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\S 1. Summary

K. Jacobs ([1]) reported as an example of Toeplitz type sequences that

$ 0000000000000\ldots$

1 1 1 1 1 1 .
$0$ $0$ $0$

1 1 ...
$0$

$=0100010101000100010001010\ldots$

is strictly ergodic and has a rational pure point spectrum. This sequence
has the following properties:

(i) It is a shift of the sequence 001000101010001 $\cdots$ which is invariant
under the substitution $0\rightarrow 0010,1\rightarrow 1010$ of length 4.

(ii) The $(2i+1)$ -th symbol of it is $0$ for $i=0,1,2,$ $\cdots$

In this paper, we prove that if some general conditions like (i) (ii) above
are satisfied for a sequence over some finite alphabet, then it is strictly
ergodic and has a rational pure point spectrum. That is, our main results
are the followings:

I. If $M$ is a minimal set associated with a substitution of some constant
length, then $M$ is strictly ergodic.

II. Let $M$ be a strictly ergodic set associated with a substitution of
length $p^{k}$ , where $p$ is a prime number and $k$ is any positive integer. Assume
that for some (or, equivalently, any) $\alpha\in M$, there exist integers $h\geqq 0$ and
$r\geqq 1$ , such that $(ip^{h}+r)$ -th symbol of $\alpha$ is the same for $i=0,1,2,$ $\cdots$ Then,
$M$ has a rational pure point spectrum { $\omega;\omega^{p^{i}}=1$ for some $i=0,1,2$ , $\cdot$ ..}.

\S 2. Notations and definitions

Let $C$ be any finite set of symbols which contains at least two elements.
Let $N=\{0,1, 2, \}$ be the set of non-negative integers. Let $T$ be the shift
transformation on the power space $C^{N}$ . That is, $T$ is defined as follows:
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$(T\alpha)(n)=\alpha(n+1)$ ,

where $\alpha\in C^{N}$ and $n\in N$. For $p\in N$, let $N_{p}=\{0,1, \cdots , p-1\}$ . Let $c*=\bigcup_{p\in N}C^{N_{P}}$

be the disjoint sum, where $C^{N_{0}}=\{\Lambda\}$ and $\Lambda$ is the empty sequence. $C^{N}$ or
$c*$ may be considered as the set of infinite or finite sequences over $C$, respec-
tively. We identify $C^{N_{1}}$ with C. $L(\xi)$ denotes the length of $\xi\in c*$ . That is,
$L(\xi)$ equals $k$ , such that $\xi\in C^{N_{k}}$ . For $\alpha\in C^{N}$, define $ L(\alpha)=\infty$ . For $\xi\in C^{*}$

and $\alpha\in C^{*}UC^{N}$ , the juxtaposition of $\xi$ and $\alpha$ in this order is denoted by $\xi^{*}\alpha$ ,

that is,

$(\xi^{*}\alpha)(n)=\left\{\begin{array}{l}\xi(n) \ldots if0\leqq n\leqq L(\xi)-l\\\alpha(n-L(\xi))\ldots ifL(\xi)\leqq n\leqq L(\xi)+L(\alpha)-l.\end{array}\right.$

For $\xi\in c*$ and $\alpha\in c*\cup C^{N},$ $\xi$ is called a prefix or a section of $\alpha$ , if there
exists $\eta$ , such that $\alpha=\xi^{*}\eta$ , or if there exist $\eta$ and $\zeta$ , such that $\alpha=\eta^{*}\xi^{*}\zeta$ ,
respectively. For $\xi\in c*$ and $\eta\in c*,$ $\xi$ is called a suffix of $\eta$ , if there exists
$\zeta$ , such that $\eta=\zeta^{*}\xi$ . For $\xi\in c*,$ $\Gamma_{\xi}=$ { $\alpha\in C^{N}$ ; $\xi$ is a prefix of $\alpha$ } denotes
the cylinder set. $C^{N}$ is a topological space with the family of cylinder sets
as its open base. For $\alpha\in C^{N}$, denote

range $(\alpha)=\{\alpha(n)\in C;n\in N\}$

Orb $(\alpha)=\{T^{n}\alpha;n\in N\}$

$\overline{Orb}(\alpha)=closure$ of Orb $(\alpha)$ .
For the notions such as a minimal set, a strictly ergodic ( $i$ . $e$ . minimal and

uniquely ergodic, at the same time) set or an almost periodic sequence and
their properties about shift dynamical system $(C^{N}, T)$ , refer [2] and [5].

Let $S\subset C^{N}$ be a strictly ergodic set. There uniquely exists a probability
measure $\mu$ on $S$ (with respect to the Borel field on $S$ ), such that $T$ is a mea-
sure preserving transformation on $S$ for $\mu$ . Consider the Hilbert space $L_{2}(S, \mu)$

over complex numbers. Let $U$ be the isometrical linear operator on $L_{2}(S, \mu)$ ,
such that $(Uf)(\alpha)=f(T\alpha)$ , where $f\in L_{2}(S, \mu)$ and $\alpha\in S$ . $U$ is uniquely deter-
mined by the strictly ergodic set S. $U$ is called to have a pure point spectrum,
if there exists a base $\{f_{i}\}$ of $L_{2}(S, \mu)$ each term of which is a proper func-
tion of $U$ ([6]). By a proper value or a proper function of $S$ or $\alpha$ , such
that Orb $(\alpha)=S$ , we mean those of $U$ defined above. Also, by the statement
that $S$ or $\alpha$ , such that $\overline{Orb}(\alpha)=S$, has a pure point spectrum, we mean that
$U$ has a pure point spectrum.

By a substitution of length $p\geqq 2$ , we mean a function defined on $C$ which
takes values on $C^{Np}$ . By a homogeneous substitution, we mean a substitution
of length $p$ for some $p\geqq 2$ . Let $\theta$ be any homogeneous substitution. We
extend $\theta$ to a function $c*\cup C^{N}\rightarrow C^{*}\cup C^{N}$ which we also denote by $\theta$ , as
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follows:
$\theta(\alpha)=\theta(\alpha(0))^{*}\theta(\alpha(1))^{*}\theta(\alpha(2))^{*}\cdots$ ,

which belongs to $c*$ or $C^{N}$ as $\alpha\in c*$ or $C^{N}$ , respectively. Let $\theta$ be any
homogeneous substitution. A minimal set $S\subset C^{N}$ is called to be associated
with $\theta$ , if $\theta(S)\subset S$. A minimal set is called a homogeneous substitution mini-
mal set, if there exists a homogeneous substitution with which it is associated.
For the general properties of a substitution minimal set on a space of two-
sided sequences, refer [3].

For integers $p\geqq 2$ and $n\geqq 0$ , let

$n=\sum_{i=0}^{k-1}aip^{k- i- 1}$

($a_{0}\neq 0$ if $n\neq 0,0\leqq a_{i}\leqq p-1;i=0,1,$ $\cdots$ , $k-1$)

be the $p$ -adic development of $n$ . Define $p(n)\in N_{p}^{*}$ by $p(n)(i)=a_{i}(i=0,1$ , ,

$k-1)$ . Let $p\geqq 2$ be any integer. By a finite-state machine over $N_{p}$ , we mean
a quadruple $M=(K, \delta, q_{0}, \tau)$ , where Kis any nonempty finite set, $\delta$ is a func-
tion $K\times N_{p}\rightarrow K,$ $q_{0}$ is any element of $K$, and $\tau$ is a function $K\rightarrow C$. $\delta$ is called
the next state function of $M$. We extend $\delta$ to a function $K\times N_{p}^{*}\rightarrow K$ which
we also denote by $\delta$ , so as to satisfy $\delta(q, \xi^{*}\eta)=\delta(\delta(q, \xi),$

$\eta$) for any $q\in K$

and $\xi,$ $\eta\in N_{p}^{*}$ . Define $\lambda_{M}^{(p)}\in C^{N}$ by $\lambda_{M}^{(p)}(n)=\tau(\delta(q_{0}, p(n)))$ , where $n\in N$. For
any integer $p\geqq 2,$ $F_{p}$ denotes the set of $\alpha\in C^{N}$ , such that $\alpha=\lambda_{M}^{(p)}$ for some
finite-state machine $M$ over $N_{p}$ . And, $\tilde{F}_{p}$ denotes the set of $\alpha\in C^{N}$, such
that $\alpha=\lambda_{M}^{(p)}$ for some finite-state machine $M=(K, \delta, q_{0}, \tau)$ over $N_{p}$ , such that
$\tau$ is a one-to-one mapping. Denote

$F=\bigcup_{p\geqq 2}F_{p}$ .

An element of $F$ is called a finite-rank sequence over C. $\alpha\in C^{N}$ is called an
ultimately periodic sequence, if there exists a non-negative integer $n$ , such that
$ T^{n}\alpha$ is a periodic sequence. It is known ([4]) that for multiplicatively inde-
pendent integers $p,$ $p’\geqq 2,$ $F_{p}\cap F_{p}$ , equals the set of all ultimately periodic
sequences.

Let $M=(K, \delta, q_{0}, \tau)$ be a finite-state machine over $N_{p}(p\geqq 2)$ . We define
the following notions:

DEFINITION 1. Let $q,$ $q^{\gamma}\in K$. Denote $q\sim q^{\gamma}(M)$ , if for any $\xi\in N_{p}^{*}$ , $\tau(\delta(q, \xi))$

$=\tau(\delta(q^{\prime}, \xi))$ holds. The negation of $q\sim q^{\prime}(M)$ is denoted by $q\sqrt{}\cdot q^{\prime}(M)$ .
DEFINITION 2. The next state function $\delta$ is called strongly connected, if

for any $q,$ $q^{\gamma}\in K$, there exists $\xi\in N_{p}^{*}$ , such that $\delta(q, \xi)=q^{\prime}$ .
DEFINITION 3. $\xi\in N_{p}^{*}$ is called a reset sequence (of $M$), if for any $q,$ $q^{\prime}\in K$,

$\delta(q, \xi)\sim\delta(q^{\prime}, \xi)(M)$ holds. A reset sequence $\xi$ is called a minimal reset
sequence, if any suffix $(\neq\xi)$ of $\xi$ is not a reset sequence.
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DEFINITION 4. Let $X_{0},$ $X_{1},$ $X_{2},$ $\cdots$ be a sequence of independent and iden-
tically distributed random variables each of which takes values on $N_{p}$ with
equal probability $1/p$ . For any non-negative integer $n$ and $q,$ $q^{\prime}\in K$, let

$P_{qq}^{(n)},$ $=Prob\{\delta(q, x_{0}*x_{1}*\ldots*x_{n- 1})=q^{\prime}\}$ .
Then, the system of transition probabilities $\{P_{qq}^{(n)}, ; q, q^{\prime}\in K, n\in N\}$ defines on
$K$ a stationary Markov chain, which we call the Markov chain associated
with $\delta$ .

\S 3. Strictly ergodicity

LEMMA 1. $T\alpha\in F_{p}$ if and only if $\alpha\in F_{p}$ , where $p\geqq 2$ is any integer.
PROOF. Assume that $\alpha\in F_{p}$ and $\alpha=\lambda_{M}^{(p)}$ , where $M=(K, \delta, q_{0}, \tau)$ is a finite-

state machine over $N_{p}$ . Let $K^{\prime}=K\times K$. Define a function $\delta^{\prime}$ : $K^{\prime}\times N_{p}\rightarrow K^{\prime}$ ,

as follows:

$\delta^{\prime}((q, q^{\prime}),$ $n$) $=\{(\delta(q^{\prime}0),\delta(q’,p-1))(\delta(q,n+1),\delta(q^{\prime},n))\ldots$

if $0\leqq n\leqq p-2$

... if $n=p-1$ .
Let $q_{0}^{\prime}=(q_{1}, q_{0})$ , where $q_{1}=\delta(q_{0},1)$ . Let $\tau^{\prime}$ : $K^{\prime}\rightarrow C$ be a function, such that
$\tau^{\prime}((q, q^{\prime}))=\tau(q)$ . Let $M^{\prime}=(K^{\prime}, \delta^{\prime}, q_{0}^{f}, \tau^{\prime})$ . Then, it is easily verified that $ T\alpha$

$=\lambda_{M’}^{(p)}$ . Conversely, let $T\alpha\in F_{p}$ and $T\alpha=\lambda_{M}^{(p)}$ , where $M=(K, \delta, q_{0}, \tau)$ is a finite-
state machine over $N_{p}$ . Let $K^{\prime}=N_{3}\times K\times K$. Define a function $\delta^{\gamma}$ : $K^{\prime}\times N_{p}\rightarrow K^{\prime}$ ,

as follows:

$\delta^{\prime}((i, q, q^{\prime}), n)=\left\{\begin{array}{l}(1,q,q^{/}) \ldots ifi=0andn=0\\(2,\partial(q,p-l),\partial(q^{\prime},0)) \ldots ifi\neq 0andn=0\\(2,\partial(q^{\gamma},n-1),\delta(q^{/},n))\ldots otherwise.\end{array}\right.$

Let $q_{0}^{\prime}=(0, q_{0}, q_{0})$ . Let $\tau^{\prime}$ : $K^{\prime}\rightarrow C$ be a function, such that

$\tau^{\prime}((i, q, q^{\prime}))=\left\{\begin{array}{l}\alpha(0)\ldots ifi=l\\\tau(q)\ldots otherwise.\end{array}\right.$

Let $M^{\gamma}=(K^{\prime}, \delta^{\prime}, q_{0}^{\prime}, \tau^{\prime})$ . Then, we have $\alpha=\lambda_{M}^{(p)}$ .
LEMMA 2. Let $p\geqq 2$ be any integer. We have $F_{p^{k}}=F_{p}$ for $k=1,2,3$ , $\cdot$ ...
PROOF. Being clear.
LEMMA 3. Let $p\geqq 2$ be any integer. Let $M=(K, \delta, q_{0}, \tau)$ be any finite-

state machine over $N_{p}$ , such that $\delta$ is strongly connected and $\delta(q_{0},0)=q_{0}$ . Then,
$\lambda_{M}^{(p)}$ is an almost periodic sequence.

PROOF. Let Card $K=r+1$ . Since $\delta$ is strongly connected and $\delta(q_{0},0)=q_{0}$ ,

for any $q\in K$, there exists $\xi\in N_{p}^{*}$ of length $r$, such that $\delta(q, \xi)=q_{0}$ . Let
$0\leqq j\leqq k$ be any integers. Let $L(p(k))=s$ . For any integer $h\geqq 0$ , there exists
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an integer $n\geqq 1$ , such that

$h\leqq np^{r+s}<(n+1)p^{r+s}-1\leqq h+2p^{r+s}-1$ .

Furthermore, there exists $\xi\in N_{p}^{*}$ of length $r$, such that $\delta(q_{0}, p(n)*\xi)=q_{0}$ . Let
$ P(m)=p(n)*\xi$ . Then, we have

$h\leqq mp^{s}+j\leqq mp^{s}+k\leqq h+2p^{r+s}-1$

and $\delta(q_{0}, p(mp^{s}+i))=\delta(q_{0}, p(i))$ for $i=j,$ $j+1,$ $\cdots$ , $k$ . Therefore, $\lambda_{M}^{(p)}(mp^{s}+i)=$

$\lambda_{M}^{(p)}(i)$ for $i=j,$ $j+1,$ $\cdots$ , $k$ . Since $h$ was arbitrary, this means that the section

$\lambda_{M}^{(p)}(j)*\lambda_{M}^{(p)}(j+1)*\cdots*\lambda_{M}^{(p)}(k)$

of $\lambda_{M}^{(p)}$ appears in any section of $\lambda_{M}^{(p)}$ of length $2p^{r+s}$ . This completes the
proof.

LEMMA 4. Let $p\geqq 2$ be any integer. Let $M=(K, \delta, q_{0}, \tau)$ be a finite-state
machine over $N_{p}$ , such that $\delta$ is strongly connected and $\delta(q_{0},0)=q_{0}$ . Then, for
any $c\in C$,

$\frac{Card\{i;\lambda_{M}^{(p)}(i)=c,k\leqq i\leqq k+n-1\}}{n}$

converges uniformly for $k\geqq 0$ as $ n\rightarrow\infty$ .
PROOF. Let $\{P_{qq’}\backslash {}^{t}n) ; q, q^{\gamma}\in K, n\in N\}$ be the system of transition proba-

bilities of the Markov chain associated with $\delta$ . Since this Markov chain is
non-cyclic and ergodic, for any $c\in C$, there exists a real number $0\leqq\omega\leqq 1$ ,

such that
$\varliminf_{n}\sum_{q^{\prime}\in\tau^{-1}(c)}P_{qq}^{(n)},$

$=\omega$

for any $q\in K$. For sufficiently small $\epsilon>0$ , let $d$ be an integer, such that
$n\geqq d$ means

$\sup_{q\in K}|\sum_{q^{\prime}\in\tau^{-1}(c)}P_{qq}^{(n)},$ $-\omega|\leqq\frac{\epsilon}{2}$ .

Let $n\geqq\frac{4}{\epsilon}p^{a}$ be any integer. Let $m=[\frac{n}{p^{a}}]-1$ . Let $k$ be any non-negative

integer. Then, there exists an integer $h\geqq 1$ , such that

$k\leqq hp^{a}<(h+m)p^{a}-1\leqq k+n-1$ .
Let $j\geqq 1$ be any integer. Let $\delta(q_{0}, p(j))=q$ . Then, we have

$\frac{Card\{i;\lambda_{M}^{(p)}(i)=c,jp^{a}\leqq i\leqq(j+1)p^{a}-1\}}{p^{a}}=\sum_{q^{\prime}\in\tau^{-1}(c)}P_{qq}^{(d),}$ .

Therefore, it is easily verified that

$|\frac{Card\{i;\lambda_{M}^{(p)}(i)=c,k\leqq i\leqq k+n-1\}}{n}\omega|\leqq\epsilon$ .
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This completes the proof.
LEMMA 5. Let $p\geqq 2$ be any integer. Let $\alpha\in F_{p}$ be any almost periodic

sequence. Then, there exist a positive integer $k$ and a finite-state machine
$M^{\prime}=(K^{\prime}, \delta^{\prime}, q_{0}^{\prime}, \tau^{\prime})$ over $N_{p^{k}}$ , such that

(i) $\delta^{\prime}$ is strongly connected and $\delta^{\prime}(q_{0}^{\prime},0)=q_{0}^{\prime}$,

(ii) $\lambda_{JI}^{(p^{k})}\in\overline{Orb}(\alpha)$ .
Moreover, if $\alpha\in F_{p}$ , then

(iii) $T^{\prime}$ is one-to-one,
in addition to (i) (ii).

PROOF. Let $\alpha=\lambda_{M}^{(p)}$ , where $M=(K, \delta, q_{0}, \tau)$ is a finite-state machine over
$N_{p}$ ( $\tau$ is one-to-one, if $\alpha\in F_{p}$). Let $E\subset K$ be any ergodic component of the
Markov chain associated with $\delta$ , such that $\delta(q_{0}, p(n))\in E$ for some positive
integer $n$ . It is easily seen that there exist $q_{0}^{\prime}\in E$ and a positive integer $k$ ,
such that

$\delta(q_{0}^{\prime},0*0*\cdots*0)=q_{0}^{\prime}$ .
$\overline{k}$

Define

$\eta^{(i)}=0\frac{*0*\cdots*0}{k-L(p(i))}*p(i)$

for $i=0,1,$ $\cdots$ , $p^{k}-1$ . Define a function $\delta^{\prime\prime}$ : $E\times N_{p^{k}}\rightarrow E$ , as $\delta^{\prime\prime}(q, i)=\delta(q, \eta^{(i)})$ ,

where $q\in E$ and $i\in N_{p^{k}}$ . The extension of $\delta^{\prime\prime}$ to a function $E\times N_{P^{k}}^{*}\rightarrow E$ is
also denoted by $\delta^{\prime\prime}$ . Let

$K^{\prime}=$ { $q\in E;\delta^{\prime\prime}(q_{0}^{\prime},$ $\xi)=q$ for some $\xi\in N_{p^{k}}^{*}$ }.

The restriction of $\delta^{\prime\prime}$ to $K^{\prime}\times N_{p^{k}}^{*}$ is denoted by $\delta^{\gamma}$ . Then, $\delta^{\gamma}$ is a function
$K^{\gamma}\times N_{p^{k}}^{*}\rightarrow K^{\gamma}$ which is strongly connected and satisfies $\delta^{\prime}(q_{0}^{\prime}, 0)=q_{0}^{\prime}$ . Let $\tau^{\prime}$

be the restriction of $\tau$ to $K^{\prime}$ . Let $M^{\gamma}=(K^{\prime}, \delta^{\prime}, q_{0}^{\prime}, \tau^{\prime})$ . Then, $M^{\prime}$ satisfies (i)

(and (iii), if $\alpha\in\tilde{F}_{p}$). Let $m$ be a positive integer, such that $\delta(q_{0}, p(m))=q_{0}^{\prime}$ .
For any positive integer $j$, let $h=mp^{kj}$ . Then, it is easily seen that

$\lambda_{M}^{(p^{k})}(i)=\lambda \mathfrak{X})(h+i)$

for $i=0,1$ , $\cdot$ .. , $p^{kj}-1$ . Thus, we have the condition (ii).

Let $\alpha\in C^{N}$ . For a positive integer $k$ , let $D$ be the $k$ products of $C$ .
Define $\varphi_{k}(\alpha)\in D^{N}$, as follows:

$\varphi_{k}(\alpha)(n)=(\alpha(n), \alpha(n+1),$ $\cdots$ , $\alpha(n+k-1))\in D$ ,

where $n\in N$.
LEMMA 6. If $\alpha\in F$, then $\varphi_{k}(\alpha)$ is a finite-rank sequence over $D$ .
PROOF. Let $\alpha\in F_{p}(p\geqq 2)$ . Then, from Lemma 1, $T^{i}\alpha\in F_{p}$ for $i=0,1,2,$ $\cdots$ .

For $i=0,1$ , $\cdot$ .. , $k-1$ , let $M^{(t)}=(K^{(i)}, \delta^{(i)}, q_{0}^{(t)}, \tau^{(i)})$ be a finite-state machine over
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$N_{p}$ , such that $\lambda_{M}^{(p)_{(i)}}=T{}^{t}\alpha$ . Let $K=K^{(0)}\times K^{(1)}\times\cdots\times K^{(k-1)}$ . Define a function
$\delta:K\times N_{p}\rightarrow K$ and $\tau;K\rightarrow D$ , as follows:

$\delta((q^{(0)}, q^{(1)}, q^{(k- 1)}), n)=(\delta^{(0)}(q^{(0)}, n),$ $\delta^{(1)}(q^{(1)}, n),$ $\delta^{(k- 1)}(q^{(k- 1)}, n))$

$\tau(q^{(0)}, q^{(1)}, q^{(k-1)})=(\tau^{(0)}(q^{(0)}), \tau^{(1)}(q^{(1)}),$
$\cdots,$

$\tau^{(k- 1)}(q^{(k- 1)}))$ ,

where $(q^{(0)}, q^{(1)}, \cdots , q^{(k-1)})\in K$ and $n\in N_{p}$ . Let $q_{0}=(q_{0}^{(0)}, q_{0}^{(1)}, \cdots , q_{0}^{(k-1)})$ . Let
$M=(K, \delta, q_{0}, \tau)$ . Then, we have $\lambda_{M}^{(p)}=\varphi_{k}(\alpha)$ .

THEOREM 1. Let $S\subset C^{N}$ be any minimal set which intersects with F. Then,
$S$ is a strictly ergodic set.

PROOF. It is sufficient to prove that for any $\xi\in c*(\xi$ is not the empty
sequence), there exists $\gamma\in S$, such that

Card { $i;h\leqq i\leqq h+n-1$ and 6 is aprefixoisfaprefix of $ T{}^{t}\gamma$ }
$n$

converges uniformly for $h\geqq 0$ as $ n\rightarrow\infty$ . Let $L(\xi)=k$ . Let $\alpha\in S\cap F$. Let $D$

be the $k$ products of $C$ . Then, $\varphi_{k}(\alpha)$ is an almost periodic and finite-rank
sequence over $D$ . From Lemma 4 and Lemma 5, there exists $\beta\in\overline{Orb}(\varphi_{k}(\alpha))$

$\subset D^{N}$ , such that

Card $\{i;\beta(i)=(\xi(O), \xi(1), \cdots , \xi(k-1)), h\leqq i\leqq h+n-1\}$

$n$

converges uniformly for $h\geqq 0$ as $ n\rightarrow\infty$ . Since Orb $(\varphi_{k}(\alpha))=\varphi_{k}(\overline{Orb}(\alpha))=\varphi_{k}(S)$ ,

there exists $\gamma\in S$, such that $\varphi_{k}(\gamma)=\beta$ . It is easily seen that $\gamma$ satisfies the
required property.

COROLLARY 1. Let $S\subset C^{N}$ be a homogeneous substitution minimal set.
Then, $S$ is a strictly ergodic set.

To prove Corollary 1, it is sufficient to prove the following lemma.
LEMMA 7. Let $S\subset C^{N}$ be a minimal set $as,sociated$ with a substitution $\theta$ of

length $p\geqq 2$ . Then, there exists a positive integer $k$ , such that $S$ intersects
with $\tilde{F}_{p^{k}}$ .

PROOF. It is easily seen that there exist a positive integer $k$ and $\alpha\in S$,
such that $\theta^{k}(\alpha)=\alpha$ . Let $K=range(\alpha)$ . Define a function $\delta:K\times N_{p^{k}}\rightarrow K$, as
follows:

$\delta(q, n)=the$ $(n+1)$ -th symbol of $\theta^{k}(q)=\theta^{k}(q)(n)$ ,

where $q\in K$ and $n\in N_{p^{k}}$ . Let $q_{0}$ be the initial symbol of $\alpha$ . Let $\tau:K\rightarrow K\subset C$

be the identity mapping. Let $M=(K, \delta, q_{0}, \tau)$ . Then, we have $\alpha=\lambda_{M}^{(p^{k})}$ and
$\tau$ is one-to-one.
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\S 4. Spectrum

LEMMA 8. Let $M=(K, \delta, q_{0}, \tau)$ be a finite-state machine over $N_{p}(p\geqq 2)$ ,
such that $\lambda_{M}^{(p)}\in C^{N}$ is not an ultimately periodic sequence. Then, there exist
$q,$ $q^{\prime}\in K$ and $\xi\in N_{p}^{*}$ , such that

(i) $\xi\neq\Lambda,$ $q_{2^{6}}q^{\prime}(M)$

(ii) $\delta(q, \xi)=q,$ $\delta(q^{\gamma}, \xi)=q^{\prime}$ .
PROOF. Assume that there do not exist $q,$ $q^{\prime}\in K$ and $\xi\in N_{p}^{*}$ satisfying

the above (i) (ii). Let $CardK=r$ . Let $\eta\in N_{p}^{*}$ be any sequence of length $r^{2}$ .
Assume that $\delta(q_{1}, \eta)\psi\delta(q_{2}, \eta)(M)$ for some $q_{1},$ $q_{2}\in K$. There exists $\xi\neq\Lambda$ ,

such that $\eta=\eta^{\prime}*\xi*\eta^{\prime\prime}$ for some $\eta^{\prime},$ $\eta^{\prime\prime}\in N_{p}^{*}$ , and

(1) $\delta(q_{1}, \eta^{\prime})=\delta(q_{1}, \eta^{\prime}*\xi)$

(2) $\delta(q_{2}, \eta^{\prime})=\delta(q_{2}, \eta^{\prime}*\xi)$ .
Let $q=\delta(q_{1}, \eta^{\prime})$ and $q^{\gamma}=\delta(q_{2}, \eta^{\prime})$ . Then, $q,$ $q^{\prime}$ and $\xi$ satisfy (i) (ii) above, con-
tradicting our assumption. Thus, $\delta(q_{1}, \eta)\sim\delta(q_{2}, \eta)(M)$ for any $q_{1},$ $q_{2}\in K$, and
$\eta$ is a reset sequence. Since any $\eta\in N_{p}^{*}$ , such that $L(\eta)=r^{2}$ , is a reset
sequence, $\lambda_{M}^{(p)}$ must be an ultimately periodic sequence.

LEMMA 9. Let $M=(K, \delta, q_{0}, \tau)$ be a finite-state machine over $N_{p}(p\geqq 2)$ ,
such that $\lambda_{M}^{(p)}$ is not an ultimately periodic sequence. Assume that $M$ has at
least one reset sequence. Then, for any $n$ , there exists a minimal reset sequence
$\xi$ , such that $L(\xi)\geqq n$ .

PROOF. Let $\eta\in N_{p}^{*}$ be a reset sequence. From Lemma 8, there exists
$\zeta\in N_{p}^{*}$ , such that $L(\zeta)\geqq n$ , which is not a reset sequence. Since $\eta*\zeta$ is a
reset sequence and $\zeta$ is not, there exists a minimal reset sequence $\xi$ which
has $\zeta$ as its suffix. This completes the proof.

LEMMA 10. Let $M=(K, \delta, q_{0}, \tau)$ be a finite-state machine over $N_{p}(p\geqq 2)$ ,

such that $\tau$ is one-to-one, $\delta$ is strongly connected, and $\delta(q_{0},0)=q_{0}$ . Let
Card $K=k$ . Assume that

$\lambda_{M}^{(p)}(ip^{h}+r)=\lambda_{M}^{(p)}(r)$

for $i=0,1,$ $\cdots$ , $2p^{2k}-1$ , where $h$ and $r$ are non-negative integers. Let

$\xi=\left\{\begin{array}{l}\frac{0*0*\cdots*}{h-L(p(r))}0*p(r)\ldots ifh\geqq L(p(r))\\suffi xofp(r)oflengthh\ldots ifh<L(p(r)).\end{array}\right.$

Then, $\xi$ is a reset sequence, and

$\lambda_{M}^{(p)}(ip^{h}+r)=\lambda_{M}^{(p)}(r)$

holds for any integer $i\geqq-[\frac{r}{p^{h}}]$ .
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PROOF. Let $b=[\frac{r}{p^{h}}]$ . There exists an integer $n\geqq 1$ , such that

$b\leqq np^{2k}<np^{2k}+p^{2k}-1\leqq b+2p^{2k}-1$ .

Since $\delta$ is strongly connected and $\delta(q_{0},0)=q_{0}$ , for any $q,$ $q^{\prime}\in K$, there exists
$\eta\in N_{p}^{*}$ , such that $L(\eta)=2k$ and $\delta(q, \eta)=q^{\prime}$ . Let $q=\delta(q_{0}, p(n))$ and $q^{1}$ be any
state. Let $\eta$ be as above. Let $ p(m)=p(n)*\eta$ . Since $0\leqq m-b\leqq 2p^{2k}-1$ , we
have

$\tau(\delta(q^{\gamma}, \xi))=\tau(\delta(q_{0}, p(n)*\eta*\xi))$

$=\tau(\delta(q_{0}, p((m-b)p^{h}+r)))$

$=\lambda_{M}^{(p)}((m-b)p^{h}+r)$

$=\lambda_{M}^{(p)}(r)$ .

Since $q^{\prime}$ is an arbitrary state and $\tau$ is one-to-one, this means that $\xi$ is a
reset sequence.

THEOREM 2. Let $S\subset C^{N}$ be a minimal set associated with a substitution of
length $p^{k}$ , where $p$ is a prime number and $k$ is any positive integer. Assume
that for some (or, equivalently, any) $\alpha\in S$, there exist non-negative integers $h$

and $r$, such that $\alpha(ip^{h}+r)=\alpha(r)$ for $i=0,1,2$ , $\cdot$ ... Then, $S$ has a pure point
spectrum. Moreover, if $S$ is an infinite set, then the point spectrum of $S$ is
$\rho(p)=$ { $\omega;\omega^{p^{i}}=1$ for some $i\in N$ }.

PROOF. When $S$ is a finite set, our theorem is clear. Assume that $S$ is
an infinite set. From Lemma 5 and Lemma 7, there exists a finite-state
machine $M=(K, \delta, q_{0},\tau)$ over $N_{p^{k}}(k$ is a positive integer which may differ
from $k$ in the statement of Theorem 2), such that

(i) $\delta$ is strongly connected and $\delta(q_{0},0)=q_{0}$

(ii) $\lambda_{M}^{(p^{k})}\in S$

(iii) $\tau$ is one-to-one.
Let $\alpha=\lambda_{M}^{(v^{k})}$ and $\alpha(ip^{h}+r)=\alpha(r)$ for $i=0,1,2,$ $\cdots$ From Lemma 10, $M$ has a
reset sequence. Moreover, since $S$ is an infinite set, $\alpha$ is not an ultimately
periodic sequence. Therefore, from Lemma 9, for any non-negative integer
$n$ , there exists a minimal reset sequence $\xi$ , such that $L(\xi)\geqq n+1$ . Define
$s\in N$, as follows:

$\xi=0*0*\cdots*0*p^{k}(s)$ ,

where if $\xi$ consists only of $O’ s$ , then define $s=0$ . We have $\alpha(ip^{kL(\xi)}+s)=\alpha(s)$

for any integer $i\geqq-[\frac{s}{p^{kL(\xi)}}]$ . For any integer $i,\overline{i}$ denotes the residue class
modulo $p^{kL(\xi)}$ which contains $i$ . Let
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$E=\{\overline{m};\alpha(ip^{kL(\xi)}+m)=\alpha(s)$ for any integer $i$,

such that $ip^{kL(\xi)}+m\geqq 0$ }.

Since $\overline{s}\in E,$ $E$ is not empty. For any integer $j$ , let $E+j=\{\overline{m+j;}\overline{m}\in E\}$ .
We prove that if $E+j=E$ , then $j$ must be a multiple of $p^{kn}$ . Let $E+j=E$
and $i^{\prime}$ be the greatest common divisor of $j$ and $p^{kL(\xi)}$ . Then, $j^{\prime}$ must be either
a multiple of $p^{kn}$ or a divisor of $p^{kn}$ . Assume the latter, then we have
$E+ip^{kn}=E$ for any integer $i$ . Therefore, $\alpha(ip^{kn}+s)=\alpha(s)$ for any integer

$j\geqq-[\frac{s}{p^{kn}}]$ . This means that the suffix of $\xi$ of length $n(<L(\xi))$ is a reset

sequence, contradicting the assumption that $\xi$ is a minimal reset sequence.
Thus, if $E+i=E+j$ , then we have $i\equiv j(mod p^{kn})$ . From Lemma 10, there
exists an integer $L_{n}$ , such that for any non-negative integer $i$ and $\overline{i}\oplus E$ , there
exists an integer $j^{\gamma}$ , satisfying

(i) $j^{\prime}\in\overline{j}$

(ii) $i\leqq j^{\gamma}\leqq i+L_{n}-1$

(iii) $\alpha(j^{\prime})\neq\alpha(s)$ .
Let $\eta\in c*$ be any section of $\alpha$ of length $L_{n}$ . Let

$E_{\eta}=\{\overline{m}$ ; $\eta(ip^{kL(\xi)}+m)=\alpha(s)$ for any integer $i$,

such that $0\leqq ip^{kL(\xi)}+m\leqq L_{n}-1$ }.

Then, from the above discussion, there exists an integer $j$ , such that $E=E_{\eta}+j$ .
Moreover, this $j$ is uniquely determined up to modulo $p^{kn}$ . Define $G_{n}(\eta)$ ,

such that $0\leqq G_{n}(\eta)\leqq p^{kn}-1$ and $E=E_{\eta}+G_{n}(\eta)$ . For $\beta\in\overline{Orb}(\alpha)=S$, define
$g_{n}(\beta)$ , such that $g_{n}(\beta)=G_{n}(\eta)$ , where $\eta$ is the prefix of $\beta$ of length $L_{n}$ . Then,
it is clear that $g_{n}(T\beta)\equiv g_{n}(\beta)+1(mod p^{kn})$ for any $\beta\in S$ . Let $\omega_{n}$ be any
primitive $p^{kn}$-th root of 1. Let $f_{n}$ be a complex valued function defined on
$S$ , such that

$f_{n}(\beta)=\omega_{n}^{g_{n}(\rho)}$ .
Then, it is clear that $f_{n}\in L_{2}(S, \mu)$ , where $\mu$ is the T-invariant probability
measure on $S$ , and that $f_{n}$ is a proper function corresponding to a proper
value $\omega_{n}$ of the strictly ergodic set $S$ . Since $n$ was any non-negative integer
and the point spectrum of $S$ is a multiplicative subgroup, this means that
the point spectrum of $S$ includes $\rho(p)$ .

To complete the proof, we prove that $\{f_{i}^{j} ; i, j\in N\}$ generates the Hilbert
space $L_{2}(S, \mu)$ . It is easily seen that $\{f_{i}^{j} ; i, j\in N\}$ is multiplicatively closed.
Let

$\Delta_{n,7n}=\{\beta\in S;g_{n}(\beta)=m\}$ ,

where $n\in N$ and $0\leqq m\leqq p^{kn}-1$ . Then, the characteristic function of $\Delta_{n,m}$
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belongs to the linear subspace spanned by $\{f_{i}^{j} ; i, j\in N\}$ , since it equals

$\frac{1}{p^{kn}}\sum_{i=0}^{p^{kn}-1}\frac{f_{n}^{i}}{\omega_{n}^{mi}}$

Let
$\Delta=\{\Delta_{n,m} ; n\in N, 0\leqq m\leqq p^{kn}-1\}$ .

To complete the proof, it is sufficient to prove that for any cylinder set $\Gamma_{\eta}$

that intersects with $S$, there exists $B\subset S$ belonging to the $\sigma- field$ generated
by $\Delta$ , such that $B\subset\Gamma_{\eta}$ and $\mu(\Gamma_{\eta}-B)=0$ . To prove this, it is sufficient to
prove that for almost every $(\mu)\beta\in\Gamma_{\eta}$ , there exists $ V\in\Delta$ , such that $\beta\in V$

$\subset\Gamma_{\eta}$ , since $\Delta$ is a countable family. Let

$I_{n}=\{i\in N;0\leqq i\leqq p^{kn}-L(\eta),$ $p^{k}(i+j)$ is a reset sequence

of $M$ for any $j\in N$, such that $0\leqq j\leqq L(\eta)-1$ }

$c_{n}=\frac{CardI_{n}}{p^{kn}}$

Since $M$ has a reset sequence and any sequence which has a reset sequence
as its section is itself a reset sequence, the above $c_{n}$ tends to 1 as $ n\rightarrow\infty$ .
Let

$R_{n}=\{\alpha(i)*\alpha(i+1)*\cdots*\alpha(i+L_{n}-1);i\equiv j(mod p^{kn})$

for some $j\in I_{n}$ }

$R_{n}^{\prime}=\{\alpha(i)*\alpha(i+1)*\cdots*\alpha(i+L_{n}-1);i\equiv j(mod p^{kn})$

for some $j\in N$, such that $0\leqq j\leqq p^{kn}-1$ and $j\not\in I_{n}$ }.

Since $R_{n}$ and $R_{n}^{\prime}$ are disjoint, we have

$\mu(\bigcup_{\zeta\in R_{n}}\Gamma_{\zeta})=c_{n}$ .

Let $g_{n}(\beta)\in I_{n}$ for some $n\in N$ and $\beta\in S$ . For $j\in N$, such that $0\leqq j\leqq L(\eta)-1$ ,
we have $\beta(j)=\alpha(g_{n}(\beta)+j)$ , since $\beta(j)=\alpha(ip^{kn}+g_{n}(\beta)+j)$ for some integer $i\geqq 0$

and $g_{n}(\beta)+j$ is a reset sequence of $M$. Let

$W=$ { $\beta\in S;g_{n}(\beta)\in I_{n}$ for some $n\in N$ }.
Since

$\{\beta\in S;g_{n}(\beta)\in I_{n}\}=\bigcup_{\zeta\in R_{n}}\Gamma_{\zeta}\cap S$ ,

we have $\mu(W)=1$ . Let $\beta\in\Gamma_{\eta}\cap W$. Then, there exists $n\in N$, such that
$g_{n}(\beta)\in I_{n}$ . Let $g_{n}(\beta)=m$ . For any $\gamma\in\Delta_{n,m}$ , we have $\gamma(j)=\alpha(m+j)=\beta(j)$ for
$j=0,1,$ $\cdots$ , $L(\eta)-1$ . Since $\beta\in\Gamma_{\eta}$ , we have $\gamma\in\Gamma_{\eta}$ . Thus, $\Delta_{n,m}\subset\Gamma_{\eta}$ . This
completes the proof of Theorem 2.

COROLLARY 2. Let $S\subset C^{N}$ be a minimal set associated with a substitution
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$\theta$ of length $p^{k}$ , where $p$ is a prime number and $k$ is any positive integer. As-
sume that there exists an integer $0\leqq i\leqq p^{k}-1$ , such that $\theta(c)(i)$ is the same for
any $c\in C$ . Then, $S$ has a rational pure point spectrum $\rho(p)$ .

\S 5. Remark

Our results remain true in the case of two-sided sequences.

Osaka University

References

[1] K. Jacobs, Combinatorial construction in ergodic theory, Proc. international con-
ference on functional analysis, Tokyo, 1969.

[2] F. Hahn and Y. Katznelson, On the entropy of uniquely ergodic transforma.
tions, Trans. Amer. Math. Soc., (2) 126 (1967), 335-360.

[3] W. H. Gottschalk, Substitution minimal sets, Trans. Amer. Math. Soc., 109
(1963), 467-491.

[4] A. Cobham, On the base-dependence of sets of numbers recognizable by finite
automata, Math. Systems Theory, (2) 3 (1969), 186-192.

[5] S. Kakutani, Ergodic theory of shift transformations, Proc. 5-th Berkeley Symp.,
vol. 2, part 2 (1967), 405-413.

[6] P. R. Halmos, Lectures on ergodic theory, Publication Math. Soc. Japan, 1956.


	Spectrum of a substitution ...
	\S 1. Summary
	\S 2. Notations and definitions
	\S 3. Strictly ergodicity
	THEOREM 1. ...

	\S 4. Spectrum
	THEOREM 2. ...

	\S 5. Remark
	References


