Hecke operators in cohomology of groups

By Y. H. RHIE and G. WHAPLES

(Received June 9, 1969)

Given a group G, with a subgroup Γ , one can always formulate the so-called Hecke rings whose elements are certain double cosets, called Hecke operators as introduced by Shimura in [4]. The study of the action of Hecke operators on the cohomology groups $H^k(\Gamma, \rho)$ with a linear representation ρ of G, defined by Kuga in [2], appears to be important in the number theory of automorphic forms, in the formulation of various "trace formulas", when the groups were Lie groups with discrete subgroups Γ , where the cohomology groups $H^k(\Gamma, \rho)$ were treated analytically and expressed as spaces of harmonic forms associated with the representation ρ .

In this paper, we shall deal purely algebraically with the Hecke operators on the cohomology groups $H^k(\Gamma, A)$ of arbitrary subgroups Γ of any abstract group G over a G-module A. The action of Hecke operators on $H^k(\Gamma, A)$, formulated by Kuga in [2] when G is a Lie group, turns out to be a sort of transfer map in the cohomology of groups.

In Section I, we described the Hecke rings $\mathcal{R}(G, \Delta, \Gamma)$, and in Section II we obtained a representation of the Hecke rings $\mathcal{R}(G, \Delta, \Gamma)$ over the cohomology groups $H^k(\Gamma, A)$ with an explicit formula. In the last section, we computed the effect of Hecke operators on $H^k(\Gamma, A)$ for a cyclic group Γ of $SL(2, \mathbb{Z}/p\mathbb{Z})$.

I. Hecke rings

1. Let G be a group. Two subgroups Γ and Γ' of G are said to be commensurable, denoted by $\Gamma \approx \Gamma'$, if the intersection of Γ and Γ' is of finite index with respect to both Γ and Γ' ; in notation, $\Gamma \approx \Gamma' \Leftrightarrow [\Gamma : \Gamma \cap \Gamma'] < \infty$ and $[\Gamma' : \Gamma \cap \Gamma'] < \infty$. Then the commensurability is an equivalence relation and is invariant under conjugation, namely, $\Gamma \approx \Gamma'$ if and only if $\alpha^{-1}\Gamma\alpha = \Gamma^{\alpha} \approx \Gamma'^{\alpha}$. Let $\tilde{\Gamma}$ be the set of all elements α of G with $\Gamma^{\alpha} \approx \Gamma$.

PROPOSITION 1.1. $\tilde{\Gamma}$ is a subgroup of G.

PROOF. Given α and β in $\tilde{\Gamma}$, we have $\Gamma^{\alpha\beta} = (\alpha^{-1}\Gamma\alpha)^{\beta} \approx \Gamma^{\beta} \approx \Gamma$ and so $\alpha\beta$ belongs to $\tilde{\Gamma}$. By substituting α^{-1} for β , $\Gamma = (\alpha^{-1}\Gamma\alpha)^{\alpha-1} \approx \Gamma^{\alpha-1}$ implies $\alpha^{-1} \in \tilde{\Gamma}$.

We shall utilize some of the conventional notations: Z for the set of integers, $N(\Gamma)$ for the normalizer of Γ in G, $\sharp(S)$ for the cardinality of a set S and $\sharp(G)$ or |G| for the order of a group G, in particular, $\sharp(\Gamma \backslash G)$ or $|\Gamma \backslash G|$ for the cardinality of the collection of all right cosets of Γ in G.

Given x and y of G, $\Gamma x \Gamma = \Gamma y \Gamma$ if and only if $x \gamma y^{-1} \in \Gamma$ for some γ in Γ , which, in turn, gives rise to an equivalence relation on the collection of right cosets of Γ in G, namely, Γx and Γy belong to a same double coset if and only if $x = \gamma_1 y \gamma_2$ for some γ_1 and γ_2 of Γ . Hence we can abuse the notation by writing $(\Gamma \setminus G)/\Gamma = \Gamma^{\setminus G/\Gamma}$, and call it the double coset decomposition. By specializing $\tilde{\Gamma}$ for G, we can choose a transversal Ω , so that $\Gamma^{\setminus \tilde{\Gamma}/\Gamma} = \{(\Gamma \omega \Gamma) | \omega \in \Omega\} = \bigcup_{\omega \in \Omega} (\Gamma \omega \Gamma)$, the disjoint union of elements $(\Gamma \omega \Gamma)$ of double cosets, and set-theoretically, $\tilde{\Gamma} = \bigcup_{\omega \in \Omega} \Gamma \omega \Gamma$, the disjoint union of sets $\Gamma \omega \Gamma$, that is, the set of all elements of the form $\gamma_1 \omega \gamma_2$ for γ_1 , γ_2 in Γ and $\omega \in \Omega$.

Proposition 1.2. With the notations as above, we have

- (i) $\tilde{\Gamma} = \{ \alpha \mid \alpha \in G \text{ and } \sharp (\Gamma \backslash \Gamma \alpha \Gamma) < \infty \} = \bigcup \{ \Gamma x \Gamma \mid \sharp ((\Gamma^x \cap \Gamma) \backslash \Gamma) < \infty, x \in G \}$
- (ii) $G \supset \tilde{\Gamma} \supset N(\Gamma) \supset \Gamma$
- (iii) If Γ is a normal subgroup of G, or either $|\Gamma| < \infty$ or $[G:\Gamma] < \infty$, then $G = \tilde{\Gamma}$.

PROOF. $\alpha \in \widetilde{\Gamma} \Leftrightarrow \Gamma^{\alpha} \approx \Gamma \Leftrightarrow \sharp (\Gamma^{\alpha} \cap \Gamma \setminus \Gamma) < \infty \Leftrightarrow \sharp (\Gamma \setminus \Gamma \alpha \Gamma) < \infty$ because $\sharp (\Gamma^{\alpha} \cap \Gamma \setminus \Gamma) = \sharp (\Gamma \setminus \Gamma \alpha \Gamma)$. This implies (i), and (ii) and (iii) are immediate from Proposition 1.1.

2. Let $Z[\tilde{\Gamma}, \Gamma]$ be the free Z-module over the set $\Gamma^{\tilde{N}}\Gamma$ of all distinct double cosets of Γ in $\tilde{\Gamma}$. Now we shall introduce a multiplication \circ on $Z[\tilde{\Gamma}, \Gamma]$ as follows: Let $(\Gamma \alpha \Gamma)$ and $(\Gamma \beta \Gamma)$ be elements of $Z[\tilde{\Gamma}, \Gamma]$ with right coset decompositions $\Gamma \alpha \Gamma = \bigcup \Gamma \alpha_i$ and $\Gamma \beta \Gamma = \bigcup \Gamma \beta_j$ where the disjoint unions \bigcup are taken over $i=1,2,\cdots$, a and $j=1,2,\cdots$, b. Then define

$$(\Gamma \alpha \Gamma) \circ (\Gamma \beta \Gamma) = \sum_{(\Gamma \gamma \Gamma)} m(\Gamma \alpha \Gamma, \Gamma \beta \Gamma; \Gamma \gamma \Gamma) (\Gamma \gamma \Gamma)$$
 ,

where α , β and γ are in the prefixed transversal Ω , and $m(\Gamma \alpha \Gamma, \Gamma \beta \Gamma; \Gamma \gamma \Gamma) = \#\{(i, j) | \alpha_i \beta_j \in \Gamma \gamma\}.$

LEMMA 1.1. The multiplication \circ , defined above, on $Z[\tilde{\Gamma}, \Gamma]$ is well-defined. Proof. The multiplication is, indeed, independent of the choice of coset representations, because

$$\sharp \{(i,j) \mid \alpha_i \beta_j \in \Gamma_{\gamma} \} = \sharp \{(i,j) \mid \overline{\alpha_i \gamma_j^{-1}} \gamma_j \beta_j \in \Gamma_{\gamma} \}$$
$$= \sharp \{(i,j) \mid \alpha_i \gamma_j \beta_j \in \Gamma_{\gamma} \},$$

where $\gamma \in \Omega$, γ_j 's are in Γ and $\overline{\alpha_i \gamma_j^{-1}}$ denotes the coset representative of the right Γ coset to which $\alpha_i \gamma_j^{-1}$ belongs, i. e., $\alpha_i \gamma_j^{-1} \in \Gamma \cdot \overline{\alpha_i \gamma_j^{-1}}$.

The sum is a finite sum since $\#\{(i,j)|1 \le i \le a, 1 \le j \le b\}$ is finite and

 $\{\Gamma\gamma\Gamma|\gamma\in\Omega\}$ is a disjoint set in $\tilde{\Gamma}$.

By extending this operation bilinearly, we obtain an associative ring $\mathcal{R}(G, \tilde{\Gamma}, \Gamma)$ with the identity $(\Gamma) = (\Gamma \cdot 1 \cdot \Gamma)$ associated with $G \supset \tilde{\Gamma} \supset \Gamma$ over the **Z**-module $\mathbf{Z}[\tilde{\Gamma}, \Gamma]$; for proof see [4]. By taking a semi-group Δ with $\tilde{\Gamma} \supset \Delta \supset \Gamma$, we obtain an associative ring $\mathcal{R}(G, \Delta, \Gamma)$ with the same construction as $\mathcal{R}(G, \tilde{\Gamma}, \Gamma)$, called a Hecke ring, associated with G, Δ , and Γ . ([2]).

COROLLARY 1.1. The structure constants $m(\Gamma \alpha \Gamma, \Gamma \beta \Gamma; \Gamma \gamma \Gamma)$ of a Hecke ring $\mathfrak{R}(G, \tilde{\Gamma}, \Gamma)$ are always non-negative integers, and are equal to $\sharp \{\Gamma \setminus \{\Gamma \alpha^{-1}\Gamma \cdot \gamma \cap \Gamma \beta \Gamma\}\}.$

PROOF. The first statement is obvious from Lemma 1.1. For the second statement, consider the σ -ring $\mathfrak L$, generated by the set of all Γ right cosets, as subsets of $\tilde{\Gamma}$. Introduce a natural right Γ -invariant measure μ by

$$\mu(E) = \#\{\Gamma \setminus E\}$$
 for $E \in \mathfrak{D}$.

Then for a characteristic function $\chi_{\Gamma\alpha\Gamma}$ with $\Gamma\alpha\Gamma\subset\tilde{\Gamma}$, we have

$$\int_{\widetilde{\boldsymbol{\Gamma}}} |\chi_{\Gamma\alpha\Gamma}| \, d\mu = \mu(\Gamma\alpha\Gamma) \,,$$

and the convolution *, with respect to the measure space $(\tilde{\Gamma}, \mathfrak{L}, \mu)$, of the characteristic functions $\chi_{\Gamma\alpha\Gamma}$ and $\chi_{\Gamma\beta\Gamma}$ evaluated at $\gamma' \in \Gamma\gamma\Gamma$, shows that

$$\mu(\Gamma \alpha^{-1}\Gamma \gamma' \cap \Gamma \beta \Gamma) = m(\Gamma \alpha \Gamma, \Gamma \beta \Gamma; \Gamma \gamma \Gamma)$$

without depending on the choice of γ' in $\Gamma \gamma \Gamma$. For details, see [1].

For $\Gamma=1(\in G)$, we have $G=\tilde{\Gamma}$ and the Hecke ring $\mathfrak{R}(G,G,1)$ is exactly the integral group ring Z(G) of G. If Γ is normal, or either $|\Gamma|<\infty$ or $[G:\Gamma]<\infty$, then $G=\tilde{\Gamma}$. For a Hecke ring $\mathfrak{R}(G,G,\Gamma)$ with $|\Gamma|<\infty$, or other examples, see [1]. The above corollary indicates that any Hecke ring may be realized as a convolution algebra with respect to an invariant measure, naturally generalized from the counting measure on G with respect to a subgroup Γ , which is, in turn, used for defining integral group rings.

II. Hecke operators on $H^k(\Gamma, A)$

Let G be a group, Γ a subgroup of G and A a unitary left Z[G]-module where Z[G] is the integral group ring of G. Let $\{Y_k, \partial_k, \varepsilon\}$ be a free and acyclic Z[G]-complex, augmented by $\varepsilon: Y_0 \to Z^+$ for non-negative integers k with $\partial_0 = \varepsilon$. Hereafter, for the sake of convenience, we will call this complex an f. a. a. G-complex. The k-th cohomology group $H^k(G, A)$ of G with coefficients in G is uniquely defined and independent of the choice of G a. a. G-complexes, because of the existence of chain transformations $\{\varphi_k: Y_k \to Y_k'\}$ between any two f.a.a. G-complexes $\{Y_k, \partial_k, \varepsilon\}$ and $\{Y_k', \partial_k', \varepsilon\}$ with the pro-

perty that any such two are homotopic. Therefore the **Z**-module End $(H^k(G, A))$ contains a submodule which is isomorphic to a submodule of End $(\text{Hom}_G(Y_k, A))$, consisting of those elements which commute with the boundary operators ∂_k for $k \ge 0$ without depending on the choice of f. a. a. G-complexes.

1. Let $\{Y_k, \partial_k, \varepsilon\}$ be an f.a.a. G-complex and Y_k a free G-module with a basis $\{b\}$. Let G be decomposed into a union of right cosets of Γ with a complete system $\Lambda = \{\lambda\}$ of representatives λ , namely, $G = \bigcup_{\lambda \in \Lambda} \Gamma \lambda$. Then Y_k is also a free $\mathbb{Z}[\Gamma]$ -module with the corresponding basis $\{\lambda b\}$ and so $\{Y_k, \partial_k, \varepsilon\}$ becomes an f.a.a. Γ -complex. Therefore any f.a.a. G-complex might just as well be used for defining the cohomology groups $H^k(\Gamma, \Lambda)$.

For a given element $\Gamma \alpha \Gamma$ of the Hecke ring $\mathcal{R}(G, \Delta, \Gamma)$ with a coset decomposition $\Gamma \alpha \Gamma = \bigcup_{i=1}^n \Gamma \alpha_i$ we shall define the action of $\Gamma \alpha \Gamma$ on $H^k(\Gamma, A)$, denoted by $(H^k(\Gamma, A) | S_{\Gamma \alpha \Gamma})$, as follows:

Let $\{Y_k, \partial_k, \varepsilon\}$ be an f.a.a. G-complex. Given a k-th cochain f of $\operatorname{Hom}_{\Gamma}(Y_k, A)$,

$$(f|S_{\Gamma\alpha\Gamma}) = \sum_{i=1}^n \alpha_i^{-1} \circ (f \circ \alpha_i).$$

As a preparation needed in the sequel, we will observe a mapping τ of Γ into itself. Given $\alpha \in \mathcal{A} \subset \tilde{\Gamma}$, suppose the double coset $\Gamma \alpha \Gamma$ has a coset decomposition $\Gamma \alpha \Gamma = \bigcup_{i=1}^{n} \Gamma \alpha_i$ with a complete system $\{\alpha_i\}_{i=1}^{n}$ of representatives α_i . Then for any element γ of Γ the set $\{\alpha_i\gamma\}_{i=1}^{n}$ is also a complete system of representatives of the very same coset decomposition of $\Gamma \alpha \Gamma$ modulo Γ , and we have between the two systems $\{\alpha_i\}$ and $\{\alpha_i\gamma\}$ the following relation:

$$\alpha_i \gamma = \tau_i(\gamma) \cdot \alpha_{i\gamma}$$
 for $1 \le i \le n$

with $\tau_i(\gamma) \in \Gamma$ and $\alpha_{i\gamma} \in \{\alpha_i\}$, where $\alpha_{i\gamma} = \overline{\alpha_i \gamma}$ in our earlier notation.

Then it is easy to see that $(1^r, 2^r, \dots, n^r)$ is a permutation of $(1, 2, \dots, n)$ with $i^{(r)'} = (i^r)^{r'}$ and $\tau_i(\gamma \gamma') = \tau_i(\gamma) \cdot \tau_{ir}(\gamma')$.

PROPOSITION 2.1. With the notations as above, the operator $S_{\Gamma\alpha\Gamma}$ is a $\mathbf{Z}[\Gamma]$ -homomorphism and independent of the choice of representatives of coset decomposition of $\Gamma\alpha\Gamma$ modulo Γ .

PROOF. Let $\Gamma \alpha \Gamma$ be decomposed of $\bigcup_{i=1}^n \Gamma \alpha_i$. Given $f \in \text{Hom}(Y_k, A)$ and $\gamma \in \Gamma$, observe, for $x \in Y_k$,

$$(f|S_{\Gamma\alpha\Gamma})(\gamma x) = \sum_{i=1}^{n} \alpha_i^{-1} f(\alpha_i \gamma x)$$
$$= \gamma \sum_{i=1}^{n} \gamma^{-1} \alpha_i^{-1} f(\tau_i(\gamma) \alpha_i \gamma \cdot x)$$

$$= \gamma \sum_{i=1}^{n} \gamma^{-1} \alpha_i^{-1} \tau_i(\gamma) \cdot f(\alpha_{i\gamma} \cdot x)$$

$$= \gamma \sum_{i=1}^{n} \alpha_{i\gamma}^{-1} f(\alpha_{i\gamma} x) = \gamma \sum_{i=1}^{n} \alpha_i f(\alpha_i x)$$

since $\gamma^{-1}\alpha_i^{-1}\tau_i(\gamma) = \alpha_{i}^{-1}$ and $\{\alpha_i\}_{i=1}^n = \{\alpha_{i}^n\}_{i=1}^n$.

In order to show the independence of $S_{\Gamma\alpha\Gamma}$ from the systems of representatives, let $\{\gamma(\alpha_i)\cdot\alpha_i\}_{i=1}^n$ be another complete system of representatives of coset decomposition of $\Gamma\alpha\Gamma$ modulo Γ with $\gamma(\alpha_i)\in\Gamma$. Given $f\in \operatorname{Hom}_{\Gamma}(Y_k,A)$ and $x\in Y_k$ consider the action of $S_{\Gamma\alpha\Gamma}$ with respect to the system $\{\gamma(\alpha_i)\cdot\alpha_i\}_{i=1}^n$, namely,

$$(f|S_{\Gamma\alpha\Gamma})(x) = \sum_{i=1}^{n} \alpha_i^{-1} \cdot \gamma(\alpha_i)^{-1} f(\gamma(\alpha_i) \cdot \alpha_i \cdot x)$$
$$= \sum_{i=1}^{n} \alpha_i^{-1} f(\alpha_i x).$$

The Γ -homomorphism $S_{\Gamma\alpha\Gamma}$, well-defined on $\operatorname{Hom}_{\Gamma}^{\bullet}(Y_k, A)$ will induce a homomorphism on $H^k(\Gamma, A)$, again denoted by $S_{\Gamma\alpha\Gamma}$ by the following

Proposition 2.2. With the notations as above, we have

$$\delta_k S_{\Gamma \alpha \Gamma} = S_{\Gamma \alpha \Gamma} \delta_k$$

where δ_k is the k-th coboundary operator for $k \ge 0$ defined by $(f | \delta_k) = \delta_k f = f \partial_{k+1}$. In fact, we have, for $x \in Y_{k+1}$,

$$\begin{split} ((f|\delta_k)|S_{\Gamma\alpha\Gamma})(x) &= \sum_{i=1}^n \alpha_i^{-1}(f|\delta_k) \cdot \alpha_i x \\ &= \sum_{i=1}^n \alpha_i^{-1}(f \cdot \partial_{k+1})(\alpha_i x) \\ &= \sum_{i=1}^n \alpha_i^{-1}f(\partial_{k+1}(\alpha_i x)) = \sum_{i=1}^n \alpha_i^{-1}f \cdot \alpha_i(\partial_{k+1} x) \\ &= (f|S_{\Gamma\alpha\Gamma})(\partial_{k+1} x) = ((f|S_{\Gamma\alpha\Gamma})|\delta_k)(x) \,. \end{split}$$

We have established that the operators $S_{\Gamma\alpha\Gamma}$, associated to $\Gamma\alpha\Gamma$ of $\mathfrak{R}(G, \Delta, \Gamma)$ are defined on the cohomology groups $H^k(\Gamma, A)$ of Γ over A, which are particularly derived from an f.a.a. G-complex $\{Y_k, \partial_k, \varepsilon\}$, which is, in fact, an f.a.a. Γ -complex. However, since $H^k(\Gamma, A)$ are independent of the choice of f.a.a. Γ -complexes as mentioned earlier, $S_{\Gamma\alpha\Gamma}$ are well-defined on $H^k(\Gamma, A)$, only depending on Γ and A. We call $S_{\Gamma\alpha\Gamma}$ Hecke operators on $H^k(\Gamma, A)$. Now we shall establish our main property that $H^k(\Gamma, A)$ is a unitary right $\mathfrak{R}(G, \Delta, \Gamma)$ -module for $k \geq 0$. For that purpose, we shall extend the definition of Hecke operators linearly on the module structure of $\mathfrak{R}(G, \Delta, \Gamma)$ by the formula $S_{(\Sigma^n(\omega), \Gamma\omega\Gamma)} = \sum_{\omega} n(\omega) \cdot S_{\Gamma\omega\Gamma}$, with $n(\omega) \in \mathbb{Z}$, and $\sum n(\omega) \cdot \Gamma\omega\Gamma \in \mathfrak{R}(G, \Delta, \Gamma)$.

PROPOSITION 2.3. With the notations as above, the mapping S is a representation of the Hecke rings $\Re(G, \mathcal{A}, \Gamma)$ over $H^k(\Gamma, A)$ for each $k \geq 0$.

PROOF. Let $\Gamma \alpha \Gamma$ and $\Gamma \beta \Gamma$ be elements of $\mathfrak{R}(G, \Delta, \Gamma)$ with right coset decompositions $\Gamma \alpha \Gamma = \bigcup_{i=1}^a \Gamma \alpha_i$ and $\Gamma \beta \Gamma = \bigcup_{j=1}^b \Gamma \beta_j$, and $\Gamma \alpha \Gamma \circ \Gamma \beta \Gamma = \sum m(\Gamma \alpha \Gamma, \Gamma \beta \Gamma; \Gamma \gamma \Gamma)$ $\Gamma \gamma \Gamma$ where the sum runs through the finite set $\{\Gamma \gamma \Gamma | \gamma \in \Omega'\}$ for a subset Ω' of Ω , determined by $\Gamma \alpha \Gamma$ and $\Gamma \beta \Gamma$ in their product, namely, all $\Gamma \gamma \Gamma \subset \Gamma \alpha \Gamma \beta \Gamma$. Let $\Gamma \gamma \Gamma$ be decomposed in $\Gamma \gamma \Gamma = \bigcup_{k=1}^c \Gamma \gamma_k$ for each γ in Ω' . It follows from the Corollary to Lemma 1.1

$$\begin{split} m(\Gamma\alpha\Gamma,\Gamma\beta\Gamma;\Gamma\gamma\Gamma) &= \sharp\{(i,j)|\Gamma\alpha_i\beta_j = \Gamma\gamma\} \\ &= \sharp\{(i,j)|\Gamma\alpha_i\beta_j = \Gamma\gamma_k\} \quad \text{for each } \gamma_k, \ 1 \leq k \leq c \text{.} \end{split}$$

Therefore for $f \in C^k$, the k-th cochain group, we have

$$\begin{split} (f|S_{\Gamma\alpha\Gamma\circ\Gamma\beta\Gamma}) &= \sum_{\gamma\in\Omega'} m(\Gamma\alpha\Gamma, \Gamma\beta\Gamma; \Gamma\gamma\Gamma) (\sum_{k=1}^{\mathfrak{c}} \gamma_k^{-1} \circ f \circ \gamma_k) \\ &= \sum_{\alpha\overline{p}\beta\overline{q}} \sharp \{(i,j)|\Gamma\alpha_i\beta_j = \Gamma\overline{\alpha_p\beta_q}\} \cdot (\overline{\alpha_p\beta_q}^{-1} \circ f \circ \overline{\alpha_p\beta_q}) \\ &= \sum_{i,j} (\alpha_i\beta_j)^{-1} \circ f \circ (\alpha_i\beta_j) = ((f|S_{\Gamma\alpha\Gamma})|S_{\Gamma\beta\Gamma}) \end{split}$$

where the second sum runs through the set $\bigcup_{r \in \mathcal{Q}'} \{\overline{\alpha_p \beta_q} = \gamma_k, \ 1 \leq k \leq c\}$ (k and c depend on γ), because for a pair (p,q) with $1 \leq p \leq a$ and $1 \leq q \leq b$, there exists a $\gamma \in \Omega'$ and some k such that $\Gamma \overline{\alpha_p \beta_q} = \Gamma \gamma_k$, and vice versa, by the fact that for every $\gamma \in \Omega'$, $\Gamma \gamma \Gamma \subset \Gamma \alpha \Gamma \beta \Gamma = \Gamma \alpha \Gamma \{\bigcup_j \Gamma \beta_j\} = \bigcup_{i,j} \Gamma \alpha_i \beta_j$ with $1 \leq i \leq a$ and $1 \leq j \leq b$.

2. An explicit formula for Hecke operators. In practice, we will find it convenient to have an explicit and computable formula for Hecke operators $S_{\Gamma\alpha\Gamma}$. For this purpose we will utilize a specific Γ -complex, namely, the standard homogeneous f.a.a. Γ -complex $\{X_k, \partial_k, \varepsilon\}$, defined as follows:

For $k \ge 0$, X_k is the free $\mathbb{Z}[\Gamma]$ -module, generated by the set $\Gamma \times \Gamma \times \cdots \times \Gamma$ of all (k+1)-tuples of elements of Γ and the Γ -homomorphism ∂_k is defined homogeneously by

$$\partial_k(\gamma_0, \gamma_1, \cdots, \gamma_k) = \sum_{i=0}^k (-1)^i (\gamma_0, \gamma_1, \cdots, \hat{\gamma}_i, \cdots, \gamma_k)$$

for k>0 and for k=0 we set ∂_k to be the augmentation $\varepsilon: X_0 \to \mathbb{Z}^+$.

PROPOSITION 2.4. With the notations as above, the Hecke operator, associated to $\Gamma \alpha \Gamma$ of $\Re(G, \Delta, \Gamma)$ on $H^k(\Gamma, A)$ with respect to the standard homogeneous f.a.a. Γ -complex $\{X_k, \partial_k, \varepsilon\}$, denoted by $T_{\Gamma \alpha \Gamma}$, is expressible as follows: Given $f \in \operatorname{Hom}_{\Gamma}(X_k, A)$ and γ_i 's in Γ ,

$$(f|T_{arGamma_{lpha}arGamma})(\gamma_{0},\,\gamma_{1},\,\cdots,\,\gamma_{k})=\sum_{i=1}lpha_{i}^{-1}f(au_{i}(\gamma_{0}),\, au_{i}(\gamma_{1}),\,\cdots,\, au_{i}(\gamma_{k}))$$
 ,

provided that $\Gamma \alpha \Gamma = \bigcup_{i=1}^{a} \Gamma \alpha_i$.

PROOF. Let $\{Y_k, \partial_k, \varepsilon\}$ be the standard homogeneous f.a.a. G-complex, which is also an f.a.a. Γ -complex through a (but fixed) coset decomposition $G = \bigcup_{\lambda \in \Lambda} \Gamma \lambda$ with a complete system $\Lambda = \{\lambda\}$ of representatives. Then a set of mappings φ_k of Y_k into X_k , defined by

$$\varphi_k: (g_0, g_1, \cdots, g_k) \longrightarrow (\gamma_0, \gamma_1, \cdots, \gamma_k)$$

with $g_i = \gamma_i \lambda$ ($\gamma_i \in \Gamma$) is a chain transformation of $\{Y_k, \partial_k, \varepsilon\}$ to $\{X_k, \partial_k, \varepsilon\}$, and the set of inclusion mappings θ_k of X_k into Y_k is a chain transformation of $\{X_k, \partial_k, \varepsilon\}$ to $\{Y_k, \partial_k, \varepsilon\}$. Now we have the following commutative diagram:

where $\{\varphi_k^*\}$ and $\{\theta_k^*\}$ are the induced homomorphisms by $\{\varphi_k\}$ and $\{\theta_k\}$ respectively. In other words, $T_{\Gamma\alpha\Gamma} = \varphi_k^* \cdot S_{\Gamma\alpha\Gamma} \cdot \theta_k^*$, that is, explicitly, for $f \in \operatorname{Hom}_{\Gamma}(X_k, A)$ γ_i 's in Γ and $\Gamma\alpha\Gamma = \bigcup_{i=1}^n \Gamma\alpha_i$ with $\alpha_i \in \Lambda$,

$$(f|\varphi_k^* S_{\Gamma\alpha\Gamma}\theta_k^*)(\gamma_0, \gamma_1, \dots, \gamma_k)$$

$$= \sum_{i=1}^n \alpha_i^{-1}(f|\varphi_k^*)(\alpha_i\gamma_0, \alpha_i\gamma_1, \dots, \alpha_i\gamma_k)$$

$$= \sum_{i=1}^n \alpha_i^{-1}(f|\varphi_k^*)(\tau_i(\gamma_0)\alpha_{i\gamma_0}, \tau_i(\gamma_1)\alpha_{i\gamma_1}, \dots, \tau_i(\gamma_k)\alpha_{i\gamma_k})$$

$$= \sum_{i=1}^n \alpha_i^{-1}f(\tau_i(\gamma_0), \tau_i(\gamma_1), \dots, \tau_i(\gamma_k))$$

since $\alpha_{i_{j_i}}$ are all in the system $\{\alpha_i\}_{i=1}^n$.

REMARK. The results in this section can be obtained also by the method, utilized in [5], whose argument runs somewhat longer.

III. Hecke operators on $H^k(\Gamma, A)$ of a cyclic group Γ

In this section we would like to give an explicit description of the action of Hecke operators on specific cohomology groups.

Let G denote $SL(2, \mathbb{Z}/p\mathbb{Z})$ for a prime number p, Γ the cyclic subgroup $\langle T \rangle$, generated by $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ of order p, and A a two-dimensional vector space over $\mathbb{Z}/p\mathbb{Z}$. By letting G operate on A as linear transformations from the left, A becomes a left unitary $\mathbb{Z}[G]$ -module.

We note that $G = \tilde{\Gamma} \supset \Gamma$.

LEMMA 3.1. Let α be $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ of $SL(2, \mathbf{Z}/p\mathbf{Z})$. Then $c \neq 0$ if and only if $\alpha^{-1}\Gamma\alpha \cap \Gamma = e$, the identity matrix.

PROOF. Suppose $\alpha^{-1}\Gamma\alpha \cap \Gamma \neq e$. Then there exist $\begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ with integers 1 < m, n < p such that $\begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$, from which it follows that c must be 0.

Conversely, if α is of the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with c=0, then we can find T^n of Γ which belongs to $\alpha^{-1}\Gamma\alpha$, provided that n is one of those which satisfy the equation md=an for some non-zero integer m.

COROLLARY 3.1. If α in $SL(2, \mathbf{Z}/p\mathbf{Z})$ is of the form $\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}$, then we have $\Gamma \alpha \Gamma = \Gamma \alpha$.

PROOF. For $\alpha = \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \in G$, $\alpha^{-1}\Gamma\alpha \cap \Gamma = \Gamma$ or equivalently $\Gamma\alpha = \alpha\Gamma$, since $\gamma\alpha = \alpha\gamma'$ for γ , γ' in Γ , md = an is solvable for any n. Hence $\Gamma\Gamma\alpha = \Gamma\alpha = \Gamma\alpha\Gamma$.

We recall a few notations. Let $\Gamma \alpha \Gamma$ be decomposed into a disjoint union of right cosets $\Gamma \alpha \Gamma = \bigcup \Gamma \alpha_i$. Then $\alpha_i \gamma = \tau_i(\gamma) \cdot \overline{\alpha_i \gamma}$ where $\tau_i(\gamma) \in \Gamma$ and $\overline{\alpha_i \gamma}$ is the representative of the coset to which $\alpha_i \gamma$ belongs with respect to a pre-chosen right transversal $\{\alpha_i\}$ for Γ in $\Gamma \alpha \Gamma$, i. e., $\overline{\alpha_i \gamma} \in \{\alpha_i\}$. As in the proof of Proposition 1.2, it follows that $\Gamma \alpha \Gamma = \bigcup \Gamma \alpha \gamma_i$ where $\{\gamma_i\}$ is a right transversal for the coset decomposition $(\Gamma^\alpha \cap \Gamma) \setminus \Gamma$. In fact, $\Gamma \alpha \gamma = \Gamma \alpha \gamma'$ if and only if $\gamma' \gamma^{-1} \in \Gamma^\alpha \cap \Gamma$.

PROPOSITION 3.1. Let $\alpha \in G$ be of the form $\binom{a}{c} \binom{b}{d}$ with $c \neq 0$ and $\gamma \in \Gamma$. Then $\tau_i(\gamma) = e$ for all i, with respect to a coset decomposition $\Gamma \alpha \Gamma = \bigcup \Gamma \alpha \gamma_i$, described above. If $\alpha = \binom{a}{c} \binom{b}{d}$ with c = 0, we have $\Gamma \alpha \Gamma = \Gamma \alpha$ and $\tau_1(\gamma) = \gamma^{a^2}$.

PROOF. For the first case, it follows from Lemma 3.1 that for every γ of Γ , $\alpha\gamma$ is a coset representative and $\overline{\alpha\gamma} = \alpha\gamma$, yielding $\tau_i(\gamma) = e$. For the second case, we have $\alpha\gamma = \tau_1(\gamma)\alpha$ for $\gamma \in \Gamma$, since $\Gamma\alpha\Gamma = \Gamma\alpha$. Hence $\tau_1(\gamma)$ is

of the form $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ with xd = an for $\gamma = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ and so we have $x = a^2n$.

Let R denote the integral group ring $Z[\Gamma]$ of $\Gamma = \langle T \rangle$ with $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ in $G = SL(2, \mathbb{Z}/p\mathbb{Z})$, and $N = 1 + T + T^2 + \cdots + T^{p-1}$, D = T - 1 in R, which operate on A. The special f.a.a. Γ -complex:

$$\stackrel{N}{\longrightarrow} R \stackrel{D}{\longrightarrow} R \stackrel{N}{\longrightarrow} R \stackrel{D}{\longrightarrow} \cdots \stackrel{D}{\longrightarrow} R \stackrel{N}{\longrightarrow} R \stackrel{D}{\longrightarrow} R \stackrel{\varepsilon}{\longrightarrow} \mathbf{Z} \longrightarrow 0$$

is a free resolution, customarily denoted by W, from which we obtain the isomorphism I^* of $H^{2n}_W(\Gamma, A)$ onto $A^{\Gamma} = \{a \in A \mid Ta = a\} = H^{2n}(\Gamma, A)$ and $H^{2n+1}_W(\Gamma, A)$ onto $A/DA = H^{2n+1}(\Gamma, A)$, $(n \ge 0)$, induced from the cochain isomorphism $I: \operatorname{Hom}_{\Gamma}(R, A) \cong A$ by $I(\varphi) = \varphi(e)$.

Let X be, as before, the standard homogeneous f.a.a. Γ -complex $\{X_k, \partial_k, \varepsilon\}$ with X_k being the R-module on (k+1)-copies $\Gamma \times \Gamma \times \cdots \times \Gamma$ of Γ , and $W_{(j)}$ for the free resolution: for $D^{(j)} = T^{(j)} - 1$ with positive integers j,

$$\xrightarrow{N} R \xrightarrow{D^{(f)}} R \xrightarrow{N} R \xrightarrow{D^{(f)}} \cdots \xrightarrow{D^{(f)}} R \xrightarrow{N} R \xrightarrow{D^{(f)}} R \xrightarrow{\varepsilon} \mathbf{Z} \longrightarrow 0.$$

Then among these three f.a.a. Γ -complexes, we have the following useful functorial chain transformations.

PROPOSITION 3.2. With the notations as above, we have the commutative diagram:

where the chain transformations f, $f^{(j)}$ and h are defined as follows: for $f = \{f_k\}$, with e = I, the unit matrix,

$$f_0 = identity$$

$$f_1(e) = (e, T)$$

$$f_{2n}(e) = \sum_{\gamma_1, \gamma_2, \cdots, \gamma_n \in \Gamma} (e, \gamma_1, T\gamma_1, \gamma_2, T\gamma_2, \cdots, \gamma_n, T\gamma_n)$$

and

$$f_{2n+1}(e) = \sum_{\gamma_1, \gamma_2, \cdots, \gamma_n \in \Gamma} (e, T, \gamma_1, T\gamma_1, \gamma_2, T\gamma_2, \cdots, \gamma_n, T\gamma_n)$$

for all natural numbers n, and for $f^{(j)} = \{f_k^{(j)}\}\$,

$$\begin{split} f_0^{(j)} &= identity \\ f_1^{(j)}(e) &= (e, T^{(j)}) \\ f_{2n}^{(j)}(e) &= \sum_{\gamma_1, \gamma_2, \cdots, \gamma_n \in \Gamma} (e, \gamma_1, T^j \gamma_1, \gamma_2, T^j \gamma_2, \cdots, \gamma_n, T^j \gamma_n) \end{split}$$

and

$$f_{2n+1}^{(j)}(e) = \sum_{\gamma_1, \gamma_2, \cdots, \gamma_n \in \Gamma} (e, T^j, \gamma_1, T^j \gamma_1, \gamma_2, T^j \gamma_2, \cdots, \gamma_n, T^j \gamma_n)$$

for all natural numbers n, and for $h = \{h_k\}$,

$$h_{2n} = j^n$$
 and $h_{2n+1} = j^n \cdot (1 + T + T^2 + \dots + T^{j-1})$

for all natural numbers n with the mapping

$$h_k: R \to R$$
 by $h_k(y) = h_k \cdot y$, the module product.

PROOF. A straightforward checking.

From the diagram (A), the functor Hom yields the following commutative diagram:

Before obtaining the effect of actions of Hecke operators on $H^k(\Gamma, A)$, we notice the following

Lemma 3.2. Let $\operatorname{Hom}_{\Gamma}(W, A)$ be the following cochain complex, derived from the free resolution W:

$$\longleftarrow \operatorname{Hom}_{\Gamma}(R, A) \stackrel{N^*}{\longleftarrow} \operatorname{Hom}_{\Gamma}(R, A) \stackrel{D^*}{\longleftarrow} \\ \cdots \stackrel{D^*}{\longleftarrow} \operatorname{Hom}_{\Gamma}(R, A) \stackrel{N^*}{\longleftarrow} \operatorname{Hom}_{\Gamma}(R, A) \stackrel{D^*}{\longleftarrow} \operatorname{Hom}_{\Gamma}(R, A) \stackrel{D^*}{\longleftarrow} 0$$

Then in odd dimensions 2n+1, for every $\varphi \in \operatorname{Hom}_{\Gamma}(R, A)$, φ is cohomologous to $\varphi \cdot \gamma$ in $\operatorname{Hom}_{\Gamma}(R, A)$ for $\gamma \in \Gamma$.

PROOF. Observe $\varphi - (\varphi \circ T) \in D^*(\operatorname{Hom}_r(R, A))$.

For any α of $G = SL(2, \mathbb{Z}/p\mathbb{Z})$, the Hecke operator $S_{\Gamma\alpha\Gamma}$ on $H^k(\Gamma, A)$ was explicitly defined in Proposition 2.4 as follows: for $\varphi \in \operatorname{Hom}_{\Gamma}(X_k, A)$,

$$(\varphi \mid S_{\Gamma \alpha \Gamma})(\gamma_0, \gamma_1, \cdots, \gamma_k) = \sum \alpha_i^{-1} \cdot \varphi(\tau_i(\gamma_0), \tau_i(\gamma_1), \cdots, \tau_i(\gamma_k))$$
.

LEMMA 3.3. Let α be of the form $\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}$ in $SL(2, \mathbf{Z}/p\mathbf{Z})$. Then for $[\xi] \in H^k(\Gamma, A)$

$$\llbracket \alpha \xi
rbracket = \left\{ egin{array}{ll} \llbracket a \cdot \xi
rbracket & \textit{for } k = 2n, & \textit{and} \\ \llbracket a^{-1} \cdot \xi
rbracket & \textit{for } k = 2n, & \textit{for } n \geq 0 \,. \end{array}
ight.$$

PROOF. Consider the cochain complex:

$$\stackrel{D}{\longleftarrow} A \stackrel{N}{\longleftarrow} A \stackrel{D}{\longleftarrow} A \stackrel{N}{\longleftarrow} A \stackrel{D}{\longleftarrow} \dots \stackrel{D}{\longleftarrow} A \stackrel{N}{\longleftarrow} A \stackrel{D}{\longleftarrow} A \stackrel{D}{\longleftarrow} 0$$

with the operation N and D being the module product, from which we obtained

$$H^k(\Gamma, A) = \begin{cases} A^{\Gamma} & \text{for } k = 2n \\ A/DA & \text{for } k = 2n+1. \end{cases}$$

For $\xi \in \ker D = A^{\Gamma}$, $\alpha \xi = a \xi$, and for $\binom{x}{y} \in A$, $\alpha \binom{x}{y} = a^{-1} \binom{x}{y}$ (mod DA).

PROPOSITION 3.3. With the notations as above, for $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$, with $c \neq 0$, we have

$$(H^k(\Gamma, A)|S_{\Gamma\alpha\Gamma})=0$$

for all non-negative integers k. If α is of the form $\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}$, then on $H^k(\Gamma, A)$,

$$S_{\Gamma \alpha \Gamma} = \left\{ egin{array}{ll} a^{2n-1} & for \ k=2n \ a^{2n+3} & for \ k=2n+1 \end{array}
ight.$$

for $n \ge 0$.

PROOF. For the first part of the proposition, we have $\tau_i(\gamma) = e$ for every $\gamma \in \Gamma$ from Proposition 3.1 with respect to a finite coset decomposition $\Gamma \alpha \Gamma = \bigcup \Gamma \alpha_i$.

From the diagrams (A) and (B), we obtain the following commutative diagram: with the induced isomorphisms f^* , $f^{(j)*}$, h^* and I^* , for each k,

where $J^* = (h^*)^{-1}$ with

$$J_{2n}^*(\llbracket \varphi \rrbracket) = \llbracket j^{-n} \cdot \varphi \rrbracket$$
 and $J_{2n+1}^*(\llbracket \varphi \rrbracket) = \llbracket j^{-n-1} \cdot \varphi \rrbracket$,

by Lemma 3.2.

 $\Gamma \alpha \Gamma = \bigcup_{\gamma \in \Gamma} \Gamma \alpha \gamma$, since $\Gamma^{\alpha} \cap \Gamma = e$. Hence $S_{\Gamma \alpha \Gamma}$ are zero operators. For the rest of the proposition, we recall that $\Gamma \alpha \Gamma = \Gamma \alpha$ for α $=\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}$, and $\tau(\gamma) = \gamma^{a^2}$ for $\gamma \in \Gamma$ from Proposition 3.1. Now, using Lemma 3.3, it is a matter of chasing the diagram (C):

Given $\lceil \varphi \rceil \in H_X^k \lceil \Gamma, A \rceil$ for k = 2n, letting $j = a^2$, we have

$$I_k^* f_k^* (\varphi | S_{\Gamma \alpha \Gamma}) = \alpha^{-1} \cdot j^n \cdot I_k^* f_k^* f_k^{(j)*} [\varphi] = a^{2n-1} \cdot I_k^* f_k^* f_k^{(j)*} [\varphi],$$

and for k = 2n+1,

$$I_k^* f_k^* (\varphi \,|\, S_{\pmb{\Gamma} \alpha \pmb{\Gamma}}) = \alpha^{-1} \cdot j^{\,n+1} I_k^* J_k^* f_k^{(j)*} \llbracket \varphi \rrbracket = a^{2n+3} \cdot I_k^* J_k^* f_k^{(j)*} \llbracket \varphi \rrbracket \,.$$
q. e. d.

University of Massachusetts Amherst, Massachusetts

References

- [1] N. Iwahori, On the structure of a Hecke ring of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo, 10 (1964), 215-236.
- [2] M. Kuga, Fibre varieties over a symmetric space whose fibres are abelian varieties, Lecture notes, Univ. of Chicago, 1963-64.
- [3] S. MacLane, Homology, Academic Press, New York, 1963.
- [4] G. Shimura, Sur les integrales attachées aux formes automorphes, J. Math. Soc. Japan, 11 (1959), 291-311.
- [5] A. Weil, Sur les théorèmes de de Rham, Comment. Math. Helv., 26 (1952), 119-145.