Spectrum of a substitution minimal set

By Teturo KAMAE

(Received Jan. 19, 1970)

§ 1. Summary

K. Jacobs ([1]) reported as an example of Toeplitz type sequences that

is strictly ergodic and has a rational pure point spectrum. This sequence has the following properties:
(i) It is a shift of the sequence $001000101010001 \cdots$ which is invariant under the substitution $0 \rightarrow 0010,1 \rightarrow 1010$ of length 4 .
(ii) The $(2 i+1)$-th symbol of it is 0 for $i=0,1,2, \cdots$.

In this paper, we prove that if some general conditions like (i) (ii) above are satisfied for a sequence over some finite alphabet, then it is strictly ergodic and has a rational pure point spectrum. That is, our main results are the followings:
I. If M is a minimal set associated with a substitution of some constant length, then M is strictly ergodic.
II. Let M be a strictly ergodic set associated with a substitution of length p^{k}, where p is a prime number and k is any positive integer. Assume that for some (or, equivalently, any) $\alpha \in M$, there exist integers $h \geqq 0$ and $r \geqq 1$, such that $\left(i p^{h}+r\right)$-th symbol of α is the same for $i=0,1,2, \cdots$. Then, M has a rational pure point spectrum $\left\{\omega ; \omega^{p i}=1\right.$ for some $\left.i=0,1,2, \cdots\right\}$.

§ 2. Notations and definitions

Let C be any finite set of symbols which contains at least two elements. Let $N=\{0,1,2, \ldots\}$ be the set of non-negative integers. Let T be the shift transformation on the power space C^{N}. That is, T is defined as follows:

$$
(T \alpha)(n)=\alpha(n+1),
$$

where $\alpha \in C^{N}$ and $n \in N$. For $p \in N$, let $N_{p}=\{0,1, \cdots, p-1\}$. Let $C^{*}=\bigcup_{p \in N} C^{N p}$ be the disjoint sum, where $C^{N_{0}}=\{\Lambda\}$ and Λ is the empty sequence. C^{N} or $C *$ may be considered as the set of infinite or finite sequences over C, respectively. We identify $C^{N_{1}}$ with $C . L(\xi)$ denotes the length of $\xi \in C^{*}$. That is, $L(\xi)$ equals k, such that $\xi \in C^{N k}$. For $\alpha \in C^{N}$, define $L(\alpha)=\infty$. For $\xi \in C^{*}$ and $\alpha \in C^{*} \cup C^{N}$, the juxtaposition of ξ and α in this order is denoted by $\xi^{*} \alpha$, that is,

$$
\left(\xi^{*} \alpha\right)(n)=\left\{\begin{array}{ll}
\xi(n) & \cdots \\
\text { if } 0 \leqq n \leqq L(\xi)-1 \\
\alpha(n-L(\xi)) & \cdots
\end{array}\right) \text { if } L(\xi) \leqq n \leqq L(\xi)+L(\alpha)-1
$$

For $\xi \in C^{*}$ and $\alpha \in C^{*} \cup C^{N}, \xi$ is called a prefix or a section of α, if there exists η, such that $\alpha=\xi^{*} \eta$, or if there exist η and ζ, such that $\alpha=\eta^{*} \xi^{*} \zeta$, respectively. For $\xi \in C^{*}$ and $\eta \in C^{*}, \xi$ is called a suffix of η, if there exists ζ, such that $\eta=\zeta^{*} \xi$. For $\xi \in C^{*}, \Gamma_{\xi}=\left\{\alpha \in C^{N} ; \xi\right.$ is a prefix of $\left.\alpha\right\}$ denotes the cylinder set. C^{N} is a topological space with the family of cylinder sets as its open base. For $\alpha \in C^{N}$, denote

$$
\begin{aligned}
& \operatorname{range}(\alpha)=\{\alpha(n) \in C ; n \in N\} \\
& \operatorname{Orb}(\alpha)=\left\{T^{n} \alpha ; n \in N\right\} \\
& \overline{\operatorname{Orb}}(\alpha)=\text { closure of } \operatorname{Orb}(\alpha)
\end{aligned}
$$

For the notions such as a minimal set, a strictly ergodic (i.e. minimal and uniquely ergodic, at the same time) set or an almost periodic sequence and their properties about shift dynamical system $\left(C^{N}, T\right)$, refer [2] and [5]. Let $S \subset C^{N}$ be a strictly ergodic set. There uniquely exists a probability measure μ on S (with respect to the Borel field on S), such that T is a measure preserving transformation on S for μ. Consider the Hilbert space $L_{2}(S, \mu)$ over complex numbers. Let U be the isometrical linear operator on $L_{2}(S, \mu)$, such that $(U f)(\alpha)=f(T \alpha)$, where $f \in L_{2}(S, \mu)$ and $\alpha \in S . \quad U$ is uniquely determined by the strictly ergodic set $S . U$ is called to have a pure point spectrum, if there exists a base $\left\{f_{i}\right\}$ of $L_{2}(S, \mu)$ each term of which is a proper function of $U([6])$. By a proper value or a proper function of S or α, such that $\overline{\mathrm{Orb}}(\alpha)=S$, we mean those of U defined above. Also, by the statement that S or α, such that $\overline{\operatorname{Orb}}(\alpha)=S$, has a pure point spectrum, we mean that U has a pure point spectrum.

By a substitution of length $p \geqq 2$, we mean a function defined on C which takes values on $C^{N p}$. By a homogeneous substitution, we mean a substitution of length p for some $p \geqq 2$. Let θ be any homogeneous substitution. We extend θ to a function $C * \cup C^{N} \rightarrow C^{*} \cup C^{N}$ which we also denote by θ, as
follows:

$$
\theta(\alpha)=\theta(\alpha(0)) * \theta(\alpha(1)) * \theta(\alpha(2))^{*} \cdots,
$$

which belongs to C^{*} or C^{N} as $\alpha \in C^{*}$ or C^{N}, respectively. Let θ be any homogeneous substitution. A minimal set $S \subset C^{N}$ is called to be associated with θ, if $\theta(S) \subset S$. A minimal set is called a homogeneous substitution minimal set, if there exists a homogeneous substitution with which it is associated. For the general properties of a substitution minimal set on a space of twosided sequences, refer [3].

For integers $p \geqq 2$ and $n \geqq 0$, let

$$
\begin{aligned}
n= & \sum_{i=0}^{k-1} a_{i} p^{k-i-1} \\
& \left(a_{0} \neq 0 \text { if } n \neq 0,0 \leqq a_{i} \leqq p-1 ; i=0,1, \cdots, k-1\right)
\end{aligned}
$$

be the p-adic development of n. Define $p(n) \in N_{p}^{*}$ by $p(n)(i)=a_{i}(i=0,1, \cdots$, $k-1)$. Let $p \geqq 2$ be any integer. By a finite-state machine over N_{p}, we mean a quadruple $M=\left(K, \delta, q_{0}, \tau\right)$, where K is any nonempty finite set, δ is a function $K \times N_{p} \rightarrow K, q_{0}$ is any element of K, and τ is a function $K \rightarrow C . \delta$ is called the next state function of M. We extend δ to a function $K \times N_{p}^{*} \rightarrow K$ which we also denote by δ, so as to satisfy $\delta\left(q, \xi^{*} \eta\right)=\delta(\delta(q, \xi), \eta)$ for any $q \in K$ and $\xi, \eta \in N_{p}^{*}$. Define $\lambda_{m}^{(n)} \in C^{N}$ by $\lambda_{m}^{(p)}(n)=\tau\left(\delta\left(q_{0}, p(n)\right)\right)$, where $n \in N$. For any integer $p \geqq 2, F_{p}$ denotes the set of $\alpha \in C^{N}$, such that $\alpha=\lambda_{m i}^{(p)}$ for some finite-state machine M over N_{p}. And, \tilde{F}_{p} denotes the set of $\alpha \in C^{N}$, such that $\alpha=\lambda_{m}^{(p)}$ for some finite-state machine $M=\left(K, \delta, q_{0}, \tau\right)$ over N_{p}, such that τ is a one-to-one mapping. Denote

$$
F=\bigcup_{p \geqq 2} F_{p} .
$$

An element of F is called a finite-rank sequence over $C . \alpha \in C^{N}$ is called an ultimately periodic sequence, if there exists a non-negative integer n, such that $T^{n} \alpha$ is a periodic sequence. It is known ([4]) that for multiplicatively independent integers $p, p^{\prime} \geqq 2, F_{p} \cap F_{p^{\prime}}$ equals the set of all ultimately periodic sequences.

Let $M=\left(K, \delta, q_{0}, \tau\right)$ be a finite-state machine over $N_{p}(p \geqq 2)$. We define the following notions:

Definition 1. Let $q, q^{\prime} \in K$. Denote $q \sim q^{\prime}(M)$, if for any $\xi \in N_{p}^{*}, \tau(\delta(q, \xi))$ $=\tau\left(\delta\left(q^{\prime}, \xi\right)\right)$ holds. The negation of $q \sim q^{\prime}(M)$ is denoted by $q \nsim q^{\prime}(M)$.

Definition 2. The next state function δ is called strongly connected, if for any $q, q^{\prime} \in K$, there exists $\xi \in N_{p}^{*}$, such that $\delta(q, \xi)=q^{\prime}$.

Definition 3. $\xi \in N_{p}^{*}$ is called a reset sequence (of M), if for any $q, q^{\prime} \in K$, $\delta(q, \xi) \sim \delta\left(q^{\prime}, \xi\right)(M)$ holds. A reset sequence ξ is called a minimal reset sequence, if any suffix $(\neq \xi)$ of ξ is not a reset sequence.

Definition 4. Let $X_{0}, X_{1}, X_{2}, \cdots$ be a sequence of independent and identically distributed random variables each of which takes values on N_{p} with equal probability $1 / p$. For any non-negative integer n and $q, q^{\prime} \in K$, let

$$
P_{q q^{\prime}}^{(n)}=\operatorname{Prob}\left\{\delta\left(q, X_{0} * X_{1} * \ldots * X_{n-1}\right)=q^{\prime}\right\} .
$$

Then, the system of transition probabilities $\left\{P_{q q^{\prime}}^{(n)} ; q, q^{\prime} \in K, n \in N\right\}$ defines on K a stationary Markov chain, which we call the Markov chain associated with δ.

§ 3. Strictly ergodicity

Lemma 1. T $\alpha \in F_{p}$ if and only if $\alpha \in F_{p}$, where $p \geqq 2$ is any integer.
Proof. Assume that $\alpha \in F_{p}$ and $\alpha=\lambda_{m}^{(p)}$, where $M=\left(K, \delta, q_{0}, \tau\right)$ is a finitestate machine over N_{p}. Let $K^{\prime}=K \times K$. Define a function $\delta^{\prime}: K^{\prime} \times N_{p} \rightarrow K^{\prime}$, as follows:

$$
\delta^{\prime}\left(\left(q, q^{\prime}\right), n\right)=\left\{\begin{array}{ll}
\left(\delta\left(q^{\prime}, n+1\right), \delta\left(q^{\prime}, n\right)\right) & \cdots
\end{array} \text { if } 0 \leqq n \leqq p-2 .\right.
$$

Let $q_{0}^{\prime}=\left(q_{1}, q_{0}\right)$, where $q_{1}=\delta\left(q_{0}, 1\right)$. Let $\tau^{\prime}: K^{\prime} \rightarrow C$ be a function, such that $\tau^{\prime}\left(\left(q, q^{\prime}\right)\right)=\tau(q)$. Let $M^{\prime}=\left(K^{\prime}, \delta^{\prime}, q_{0}^{\prime}, \tau^{\prime}\right)$. Then, it is easily verified that $T \alpha$ $=\lambda_{m^{\prime}}^{(p)}$. Conversely, let $T \alpha \in F_{p}$ and $T \alpha=\lambda_{k i}^{(p)}$, where $M=\left(K, \delta, q_{0}, \tau\right)$ is a finitestate machine over N_{p}. Let $K^{\prime}=N_{3} \times K \times K$. Define a function $\delta^{\prime}: K^{\prime} \times N_{p} \rightarrow K^{\prime}$, as follows:

$$
\delta^{\prime}\left(\left(i, q, q^{\prime}\right), n\right)= \begin{cases}\left(1, q, q^{\prime}\right) & \cdots \text { if } i=0 \text { and } n=0 \\ \left(2, \delta(q, p-1), \delta\left(q^{\prime}, 0\right)\right) & \cdots \text { if } i \neq 0 \text { and } n=0 \\ \left(2, \delta\left(q^{\prime}, n-1\right), \delta\left(q^{\prime}, n\right)\right) & \cdots \text { otherwise } .\end{cases}
$$

Let $q_{0}^{\prime}=\left(0, q_{0}, q_{0}\right)$. Let $\tau^{\prime}: K^{\prime} \rightarrow C$ be a function, such that

$$
\tau^{\prime}\left(\left(i, q, q^{\prime}\right)\right)=\left\{\begin{array}{lll}
\alpha(0) & \cdots & \text { if } i=1 \\
\tau(q) & \cdots & \text { otherwise }
\end{array}\right.
$$

Let $M^{\prime}=\left(K^{\prime}, \delta^{\prime}, q_{0}^{\prime}, \tau^{\prime}\right)$. Then, we have $\alpha=\lambda_{M^{\prime}}^{(p)}$.
Lemma 2. Let $p \geqq 2$ be any integer. We have $F_{p k}=F_{p}$ for $k=1,2,3, \cdots$.
Proof. Being clear.
Lemma 3. Let $p \geqq 2$ be any integer. Let $M=\left(K, \delta, q_{0}, \tau\right)$ be any finitestate machine over N_{p}, such that δ is strongly connected and $\delta\left(q_{0}, 0\right)=q_{0}$. Then, $\lambda_{m}^{(p)}$ is an almost periodic sequence.

Proof. Let Card $K=r+1$. Since δ is strongly connected and $\delta\left(q_{0}, 0\right)=q_{0}$, for any $q \in K$, there exists $\xi \in N_{p}^{*}$ of length r, such that $\delta(q, \xi)=q_{0}$. Let $0 \leqq j \leqq k$ be any integers. Let $L(p(k))=s$. For any integer $h \geqq 0$, there exists
an integer $n \geqq 1$, such that

$$
h \leqq n p^{r+s}<(n+1) p^{r+s}-1 \leqq h+2 p^{r+s}-1 .
$$

Furthermore, there exists $\xi \in N_{p}^{*}$ of length r, such that $\delta\left(q_{0}, p(n) * \xi\right)=q_{0}$. Let $p(m)=p(n) * \xi$. Then, we have

$$
h \leqq m p^{s}+j \leqq m p^{s}+k \leqq h+2 p^{r+s}-1
$$

and $\delta\left(q_{0}, p\left(m p^{s}+i\right)\right)=\delta\left(q_{0}, p(i)\right)$ for $i=j, j+1, \cdots, k$. Therefore, $\lambda_{m}^{(p)}\left(m p^{s}+i\right)=$ $\lambda_{m}^{(p)}(i)$ for $i=j, j+1, \cdots, k$. Since h was arbitrary, this means that the section

$$
\lambda_{m}^{(p)}(j) * \lambda_{m}^{(p)}(j+1) * \cdots * \lambda_{m}^{(p)}(k)
$$

of $\lambda_{m}^{(p)}$ appears in any section of $\lambda_{m}^{(p)}$ of length $2 p^{r+s}$. This completes the proof.

Lemma 4. Let $p \geqq 2$ be any integer. Let $M=\left(K, \delta, q_{0}, \tau\right)$ be a finite-state machine over N_{p}, such that δ is strongly connected and $\delta\left(q_{0}, 0\right)=q_{0}$. Then, for any $c \in C$,

$$
\frac{\operatorname{Card}\left\{i ; \lambda_{m}^{(n)}(i)=c, k \leqq i \leqq k+n-1\right\}}{n}
$$

converges uniformly for $k \geqq 0$ as $n \rightarrow \infty$.
Proof. Let $\left\{P_{q q^{(n)}}^{P} ; q, q^{\prime} \in K, n \in N\right\}$ be the system of transition probabilities of the Markov chain associated with δ. Since this Markov chain is non-cyclic and ergodic, for any $c \in C$, there exists a real number $0 \leqq \omega \leqq 1$, such that

$$
\lim _{n \rightarrow \infty} \sum_{q^{\prime} \in \tau^{-1}(c)} P_{q q^{\prime}}^{(n)}=\omega
$$

for any $q \in K$. For sufficiently small $\varepsilon>0$, let d be an integer, such that $n \geqq d$ means

$$
\sup _{q \in K}\left|\sum_{q^{\prime} \in \tau^{-1}(c)} P_{q q^{\prime}}^{(n)}-\omega\right| \leqq \frac{\varepsilon}{2} .
$$

Let $n \geqq \frac{4}{\varepsilon} p^{d}$ be any integer. Let $m=\left[\frac{n}{p^{d}}\right]-1$. Let k be any non-negative integer. Then, there exists an integer $h \geqq 1$, such that

$$
k \leqq h p^{a}<(h+m) p^{a}-1 \leqq k+n-1 .
$$

Let $j \geqq 1$ be any integer. Let $\delta\left(q_{0}, p(j)\right)=q$. Then, we have

$$
\frac{\operatorname{Card}\left\{i ; \lambda_{M}^{(p)}(i)=c, j p^{d} \leqq i \leqq(j+1) p^{d}-1\right\}}{p^{d}}=\sum_{q^{\prime} \in \tau^{-1}(c)} P_{q q^{\prime}}^{(d)} .
$$

Therefore, it is easily verified that

$$
\left|\frac{\operatorname{Card}\left\{i ; \lambda_{m}^{(p)}(i)=c, k \leqq i \leqq k+n-1\right\}}{n}-\omega\right| \leqq \varepsilon .
$$

This completes the proof.
Lemma 5. Let $p \geqq 2$ be any integer. Let $\alpha \in F_{p}$ be any almost periodic sequence. Then, there exist a positive integer k and a finite-state machine $M^{\prime}=\left(K^{\prime}, \delta^{\prime}, q_{0}^{\prime}, \tau^{\prime}\right)$ over $N_{p^{k}}$, such that
(i) δ^{\prime} is strongly connected and $\delta^{\prime}\left(q_{0}^{\prime}, 0\right)=q_{0}^{\prime}$,
(ii) $\lambda_{M^{\prime}}^{\left(p^{k}\right)} \in \overline{\mathrm{Orb}}(\alpha)$.

Moreover, if $\alpha \in \widetilde{F}_{p}$, then
(iii) τ^{\prime} is one-to-one,
in addition to (i) (ii).
Proof. Let $\alpha=\lambda_{12}^{(p)}$, where $M=\left(K, \delta, q_{0}, \tau\right)$ is a finite-state machine over $N_{p}\left(\tau\right.$ is one-to-one, if $\alpha \in \widetilde{F}_{p}$). Let $E \subset K$ be any ergodic component of the Markov chain associated with δ, such that $\delta\left(q_{0}, p(n)\right) \in E$ for some positive integer n. It is easily seen that there exist $q_{0}^{\prime} \in E$ and a positive integer k, such that

$$
\delta(q_{0}^{\prime}, \underbrace{0 * 0 * \cdots * 0}_{k})=q_{0}^{\prime} .
$$

Define

$$
\eta^{(i)}=\underbrace{0 * 0 * \cdots * 0 * p(i)}_{k-L(p(i))}
$$

for $i=0,1, \cdots, p^{k}-1$. Define a function $\delta^{\prime \prime}: E \times N_{p^{k}} \rightarrow E$, as $\delta^{\prime \prime}(q, i)=\delta\left(q, \eta^{(i)}\right)$, where $q \in E$ and $i \in N_{p^{k}}$. The extension of $\delta^{\prime \prime}$ to a function $E \times N_{p^{k}}^{*} \rightarrow E$ is also denoted by $\delta^{\prime \prime}$. Let

$$
K^{\prime}=\left\{q \in E ; \delta^{\prime \prime}\left(q_{0}^{\prime}, \xi\right)=q \text { for some } \xi \in N_{p^{k}}^{*}\right\} .
$$

The restriction of $\delta^{\prime \prime}$ to $K^{\prime} \times N_{p^{k}}^{*}$ is denoted by δ^{\prime}. Then, δ^{\prime} is a function $K^{\prime} \times N_{p^{k}}^{*} \rightarrow K^{\prime}$ which is strongly connected and satisfies $\delta^{\prime}\left(q_{0}^{\prime}, 0\right)=q_{0}^{\prime}$. Let τ^{\prime} be the restriction of τ to K^{\prime}. Let $M^{\prime}=\left(K^{\prime}, \delta^{\prime}, q_{0}^{\prime}, \tau^{\prime}\right)$. Then, M^{\prime} satisfies (i) (and (iii), if $\alpha \in \widetilde{F}_{p}$). Let m be a positive integer, such that $\delta\left(q_{0}, p(m)\right)=q_{0}^{\prime}$. For any positive integer j, let $h=m p^{k j}$. Then, it is easily seen that

$$
\lambda_{m^{\prime}}^{\left(p p^{\prime}\right)}(i)=\lambda_{M}^{(p)}(h+i)
$$

for $i=0,1, \cdots, p^{k j}-1$. Thus, we have the condition (ii).
Let $\alpha \in C^{N}$. For a positive integer k, let D be the k products of C. Define $\varphi_{k}(\alpha) \in D^{N}$, as follows:

$$
\varphi_{k}(\alpha)(n)=(\alpha(n), \alpha(n+1), \cdots, \alpha(n+k-1)) \in D,
$$

where $n \in N$.
Lemma 6. If $\alpha \in F$, then $\varphi_{k}(\alpha)$ is a finite-rank sequence over D.
Proof. Let $\alpha \in F_{p}(p \geqq 2)$. Then, from Lemma $1, T^{i} \alpha \in F_{p}$ for $i=0,1,2, \cdots$. For $i=0,1, \cdots, k-1$, let $M^{(i)}=\left(K^{(i)}, \delta^{(i)}, q_{0}^{(i)}, \tau^{(i)}\right)$ be a finite-state machine over
N_{p}, such that $\lambda_{M_{M}(i)}^{(p)}=T^{i} \alpha$. Let $K=K^{(0)} \times K^{(1)} \times \cdots \times K^{(k-1)}$. Define a function $\delta: K \times N_{p} \rightarrow K$ and $\tau: K \rightarrow D$, as follows:

$$
\begin{aligned}
& \delta\left(\left(q^{(0)}, q^{(1)}, \cdots, q^{(k-1)}\right), n\right)=\left(\delta^{(0)}\left(q^{(0)}, n\right), \delta^{(1)}\left(q^{(1)}, n\right), \cdots, \delta^{(k-1)}\left(q^{(k-1)}, n\right)\right) \\
& \tau\left(q^{(0)}, q^{(1)}, \cdots, q^{(k-1)}\right)=\left(\tau^{(0)}\left(q^{(0)}\right), \tau^{(1)}\left(q^{(1)}\right), \cdots, \tau^{(k-1)}\left(q^{(k-1)}\right)\right),
\end{aligned}
$$

where $\left(q^{(0)}, q^{(1)}, \cdots, q^{(k-1)}\right) \in K$ and $n \in N_{p}$. Let $q_{0}=\left(q_{0}^{(0)}, q_{0}^{(1)}, \cdots, q_{0}^{(k-1)}\right)$. Let $M=\left(K, \delta, q_{0}, \tau\right)$. Then, we have $\lambda_{M}^{(p)}=\varphi_{k}(\alpha)$.

Theorem 1. Let $S \subset C^{N}$ be any minimal set which intersects with F. Then, S is a strictly ergodic set.

Proof. It is sufficient to prove that for any $\xi \in C^{*}$ (ξ is not the empty sequence), there exists $\gamma \in S$, such that

$$
\frac{\operatorname{Card}\left\{i ; h \leqq i \leqq h+n-1 \text { and } \xi \text { is a prefix of } T^{i} \gamma\right\}}{n}
$$

converges uniformly for $h \geqq 0$ as $n \rightarrow \infty$. Let $L(\xi)=k$. Let $\alpha \in S \cap F$. Let D be the k products of C. Then, $\varphi_{k}(\alpha)$ is an almost periodic and finite-rank sequence over D. From Lemma 4 and Lemma 5, there exists $\beta \in \overline{\mathrm{Orb}}\left(\varphi_{k}(\alpha)\right)$ $\subset D^{N}$, such that

$$
\frac{\operatorname{Card}\{i ; \beta(i)=(\xi(0), \xi(1), \cdots, \xi(k-1)), h \leqq i \leqq h+n-1\}}{n}
$$

converges uniformly for $h \geqq 0$ as $n \rightarrow \infty$. Since $\overline{\operatorname{Orb}}\left(\varphi_{k}(\alpha)\right)=\varphi_{k}(\overline{\operatorname{Orb}}(\alpha))=\varphi_{k}(S)$, there exists $\gamma \in S$, such that $\varphi_{k}(\gamma)=\beta$. It is easily seen that γ satisfies the required property.

Corollary 1. Let $S \subset C^{N}$ be a homogeneous substitution minimal set. Then, S is a strictly ergodic set.

To prove Corollary 1, it is sufficient to prove the following lemma.
Lemma 7. Let $S \subset C^{N}$ be a minimal set associated with a substitution θ of length $p \geqq 2$. Then, there exists a positive integer k, such that S intersects with $\widetilde{F}_{p k}$.

Proof. It is easily seen that there exist a positive integer k and $\alpha \in S$, such that $\theta^{k}(\alpha)=\alpha$. Let $K=$ range (α). Define a function $\delta: K \times N_{p^{k}} \rightarrow K$, as follows:

$$
\delta(q, n)=\text { the }(n+1) \text {-th symbol of } \theta^{k}(q)=\theta^{k}(q)(n),
$$

where $q \in K$ and $n \in N_{p k}$. Let q_{0} be the initial symbol of α. Let $\tau: K \rightarrow K \subset C$ be the identity mapping. Let $M=\left(K, \delta, q_{0}, \tau\right)$. Then, we have $\alpha=\lambda_{m p}^{\left(p_{m}\right)^{2}}$ and τ is one-to-one.

§4. Spectrum

Lemma 8. Let $M=\left(K, \delta, q_{0}, \tau\right)$ be a finite-state machine over $N_{p}(p \geqq 2)$, such that $\lambda_{m}^{(n)} \in C^{N}$ is not an ultimately periodic sequence. Then, there exist $q, q^{\prime} \in K$ and $\xi \in N_{p}^{*}$, such that
(i) $\xi \neq \Lambda, q \nsim q^{\prime}(M)$
(ii) $\delta(q, \xi)=q, \delta\left(q^{\prime}, \xi\right)=q^{\prime}$.

Proof. Assume that there do not exist $q, q^{\prime} \in K$ and $\xi \in N_{p}^{*}$ satisfying the above (i) (ii). Let Card $K=r$. Let $\eta \in N_{p}^{*}$ be any sequence of length r^{2}. Assume that $\delta\left(q_{1}, \eta\right) \nsim \delta\left(q_{2}, \eta\right)(M)$ for some $q_{1}, q_{2} \in K$. There exists $\xi \neq \Lambda$, such that $\eta=\eta^{\prime} * \xi * \eta^{\prime \prime}$ for some $\eta^{\prime}, \eta^{\prime \prime} \in N_{p}^{*}$, and

$$
\begin{align*}
& \delta\left(q_{1}, \eta^{\prime}\right)=\delta\left(q_{1}, \eta^{\prime} * \xi\right) \tag{1}\\
& \delta\left(q_{2}, \eta^{\prime}\right)=\delta\left(q_{2}, \eta^{\prime} * \xi\right) . \tag{2}
\end{align*}
$$

Let $q=\delta\left(q_{1}, \eta^{\prime}\right)$ and $q^{\prime}=\delta\left(q_{2}, \eta^{\prime}\right)$. Then, q, q^{\prime} and ξ satisfy (i) (ii) above, contradicting our assumption. Thus, $\delta\left(q_{1}, \eta\right) \sim \delta\left(q_{2}, \eta\right)(M)$ for any $q_{1}, q_{2} \in K$, and η is a reset sequence. Since any $\eta \in N_{p}^{*}$, such that $L(\eta)=r^{2}$, is a reset sequence, $\lambda_{M}^{(p)}$ must be an ultimately periodic sequence.

Lemma 9. Let $M=\left(K, \delta, q_{0}, \tau\right)$ be a finite-state machine over $N_{p}(p \geqq 2)$, such that $\lambda_{m}^{(p)}$ is not an ultimately periodic sequence. Assume that M has at least one reset sequence. Then, for any n, there exists a minimal reset sequence ξ, such that $L(\xi) \geqq n$.

Proof. Let $\eta \in N_{p}^{*}$ be a reset sequence. From Lemma 8, there exists $\zeta \in N_{p}^{*}$, such that $L(\zeta) \geqq n$, which is not a reset sequence. Since $\eta * \zeta$ is a reset sequence and ζ is not, there exists a minimal reset sequence ξ which has ζ as its suffix. This completes the proof.

Lemma 10. Let $M=\left(K, \delta, q_{0}, \tau\right)$ be a finite-state machine over $N_{p}(p \geqq 2)$, such that τ is one-to-one, δ is strongly connected, and $\delta\left(q_{0}, 0\right)=q_{0}$. Let Card $K=k$. Assume that

$$
\lambda_{m}^{(p)}\left(i p^{h}+r\right)=\lambda_{j n}^{(p)}(r)
$$

for $i=0,1, \cdots, 2 p^{2 k}-1$, where h and r are non-negative integers. Let

$$
\xi=\left\{\begin{array}{l}
\underbrace{0 * 0 * \cdots * 0 * p(r) \cdots \text { if } h \geqq L(p(r))}_{h-L(p(r))} \\
\text { suffix of } p(r) \text { of length } h \cdots \text { if } h<L(p(r)) .
\end{array}\right.
$$

Then, ξ is a reset sequence, and

$$
\lambda_{M_{1}^{(p)}}^{(p)}\left(i p^{h}+r\right)=\lambda_{M}^{(p)}(r)
$$

holds for any integer $i \geqq-\left[\frac{r}{p^{h}}\right]$.

Proof. Let $b=\left[\frac{r}{p^{n}}\right]$. There exists an integer $n \geqq 1$, such that

$$
b \leqq n p^{2 k}<n p^{2 k}+p^{2 k}-1 \leqq b+2 p^{2 k}-1 .
$$

Since δ is strongly connected and $\delta\left(q_{0}, 0\right)=q_{0}$, for any $q, q^{\prime} \in K$, there exists $\eta \in N_{p}^{*}$, such that $L(\eta)=2 k$ and $\delta(q, \eta)=q^{\prime}$. Let $q=\delta\left(q_{0}, p(n)\right)$ and q^{\prime} be any state. Let η be as above. Let $p(m)=p(n) * \eta$. Since $0 \leqq m-b \leqq 2 p^{2 k}-1$, we have

$$
\begin{aligned}
\tau\left(\delta\left(q^{\prime}, \xi\right)\right) & =\tau\left(\delta\left(q_{0}, p(n) * \eta * \xi\right)\right) \\
& =\tau\left(\delta\left(q_{0}, p\left((m-b) p^{h}+r\right)\right)\right) \\
& =\lambda_{M}^{(p)}\left((m-b) p^{h}+r\right) \\
& =\lambda_{M i}^{(p)}(r) .
\end{aligned}
$$

Since q^{\prime} is an arbitrary state and τ is one-to-one, this means that ξ is a reset sequence.

Theorem 2. Let $S \subset C^{N}$ be a minimal set associated with a substitution of length p^{k}, where p is a prime number and k is any positive integer. Assume that for some (or, equivalently, any) $\alpha \in S$, there exist non-negative integers h and r, such that $\alpha\left(i p^{h}+r\right)=\alpha(r)$ for $i=0,1,2, \cdots$. Then, S has a pure point spectrum. Moreover, if S is an infinite set, then the point spectrum of S is $\rho(p)=\left\{\omega ; \omega^{p^{i}}=1\right.$ for some $\left.i \in N\right\}$.

Proof. When S is a finite set, our theorem is clear. Assume that S is an infinite set. From Lemma 5 and Lemma 7, there exists a finite-state machine $M=\left(K, \delta, q_{0}, \tau\right)$ over $N_{p^{k}}$ (k is a positive integer which may differ from k in the statement of Theorem 2), such that
(i) δ is strongly connected and $\delta\left(q_{0}, 0\right)=q_{0}$
(ii) $\lambda_{m i}^{(p k)} \in S$
(iii) τ is one-to-one.

Let $\alpha=\lambda_{m}^{(p k)}$ and $\alpha\left(i p^{h}+r\right)=\alpha(r)$ for $i=0,1,2, \cdots$. From Lemma $10, M$ has a reset sequence. Moreover, since S is an infinite set, α is not an ultimately periodic sequence. Therefore, from Lemma 9, for any non-negative integer n, there exists a minimal reset sequence ξ, such that $L(\xi) \geqq n+1$. Define $s \in N$, as follows:

$$
\xi=0 * 0 * \cdots * 0 * p^{k}(s),
$$

where if ξ consists only of 0 's, then define $s=0$. We have $\alpha\left(i p^{k L(\xi)}+s\right)=\alpha(s)$ for any integer $i \geqq-\left[\frac{s}{p^{k L(\xi)}}\right]$. For any integer i, \bar{i} denotes the residue class modulo $p^{k L(\xi)}$ which contains i. Let

$$
\begin{aligned}
E=\left\{\bar{m} ; \alpha\left(i \not p^{k L(\xi)}+m\right)=\right. & \alpha(s) \text { for any integer } i \\
& \text { such that } \left.i p^{k L(\xi)}+m \geqq 0\right\}
\end{aligned}
$$

Since $\bar{s} \in E, E$ is not empty. For any integer j, let $E+j=\{\overline{m+j} ; \bar{m} \in E\}$. We prove that if $E+j=E$, then j must be a multiple of $p^{k n}$. Let $E+j=E$ and j^{\prime} be the greatest common divisor of j and $p^{k L(\xi)}$. Then, j^{\prime} must be either a multiple of $p^{k n}$ or a divisor of $p^{k n}$. Assume the latter, then we have $E+i p^{k n}=E$ for any integer i. Therefore, $\alpha\left(i p^{k n}+s\right)=\alpha(s)$ for any integer $i \geqq-\left[\frac{s}{p^{k n}}\right]$. This means that the suffix of ξ of length $n(<L(\xi))$ is a reset sequence, contradicting the assumption that ξ is a minimal reset sequence. Thus, if $E+i=E+j$, then we have $i \equiv j\left(\bmod p^{k n}\right)$. From Lemma 10, there exists an integer L_{n}, such that for any non-negative integer i and $\bar{j} \notin E$, there exists an integer j^{\prime}, satisfying
(i) $j^{\prime} \in \bar{j}$
(ii) $\quad i \leqq j^{\prime} \leqq i+L_{n}-1$
(iii) $\quad \alpha\left(j^{\prime}\right) \neq \alpha(s)$.

Let $\eta \in C^{*}$ be any section of α of length L_{n}. Let

$$
\begin{aligned}
E_{\eta}=\left\{\bar{m} ; \eta\left(i p^{k L(\xi)}+m\right)=\right. & \alpha(s) \text { for any integer } i \\
& \text { such that } \left.0 \leqq i p^{k L(\xi)}+m \leqq L_{n}-1\right\}
\end{aligned}
$$

Then, from the above discussion, there exists an integer j, such that $E=E_{\eta}+j$. Moreover, this j is uniquely determined up to modulo $p^{k n}$. Define $G_{n}(\eta)$, such that $0 \leqq G_{n}(\eta) \leqq p^{k n}-1$ and $E=E_{\eta}+G_{n}(\eta)$. For $\beta \in \overline{\operatorname{Orb}}(\alpha)=S$, define $g_{n}(\beta)$, such that $g_{n}(\beta)=G_{n}(\eta)$, where η is the prefix of β of length L_{n}. Then, it is clear that $g_{n}(T \beta) \equiv g_{n}(\beta)+1\left(\bmod p^{k n}\right)$ for any $\beta \in S$. Let ω_{n} be any primitive $p^{k n}$-th root of 1 . Let f_{n} be a complex valued function defined on S, such that

$$
f_{n}(\beta)=\omega_{n}{ }^{g_{n}(\beta)}
$$

Then, it is clear that $f_{n} \in L_{2}(S, \mu)$, where μ is the T-invariant probability measure on S, and that f_{n} is a proper function corresponding to a proper value ω_{n} of the strictly ergodic set S. Since n was any non-negative integer and the point spectrum of S is a multiplicative subgroup, this means that the point spectrum of S includes $\rho(p)$.

To complete the proof, we prove that $\left\{f_{i}^{j} ; i, j \in N\right\}$ generates the Hilbert space $L_{2}(S, \mu)$. It is easily seen that $\left\{f_{i}^{j} ; i, j \in N\right\}$ is multiplicatively closed. Let

$$
\Delta_{n, m}=\left\{\beta \in S ; g_{n}(\beta)=m\right\}
$$

where $n \in N$ and $0 \leqq m \leqq p^{k n}-1$. Then, the characteristic function of $\Delta_{n, m}$
belongs to the linear subspace spanned by $\left\{f_{i}^{j} ; i, j \in N\right\}$, since it equals

$$
\frac{1}{p^{k n}} \sum_{i=0}^{p^{k n-1}} \frac{f_{n}^{i}}{\omega_{n}^{m i}}
$$

Let

$$
\Delta=\left\{\Delta_{n, m} ; n \in N, 0 \leqq m \leqq p^{k n}-1\right\} .
$$

To complete the proof, it is sufficient to prove that for any cylinder set Γ_{η} that intersects with S, there exists $B \subset S$ belonging to the σ-field generated by Δ, such that $B \subset \Gamma_{\eta}$ and $\mu\left(\Gamma_{\eta}-B\right)=0$. To prove this, it is sufficient to prove that for almost every (μ) $\beta \in \Gamma_{\eta}$, there exists $V \in \Delta$, such that $\beta \in V$ $\subset \Gamma_{\eta}$, since Δ is a countable family. Let

$$
\begin{aligned}
& I_{n}=\left\{i \in N ; 0 \leqq i \leqq p^{k n}-L(\eta), p^{k}(i+j)\right. \text { is a reset sequence } \\
& \text { of } M \text { for any } j \in N, \text { such that } 0 \leqq j \leqq L(\eta)-1\} \\
& c_{n}=\frac{\operatorname{Card} I_{n}}{p^{k n}} .
\end{aligned}
$$

Since M has a reset sequence and any sequence which has a reset sequence as its section is itself a reset sequence, the above c_{n} tends to 1 as $n \rightarrow \infty$. Let

$$
\begin{aligned}
R_{n}= & \left\{\alpha(i) * \alpha(i+1) * \cdots * \alpha\left(i+L_{n}-1\right) ; i \equiv j\left(\bmod p^{k n}\right)\right. \\
& \text { for some } \left.j \in I_{n}\right\} \\
R_{n}^{\prime}= & \left\{\alpha(i) * \alpha(i+1) * \cdots * \alpha\left(i+L_{n}-1\right) ; i \equiv j\left(\bmod p^{k n}\right)\right. \\
& \left.\quad \text { for some } j \in N, \text { such that } 0 \leqq j \leqq p^{k n}-1 \text { and } j \notin I_{n}\right\} .
\end{aligned}
$$

Since R_{n} and R_{n}^{\prime} are disjoint, we have

$$
\mu\left(\cup_{\zeta \in R_{n}} \Gamma_{\zeta}\right)=c_{n} .
$$

Let $g_{n}(\beta) \in I_{n}$ for some $n \in N$ and $\beta \in S$. For $j \in N$, such that $0 \leqq j \leqq L(\eta)-1$, we have $\beta(j)=\alpha\left(g_{n}(\beta)+j\right)$, since $\beta(j)=\alpha\left(i p^{k n}+g_{n}(\beta)+j\right)$ for some integer $i \geqq 0$ and $g_{n}(\beta)+j$ is a reset sequence of M. Let

$$
W=\left\{\beta \in S ; g_{n}(\beta) \in I_{n} \text { for some } n \in N\right\}
$$

Since

$$
\left\{\beta \in S ; g_{n}(\beta) \in I_{n}\right\}=\bigcup_{\zeta \in R_{n}} \Gamma_{\zeta} \cap S,
$$

we have $\mu(W)=1$. Let $\beta \in \Gamma_{\eta} \cap W$. Then, there exists $n \in N$, such that $g_{n}(\beta) \in I_{n}$. Let $g_{n}(\beta)=m$. For any $\gamma \in \Delta_{n, m}$, we have $\gamma(j)=\alpha(m+j)=\beta(j)$ for $j=0,1, \cdots, L(\eta)-1$. Since $\beta \in \Gamma_{\eta}$, we have $\gamma \in \Gamma_{\eta}$. Thus, $\Delta_{n, m} \subset \Gamma_{\eta}$. This completes the proof of Theorem 2,

Corollary 2. Let $S \subset C^{N}$ be a minimal set associated with a substitution
θ of length p^{k}, where p is a prime number and k is any positive integer. Assume that there exists an integer $0 \leqq i \leqq p^{k}-1$, such that $\theta(c)(i)$ is the same for any $c \in C$. Then, S has a rational pure point spectrum $\rho(p)$.

§ 5. Remark

Our results remain true in the case of two-sided sequences.

Osaka University

References

[1] K. Jacobs, Combinatorial construction in ergodic theory, Proc. international conference on functional analysis, Tokyo, 1969.
[2] F. Hahn and Y. Katznelson, On the entropy of uniquely ergodic transformations, Trans. Amer. Math. Soc., (2) 126 (1967), 335-360.
[3] W.H. Gottschalk, Substitution minimal sets, Trans. Amer. Math. Soc., 109 (1963), 467-491.
[4] A. Cobham, On the base-dependence of sets of numbers recognizable by finite automata, Math. Systems Theory, (2) 3 (1969), 186-192.
[5] S. Kakutani, Ergodic theory of shift transformations, Proc. 5-th Berkeley Symp., vol. 2, part 2 (1967), 405-413.
[6] P. R. Halmos, Lectures on ergodic theory, Publication Math. Soc. Japan, 1956.

