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\S 1. Introduction.

Let $P$ be a differential operator of first order in two independent vari-
ables $x$ and $y$ ,

$P=a(x, y)\frac{\partial}{\partial x}+b(x, y)\frac{\partial}{\partial y}+c(x, y)$ .

Here we assume that the coefficients $a,$ $b$ and $c$ are (complex-valued) real
analytic functions defined in an open set $\Omega$ in $R^{2}$ , and that

$|a(x, y)|+|b(x, y)|\neq 0$ .
In this paper we shall study conditions for the local existence and an-

alyticity of hyperfunction solutions of the equation $Pu=f$. The basic facts
about the theory of hyperfunctions may be found in [2], [4]. We denote by
$\mathcal{A},$ $\mathcal{B}$ , and $\mathcal{O}$ the sheaves of real analytic functions, hyperfunctions, and holo-
morphic functions, respectively.

Let $p$ be the principal part of $P$. We define the k-th commutator $c_{p}^{k}$ of
$p$ by induction:

$c_{p}^{0}=\overline{p}=the$ operator with complex conjugate coefficients,

$c_{p}^{k}=[p, c_{p}^{k-1}]=pc_{p}^{k-1}-c_{p}^{k-1}p$ .
Let $k_{p}(x, y)$ denote the first value of $k$ for which $c_{p}^{k}$ is not proportional to $p$

at the point $(x, y)$ . If $c_{p}^{k}$ is proportional to $p$ for all values of $k$ , we define
$k_{p}(x, y)$ to be $\infty$ . Note that $P$ is elliptic at $(x, y)$ , if and only if $k_{p}(x, y)=0$ .
It is easily seen that $k_{p}(x, y)$ does not depend on the choice of local coordi-
nates, and that it is invariant under multiplication of $P$ by a non-vanishing
function.

Our main results are the following two theorems which state the relation
between the parity of $k_{p}(x, y)$ and the analyticity and existence of hyper-
function solutions of $Pu=f$.
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THEOREM A. (Analyticity of solutions). The following two conditions on
$P$ are equivalent:

(a) For every open subset $\omega$ of $\Omega$ , if $u\in \mathcal{B}(\omega)$ and $Pu\in \mathcal{A}(\omega)$ , then $u\in \mathcal{A}(\omega)$ .
(A) At every point $(x, y)$ of $\Omega,$ $k_{p}(x, y)$ is even.
THEOREM B. (Local existence of solutions). The following two conditions

on $P$ are equivalent:
(b) For every point $(x, y)$ of $\Omega$ , there exists a neighborhood $\omega$ of $(x, y)$ such

that $P\mathcal{B}(\omega)=\mathcal{B}(\omega)$ .
(B) At every point $(x, y)$ of $\Omega,$ $k_{p}(x, y)$ is either even or $\infty$ .
Recently M. Sato [1], [5] has proved the analyticity of hyperfunction

solutions of elliptic differential equations. As to the problem of existence,
P. Schapira [6] has given an example of equation without solutions in the
space of hyperfunctions. Later Schapira [7], [8] has shown that for differ-
ential equations of first order in any number of independent variables, the
condition $(P^{\prime})$ of Nirenberg and Treves [3] is a necessary and sufficient con-
dition for the local existence of hyperfunction solutions. Schapira uses the
technique of a priori inequalities, whereas our proof is based on the behavior
of characteristic curves in the complex domain.

\S 2. Characteristic curves in the complex domain.

We extend the functions $a,$
$b$ , and $c$ to complex values of the independent

variables $x$ and $y$ . From now on $x$ and $y$ will denote complex variables.
We shall study the behavior of the characteristic curves in the complex

domain. They are solutions of the system of equations

(2.1) $\frac{dx}{ds}=a(x, y)$ , $\frac{dy}{ds}=b(x, y)$ ,

where $s$ is a complex variable. Let $(x_{0}, y_{0})$ be a point of $\Omega$ and let $x=x(s, t)$ ,
$y=y(s, t)$ be a solution of (2.1) containing a parameter $t$ such that $x(O, 0)=x_{0}$ ,
$y(O, 0)=y_{0}$ and the Jacobian $\partial(x, y)/\partial(s, t)$ evaluated at $(0,0)$ is different from
zero. If the domain of definition $V$ of $x(s, t)$ and $y(s, t)$ is a sufficiently small
open neighborhood of $(0,0)$ in $C^{2}$ , then the mapping $(s, t)\rightarrow(x(s, t),$ $y(s, t))$ is a
one-to-one transformation from $V$ onto a complex open neighborhood $U$ of

\langle $x_{0},$ $y_{0}$) and has a holomorphic inverse.
THEOREM 1. The condition (A) holds in $\Omega$ , if and only if,
$(\alpha)$ Every point of $\Omega$ has a neighborhood in which every characteristic curve

has at most one real point.
The condition (B) holds in $\Omega$ , if and only if,
$(\beta)$ Every point of $\Omega$ has a neighborhood in which every characteristic curve

either has at most one real point or else is $a$ real curve.



20 H. SUZUKI

PROOF. Let $(x_{0}, y_{0})$ be a point of $\Omega$ . It is possible to introduce new $ rea\Gamma$

local coordinates in a neighborhood of $(x_{0}, y_{0})$ , so that the operator takes the
form

$p=a^{\prime}(x, y)(-\partial\frac{\partial}{x}+ib^{\prime}(x, y)-\partial^{\partial}\overline{y})$ ,

where $a^{\prime}(x, y)$ is a non-vanishing complex-valued analytic function, and $b^{\prime}(x, y)($

is a real-valued analytic function [3]. Since the conditions (A), (B), $(\alpha)$ and
$(\beta)$ are local and invariant under a real change of variables and multiplica-
tion of $p$ by a non-vanishing function, we may suppose that $p$ has the form

(2.2) $p=\frac{\partial}{\partial x}+ib(x, y)\frac{\partial}{\partial y}$ ,

where $b(x, y)$ is a real-valued analytic function.
For the operator $p$ of the form (2.2), $c_{p}^{k}$ becomes

$c_{p}^{k}=(-2i\frac{\partial^{k}b}{\partial x^{k}}+\sum_{J=0}^{k-1}d_{jk}\frac{\partial^{f}b}{\partial x^{f}})\frac{\partial}{\partial y}$ , $k\geqq 1$ ,

so that

(2.3) $k_{p}(x, y)=\min\{k;\frac{\partial^{k}b(x,y)}{\partial x^{k}}\neq 0\}$ .
Hence, at a real point $(x, y)$ on an integral curve $y=\varphi(x)$ of the characteristic
equation $dy/dx=ib(x, y)$ , we have

(2.4) $k_{p}(x, y)=\min\{k;{\rm Im}\varphi^{(k+1)}(x)\neq 0\}$

and

(2.5) lm $\varphi^{(k+1)}(x)=\frac{\partial^{k}b(x,y)}{\partial x^{k}}$ when $k=k_{p}(x, y)$ .
$(A)\Rightarrow(\alpha)$ . It follows from (2.3) that, if the condition (A) holds, the sign

of the function $b(x, y)$ does not vary with $\chi$ and $y$ . Neither does the sign of
$(\partial/\partial x)^{k_{P}}b(x, y)$ . Suppose that, on a characteristic curve $y=\varphi(x)$ , there were
more than one real points. When $x$ moves along the real axis, it follows
from (2.4) that every zero of ${\rm Im}\varphi(x)$ is of odd order $k_{p}+1$ . Hence the sign
of $1m\varphi^{(k_{P}+1)}(x)$ changes at successive zeros of ${\rm Im}\varphi(x)$ on the real axis. In
view of (2.5), this is a contradiction.

(B) $:>(\beta)$ . Suppose that the condition (B) holds in $\Omega$ . Let $(x_{0}, y_{0})$ be a
point of $\Omega$ which we may assume to be $(0,0)$ without loss of generality.
Since $b(x, y)$ is an analytic function, it follows from (2.3) that, for fixed $y$,

the sign of $b(x, y)$ does not vary with $x$. Hence, if we choose a neighborhood
$\omega$ of $(0,0)$ of sufficiently small width in the direction of the y-axis, the sign
of $b(x, y)$ does not vary with $x$ and $y$ in each of the two regions $\omega^{\{}=\omega\cap$

$\{y>0\}$ and $\omega^{-}=\omega\cap\{y<0\}$ .
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When $b(x, y)$ does not change sign in the whole of $\omega$ , by the same argu-
ment as in the proof of $(A)\Rightarrow(\alpha)$ , we prove that if a characteristic curve is
not a real curve, then it has at most one real point.

When $b(x, y)$ changes sign, $b(x, 0)$ vanishes identically and there is a con-
stant $C>0$ such that $|b(x, y)|\leqq C|y|$ . Hence for every characteristic curve
$y=\varphi(x)$ except $y=0$ we have

$|\arg\varphi(x_{2})-\arg\varphi(x_{1})|\leqq|\int_{x}^{x_{1^{2}}}\frac{\varphi^{\prime}(x)dx}{\varphi(x)}|\leqq C|x_{2}-x_{1}|$ .

Let the diameter of $\omega$ be smaller than $\pi/C$ . Suppose that there were a
characteristic curve which is not a real curve and has more than one real
points. Then the sign of ${\rm Im}\varphi^{(k_{p}+1)}(x)$ changes at successive zeros $x_{1}$ and $x_{2}$

of ${\rm Im}\varphi(x)$ on the real axis and so does the sign of $(\partial/\partial x)^{k_{P}}b(x, y)$ in view of
\langle 2.5). Hence $\varphi(x_{1})$ and $\varphi(x,)$ must be of opposite signs. It follows therefore
that $|x_{2}-x_{1}|\geqq\pi/C$. Contradiction.

$(\beta)\Rightarrow(B)$ . Suppose that the condition (B) does not hold in $\Omega$ . Then there
is a point $(x_{0}, y_{0})$ in $\Omega$ such that $k_{p}(x_{0}, y_{0})$ is odd. We may suppose $(x_{0}, y_{0})$

$=(0,0)$ . We denote by $\varphi(x, t)$ the solution of the equation $dy/dx=ib(x, y)$

such that $\varphi(0, t)=it$ . We have then

$\varphi(x, 0)=idx^{k_{0}+1}+\cdots$

where $d=(\partial/\partial x)^{k_{0}}b(0,0)/(k_{0}+1)$ !, $k_{0}=k_{p}(0,0)$ . Hence

$’\langle 2.6)$ $\varphi(x, t)=(i+o(1))t+(id+o(1))x^{k_{0}+1}$ ,

so that for sufficiently small real $x$ and real $t$ we have

$|{\rm Im}\varphi(x, t)-t-dx^{k_{0}+1}|\leqq(|t|+|d|x^{k_{0}+1})/2$ .

When $dt<0$ it follows that $1m\varphi(x, t)$ lies between $(t+3dx^{k_{0}+1})/2$ and (3 $t+$

$dx^{k_{0}+1})/2$ . Thus if $t$ is sufficiently small, the characteristic curve $y=\varphi(x, t)$

has more than one real points and is not a real curve.
$(\alpha)\Rightarrow(A)$ . Suppose that the condition (A) does not hold in $\Omega$ . Then there

is a point $(x_{0}, y_{0})$ in $\Omega$ such that $k_{p}(x_{0}, y_{0})$ is either odd or $\infty$ . If $k_{p}(x_{0}, y_{0})$ is
odd, $(\beta)$ is not valid. If $ k_{p}(x_{0}, y_{0})=\infty$ , the characteristic curve passing through

\langle $x_{0},$ $y_{0}$) is a real curve. In either case, in any neighborhood of $(x_{0}, y_{0})$ , we can
find a characteristic curve having more than one real points.

\S 3. Some lemmas.

First note that the statements of Theorems A and $B$ are local and in-
variant under a real change of variables and multiplication of $P$ by a non-
vanishing function.
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The Cauchy-Kovalevsky theorem implies that the equation $ph+c=0$ has
an analytic solution in sufficiently small open sets. If we set $u=ve^{h}$, the
equation $Pu=f$ is transformed into $pv=e^{-h}f$. Hence we need only prove the
Theorems A and $B$ for homogeneous operators $p$ .

As to Theorem $A$ , since we can locally solve $pv=e^{-h}f$ with $v$ analytic, it
is enough to prove the equivalence of the condition (A) to the following.

$(a_{0})$ For every open subset $\omega$ of $\Omega$ , if $u\in \mathcal{B}(\omega)$ and pu $=0$ , then $u\in \mathcal{A}(\omega)$ .
Let $\omega$ be an open set in $R^{2}$ and let $U$ be a complex neighborhood of $\omega$ ,

that is, an open set in $C^{2}$ which contains $\omega$ as a relatively closed subset.
We use the following notation:

$U_{1}=\{(x, y)\in U;{\rm Im} x\neq 0\}$ , $U_{2}=\{(x, y)\in U;{\rm Im} y\neq 0\}$ ,

$U_{1}^{\pm}=\{(x, y)\in U;{\rm Im} x^{=}<0\}$ , $U_{2^{\pm}}=\{(x, y)\in U;{\rm Im} y=<0\}$ ,

$U^{\sigma}=$ { $(x,$ $y)\in U;({\rm Im} x,$ $lmy)$ is in the $\sigma th$ quadrant of $R^{2}$ }.

If we choose a Stein neighborhood $U$ such that $ U\cap R^{2}=\omega$ , then $\mathcal{B}(\omega)$ may
be identified with $\mathcal{O}(U_{1}\cap U_{2})/(\mathcal{O}(U_{1})+\mathcal{O}(U_{2}))$ . Hence a hyperfunction $u\in \mathcal{B}(\omega)$ .
is represented by a holomorphic function defined in $U_{1}\cap U_{2}$ which we call a
defining function of $u$ . We denote by $u^{\sigma}$ the restriction to $U^{\sigma}$ of a defining
function. If each $u^{\sigma}$ can be analytically continued across $\omega$ , that is, if there
is a complex open set $W$ containing $\omega$ such that each $u^{\sigma}$ has a holomorphic
extension to $W\cap U^{\sigma}$, then the hyperfunction $u$ is a real analytic function.
Conversely, if $u$ is a real analytic function and all $u^{\sigma}$ except one vanish
identically, then $u^{\sigma}$ can be analytically continued across $\omega$ .

From now on $p$ will denote both the operator on $\mathcal{B}$ and on $\mathcal{O}$ . If we
choose $U$ such that $po(U_{i})=\mathcal{O}(U_{i})$ , the conditions $(a_{0})$ and $(b)$ can be trans-
formed into conditions expressed in terms of defining functions of hyper-
functions.

LEMMA 1. Let $U$ be a Stein neighborhood of $\omega\subset\Omega$ such that $p\mathcal{O}(U_{i})=$

$\mathcal{O}(U_{i}),$ $i=1,2$ .
The following two conditions are equivalent:
$(a_{0})_{\omega}$ If $u\in \mathcal{B}(\omega)$ and $pu=0$ , then $u\in \mathcal{A}(\omega)$ .
$(\tilde{a}_{0})_{\omega}$ For each $\sigma$ , if $u^{\sigma}\in \mathcal{O}(U^{\sigma})$ and $pu^{\sigma}=0$ , then $u^{\sigma}$ can be analytically’

continued across $\omega$ .
The following two conditions are equivalent:
$(b)_{\omega}$ $p\mathcal{B}(\omega)=\mathcal{B}(\omega)$ .
(5) For each $\sigma,$

$p\mathcal{O}(U^{\sigma})=\mathcal{O}(U^{\sigma})$ .
PROOF. $(\tilde{a}_{0})_{\omega}\Rightarrow(a_{0})_{\omega}$ . Let $u\in \mathcal{B}(\omega)$ be represented by $u^{\sigma}\in \mathcal{O}(U^{\sigma})$ . Then

$pu=0$ means $pu^{\sigma}=e_{1}+e_{2},$ $e_{i}\in \mathcal{O}(U_{i})$ . By hypothesis on $U$, there exist $ u_{i}\in \mathcal{O}(U_{i}\rangle$ $\$ $

such that $pu_{i}=e_{t}$ . Then $u$ is represented also by $u^{;\sigma}=u^{\sigma}-u_{1}-u_{2}$ for which
we have $pu^{\prime\sigma}=0$ . It follows from $(\tilde{a}_{0})_{\omega}$ that $u^{\prime\sigma}$ can be analytically continued-
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across $\omega$ . Hence $u\in \mathcal{A}(\omega)$ .
$(b)_{\omega}=\gg(\tilde{b})_{\omega}$ . Given $f^{\sigma}\in \mathcal{O}(U^{\sigma})$ , it follows from $(b)_{\omega}$ that we can find $u^{\sigma}$

$\in \mathcal{O}(U^{\sigma})$ such that $pu^{\sigma}-f^{\sigma}\in \mathcal{O}(U_{1})+\mathcal{O}(U_{2})$ . Thus there exist $e_{i}\in \mathcal{O}(U_{i})$ such
that $pu^{\sigma}-f^{\sigma}=e_{1}+e_{2}$ . By hypothesis on $U$, there exist $u_{i}\in \mathcal{O}(U_{i})$ such that
$pu_{i}=e_{i}$ . If we set $u^{\prime\sigma}=u^{\sigma}-u_{1}-u_{2}$ , then $u^{\prime\sigma}\in \mathcal{O}(U^{\sigma})$ and $pu^{\prime\sigma}=f^{\sigma}$ .

The implications $(a_{0})_{\omega}\Rightarrow(\tilde{a}_{0})_{\omega}$ and $(\tilde{b})_{\omega}\Rightarrow(b)_{\omega}$ are obvious.
In the construction of a Stein neighborhood $U$ satisfying the hypothesis

of Lemma 1 and also in the proof of Theorem $B$ we need the following
lemma.

LEMMA 2. Let $G$ be an open set in the space of two complex variables
$(x, t)$ . If every section $G(t)$ of $G$ by $t=const$ is simply-connected, then $(\partial/\partial x)\mathcal{O}(G)$

$=\mathcal{O}(G)$ .
PROOF. We denote by $\pi$ the projection $(x, t)\rightarrow t$ . Since every $G(t)$ is

simply-connected, there exists an open covering $\{N_{i}\}$ of $\pi(G)$ such that
$(\partial/\partial x)\mathcal{O}(G_{i})=\mathcal{O}(G_{i})$ , where $G_{i}=G\cap\pi^{-1}(N_{i})$ . For any $g\in \mathcal{O}(G)$ , we can then
find a solution $v_{i}\in \mathcal{O}(G_{i})$ of $(\partial/\partial x)v_{i}=g$ . Since $(\partial/\partial x)(v_{i}-v_{j})=0$ in $G_{i}\cap G_{j}$ and
all the sections $G(t)$ are connected, $v_{i}(x, t)-v_{j}(x, t)$ is a function of $t$ alone
which we denote by $w_{ij}(t),$ $t\in N_{i}\cap N_{J}$ . Since the first Cousin problem has
a solution in any open set in the complex plane, we can find $w_{i}(t)\in \mathcal{O}(N_{i})$ so
that $w_{ij}=w_{i}-w_{j}$ in $N_{i}\cap N_{j}$ . If we set $v(x, t)=v_{i}(x, t)-w_{i}(t)$ in $G_{i}$ , then
$v\in \mathcal{O}(G)$ and $(\partial/\partial x)v=g$. QED.

We keep the notation used in the proof of Theorem 1. The change of
variables $(x, y)\rightarrow(x, x+y)$ transforms the differential operator into

$p=\frac{\partial}{\partial x}+(1+ib(x, y-x))\frac{\partial}{\partial y}$

and the equation of characteristic curves into $y=\psi(x, t)\equiv x+\varphi(x, t)$ . If the
domain of definition $V$ of $\psi(x, t)$ is a sufficiently small open neighborhood of
$(0,0)$ in $C^{2}$ , then the mapping $(x, t)\rightarrow(x, \psi(x, t))$ is a one-to-one transformation
from $V$ onto a complex open neighborhood $U$ of $(0,0)$ and has a holomorphic
inverse. Set $V=X\times T$, where $X$ and $T$ are rectangles about $0$ in the com-
plex plane. Then $U$ is a Stein manifold.

Under the complex change of variables $(x, y)\rightarrow(x, t)$ , we have the following
table of corresponding quantities:

pu$(x, y)=f(x, y)$ ; $(\partial/\partial x)v(\chi, t)=g(x, t)$ ,

$U,$ $U_{i},$ $U_{t^{\pm}},$ $U^{\sigma}$ ; $V,$ $V_{i},$ $V_{i^{\pm}},$ $V^{\sigma}$ ,

characteristic curve $C_{t}$ : $y=\psi(x, t)$ ; $V(t)=X$ ,

$C_{t}\cap U_{i}^{\pm},$ $C_{t}\cap U^{\sigma}$ ; $V_{i}^{\pm}(t),$ $V^{\sigma}(t)$ .
We denote by $x^{\prime}$ and $\chi^{\prime\prime}$ the real and imaginary part of $x$, respectively.



24 H. SUZUKI

Since $(\partial/\partial x^{\prime\prime}){\rm Im}\psi(x^{\prime}+ix^{\prime\prime}, t)=1$ when $(x, t)=(O, 0)$ , we can solve the equation
$1m\psi(x^{\prime}+ix^{\prime\prime}, t)=0$ for $x^{\prime\prime}$ and write $x^{\prime\prime}=\xi(x^{\prime}, t)$ , if $V$ is taken sufficiently
small. Thus we have $V_{1}^{\pm}(t)=\{x\in X;x^{\prime\prime=}<0\},$ $V_{2}^{\pm}(t)=\{x\in X;x^{;;=}<\xi(x^{\prime}, t)\}$

and $V^{\sigma}(f)=$ { $x\in Xx^{\prime\prime>}O$ and $x^{;;>}<\xi(x^{\prime},$ $t)$ }, so $V_{1}^{\pm}(t)$ and $V_{2}^{\pm}(t)$ are simply-
connected. In view of Lemma 2, $U$ satisfies the hypothesis of Lemma 1.

\S 4. Proof of Theorem A.

First note that real points on the characteristic curve $y=\psi(x, t)$ corre-
spond to zeros of $\xi(x^{\prime}, t)$ and that the characteristic curve is a real curve, if
and only if $\xi(x^{\prime}, t)$ vanishes identically. When $k_{0}=k_{p}(0,0)$ is finite, we obtain
from (2.6)

$\psi(x, t)=(i+o(1))t+x+(id+o(1))x^{k_{0}+1}$ .

Hence, if $t$ is real, $\xi(x^{\prime}, O)=-dx^{;k_{0}+1}+\cdots$ and $\xi(0, t)=-t+\cdots$ , so that we have

(4.1) $\xi(x^{\prime}, t)=-(1+o(1))t-(d+o(1))_{X^{\prime k_{0}+1}}$ .
When $k_{0}=\infty,$ $\xi(x^{\prime}, 0)$ vanishes identically.

$(A)\Rightarrow(a_{0})$ . Suppose that the condition (A) holds in a neighborhood of
$(0,0)$ . Since $k_{0}+1$ is odd, it follows from (4.1) with $t=0$ that $ V^{\sigma}(O)\neq\emptyset$ for
every $\sigma$ . Furthermore, in view of $(\alpha)$ , for every $t\in T,$ $\xi(x^{\prime}, t)$ has at most
one zero. Hence $V^{\sigma}(t)$ is connected or empty.

Let $u^{\sigma}\in \mathcal{O}(U^{\sigma})$ be a solution of $pu^{\sigma}=0$ . We shall show that $u^{\sigma}$ can be
analytically continued to a neighborhood of $(0,0)$ . Under the change of vari-
ables $(x, y)\rightarrow(x, t)$ , there corresponds to $u^{\sigma}$ a solution $v^{\sigma}\in \mathcal{O}(V^{\sigma})$ of $(\partial/\partial x)v^{\sigma}=0$ .
Since all the sections $V^{\sigma}(t)$ are connected, $v^{\sigma}(x, t)$ is a function of $t$ alone, so
it can be analytically continued to $\nabla^{\sigma}=\{(x, t)\in V;V^{\sigma}(t)\neq\emptyset\}$ . Since $ V^{\sigma}(O)\neq\emptyset$ ,

$\tilde{V}^{\sigma}$ is an open neighborhood of $(0,0)$ . Thus $u^{\sigma}$ can be continued to a neigh-
borhood $\tilde{U}^{\sigma}$ of $(0,0)$ .

$(a_{0})\Rightarrow(A)$ . If $k_{0}$ is either odd or $\infty$ , then $ V^{\sigma}(O)=\emptyset$ for some $\sigma$ . This
means that $t\neq 0$ when $(x, t)\in V^{\sigma}$ . If we set $v^{\sigma}(x, t)=t^{-1}$ , then $v^{\sigma}\in \mathcal{O}(V^{\sigma})$ and

\langle $\partial/\partial x$) $v^{\sigma}=0$ while $v^{\sigma}$ can not be continued analytically to a neighborhood of
$\langle 0,0)$ .

\S 5. Proof of Theorem B.

$(B)\Rightarrow(b)$ . Suppose that the condition (B) holds in a neighborhood of $(0,0)$ .
It follows from $(\beta)$ that either $\xi(x^{\prime}, t)$ has at most one zero or else vanishes
identically. Hence for every $\sigma$ and every $t,$ $V^{\sigma}(t)$ is simply-connected or
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empty. We have by Lemma 2 $(\partial/\partial x)\mathcal{O}(V^{\sigma})=\mathcal{O}(V^{\sigma})$ , so that $p\mathcal{O}(U^{\sigma})=\mathcal{O}(U^{\sigma})$ .
$(b)\Rightarrow(B)$ . Let $k_{0}=k_{p}(0,0)$ be odd. It follows from (4.1) that for sufficiently

small real $t$ and $x^{\prime}$

$|\xi(x^{\prime}, t)+t+dx^{\prime k_{0}+1}|\leqq(|t|+|d|x^{\prime k_{0}+1})/2$ .

To fix ideas, suppose that $d>0$ . Then we have

$\xi(x^{\prime}, t)\leqq(-t-dx^{\prime k_{0}+1})/2$

when $t\geqq 0$ . If we set $S(t)=\{x\in X;(-t-dx^{\prime k_{0}+1})/2<x^{\prime\prime}<0\}$ for $t\geqq 0$ , then
$S(t)\subset V^{\sigma}(t),$ $\sigma=2$ .

Set $f(x, y)=1/xy$ and $g(x, t)=1/x\psi(x, t)$ . $f(x, y)$ is a defining function of
$(2\pi i)^{2}\delta(x, y)$ . We now claim that the equation $(\partial/\partial x)v=g$ has no solution
$v\in \mathcal{O}(V^{2})$ . Suppose on the contrary that there were a solution $v\in \mathcal{O}(V^{2})$ of
$(\partial/\partial x)v=g$. Choose two points $x_{1}$ and $x_{2}$ in $S(O)$ so that $x_{1}^{\prime}<0$ and $x_{2}^{\prime}>0$ .
For $t>0$ let $\Gamma(t)$ be a path from $x_{1}$ to $x_{2}$ lying in $S(t)$ . Then we have

$\int_{r(t)}g(x, t)dx=v(x_{2}, t)-v(x_{1}, t)$ .

As $t\downarrow 0$ the right hand side tends to $v(x_{2},0)-v(x_{1},0)$ .
On the other hand, $\psi(x, t)$ does not vanish when $x^{\prime\prime}>(-t-dx^{\gamma k_{0}+1})/2$ . Let

$\Gamma_{1}(t)$ be a circle with center at $x=0$ which is oriented counter-clockwise and
contained in the region $\{x\in X;x^{\prime\prime}>(-t-dx^{\prime k_{0}+1})/2\}$ . Let $\Gamma_{2}$ be a path from
$x_{1}$ to $x_{2}$ lying in the region $\{x\in X;x^{\prime\prime}>-dx^{\prime k_{0}+1}/2\}$ . Then we have

$\int_{\Gamma(t)}g(x, t)dx=\int_{\Gamma_{1}(t)}g(x, t)dx+\int_{\Gamma_{2}}g(x, t)dx$ .

The first integral on the right hand side is equal to $2\pi i/\psi(0, t)=2\pi/t$ . As
$t\downarrow 0$ the second integral tends to the integral of $g(x, 0)$ along $\Gamma_{2}$ . Hence the
left hand side tends to $\infty$ . This gives a contradiction.
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