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Given a group G, with a subgroup I, one can always formulate the so-
called Hecke rings whose elements are certain double cosets, called Hecke
operators as introduced by Shimura in [4] The study of the action of
Hecke operators on the cohomology groups H*([", p) with a linear representa-
tion p of G, defined by Kuga in [2] appears to be important in the number
theory of automorphic forms, in the formulation of various “trace formulas”,
when the groups were Lie groups with discrete subgroups /7, where the co-
homology groups H¥T, ©) were treated analytically and expressed as spaces
of harmonic forms associated with the representation p.

In this paper, we shall deal purely algebraically with the Hecke operators
on the cohomology groups H*(I", A) of arbitrary subgroups I" of any abstract
group G over a G-module A. The action of Hecke operators on H¥I", A),
formulated by Kuga in [2] when G is a Lie group, turns out to be a sort of
transfer map in the cohomology of groups.

In Section I, we described the Hecke rings R(G, 4, I'), and in Section II
we obtained a representation of the Hecke rings R(G, 4, I') over the cohomo-
logy groups H*(I", A) with an explicit formula. In the last section, we com-
puted the effect of Hecke operators on H*I, A) for a cyclic group I" of
SL2, Z/p 7).

I. Hecke rings

1. Let G be a group. Two subgroups I' and I'/ of G are said to be
commensurable, denoted by I" =~ I/, if the intersection of I" and 'I'" is of
finite index with respect to both I" and I'/; in notation, ' = I’ & [ : I'n1I""]
<oo and [I:I'"I"J<co. Then the commensurability is an equivalence
relation and is invariant under conjugation, namely, I" ~ I’ if and only if
a'l'a=TI*~T"" Let I be the set of all elements « of G with I'* =TI

PROPOSITION 1.1. [ is a subgroup of G.

PROOF. Given a and 8 in™I", we have™ /"™ =(a"Ia)f =~ I"*~ I and so
af belongs to I'. By substituting a~! for 8, I'=(aI'a)*'=I*" implies
atel,
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We shall utilize some of the conventional notations: Z for the set of
integers, N(I") for the normalizer of I" in G, #(S) for the cardinality of a set
S and #(G) or |G| for the order of a group G, in particular, #(/"\G) or |I'\G]|
for the cardinality of the collection of all right cosets of I’ in G.

Given x and y of G, I'xI'=1I"yI" if and only if xyy ' for some y in
I', which, in turn, gives rise to an equivalence relation on the collection of
right cosets of I in G, namely, I'x and I'y belong to a same double coset
if and only if x=7,yy, for some y, and y, of I'. Hence we can abuse the
notation by writing (I'\G)/I" =I"\%I", and call it the double coset decomposi-
tion. By specializing I* for G, we can choose a transversal 2, so that N
={l'oN|weR}= yg (I"wl), the disjoint union of elements (I"wI") of double

cosets, and set-theoretically, I'= \U I"wl’, the disjoint union of sets I'wl’,
wsE

that is, the set of all elements of the form 7wy, for r,, 7, in I’ and 0 € 2.

PROPOSITION 1.2. With the notations as above, we have

@) IF'={alacGand g(I'\'al") < oo} =" I{x[ |#T*NIIN) <0, xEG}

i) GODIFoONI)DI

(ii) If I' is a normal subgroup of G, or either |I'|<oco or [G:I']< oo,

then G=1".

PROOF. aceFel*~T el NI\ < oo i(\I'al’) < because
A “NI\[Y=4("\I"'al’). This implies (i), and (ii) and (iii) are immediate
from Proposition 1.1.

2. Let Z[I", I'] be the free Z-module over the set I™'I" of all distinct
double cosets of I' in I°. Now we shall introduce a multiplication o on
Z[[', I'] as follows: Let (I"al’) and (I'8I") be elements of Z[I', '] with
right coset decompositions I'al” =\UI'a; and I'fI" =\JI'B; where the disjoint
unions \U are taken over i=1,2,---,a and j=1,2, ---, b. Then define

(FaF)O(FﬂF):(F%)m(FaF, r'pr; rynyd’+I,

where a, 8 and y are in the prefixed transversal 2, and m(I"al’, I'SI" ; I'yI’)
=#{G Nlap;e 'y} )
LEMMA 1.1. The multiplication o, defined above, on Z[I', I'] is well-defined.
PrOOF. The multiplication is, indeed, independent of the choice of coset
representations, because
G Dlewpye Iy} =#{G Dleri'riBi € L'}
=#C DB eIt}
‘where y € £, r’s are in I" and a,y;' denotes the coset representative of the
right I" coset to which a,y;! belongs, i.e., ayy;ite - a7
The sum is a finite sum since #{(, N|1<i<a, 1<j<b} is finite and
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{I'yT" |y 2} is a disjoint set in I

By extending this operation bilinearly, we obtain an associative ring
R(G, I', I') with the identity (/)= ("-1-1I") associated with GO I ST over
the Z-module Z[I*,I']; for proof see [4]. By taking a semi-group 4 with
['D> 457, we obtain an associative ring R(G, 4, I') with the same construc-
tion as R(G, I', I'), called a Hecke ring, associated with G, 4, and I". ([2].

COROLLARY 1.1. The structure constants m(I'al’, I'SI" ; I'yI") of a Hecke
ring R(G, I', I') are always non-negative integers, and are equal to
H{IN{ Ly NI BIY )

ProOOF. The first statement is obvious from Lemma 1.1. For the second
statement, consider the o-ring &, generated by the set of all I" right cosets,
as subsets of . Introduce a natural right /-invariant measure p by

w(E)=#{I"\E} for Ecg.

Then for a characteristic function Xy, with I"al”’ C I, we have

Sl trarldu=pTal),

and the convolution *, with respect to the measure space (7, g, ), of the
characteristic functions X, and Xpgr evaluated at ¢/ & I'yI", shows that

plla Ty "By =mal’, "Bl ; I'yT")

without depending on the choice of 7/ in ['yI". For details, see

For I'=1(e G), we have G=1" and the Hecke ring R(G, G, 1) is exactly
the integral group ring Z(G) of G. If I' is normal, or either [I'] <o or
[G:I']<co, then G=TI". Fora Hecke ring K(G, G, I') with |I"| < co, or other
examples, see [1]. The above corollary indicates that any Hecke ring may
be realized as a convolution algebra with respect to an invariant measure,
naturally generalized from the counting measure on G with respect to a sub-
group I, which is, in turn, used for defining integral group rings.

II. Hecke operators on H*(]", A)

Let G be a group, I" a subgroup of Gand A a unitary left Z[G]-module
where Z[G] is the integral group ring of G. Let {Y, Ok, €} be a free and
acyclic Z[G]-complex, augmented by ¢: Y,—Z* for non-negative integers k
with d,=e. Hereafter, for the sake of convenience, we will call this complex
an f.a.a. G-complex. The k-th cohomology group H¥G, A) of G with co-
efficients in A is uniquely defined and independent of the choice of f.a.a. G-
complexes, because of the existence of chain transformations {or: Y=Y}
between any two f.a.a. G-complexes {Y Ok, e} and {Y}, 6, ¢} with the pro-
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perty that any such two are homotopic. Therefore the Z-module End (H¥*(G, A))
contains a submodule which is isomorphic to a submodule of End (Hom (Y%, A4)),
consisting of those elements which commute with the boundary operators 0y
for =0 without depending on the choice of f.a.a. G-complexes.

1. Let {Y4, 04 ¢} be an f.a.a. G-complex and Y, a free G-module with a
basis {#}. Let G be decomposed into a union of right cosets of I” with a com-
plete system A= {2} of representatives 2, namely, G = ZL_)AFX. Then Y, is also a

free Z[I']-module with the corresponding basis {Ab} and so {Y, 0x, ¢} becomes

an f.a.a. ['-complex. Therefore any f.a.a. G-complex might just as well be
used for defining the cohomology groups H*(I", A).

For a given element I"al” of the Hecke ring RK(G, 4, I') with a coset de-
composition el = le’ai we shall define the action of I'al’ on H¥*I', A),
i=1

denoted by (H*(I", A)|Srar), as follows:
Let {Y}, 0k, ¢} be an f.a.a. G-complex.
Given a k-th cochain f of Homp (Y, A),

(f1Srar) = S ai*o (foa).

As a preparation needed in the sequel, we will observe a mapping 7 of
I' into itself. Given a = dc I’, suppose the double coset ['al” has a coset

decomposition I"al" = \J I"a; with a complete system {a;}%, of representatives
=1

i=

a;. Then for any element y of I” the set {a;r};, is also a complete system
of representatives of the very same coset decomposition of I'al” modulo I,
and we have between the two systems {a;} and {a,7} the following relation:

a;y =1y) @y for 1=:i=n

with z(y) € I" and a, € {a;}, where a,=a;y in our earlier notation.

Then it is easy to see that (17, 27, ..., n") is a permutation of (1,2, ---, n)
with 97 = (") and 7, (ry) =7y) - (")

PROPOSITION 2.1. With the notations as above, the operator Syor is a Z[I']-
homomorphism and independent of the choice of representatives of coset decom-
position of I'al’ modulo I.

ProOOF. Let I"'al’ be decomposed of \njfai. Given fe Hom (Y, A) and
i=1
re I, observe, for xeY,,

(FISrer)r)= 3 ai'flaiy)

= ré‘l 7o f(TdPay - x)
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=r Zrial() flag - x)

= ré ai flagx)=ry gn)l a; flax)

since yla;'t(y) = a} and {a;}i = {a; )}

In order to show the independence of Sp,r from the systems of repre-
sentatives, let {r(«;)  a;}%; be another complete system of representatives of
coset decomposition of ['al” modulo [ with y(a)) € I'. Given f& Homp(Y;, A)
and x< Y, consider the action of Sp,; with respect to the system {y(a))-a;}%,,
namely,

(1Sren)@= 3 a7 (@) (rle) - ;- )

n

= 2 o' flax) .

The ['-homomorphism Sp,p, well-defined on Hom7(Y}, A) will induce a
homomorphism on H*({I", A), again denoted by Sp.r by the following
PROPOSITION 2.2. With the notations as above, we have

5ksruz1“ = Srar5k

where 0y, is the k-th coboundary operator for k=0 defined by (f|0r) = 0r f=f0ys,.
In fact, we have, for x& Y.,

(F1091Srer)® = 2 a'(f109) - ez

Il
HM:

ar'(f - O (%)

n

= 3 a; f(Orsi(a;)) = Z a;'f « ay(0gs,%)

I

‘

(f1Srar)@e+:19) = (f1Srar) | 00() .

We have established that the operators Sr,r, associated to ["al’ of
R(G, 4, I'y are defined on the cohomology groups H*(I", A) of I" over A, which
are particularly derived from an f.a.a. G-complex {Y, d,, ¢}, which is, in fact,
an f.a.a. ['-complex. However, since H*(I", A) are independent of the choice
of f.a.a. I'-complexes as mentioned earlier, Sy, are well-defined on H*(I", A),
only depending on /" and A. We call Sr,r Hecke operators on H*(, A).
Now we shall establish our main property that H*¥(I, A) is a unitary right
R(G, 4, I')-module for £=0. For that purpose, we shall extend the definition
of Hecke operators linearly on the module structure of R(G, 4,) by the
formula S¢yncer.rorm = 21(®) Sror, With n(w) € Z, and X n(w)-I'wl € R(G, 4, I).

I
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PROPOSITION 2.3. With the notations as above, the mapping S is a repre-
sentation of the Hecke rings R(G, 4, I") over H*(I", A) for each k=0.
Proor. Let I'al’ and I'BI" be elements of R(G, 4, ') with right coset

decompositions I"al’ = Ia;and I'BI" = QF‘BJ-, and Ial o I'BI'=3m{"al’,
i=1 j=

I'BI"; I'yI") I'yI" where the sum runs through the finite set {['y[|y < £}
for a subset £’ of £, determined by /’a/" and I'8/" in their product, namely,

all I'yI'cI'al'BI'. Let I'yI" be decomposed in [yl = V) Iy, for each 7 in
. k=1
2. It follows from the Corollary to Lemma 1.1

m(lal’, Bl ; 'y =4{G, )| "a;8;,=1"7}
=#{(, N|aB;=1T7r:}  for each y,, 1=Zk=c.

Therefore for f e C¥, the k-th cochain group, we have

(f1Srarorer) Zrezglm(ljaf, I'pI"; FTF)(;?‘:%HIOJCO o)

=2 #HO DI afj=Taypy} - (@B o foayfy)

apBq

=2 (aiBptofolafy) = ((S1Srar)|Srsr)

where the second sum runs through the set Ug{apﬂqzyk, 1=k =c} (k and ¢
TEL

depend on 7), because for a pair (p, q) with 1=p=a and 1=¢g=b, there ex-
ists a y = 2/ and some k such that ['a,B,=I"ys, and vice versa, by the fact
that for every ye @/, I'yl'Cl'al'I'=T'al'{UI'B;} = \U I'a;8; with 1=<i=Za
and 1< =<b. o "

2. An explicit formula for Hecke operators. In practice, we will find it
convenient to have an explicit and computable formula for Hecke operators
Srer- For this purpose we will utilize a specific /'-complex, namely, the
standard homogeneous f.a.a. I'-complex {Xj, 0, ¢}, defined as follows:

For =0, X, is the free Z[I']-module, generated by the set "X X---X I’
of all (k+1)-tuples of elements of /' and the /'-homomorphism 0, is defined
homogeneously by

k .
ak(rOr IETIAA) Tk) = zg() (—‘1)1(7’0: T o0, ?i: Tty Tk)

for >0 and for k=0 we set 0, to be the augmentation ¢: X,— Z™*.

PROPOSITION 2.4. With the notations as above, the Hecke operator, associated
to I'al” of R(G, 4,1") on H*(I", A) with respect to the standard homogeneous
f.a.a. I'-complex {Xy, 0, ¢}, denoted by Trur, is expressible as follows: Given
feHomp(X;, A) and y)s in I,
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(/1 TI"aI‘)(To, T 200 )’k) = 12_1 at_lf<'5i(7’o): Ti()’l)r rey Tz;(?‘k)) s

provided that I'al = La) Ia;.
=1

Proor. Let {Y,, 0, ¢} be the standard homogeneous f.a.a. G-complex,
which is also an f.a.a. I'-complex through a (but fixed) coset decomposition

G=\UJI'A with a complete system 4= {4} of representatives. Then a set of
€4

mappings ¢, of Y, into X, defined by

GDIG : (g(): gl: ttty gk) I (7’0; 71, ttty Tk)

with g;=74 (y; ') is a chain transformation of {Y7, 0x ¢} to {X,, 0, ¢},
and the set of inclusion mappings 8, of X, into Y, is a chain transformation
of {X;, 0y, €} to {Y,, 0x, ¢}. Now we have the following commutative diagram :

STaF
Hom (Y, A) Homy (Y, A)
A
o Ok
HOmF(Xk, A) —'Homr(Xk, A)
TFaF

where {¢f} and {6f} are the induced homomorphisms by {¢,} and {6,} re-
spectively. In other words, Tror=0¢F  Srer: 0F, that is, explicitly, for

feHomp(Xe A) 7¢s in I and Tal' =\ T'a; with a; < 4,
i=1
(f|§0;cksrar0ff)(7’o, Tls Tty Tk)

:i;) a; (fleDaire oy, = re)
= D e (fleD)eroagy 7lrda = tlroam)

= 3P e, Tl 1 Tl

since a,r, are all in the system {a;}.
REMARK. The results in this section can be obtained also by the method,
utilized in [5], whose argument runs somewhat longer.
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III. Hecke operators on H*(I", A) of a cyclic group I’

In this section we would like to give an explicit description of the action
of Hecke operators on specific cohomology groups.

Let G denote SL(2, Z/pZ) for a prime number p, I’ the cyclic subgroup
(T>, generated by T:((l) i) of orde‘r p, and A a two-dimensional vector
space over Z/pZ. By letting G operate on A as linear transformations from
the left, A becomes a left unitary Z[GJ-module.

We note that G=1"DI".

LEMMA 3.1. Let a be 2‘ Z) of SL2, Z/pZ). Then c¢+0 if and only if
alanl =e, the identity matrix.

-1 . 1 m 1 =

PRrROOF. Suppose a '@ I #e. Then there exist (O 1) and (0 1

with integers 1 < m, n < p such that <(1) 7;1) (? 3) = (? 2) ((1) 7;), from which
it follows that ¢ must be 0.

Conversely, if «a is of the form ((cl Z) with ¢=0, then we can find;7T"

of I" which belongs to a ", provided that = is one of those which satisfy
the equation md=an for some non-zero integer .

COROLLARY 3.1. If a in SL(2, Z/DZ) is of the form (g 2_1>, then we have
Ial'=1"a.

Proor. For az(S 2_1) G, a'l'anl'=1" or equivalently I'a=al’,

since ya=ay’ for y, y/ in I', md=an is solvable for any n. Hence I'I'a
=la=1al.

We recall a few notations. Let I'al’ be decomposed into a disjoint union
of right cosets ['al'=\UJI'a;. Then a;y=17,(y) - a;y where t(y)e " and a;r
is the representative of the coset to which «;r belongs with respect to a
pre-chosen right transversal {«;} for I' in I'al’, i.e., a;7 € {a;}. As in the
proof of Proposition 1.2, it follows that I'al’=\UI'ay; where {y;} is a right
transversal for the coset decomposition (I'"“NI)\I'. In fact, 'ay=1Iay’ if
and only if y/ytel™NI.

PROPOSITION 3.1. Let a€G be of the form (¢ Z) with ¢+ 0 and ye I
Then t(y)=e for all i, with respect to a coset decomposition I'al' =\JI ay,,

described above. If a= (Z 3) with ¢=0, we have I'al' =I"a and 7,(y)=7".

Proor. For the first case, it follows from Lemma 3.1 that for every pr
of I', ay is a coset representative and ay = ay, yielding z,(y)=e. For the
second case, we have ay =r7,(y)a for y=l’, since I'al'=1"a. Hence 7,(y) is
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of the form ((1) JD with xd=an for y= <(1) 7}) and so we have x=a’n.

Let R denote the integral group ring Z[I"] of I'=(T with T=(j ]
in G=SL(2, Z/pZ), and N=1+T+T?*+ .- +T?), D=T-—1in R, which operate
on A. The special f.a.a. I'-complex:

N D N D D N D €
R R R R R R Z 0

is a free resolution, customarily denoted by W, from which we obtain the
isomorphism I* of HZWI, A) onto A'={ae€ A|Ta=a}=H*"*(I", A) and
HE(I', A) onto A/DA= H**{([", A), (n=0), induced from the cochain iso-
morphism [/: Hom(R, A) = A by I(p)=¢(e).

Let X be, as before, the standard homogeneous f.a.a. I"’-complex {Xj, 0y, ¢}
with X, being the R-module on (k-+1)-copies I'XI'X --- XI" of I', and W,
for the free resolution: for D¥=T%-1 with positive integers j,

N D®» N D@® p®» N D@ ¢
R R R “e R R R Z 0.

Then among these three f.a.a. /'-complexes, we have the following useful
functorial chain transformations.

PROPOSITION 3.2. With the notations as above, we have the commutative
diagram:

£
X W

(A)

w

where the chain transformations f, f and h are defined as follows:
for f={fi}, with e=1, the unit matrix,

fo=1tdentity
f@=(T)
fzn(e) :Tl 2 er (e: 71 Trlx 7’2: Trz: AN 'Y Trn)

727“"77;\
and

Sonsi(€) :?‘ > F(e’ T ru Tro 7o Tre -+ 7o Tra)
1

T2 p€

for all natural numbers n, and for fP={fF},
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[ =1identity

£ =(e, T®)
P(e)= J o j

7@ 7‘1>Tz,§’n€1‘ @ Tv r Tv 7o T T2 » o T Tn)

and
fihn(e)= 2 _ (e, TV, Tv Tj?’p 72 Tszr T Tj?’n)
TLT2 s TpeEll

for all natural numbers n, and for h= {h.},

han=3"  and gy =5t QHT+T > o T4
for all natural numbers n with the mapping
hy:R—R by h(y)=h,-y, the module product.

PROOF. A straightforward checking.
From the diagram (A), the functor Hom yields the following commutative

diagram:
(J>>k
Homp(X, A) >Hom (W, A)
N \ /
Hom (W, A)
I
A

Before obtaining the effect of actions of Hecke operators on H*([', A)

we notice the following
LEMMA 3.2. Let Homp (W, A) be the following cochain complex, derived

from the free resolution W:
N* D*
«— Homp(R, A) «—— Homp(R, A) —
D* N* D*
« «— Homp(R, A) «—— Homp(R, A) —— Hom (R, A) —0
Then in odd dimensions 2n+-1, for every ¢ € Homp(R, A), ¢ is cohomologous

to ¢ -7 in Homp(R, A) for yel'.
PrOOF. Observe ¢—(¢poT) e D*(Homp(R, A)).
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For any a of G=SL(2, Z/pZ), the Hecke operator Sy, on H¥I', A) was
explicitly defined in Proposition 2.4 as follows: for ¢ € Homp(X,, A),

(o] SF«F)(TO: T s TR =2 a;t- SD(Ti(To): Ti()’l): ey Ti(?’k)) .
Lemma 33. Let a be of the form (§ V) in SL@2 Z/pZ). Then for
[(Ele H¥I', A)
La-&] for k=2n, and
[at-&] for k=2n, for n=0.

ProOOF. Consider the cochain complex:

D N D N D D N D
A A A A A A A 0

with the operation N and D being the module product, from which we ob-
tained

AT for k=2n

HYI, A)= {
A/DA  for k=2n+1.

For & ker D= AT, af =aé, and for (;‘) € A, a(;>:a-1(;‘) (mod D A).

PROPOSITION 3.3. With the notations as above, for a:(? Z)EG, with
¢+ 0, we have

(Hk(F’ A) l ST’&T) =0

for all non-negative integers k. If a is of the form (8 2_1), then on H*(I', A),

a?™ ' for k=2n

a*"*?  for k=2n-+1

ST&F:

for n=0.

Proor. For the first part of the proposition, we have 7,(y)=e for every
y I from Proposition 3.1 with respect to a finite coset decomposition I'al’
=UTla;

From the diagrams (A) and (B), we obtain the following commutative
diagram: with the induced isomorphisms f*, f@* h* and I*, for each &,



442 Y.H. Ruie and G. WHAPLES

I I¥
HYT, A) Hy(I') A)—————H¥", A)
]
(C) S_I’cul‘ SI*O,I'
k k AV o Lol
W, A) o Hy, (T, &) T - Hi([", A) T HYI", A)

where J*=(h*)"! with

JaleD=0i" ¢]1 and JHu((eD=0[;""¢l,
by Lemma 3.2.
Ial’ :T&Ejrfa;’, since ['*"I"=e. Hence Spé,p are zero operators.
For the rest of the proposition, we recall that I'el'=I'a for «
= (8 Z_,), and z(y)=7* for y € I'" from Proposition 3.1. Now, using Lemma

3.3, it is a matter of chasing the diagram (C):
Given [¢le H%[I', A] for k=2n, letting j= a? we have

I¥fE@|Srar) = a7t - j7 - IEJEfP¥ @] = a®" - IEJEFP* o],
and for k=2n-+1,

EfE@|Spar) = a7 - P EEFP* 0] = a®™** - TEJEf o]
g.e.d.

University of Massachusetts
Ambherst, Massachusetts
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