indeed generalizations
of the corresponding theorems for rings.

Nobusawa [5] defined a $\Gamma$ -ring $M$ to be semi-simple if $a\Gamma a=0$ for $a\in M$

implies $a=0$ , and this is the definition of semi-simplicity used in this paper.
However, a ring $M$ regarded as a $\Gamma$ -ring with $\Gamma=M$ which is semi-simple
in the sense of Nobusawa may not have zero Jacobson radical. The simple
radical rings due to Sasiada [6] are such examples. Therefore it would seem
preferable to define a $\Gamma$-ring $M$ to be semi-simple if $\mathcal{J}(M)=0$ . Since $\mathfrak{S}(M)$

$\subseteqq \mathcal{J}(M)$ , a $\Gamma$-ring in the sense of Nobusawa with the property that $\mathcal{J}(M)=0$

would be semi-simple in the sense of Nobusawa, hence Nobusawa’s proof of
the analogue of the Wedderburn-Artin Theorem would apply. Further justi-
fication for redefining semi-simplicity by $\mathcal{J}(M)=0$ comes from the following

THEOREM 10.1. If $M$ is a ring with Jacobson radical $J$, then regarded as
’a $\Gamma\cdot ring$ with $\Gamma=M,$ $\mathcal{J}(M)=J$.

PROOF. $J$ is an ideal of the ring $M$, hence is an ideal of the $\Gamma$ -ring $M$

with $\Gamma=M$. If $a\in J$ and $g\in M$ then $ga\in J$, hence $ga+y-gay=0$ and there-
fore $xga+xy-xgay=0$ for all $x\in M$. Since $y=(ga)y-ga\in M^{2}$ , we see that
$a$ is $rqr$ in $M$ as a $\Gamma$-ring with $\Gamma=M$. Thus $J\subseteqq \mathcal{J}(M)$ .

For the opposite inclusion it suffices to show that $\mathcal{J}(M)$ is a $rqr$ left ideal
of $M$. Consider $|ba\rangle$ , where $a\in \mathcal{J}(M),$ $b\in M$. Every element of $|ba\rangle$ can be
written as $be$, where $e=na+\sum au_{j}z_{j}\in \mathcal{J}(M)+\mathcal{J}(M)\Gamma M\subseteqq \mathcal{J}(M)$ . Let $ g\in\Gamma$

$=M$. Then $ gb\in\Gamma$ also, and since $e$ is $rqr$ , there exist $v_{i}\in\Gamma,$ $y_{i}\in M$ such
that $x(gb)e+\sum xv_{i}y_{i}-\sum x(gb)ev_{i}y_{i}=0$ for all $x\in M$. But this may also be
interpreted as $xg(be)+\sum xv_{i}y_{i}-\sum xg(be)v_{i}y_{i}=0$ for all $x\in M$, hence $be$ is
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$rqr$ in $M$ as a $\Gamma$-ring with $\Gamma=M$. Therefore $|ba\rangle$ is $rqr$ and $ba\in \mathcal{J}(M)_{t}$

proving that $\mathcal{J}(M)$ is a left ideal of $M$.
If $a\in \mathcal{J}(M)$ then there exist $p_{i}\in\Gamma,$ $w_{i}\in M$, such that

$xaa+\sum_{i}xp_{i}w_{i}-\sum_{i}xaap_{i}w_{i}=0$ for every $x$ in $M$ .

Letting $\sum_{i}p_{i}w_{i}=c$ for convenience, we see that $a^{2}+c-a^{2}c$ belongs to the $right^{-}$

annihilator of $M$, which is a nilpotent ideal of index two; hence $a^{2}+c-a^{2}c\in J$.
But if $a^{2}\circ c\in J$ then there exists $d$ such that $a^{2}\circ c\circ d=0;i$ . $e.,$

$a^{2}$ is $rqr$ in
$M$. This implies that $a$ is $rqr$ in $M$, hence $\mathcal{J}(M)$ is a $rqr$ left ideal of $M$ and,

we are done.
Wright State University

Wright State University and
North Carolina State University
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