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1. Introduction.

In [4, Theorems 1 and 2] T. Kato uses the notion of yn-monotonicity to
establish the existence of solutions to the evolution system

$u^{\prime}(t)+A(t)u(t)=0$

where $A(t)$ is an (possibly nonlinear) operator on a Banach space $E$ whose
dual space $E*$ is uniformly convex. In Theorem 4.1 of this paper we use
the logarithmic derivative (which is similar to a Lyapunov function) to ex-
tend this result to a general Banach space. In section 2 the logarithmic
derivative is defined and certain basic properties are derived. In certain
cases we establish a connection between operators which have a logarithmic
derivative and those which are monotonic or accretive. In section 3 several
existence theorems to ordinary differential equations are given and in section
4 we give the extension of the result of Kato mentioned above. In section 5
sufficient conditions for an operator A to generate a semigroup of operators
on $E$ are given.

2. Operators with logarithmic derivative.

Let $E$ be a Banach space over the real or complex field with norm de-
noted by . , and let $E^{*}$ be the dual space of $E$ with the norm on $E^{*}$ also

$w$

denoted by . . We will $let\rightarrow denote$ norm convergence on $Eand\rightarrow denote$

weak convergence on $E$ . For each subset $D$ of $E$ let $H(D, E)$ denote the class
of all functions from $D$ into $E$ . In [4], Kato defines a member $A$ of $H(D, E)$

to be monotonic if $|x-y+\rho[Ax-Ay]|\geqq|x-y|$ for all $x$ and $y$ in $D$ and all
$\rho>0$ . If, in addition, the image of $1+\rho A$ (where $1+\rho A$ is the member $B$ of
$H(D, E)$ defined by $Bx=x+\rho Ax$ for all $x$ in $D$) is $E$ for each $\rho>0$ , then $A$

is said to be m-monotonic.
For each $x$ in $E$ define $F(x)=\{f\in E^{*} : (x, f)=|x|^{2}=|f|^{2}\}$ and $G(x)=$

{ $f\in E^{*}:$ $|f|=1$ and $(x,$ $f)=|x|$ }. It is immediate that if $\chi\neq 0$ , then $f$ is in
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$G(x)$ if and only if $|x|f$ is in $F(x)$ . Kato [4, Lemma 1.1] shows that a mem-
ber $A$ of $H(D, E)$ is monotonic if and only if for each $x$ and $y$ in $D$ there is
an $f$ in $F(x-y)$ such that ${\rm Re}(Ax-Ay, f)\geqq 0$ . Hence, it follows that $A$ is
monotonic if and only if there is a $g$ in $G(x-y)$ such that ${\rm Re}(Ax-Ay, g)\geqq 0$ .

DEFINITION 2.1. For each subset $D$ of $E$ the class $LN(D, E)$ will consist
of all members $A$ of $H(D, E)$ with the property that there is a constant $K$

such that for each bounded subset $Q$ of $D$ for which the image of $Q$ under
$A$ is bounded, and for each pair of positive numbers $\beta$ and $\epsilon$ , there is a
positive number $\delta$ such that whenever $0<h\leqq\delta,$ $x$ and $y$ are in $Q$ with
$|x-y|\geqq\beta$ , then

(2a) $(|x-y+h[Ax-Ay]|-|x-y|)/h\leqq K|x-y|+\epsilon$ .
If $A$ is in $LN(D, E)$ , denote by $L^{\prime}[A]$ the smallest number $K$ such that the
inequality in (2a) holds.

REMARK. If $A$ is in $LN(D, E)$ , $x$ and $y$ are in $D$ , and $0<k<h$ , then
$-|Ax-Ay|\leqq(|x-y+k[Ax-Ay]|-|x-y|)/k\leqq(|x-y+h[Ax-Ay]|-|x-y|)/h$
$\leqq|Ax-Ay|$ . Thus, if $x\neq y$ , by taking $Q=\{x, y\}$ and $\beta=|x-y|$ in the defini-
tion above, we have

$\lim_{h\rightarrow+0}(|x-y+h[Ax-Ay]|-|x-y|)/h\leqq L^{\prime}[A]|x-y|$ .

PROPOSITION 2.1. Suppose that $A$ and $B$ are in $LN(D, E)$ . Then
i) if $\rho>0,$ $\rho A$ is in $LN(D, E)$ with $L^{\prime}[\rho A]=\rho L^{\prime}[A]$ ,

ii) if for each bounded subset $Q$ of $D$ such that $A+B$ is bounded on $Q$

it follows that $A$ and $B$ are bounded on $Q$ , then $A+B$ is in $LN(D, E)$

with $L^{\prime}[A+B]\leqq L^{\prime}[A]+L^{\prime}[B]$ , and
iii) if $a$ is in the field over $E,$ $L^{\prime}[A+a1]=L^{\prime}[A]+{\rm Re}(a)$ .
INDICATION OF PROOF. Part i) follows from the equality $(|x-y+h[\rho Ax$

$-\rho Ay]|-|x-y|)h=\rho(|x-y\dashv-\rho h[Ax-Ay]|-|x-y|)/(\rho h)$ and part ii) follows
from the inequality $(|x-y+h[Ax+Bx-Ay-By]|-|x-y|)/h\leqq(|x-y+2h[Ax$
$-Ay]|-|x-y|)/(2h)+(|x-y+2h[Bx-By]|-|x-y|)/(2h)$ . Since $(|x-y+h[ax$

$-ay]|-|x-y|)/h=|x-y|(|1+ha|-1)/h$ and $(|1+ha|-1)/h\rightarrow{\rm Re}(a)$ as $h\rightarrow+0$ ,

we have $L^{\prime}[a1]={\rm Re}(a)$ . Thus, from ii), $L^{\prime}[A+a1]\leqq L^{\prime}[A]+{\rm Re}(a)$ and $L^{\prime}[A]$

$=L^{\prime}[A+a1-a1]\leqq L^{\prime}[A+a1]+L^{\prime}[-a1]=L^{\prime}[A+a1]-{\rm Re}(a)$ and iii) follows.
DEFINITION 2.2. A member $A$ of $H(D, E)$ will be called uniformly mono-

tonic if $-A$ is in $LN(D, E)$ and $L^{\prime}[-A]\leqq 0$ . If, in addition, the image of
$1+\rho A$ is $E$ for all $\rho>0$ , then $A$ will be called uniformly m-monotonic.

PROPOSITION 2.2. If $A$ is a uniformly monotonic (resp. uniformly m-mono-
tonic) member of $H(D, E)$ , then $A$ is monotonic (resp. m-monotonic).

INDICATION OF PROOF. Let $x$ and $y$ be in $D,$ $h>0$ , and $g$ in $G(x-y)$ .
Then $-{\rm Re}(Ax-Ay, g)=[{\rm Re}(x-y-h[Ax-Ay], g)-|x-y|]/h\leqq(|x-y-h[Ax$
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$-Ay]|-|x-y|)/h$ . Since $L^{\prime}[-A]\leqq 0$ , we have, by letting $h\rightarrow+0$ , that
$-{\rm Re}(Ax-Ay, g)\leqq 0$ and the proposition follows.

LEMMA 2.1. If $A$ is a monotonic member of $H(D, E)$ and the image of
$1+\rho_{0}A$ is $E$ for some $\rho_{0}>0$ , then $A$ is m-monotonic.

A proof of this lemma can be found in [7, Lemma 4].

For each subset $D$ of $E$ let LIP$(D, E)$ denote the class of all members $A$

of $H(D, E)$ for which there is a constant $K$ such that $|Ax-Ay|\leqq K|x-y|$

for all $x$ and $y$ in $D$ . Denote by $N^{\prime}[A]$ the smallest constant $K$ for which
this inequality holds. If $A$ is in LIP$(D, E),$ $x$ and $y$ are in $D$ , and $h>0$ , then
the inequality $|(|x-y+h[Ax-Ay]|-|x-y|)/h|\leqq|Ax-Ay|\leqq N^{\prime}[A]|x-y|$

shows that $A$ is in $LN(D, E)$ and $|L^{\prime}[A]|\leqq N^{\prime}[A]$ . For each $A$ in LIP$(D, E)$

let $M^{\prime}[A]=\lim_{h-+0}(N^{\prime}[1+hA]-1)/h$ . If $\lambda$ and $y$ are in $E$ and $h>0$ , then $(|x-y$

$+h[Ax-Ay]|-|x-y|)/h\leqq|x-y|(N^{\prime}[1+hA]-1)/h\rightarrow|x-y|M^{\prime}[A]$ as $h\rightarrow+0$

so that $L^{\prime}[A]\leqq M^{\prime}[A]$ . If $A$ is a linear member of LIP$(E, E)$ , it can be
shown that $L^{\prime}[A]=M^{\prime}[A]$ .

LEMMA 2.2. If $A$ is in LIP$(E, E)$ and $\rho>0$ is such that $\rho N^{\prime}[A]<1$ , then
i) $(1+\rho A)^{-1}$ is in LIP$(E, E)$ and

ii) if $0<\delta<1$ and $Q$ is a bounded subset of $E$ , then there is a constant
$K$ such that if $ 0\leqq\rho\leqq\delta$ and $x$ is in $Q$ , then $|(1+\rho A)^{-1}x-(1-\rho A)x|$

$\leqq K\rho^{2}$ .
INDICATION OF PROOF. The proof is contained in a proof of J. W. Neu-

berger [6, Lemma 1] and we outline it here. Let $B_{0}=1$ and for $n\geqq 1$ take
$B_{n}=1-\rho AB_{n- 1}$ . Let $M>0$ be such that $|Ax|\leqq M$ for all $x$ in $Q$ and let
$\beta=\rho N^{\prime}[A]<1$ . If $n\geqq 1$ we have $|B_{n}x-B_{n- 1}x|\leqq\beta|B_{n- 2}x-B_{n- 1}x|\leqq\ldots\leqq\beta^{n- 1}|\rho Ax|$

$\leqq\beta^{n}K_{1}$ where $K_{1}=M/N^{\prime}[A]$ . Consequently, if $m>n\geqq 1$ , then $|B_{m}x-B_{n}x|$

$\leqq_{\dot{\iota}=}\sum_{?t1}^{m}|B_{i}x-B_{i-1}x|\leqq\beta^{n+1}K_{1}/(1-\beta)$ . It follows that $B_{n}x\rightarrow(1+\rho A)^{-1}x$ and that

$(1+\rho A)^{-1}$ is in LIP$(E, E)$ so that i) is true. Since $|(1+\rho A)^{-1}x-(1-\rho A)x|$

$=\lim_{m-}|B_{m}x-B_{1}x|\leqq\beta^{2}K_{1}/(1-\beta)$ we have ii).

PROPOSITION 2.3. If $A$ is in LIP$(E, E)$ then $A$ is monotonic if and only if
$A$ is uniformly m-monotonic.

INDICATION OF PROOF. The “ if “ part follows from Proposition 2.2. Sup-
pose that $A$ is monotonic. By Lemmas 2.2 and 2.1 we have that $A$ is m-
monotonic. Let $Q$ be a bounded subset of $E$ . By ii) of Lemma 2.2 there are
constants $K$ and $\delta$ such that $|(1+hA)^{-1}x-(1-hA)x|\leqq Kh^{2}$ for all $x$ in $Q$ and
$ 0<h\leqq\delta$ . Thus, since $|(1+hA)^{-1}x-(1+hA)^{-1}y|\leqq|x-y|$ , we have $(|x-y-h[Ax$

$-Ay]|-|x-y|)/h=(|(1-hA)x-(1-hA)y|-|x-y|)/h\leqq(|(1+hA)^{-1}x-(1+hA)^{-1}y|$

$+2Kh^{2}-|x-y|)/h\leqq 2Kh$ and the proposition follows.
LEMMA 2.3. Suppose that $E^{*}$ is uniformly convex, $A$ is in $H(D, E)$ , and $Q$

is a bounded subset of $D$ for which there is a constant $M$ such that $|Ax|\leqq M$
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for all $x$ in Q. Then for each pair of positive numbers $\beta$ and $\epsilon$ there is a $\delta>0$

such that if $x$ and $y$ are in $Q,$ $|x-y|\geqq\beta,$ $ 0<h\leqq\delta$ , and $g$ is the member of
$G(x-y)$ , we have ${\rm Re}(Ax-Ay, g)\leqq(|x-y+h[Ax-Ay]|-|x-y|)/h\leqq{\rm Re}(Ax$

$-Ay,$ $g$) $+\epsilon$ .
INDICATION OF PROOF. Since $E^{*}$ is uniformly convex, let $\epsilon^{\prime}$ be such that

if $f_{1}$ and $f_{2}$ are in $E^{*}$ with $|f_{1}|=|f_{2}|=1$ and $|f_{1}+f_{2}|\geqq 2-\epsilon^{\prime}$ , then $|f_{1}-f_{2}|$

$\leqq\epsilon/(2M)$ . Choose $\delta=\epsilon^{\prime}\beta/(4M)$ and let $g$ be in $G(x-y),$ $ 0<h\leqq\delta$ , and $f$ be in
$G(x-y+h[Ax -- Ay])$ . Then ${\rm Re}(Ax -- Ay, g)=[{\rm Re}(x-y+h[Ax-Ay], g)$ –

$|x-y|]/h\leqq(|x-y+h[Ax-Ay]|-|x-y|)/h$ which gives the left side of the
inequality. By the choice of $f$,

$(|x-y+h[Ax-Ay]|-|x-y|)/h=[{\rm Re}(x-y+h[Ax-Ay], f)-|x-y|]/h$

$\leqq{\rm Re}(x-y, f)/h+|Ax-Ay|-|x-y|/h$ .

Transposing terms and multiplying by $h$ we have $|x-y|-h|Ax-Ay|+|x-y$
$+h[Ax-Ay]|-|x-y|\leqq{\rm Re}(x-y, f)$ and hence, $|x-y|-4hM\leqq{\rm Re}(x-y, f)$ .
Thus, $|f+g|\geqq[{\rm Re}(x-y, f+g)]/|x-y|\geqq 2-4hM/|x-y|\geqq 2-\epsilon^{\prime}$ . By the choice
of $\epsilon^{\prime},$ $|f-g|\leqq\epsilon/(2M)$ and since ${\rm Re}(x-y, f)\leqq|x-y|$ and ${\rm Re}(Ax-Ay, f-g)$

$\leqq|Ax-Ay||f-g|\leqq\epsilon$ , we have

$(|x-y+h[Ax-Ay]|-|x-y|)/h={\rm Re}(Ax-Ay, f)+[{\rm Re}(x-y, f)-|x-y|]/h$

$\leqq{\rm Re}(Ax-Ay, g)+{\rm Re}(Ax-Ay, f-g)$

$\leqq{\rm Re}(Ax-Ay, g)+\epsilon$

and the lemma is true.
As an immediate consequence of Lemma 2.3 and the definition of $F$ and

$G$ we have
THEOREM 2.1. If $E^{*}$ is uniformly convex and $A$ is in $H(D, E)$ , these are

equivalent:
i) $A$ is in $LN(D, E)$ .

ii) There is a constant $K$ such that ${\rm Re}(Ax-Ay, g)\leqq K|x-y|$ for all $x$

and $y$ in $D$ and $g$ in $G(x-y)$ .
iii) There is a constant $K$ such that ${\rm Re}(Ax-Ay, f)\leqq K|x-y|^{2}$ for all $x$

and $y$ in $D$ and $f$ in $F(x-y)$ .
Furthermore, if i) holds, then $L^{\prime}[A]$ is the smallest constant $K$ such that the
inequality in $ii$)–or $iii$)$-holds$ .

From Theorem 2.1 and Proposition 2.2 we have
COROLLARY 2.1. If $E^{*}$ is uniformly convex, then $A$ is monotonic (resp. m-

monotonic) if and only if $A$ is uniformly monotonic (resp. uniformly m-mono-
tonic).

NOTATION. Suppose that $A$ is in $LN(D, E)$ and $c\leqq-L^{\prime}[A]$ . Then
$L^{\prime}[A+c1]=L^{\prime}[A]+c\leqq 0$ so that $-A-c1$ is uniformly monotonic. Assume
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that $-A-c1$ is uniformly m-monotonic and for each positive integer $n$ define

1) $J_{n}^{c}=[1-n^{-1}(A+c1)]^{-1}$ .
(2b) 2) $A_{n}^{c}=-(A+c1)J_{n^{C}}=n(1-J_{n^{C}})$ .

3) $B_{n}^{c}=AJ_{n^{C}}=-A_{n}^{c}-cJ_{n^{C}}=-[n1-(n-c)J_{n^{c}}]$ .
PROPOSITION 2.4. If $A$ is in $LN(D, E)$ and there is a $c_{0}\leqq-L^{\prime}[A]$ such

that $-A-c_{0}1$ is uniformly m-monotonic, then $-A-c1$ is uniformly m-monotonic
for all $c\leqq-L^{\prime}[A]$ .

INDICATION OF PROOF. Let $c\leqq-L^{\prime}[A]$ and choose $\rho>0$ sufficiently small
so that $\rho|c-c_{0}|<1$ . Then $1+\rho(-A-c1)=1+\rho(-A-c_{0}1)+\rho(c_{0}-c)1=[1\dashv-\rho(c_{0}$

$-c)]\{1+\rho[1+\rho(c_{0}-c)]^{-1}[-A-c_{0}1]\}$ . Since $\rho[1+\rho(c_{0}-c)]^{-1}>0$ , we have that the
image of $1+\rho[1+\rho(c_{0}-c)]^{-1}[-A-c_{0}1]$ is Eand so the image of $1+\rho(-A-c1)$

is $E$ . The assertion of the proposition now follows from Lemma 2.1.
LEMMA 2.4. Using the notation above we have

i) $J_{n^{c}}$ is in LIP$(E, E)$ with $N^{\prime}[J_{n^{c}}]\leqq 1$ for all $n\geqq 1$ .
ii) $A_{n}^{c}$ is in LIP$(E, E)$ with $N^{\prime}[A_{n}^{c}]\leqq 2n$ and $L^{\prime}[-A_{n}^{c}]\leqq 0$ for all $n\geqq 1$ .

iii) $B_{n}^{c}$ is in LIP $(E, E)$ with $N^{\prime}[B_{n}^{c}]\leqq 2n+|c|$ and $L^{\prime}[B_{n}^{c}]\leqq|c|$ for all
$n\geqq 1$ .

iv) If $\chi$ is in $D$ then $|A_{n}^{c}x|\leqq|(A+c1)x|$ and $|B_{n}^{c}x|\leqq(1+|c|n^{-1})|(A+c1)x|$

$+|cx|$ for all $n\geqq 1$ .
v) If $x$ is in the closure of $D$ then $ J_{n^{c}}x\rightarrow\chi$ as $ n\rightarrow\infty$ .

INDICATION OF PROOF. i) is immediate since $-A-c1$ is m-monotonic and
ii) follows from [4, Lemma 2.3] and Proposition 2.3. Since $B_{n}^{c}=-A_{n}^{c}-cJ_{n^{C}}$ ,

iii) follows from i) and ii) and from part ii) of Proposition 2.1. iv) follows
from [4, Lemma 2.3] and the identity $B_{n}^{c}=-A_{n}^{c}-cJ_{n^{C}}=-A_{n}^{c}-c(1-n^{-1}A_{n}^{c})$ . v)

is Lemma 2.4 of [4].

LEMMA 2.5. Let $A$ be in $LN(D, E)$ and suppose that $A$ has the property
that for each sequence $(x_{n})$ in $D$ such that $\chi_{n}\rightarrow\chi$ and the $|Ax_{n}|$ are bounded,

$w$

it follows that $Ax_{n}\rightarrow Ax$ . Using the notation above we have the following:
i) If $(y_{n})$ is a sequence in $E$ such that $y_{n}\rightarrow y$ and the $|A^{c_{1}}y_{n}|$ are bounded,

$w$ $w$

then $y$ is in $D,$ $A_{n}^{c}y_{n}\rightarrow-(A+c1)y$ , and $B_{n}^{c}y_{n}\rightarrow Ay$ .
$w$ $w$

ii) If $z$ is in $D$ then $A_{n}^{c}z\rightarrow-(A+c1)z$ and $B_{n}^{c}z\rightarrow Az$ .
$w$

INDICATION OF PROOF. It is immediate that $-Ax_{n}-cx_{n}\rightarrow-Ax-cx$ . Let-
ting $x_{n}=J_{n^{C}}y_{n}$ we have $y_{n}-x_{n}=n^{-1}A_{n}^{c}y_{n}\rightarrow 0$ so that $x_{n}\rightarrow y$ . Hence, $A_{n}^{c}y_{n}$

$w$ $w$

$=-Ax_{n}-cx_{n}\rightarrow-(A+c1)y$ and since $B_{n}^{c}=-A_{n}^{c}-cJ_{n^{C}}$ , we have $B_{n}^{c}y_{n}\rightarrow Ay$ . Thus
$i)_{i}^{\mathscr{C}}is$ true and part ii) follows from i) with $y_{n}=z$ and part iv) of Lemma 2.4.

In [2] Browder defines a member $A$ of $H(D, E)$ to be accretive if ${\rm Re}(Ax$

$-Ay,$ $f$) $\geqq 0$ for all $x$ and $y$ in $D$ and all $f$ in $F(x-y)$ . Thus, $A$ is accretive
if and only if ${\rm Re}(Ax-Ay, g)\geqq 0$ for all $x$ and $y$ in $D$ and all $g$ in $G(x-y)$ ,
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and if $A$ is accretive, then $A$ is monotonic.
PROPOSITION 2.5. Let $A$ be in $H(D, E)$ . Then $-A$ is accretive if and only

if $\lim_{\iota-0}(|x-y+h[Ax-Ay]|-|x-y|)/h\leqq 0$ for all $x$ and $y$ in $D$ .
INDICATION OF PROOF. If $g$ is in $G(x-y)$ then ${\rm Re}$ (Ax-Ay, $g$) $=[{\rm Re}(x-y$

$+h[Ax-Ay],$ $g$) $-|x-y|$ ]$/h\leqq(|x-y+h[Ax-Ay]|-|x-y|)/h$ for all $h>0$ .
Thus, if $\lim_{h-0}(|x-y+h[Ax-Ay]|-|x-y|)/h\leqq 0$ , then ${\rm Re}(Ax-Ay, g)\leqq 0$ for

all $g$ in $G(x-y)$ so that $-A$ is accretive. Now suppose that $-A$ is accretive.
For each $h>0$ let $g_{h}$ be in $G(x-y+h[Ax-Ay])$ . From the above, if $g$ is in
$G(x-y)$ , then ${\rm Re}(Ax -- Ay, g)\leqq(|x-y+h[Ax-Ay]|-|x-y|)/h=[{\rm Re}(x-y$

$+h[Ax-Ay],$ $g_{h}$) $-|x-y|$ ]$/h={\rm Re}(x-y, g_{h})/h+{\rm Re}(Ax -- Ay, g_{h})-|x-y|/h$ .
Transposing terms and multiplying by $h$ , we have $|x-y|+h[{\rm Re}(Ax-Ay, g)$

$-{\rm Re}(Ax-Ay, g_{h})]\leqq{\rm Re}(x-y, g_{h})$ . Since $|(x-y, g_{h})|\leqq|x-y|$ , it follows that
$\lim_{h-0}(x-y, g_{h})=|x-y|$ . Since the unit ball in $E^{*}$ is $w^{*}$ compact, there is an
$f$ in $E^{*}$ with $|f|\leqq 1$ and a sequence of positive numbers $(h_{n})$ such that
$\lim h_{n}=0$ and if $f_{n}=g_{h_{n}}$ for each $n\geqq 1$ , then $\lim(z, f_{n})=(z, f)$ for each $z$ in
$n-$ $n-$
$E$ . Since $(x-y, f)=\lim_{n-}(x-y, f_{n})=|x-y|,$ $f$ is in $G(x-y)$ and hence, ${\rm Re}(Ax$

$-Ay,$ $f$) $\leqq 0$ . Consequently, $\lim_{h\rightarrow+0}(|x-y+h[Ax-Ay]|-|x-y|)/h=\varliminf_{n}(|x-y$

$+h_{n}[Ax-Ay]|-|x-y|)/h_{n}=\lim_{n\rightarrow\infty}[{\rm Re}(x-y+h_{n}[Ax-Ay], f_{n})-|x-y|]/h_{n}$

$\leqq\lim_{n-}{\rm Re}(Ax-Ay, f_{n})={\rm Re}(Ax-Ay, f)\leqq 0$ and the proposition is true.

COROLLARY 2.2. If $A$ is in $H(D, E)$ and $K$ is a constant, then these are
equivalent:

i) ${\rm Re}(Ax-Ay, f)\leqq K|x-y|^{2}$ for all $x$ and $y$ in $D$ and $f$ in $F(x-y)$ .
ii) ${\rm Re}(Ax-Ay, g)\leqq K|x-y|$ for all $x$ and $y$ in $D$ and $g$ in $G(x-y)$ .

iii) $\lim_{h-\perp 0}(|x-y+h[Ax-Ay]|-|x-y|)/h\leqq K|x-y|$ for all $\chi$ and $y$ in $D$ .
INDICATION OF PROOF. The proof that i) is equivalent to ii) is immediate.

It follows that ii) and iii) are equivalent from Proposition 2.5 and the proof
of Proposition 2.1.

3. Ordinary differential equations in $LN(D, E)$ .
Let $I$ be an interval in the real line and let $\{A(t) : t\in I\}$ be a family of

members of $LN(D, E)$ . In this section we will be concerned with solving the
initial value problem

(3a) $u^{\prime}(t)=A(t)u(t)$ , $u(a)=z$

where $a$ is in $I,$ $z$ is in $D$ , and the function $(t, x)\rightarrow A(t)x$ of $I\times D$ into $E$ is
continuous and maps bounded subsets of $I\times D$ into bounded subsets of $E$ .

DEFINITION 3.1. If $Q$ is a bounded subset of $D$ , the family $\{A(t) : t\in I\}$
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is said to have uniform logarithmic derivative on $I\times Q$ if there are constants
$M$ and $K$ such that $|A(t)x|\leqq M$ for all $(t, x)$ in $I\times Q$ and for each pair of posi-
tive numbers $\beta$ and $\epsilon$ , there is a positive number $\delta$ such that if $t$ is in $I,$ $x$

and $y$ are in $Q$ with $|x-y|\geqq\beta$ , and $ 0<h\leqq\delta$ , then

$(|x-y+h[A(t)x-A(t)y]|-|x-y|)/h\leqq K|x-y|+\epsilon$ .

LEMMA 3.1. Suppose that I is a compact interval, $Q$ is a bounded subset

of $D$ , and the function $(t, x)\rightarrow A(t)x$ of $I\times D$ into $E$ is continuous and maps
bounded subsets of $D$ into bounded subsets of $E$ .

i) If $A(t)$ is in LIP$(D, E)$ with $N^{\prime}[A(t)]\leqq K$ for all $t$ in I then { $A(t)$ :
$t\in I\}$ has uniform logarithmic derivative on $I\times Q$ .

ii) If the family of functions $\{g_{x} : x\in Q\}$ where $g_{x}(t)=A(t)x$ is equicon-
tinuous on I and $L^{\prime}[A(l)]\leqq K$, then $\{A(t) : t\in I\}$ has uniform logari-
thmic derivative on $I\times Q$ .

iii) If $E^{*}$ is uniformly convex and ${\rm Re}(A(t)x-A(t)y, f)\leqq K|x-y|^{2}$ for all
$\chi$ and $y$ in $Q,$ $t$ in $I$, and $f$ in $F(x-y)$ , then $\{A(t):t\in I\}$ has uniform
logarithmic derivative on $I\times Q$ .

INDICATION OF PROOF. Part i) follows from the inequality $(|x-y+h[A(t)x$

$-A(t)y]|-|x-y|)/h\leqq|A(t)x-A(t)y|\leqq K|x-y|$ . Let $\beta$ and $\epsilon$ be positive num-
bers and choose $\delta^{\prime}>0$ such that if $|t-s|\leqq\delta^{\prime}$ , then $|A(t)x-A(s)x|\leqq\epsilon/3$ for
all $\chi$ in $Q$ . Let $(t_{i})_{0}^{n}$ be a partition of $I$ such that $|t_{i}-t_{i- 1}|\leqq\delta^{\prime}$ and choose $\delta_{i}$

so that $(|x-y+h[A(t_{\dot{t}})x-A(t_{i})y]|-|x-y|)/h\leqq L^{f}[A(t_{i})]|x-y|+\epsilon/3$ for $x$ and $y$

in $Q$ with $|x-y|\geqq\beta$ , and $0<h<\delta_{i}$ . Let $\delta=\min\{\delta_{i} : 1\leqq i\leqq n\}$ . If $t$ is in $I$,

there is a $t_{i}$ such that $|t-t_{i}|\leqq\delta^{\prime}$ so that if $x$ and $y$ are in $Q$ with $|x-y|\geqq\beta$

and $ 0<h\leqq\delta$ , we have $(|x-y+h[A(t)x-A(t)y]|-|x-y|)/h\leqq(|x-y+h[A(t_{i})x-$

$A(t_{i})y]|-|x-y|)h+|A(t)x-A(t_{i})x|+|A(t)y-A(t_{i})y|\leqq L^{\prime}[A(t_{i})]|x-y|+\epsilon/3+\epsilon/3$

$+\epsilon/3\leqq K|x-y|+\epsilon$ and part ii) follows. The proof of part iii) is similar to
that of Lemma 2.3 and is omitted.

LEMMA 3.2. $Lel$ I be an open interval and $q$ a continuous function from
I into $E$ such that $q_{+}^{\prime}(t)$ exists for all $t$ in I. If $p(t)=|q(t)|$ for all $t$ in $I$, then
$p_{+}^{f}(t)$ exists and

$p_{+}^{\prime}(r)=\lim_{0h-\lrcorner}(|q(t)+hq_{+}^{\prime}(t)|-|q(t)|)/h$ .

Furthermore, if $\delta>0,$ $ p_{+}^{\prime}(t)\leqq(|q(t)+\delta q_{+}^{\prime}(t)|-|q(t)|)/\delta$ in as much as the expres-
sion in the limit is nonincreasing as $h\rightarrow+0$ .

For a proof of this lemma see [3, p. 3].

THEOREM 3.1. Let $a$ be a real number, $T>0$ , and $I=[a, a+T]$ . Also let
$z$ be in $E,$ $D$ a bounded neighborhood of $z$, and $\{A(t) : t\in I\}$ a family of mem-
bers of $LN(D, E)$ such that

1) The function $(t, x)\rightarrow A(t)x$ of $I\times D$ into $E$ is continuous.
2) The family $\{A(t):t\in I\}$ has uniform logarithmic derivative on $I\times D$ .
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Then there is a $p>0$ and a unique continuously differentiable function $u$ from
$[a, a+\rho]$ into $D$ such that $u(a)=z$ and $u^{\prime}(t)=A(t)u(t)$ for all $t$ in $[a, a+\rho]$ .

INDICATION OF PROOF. Let $M$ and $K$ be as in Definition 3.1 and assume,
without loss, that $K$ is positive. Choose $0<\rho\leqq T$ so that if $|x-z|\leqq\rho M$,

then $x$ is in $D$ . For each positive integer $n$ let $(t_{i}^{n})$ be a partition of $[a, a+\rho]$

such that $|t_{i+1}^{n}-t_{i}^{n}|\leqq n^{-1}$ . For each $n\geqq 1$ let $u_{n}$ be the function from $[a, a+\rho]$

into $E$ defined by $u_{n}(a)=z$ , and if $t_{l}^{n}\leqq t\leqq t_{i+1}^{n}$ , then $u_{n}(t)=u_{n}(t_{i}^{n})+\int_{\iota_{i}^{t_{\eta}}}A(s)u_{n}(t_{i}^{n})ds$ .

It follows that $u_{n}$ maps $[a, a+\rho]$ into $D,$ $|u_{n}(t)-u_{n}(s)|\leqq M|t-s|$ , and if $t_{i}^{n}\leqq t$

$<t_{i\dashv 1}^{n}$ , then $(u_{n})_{+}^{\prime}(t)=A(t)u_{n}(t_{i}^{n})$ . Suppose that $\epsilon$ is a positive number and for the
pair $\beta^{\prime}=\epsilon\exp(-K\rho)/6$ and $\epsilon^{\prime}=\epsilon K\exp(-K\rho)/3$ , choose $\delta>0$ such that $(|x-y$

$+h[A(t)x-A(t)y]|-|x-y|)/h\leqq K|x-y|+\epsilon^{f}$ whenever $ 0<h\leqq\delta$ and $x$ and $y$

are in $D$ with $|x-y|\geqq\beta^{\prime}$ . Choose $n_{0}\geqq 1$ so that $n_{0}^{-1}\leqq\min\{\beta^{\prime}/(2M)$ ,

$\epsilon\exp(-K\rho)/[12KM(K+\delta^{-1})]\}$ . The claim is that whenever $m>7l\geqq n_{0}$ , then
$|u_{n}(t)-u_{m}(t)|\leqq\epsilon$ for all $t$ in $[a, a+\rho]$ . Assume, for contradiction, that there
is a $t_{1}$ in $[a, a+\rho]$ and integers $n$ and $m$ such that $m>n\geqq n_{0}$ , and that
$|u_{n}(t_{1})-u_{m}(t_{1})|>\epsilon$ . Let $p(t)=|u_{n}(t)-u_{m}(t)|$ for all $t$ in $[a, a+\rho]$ . Then $p$ is
continuous, $p(a)=0$ , and $ p(t_{1})>\epsilon$ , so there is a $t_{0}$ in $(a, t_{1})$ such that $p(t_{0})=2\beta^{\prime}$

and $p(t)\geqq 2\beta^{f}$ for all $t$ in $[t_{0}, t_{1}]$ . Thus, if $t$ is in $[t_{0}, t_{1}]$ there is a pair of
integers $i$ and $j$ such that $t_{i}^{n}\leqq t<t_{i+1}^{n},$ $t_{j}^{m}\leqq t<t_{j+1}^{m},$ $(u_{n})_{+}^{\prime}(t)=A(t)u_{n}(t_{i}^{n})$ , and
$(u_{m})_{+}^{\prime}(I)=A(t)u_{m}(t_{j}^{m})$ . By Lemma 3.2 we have

$ p_{+}^{\prime}(r)\leqq(|u_{n}(t)-u_{m}(t)+\delta[A(t)u_{n}(t_{i}^{n})-A(t)u_{m}(t_{j}^{m})]|-|u_{n}(t)-u_{m}(t)|)/\delta$

$\leqq(|u_{n}(t_{i}^{n})-u_{m}(t_{j}^{m})+\delta[A(t)u_{n}(t_{i}^{n})-A(t)u_{m}(t_{j}^{m})]|-|u_{n}(t_{i}^{n})-u_{m}(t_{j}^{m})|)^{\prime}\delta$

$+2|u_{n}(t)-u_{n}(t_{i}^{n})|/\delta+2|u_{m}(l)-u_{m}(l_{j}^{m})|/\delta$

$\leqq K|u_{n}(\iota_{i}^{n}\perp)-u_{m}(t_{j}^{m})|+\epsilon^{\prime}+2M\delta^{-1}(n^{-}+m^{-1})$

$\leqq Kp(t)+2MK(n^{-1}+m^{-1})+\epsilon^{\prime}+2M\delta^{- 1}(\uparrow t^{-1}+m^{-1})$

where we used that $|u_{n}(t_{i}^{n})-u_{m}(t_{j}^{m})|\geqq|u_{n}(t)-u_{m}(t)|-|u_{n}(t)-u_{n}(t_{i}^{n})|-|u_{m}(t_{j}^{m})$

$-u_{m}(t)|\geqq 2\beta^{\prime}-2n_{0}^{-1}M\geqq\beta^{\prime}$ . Thus, $p_{+}^{\prime}(r)\leqq Kp(t)+\epsilon^{\prime}+4Mn_{0}^{-1}(K+\delta^{-1})\leqq Kp(t)+$

$2\epsilon K\exp(-K\rho)/3$ for all $t$ in $[t_{0}, t_{1}]$ . Solving this differential inequality gives

$p(t)\leqq p(t_{0})\exp(K(t-t_{0}))+2\epsilon\exp(-Kp)[\exp(K(t-t_{0}))-1]/3$ .

Since $p(r_{0})=|u_{n}(t_{0})-u_{m}(t_{0})|=\epsilon\exp(-K\rho)/3$ and $t_{1}-t_{0}\leqq(o$ , we have $|u_{n}(t_{1})-u_{m}(t_{1})|$

$=p(r_{1})\leqq\epsilon/3+2\epsilon/3=\epsilon$ which is a contradiction to the assumption that $|u_{n}(t_{1})$

$-u_{m}(l_{1})|>\epsilon$ . Consequently, the sequence $(u_{n})$ is uniformly Cauchy on $[a, a+\rho]$

and hence, converges to a continuous limit $u$ uniformly on $[a, a+\rho]$ . For
each integer $n\geqq 1$ define the function $g_{n}$ from $[a, a+\rho]$ into $D$ by $g_{n}(t)$

$=A(t)u_{n}(t_{i}^{n})$ whenever $t_{j}^{n}\leqq t<t_{i+1}^{n}$ . By the construction of $u_{n}$ we have that

$|g_{n}(t)|\leqq M$ and that $u_{n}(t)=z+\int_{o^{t}}g_{n}(s)ds$ for all $t$ in $[a, a+\rho]$ . If $t_{7}^{n}\leqq t<t_{j}^{n_{+1}}$
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we have $|u_{n}(t_{i}^{n})-u(t)|\leqq|u_{n}(t_{i}^{n})-u_{n}(t)|+|u_{n}(t)-u(t)|\leqq n^{-1}M+|u_{n}(t)-u(t)|$ so that
if $g(t)=A(t)u(t)$ , then $g_{n}(t)\rightarrow g(t)$ by the continuity of $A(t)$ . Furthermore,

since the sequence $(g_{n})$ is uniformly bounded, it follows by bounded con-
vergence that $u(t)=\varliminf_{n}u_{n}(t)=\varliminf_{n}z+\int_{a^{t}}g_{n}(s)ds=z+\int_{a^{t}}A(s)u(s)ds$ . Thus, $u$ is

continuously differentiable and satisfies (3a) on $[a, a+\rho]$ . Suppose that $v$ is
a continuously differentiable $f$ unction on $[a, a+\rho]$ which satisfies (3a). If
$p(t)=|u(t)-v(t)|$ for all $t$ in $[a, a+\rho]$ , then $p_{+}^{\prime}(t)=\lim_{h-+0}(|u(t)-v(t)+h[A(t)u(t)$

$-A(t)v(t)]|-|u(t)-v(t)|)/h\leqq Kp(t)$ . As $p(a)=0$ we have $p(r)=|u(t)-v(t)|=0$

for all $t$ in $[a, a+\rho]$ so that $v=u$ . This completes the proof of the theorem.
THEOREM 3.2. Let $S$ denote the set of nonnegative real numbers and sup-

pose that $\{A(t):t\in S\}$ is a family of members of $LN(E, E)$ with the following
properties:

1) The function $(t, x)\rightarrow A(t)x$ is continuous.
2) The family $\{A(t):t\in S\}$ has uniform logarithmic derivative on bounded

subsets of $S\times E$ .
3) There is a continuous function $c$ from $S$ into the real numbers such

that $L^{\prime}[A(t)]\leqq c(t)$ for all $t$ in $S$ .
Then for each $a$ in $S$ and $z$ in $E$ , there is a unique continuously differentiable
function $u$ from $[a, \infty$) into $E$ such that

(3b) $u^{\prime}(t)=A(t)u(t)$ , $u(a)=z$

for all $t$ in $[a, \infty$). Furthermore, $|u(t)-z|\leqq\int_{a^{t}}|A(s)z|\exp(\int_{s^{t}}c(r)dr)ds$ for all
$t$ in $[a, \infty$), and if $U(a, t)z$ denotes $u(t)$ for all $t$ in $[a, \infty$) and $z$ in $E$ , then

$U(a, t)$ is in LIP $(E, E)$ with $N^{\prime}[U(a, t)]\leqq\exp(\int_{a^{l}}c(s)ds)$ .
INDICATION OF PROOF. It follows from Theorem 3.1 that there is a solu-

tion $u$ to (3b) on some interval $[a, a+\rho$) where $\rho>0$ . Also, $u$ can be extended
so long as its image remains in a bounded subset of $E$ . However, so long
as $u$ exists, we have that if $p(t)=|u(t)-z|$ , then

$p_{+}^{f}(t)=\lim_{h\rightarrow_{T}0}(|u(t)-z+hA(t)u(t)|-|u(t)-z|)/h$

$\leqq\lim_{h-+0}(|u(t)-z+h[A(t)u(t)-A(t)z]|-|u(t)-z|)/h+|A(t)z|$

$\leqq L^{\prime}[A(t)]|u(t)-z|+|A(t)z|$

$\leqq c(t)p(t)+|A(t)z|$ .
Solving this differential inequality gives $|u(t)-z|\leqq\int_{a^{t}}|A(s)z|\exp(\int_{s^{t}}c(r)dr)ds$ .

It follows that $u$ is bounded on bounded subintervals of $[a, \infty$) and hence,
can be extended to all of $[a, \infty$). If $w$ is in $E$ and $v$ is a solution to (3b)
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such that $v(a)=w$ , then letting $q(t)=|u(t)-v(t)|$ we have

$q_{+}^{\prime}(t)=\lim_{h\rightarrow\dashv 0}(|u(t)-v(t)+h[A(t)u(t)-A(t)v(t)]|-|u(t)-v(t)|)/h$

$\leqq c(t)q(t)$ .

Thus, $|u(t)-v(t)|\leqq|u(a)-v(a)|\exp(\int_{a^{t}}c(s)ds)$ and the assertions of the theorem
follow.

COROLLARY 3.1. Suppose that $\{A(t):t\in S\}$ is a family in LIP $(E, E)$ for
which there is a continuous function $d$ from $S$ into $S$ such that $N^{\prime}[A(t)]\leqq d(t)$

for all $t$ in S. Furthermore, suppose that for each bounded subset $I\times Q$ of $S\times E$

there are constants $M>0$ and $\delta>0$ such that if $(t, s)$ is in $I\times I$ with $|t-s|\leqq\delta$

and $x$ is in $Q$ , then $|A(t)x-A(s)x|\leqq|t-s|M(1+|A(s)x|)$ . Then the conclusions
of Theorem 3.2 are valid.

INDICATION OF PROOF. Since $L^{\prime}[A(t)]\leqq N^{\prime}[A(t)]$ there is a continuous
function $c$ on $S$ satisfying condition 3) of Theorem 3.2. By using part i) of
Lemma 3.1 and Theorem 3.2 we need only show that the function $(t, x)\rightarrow A(t)x$

is continuous and maps bounded subsets of $S\times E$ into bounded subsets of $E$ .
This is routine and the proof is omitted.

THEOREM 3.3. Let $a$ be a real number, $T>0$ , and $I=[a, a+T]$ . Also let
$z$ be in $E,$ $D$ a bounded neighborhood of $z$ , and $\{A(t) : t\in I\}$ a family of mem-
bers of $H(D, E)$ such that

1) The function $(t, x)\rightarrow A(t)x$ of $I\times D$ into $E$ is continuous and bounded.
2) The family $\{A(t):t\in I\}$ is uniformly equicontinuous on $D$ .
3) There is a constant $K$ such that ${\rm Re}(A(t)x-A(t)y, f)\leqq K|x-y|^{2}$ for all

$x$ and $y$ in $D,$ $t$ in $I$, and $f$ in $F(x-y)$ .
Then there is a $\rho>0$ and a unique continuously differentiable function $u$ from
$[a, a+\rho]$ into $D$ such that $u(a)=z$ and $u^{\prime}(t)=A(t)u(t)$ for all $t$ in $[a, a+\rho]$ .

REMARK. Note that 2) holds if the function $(t, x)\rightarrow A(t)x$ is uniformly
continuous on $I\times D$ . Furthermore, from Corollary 2.2 we have $\lim_{h-0}(|x-y$

$+h[A(t)x-A(t)y]|-|x-y|)/h\leqq K|x-y|$ for all $x$ and $y$ in $D$ and $t$ in $I$.
INDICATION OF PROOF. Assume that $K>0$ and let $M$ be such that $|A(t)x|$

$\leqq M$ for all $(t, x)$ in $I\times D$ . Let $\rho,$
$(t_{i}^{n})$ , and $(u_{n})$ be as in the proof of Theorem

3.1 and suppose that $\epsilon$ is a positive number. Choose $\delta>0$ such that if $t$ is
in $I$ and $\chi$ and $y$ are in $D$ with $|x-y|\leqq\delta$ , then $|A(t)x-A(t)y|\leqq\epsilon K\exp(-K\rho)/2$ .
Let $n_{0}$ be a positive integer such that $ n_{0}^{-1}M\leqq\delta$ . Thus, if $k\geqq n_{0}$ and $t_{i}^{k}\leqq t<t_{i+1}^{k}$ ,

then $|u_{k}(t)-u_{k}(t_{i}^{k})|\leqq M|t-t_{i}^{k}|\leqq Mk^{-1}\leqq\delta$ . Now let $n>m\geqq n_{0}$ and let $p(r)$

$=|u_{n}(t)-u_{m}(t)|$ for all $t$ in $[a, a+\rho]$ . If $t$ is in $[a, a+\rho]$ and $i$ and $j$ are
integers such that $t_{i}^{n}\leqq t<t_{i+1}^{n}$ and $t_{j}^{m}\leqq t<t_{j+1}^{m}$ , then

$p_{+}^{\prime}(r)=\lim_{h-+0}(|u_{n}(t)-u_{m}(t)+h[A(t)u_{n}(t_{i}^{n})-A(t)u_{m}(t_{j}^{m})]|-|u_{n}(t)-u_{m}(t)|)/h$
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$\leqq\lim_{h-+0}(|u_{n}(t)-u_{m}(t)+h[A(t)u_{n}(t)-A(t)u_{m}(t)]|-|u_{n}(t)-u_{m}(t)|)/h$

$+|A(t)u_{n}(t_{i}^{n})-A(t)u_{n}(t)|+|A(t)u_{m}(t_{j}^{m})-A(t)u_{m}(t)|$ .
But $|u_{n}(t_{i}^{n})-u_{n}(t)|\leqq\delta$ and $|u_{m}(t_{j}^{m})-u_{m}(t)|\leqq\delta$ so that $p_{+}^{\prime}(r)\leqq Kp(t)+\epsilon K\exp(-kp)$ .
Consequently, $p(t)\leqq p(a)\exp(K(t-a))+\epsilon K\exp(-K\rho)[\exp(K(t-a))-1]/K$. Since
$p(a)=0$ and $ t-a\leqq\rho$ we have that $ p(t)=|u_{n}(t)-u_{m}(t)|\leqq\epsilon$ for all $t$ in $[a, a+\rho]$ .
Thus, the sequence $(u_{n})$ is uniformly Cauchy on $[a, a+\rho]$ and the completion
of the proof is essentially the same as in the proof of Theorem 3.1.

THEOREM 3.4. Let $S$ denote the set of nonnegative real numbers and sup-
pose that $\{A(t):t\in S\}$ is a family of members of $H(E, E)$ with the following
properties:

1) The function $(t, x)\rightarrow A(t)x$ is continuous and maps bounded subsets of
$S\times E$ into bounded subsets of $E$ .

2) Each point $(t, x)$ in $S\times E$ has a neighborhood $I\times Q$ such that the family
$\{A(t):t\in I\}$ is uniformly equicontinuous on $Q$ .

3) There is a continuous function $c$ from $S$ into the real numbers such
that ${\rm Re}(A(t)x-A(t)y, f)\leqq c(t)|x-y|^{2}$ for all $x$ and $y$ in $E,$ $t$ in $S$ , and
$f$ in $F(x-y)$ .

Then the conclusions of Theorem 3.2 hold.
The proof of this theorem is analogous to that of Theorem 3.2 and is

omitted.
REMARK. In [5, Theorem 3] Murakami constructs the functions $u_{n}$ de-

fined in the proofs of Theorems 3.1 and 3.3 and, with the assumption of the
existence of a continuously differentiable Lyapunov function, proves that
they converge to the solution $u$ . Here we are essentially using the norm as
a Lyapunov function but it is not necessarily differentiable. The difference
in the suppositions of Theorems 3.1 and 3.3 is that in 3.1 the $A(t)$ may only
be continuous but the limits defining the Gateaux differential are uniform in
$\chi$ and $y$ so long as they remain a positive distance apart while in 3.3 we
relax the uniform limit of the Gateaux differential and require that the $A(t)$

be uniformly continuous.

4. Evolution equations in $LN(D, E)$ .
Let $S$ denote the set of nonnegative real numbers and suppose that

$\{A(t):t\in S\}$ is a family of members of $LN(D, E)$ with the following properties:
1) There is a continuously differentiable function $c$ from $S$ into the

real numbers such that $-A(t)-c(t)1$ is uniformly m-monotonic for all
$t$ in $S$ .

2) There is a continuous function $d$ from $S\times S\times S$ into $S$ such that $|A(t)x$
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(4a) $-A(s)x|\leqq|t-s|d(t, s, |x|)(1+|A(t)x|+|A(s)x|)$ for all $(t, s)$ in $S\times S$ and
all $x$ in $D$ .

3) If $t$ is in $S$ and $(x_{n})$ is a sequence in $D$ such that $x_{n}\rightarrow x$ and $|A(t)x_{n}|$

$w$

are bounded for $n\geqq 1$ , then $x$ is in $D$ and $A(t)x_{n}\rightarrow A(t)x$.
REMARK. We have from [4, Lemma 2.5] that if $E^{*}$ is uniformly convex,

then 1) implies 3). Condition 2) is that of Browder in [1]. Note that 3 is
satisfied if $D$ is closed and $A(t)$ is demicontinuous for all $t$ in $S$ .

We will be concerned with finding solutions to the evolution system

(4b) $u^{\prime}(t)=A(t)u(t)$ , $u(a)=z$

where $a$ is in $S,$ $z$ is in $D$ , and $t$ is in $[a, \infty$).

THEOREM 4.1. Suppose that the family $\{A(t):t\in S\}$ satisfies the conditions
of (4a) and that $a$ is in $S$ and $z$ is in D. Then there is a unique function $u$

from $[a, \infty$) into $D$ which is Lipschitz continuous on bounded subintervals of
$[a, \infty)$ and satisfies (4b) in the following sense:

i) $u(a)=z$ , the weak derivative $u_{w}^{\prime}$ of $u$ exists, is weakly continuous, and
satisfies $u_{w}^{\prime}(t)=A(t)u(t)$ for all $t$ in $[a, \infty$).

ii) The function $t\rightarrow A(t)u(t)$ of $[a, \infty$) into $E$ is Bochner integrable on

bounded subintervals of $[a, \infty$) and $u(t)=z+(B)\int_{a^{t}}A(s)u(s)ds$ for all $t$ in

$[a, \infty)$ . In particular, the derivative $u^{\prime}$ of $u$ exists almost everywhere
on $[a, \infty$) and $u^{\prime}(t)=A(t)u(t)$ for almost all $t$ in $[a, \infty$).

Furthermore, if for each $(a, t)$ in $S\times S$ with $a\leqq t$ and each $z$ in $D,$ $U(a, t)z$ de-

notes $u(t)$ , then $U(a, t)$ is in LIP $(D, E)$ with $N^{\prime}[U(a, t)]\leqq\exp(-\int_{\alpha^{t}}c(s)ds)$ .
REMARK. If $E^{*}$ is uniformly convex, then this theorem is essentially

Theorems 1 and 2 of Kato in [4]. We will prove this theorem with a sequence
of lemmas which parallels those of Kato.

NOTATION. For each positive integer $n$ and each $t$ in $S$ let $J_{n}^{c}(t)=$

$[1-n^{-1}(A(t)+c(t)1)]^{-1},$ $A_{n}^{c}(t)=-[A(t)+c(t)1]J_{n^{c}}(t)$ , and $B_{n}^{c}(t)=A(t)J_{n^{c}}(t)$ . Note
that $J_{n}^{c}(t),$ $A_{n}^{c}(t)$ and $B_{n}^{c}(t)$ satisfy the conclusions of Lemma 2.4. Furthermore,

with the assumption of part 3) in (4a), the conclusions of Lemma 2.5 are valid.
In what follows we assume that $T$ is a positive number and $I$ is the

interval $[a, a+T]$ .
LEMMA 4.1. For each bounded subset $Q$ of $D$ there is a $\delta>0$ and an $M>0$

such that if $\chi$ is in $Q,$ $(t, s)$ is in $I\times I$ with $|t-s|\leqq\delta$ , then $|A(t)x-A(s)x|\leqq$

$|t-s|M(1+2|A(s)x|)$ .
INDICATION OF PROOF. Take $M=2\sup\{d(t, s, |x|):x\in Q, (t, s)\in I\times I\}$ and

let $\delta=1/M$. If $x$ is in $Q$ and $|t-s|\leqq\delta$ , then $|A(t)x-A(s)x|\leqq|t-s|M(1+|A(t)x$

$-A(s)x|+2|A(s)x|)/2\leqq\delta M|A(t)x-A(s)x|/2+|t-s|M(1+2|A(s)x|)/2$ and the
assertion of the lemma follows.
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LEMMA 4.2. Suppose that $Q$ is a bounded subset of $D$ and $K$ is a positive
constant. Then there is a constant $K^{\prime}$ such that if for some $s$ in $I,$ $A(s)x|\leqq K$

for all $x$ in $Q$ , then $|A(t)x|\leqq K^{\prime}$ for all $(t, x)$ in $I\times Q$ .
INDICATION OF PROOF. Let $\delta$ and $M$ be as in Lemma 4.1 and let $n_{0}$ be

an integer such that if $(t, s)$ is in $I\times I$, then $|t-s|\leqq n_{0}\delta$ . Take $K^{\prime}=1+3^{n_{0}}K$

$+\sum_{\iota=1}^{n_{0}-I}3^{i}$ . Suppose that $s$ is in $I$ and $|A(s)x|\leqq K$ for all $x$ in $Q$ . If $t$ is in $I$

and $|t-s|\leqq\delta$ , we have $|A(t)x|\leqq|A(t)x-A(s)x|+|A(s)x|\leqq 1+3K$ by Lemma
4.1. Assume that for some $1\leqq k<n_{0}$ we have that if $|t-s|\leqq k\delta$ , then $|A(t)x|$

$\leqq 1+\sum_{i=1}^{k-1}3^{i}+3^{k}K$. A simple induction argument shows that this inequality

holds with $k=n_{0}$ and hence, if $t$ is in $I$, then $|t-s|\leqq n_{0}\delta$ so that $|A(t)x|\leqq K^{\prime}$

and the lemma is true.
LEMMA 4.3. If $Q$ is a bounded subset of $E$ , then there is a constant $K$

such that $|J_{n^{c}}(t)x|\leqq K$ for all $(t, x)$ in $I\times Q$ and all $n\geqq 1$ .
INDICATION OF PROOF. Let $M$ be such that $|x|\leqq M$ for all $x$ in $Q$ , let $z$

be in $D$ , and take $K=M+\sup\{|A(t)z+c(t)z| : t\in I\}+2|z|$ . If $x$ is in $Q,$ $t$ is
in $I$, and $n\geqq 1$ , then by part i) of Lemma 2.4, $|]_{n^{C}}(t)x|\leqq|J_{n^{c}}(t)x-J_{n^{c}}(t)z|+|J_{n^{C}}(t)z|$

$\leqq|x-z|+|[1-n^{-1}A_{n}^{c}(t)]z|\leqq|x|+2|z|+n^{-1}|A_{n}^{c}(t)z|$ . The lemma now follows
from iv) of Lemma 2.4.

LEMMA 4.4. If $Q$ is a bounded subset of $E$ , there is a $\delta>0$ and an $M>0$

such that $|B_{n}^{c}(t)x-B_{n}^{c}(s)x|\leqq|l-s|M(1+2|B_{n}^{c}(s)x|)$ for all $n\geqq 1,$ $x$ in $Q$ , and
$(t, s)$ in $I\times I$ with $|t-s|\leqq\delta$ .

INDICATION OF PROOF. It follows from part 3) of (2b) that

$B_{n}^{c}(t)x-B_{n}^{c}(s)x=[n-c(t)]J_{n^{c}}(t)x-[n-c(s)]J_{n^{c}}(s)x$

$=[n-c(t)][J_{n}^{c}(t)x-J_{n^{C}}(s)x]+[c(s)-c(t)]J_{n}^{c}(s)x$ .

From i) of Lemma 2.4 we have

$|J_{n^{c}}(t)x-J_{n^{c}}(s)x|=|J_{n}^{c}(t)[1-n^{-1}(A(s)+c(s)1)]J_{n^{c}}(s)$

$-J_{n}^{c}(t)[1-n^{-1}(A(t)+c(t)1)]J_{n^{C}}(s)x|$

$\leqq n^{-1}|A(t)J_{n^{c}}(s)x-A(s)J_{n^{c}}(s)x|$

$+n^{-1}|c(t)-c(s)||]_{n^{c}}(s)x|$ .
Thus,

$|B_{n}^{c}(t)x-B_{n}^{c}(s)x|\leqq|1+n^{-1}c(t)||A(t)J_{n^{C}}(s)-A(s)J_{n^{C}}(s)x|$

$+(1+n^{-1})|c(t)-c(s)||J_{n}^{c}(s)x|$

and from Lemmas 4.1 and 4.3 there is a $\delta>0$ and constants $M^{\prime}$ and $K$ such
that if $|t-s|\leqq\delta$ , then $|B_{n}^{c}(t)x-B_{n}^{c}(s)x|\leqq|1-n^{-1}c(t)||t-s|M^{\prime}[1+2|A(s)J_{n}^{c}(s)x|]$

$+(1-n^{-1})|c(t)-c(s)|K$. The assertion of the lemma now follows since $c$ is
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continuously differentiable on $I$.
Since $B_{n}^{c}(t)$ is in LIP $(E, E)$ with $N^{\prime}[B_{n}^{c}(t)]\leqq 2n+|c(t)|$ (see iii) of Lemma

2.4) we have by Lemma 4.4 and Corollary 3.1 that for each $n\geqq 1$ , there is a
continuously differentiable function $u_{n}$ from $[a, \infty$) into $E$ such that

(4c) $u_{n}^{\prime}(t)=B_{n}^{c}(t)u_{n}(t)$ , $u(a)=z$

for all $t$ in $[a, \infty$).
LEMMA 4.5. There is a constant $K$ such that $|u_{n}(t)|\leqq K$ and $|u_{n}^{\prime}(t)|=$

$|B_{n}^{c}(t)u_{n}(t)|\leqq K$ for all $n\geqq 1$ and all $t$ in $I$.
INDICATION OF PROOF. Since $L^{\prime}[B_{n}^{c}(t)]\leqq|c(t)|$ for all $t$ in $S$ and all $n\geqq 1$ ,

we have by Corollary 3.1 that the $|u_{n}(t)|$ are bounded on $I$ . Now let $Q$ be a
bounded subset of $E$ which contains $u_{n}(t)$ for all $t$ in $I$ and $n\geqq 1$ . Choose $\delta$

and $M$ as in Lemma 4.4 and for each $t$ in $I,$ $ 0<h\leqq\delta$ , and $n\geqq 1$ , let $P_{n,h}(t)$

$=|u_{n}(t+h)-u_{n}(t)|$ . Then

$(P_{n,h})_{+}^{\prime}(t)=\lim_{k-+0}(|u_{n}(t+h)-u_{n}(t)+k[B_{n}^{c}(t+h)u_{n}(t+h)-B_{n}^{c}(t)u_{n}(t)]|$

$-|u_{n}(t+h)-u_{n}(t)|)/k$

$\leqq\lim_{k\rightarrow+0}(|u_{n}(t+h)-u_{n}(t)+k[B_{n}^{c}(t+h)u_{n}(t+h)-B_{n}^{c}(t+h)u_{n}(t)]|$

$-|u_{n}(t+h)-u_{n}(t)|)/k+|B_{n}^{c}(t+h)u_{n}(t)-B_{n}^{c}(t)u_{n}(t)|$

$\leqq|c(t)|P_{n,h}(t)+hM(1+2|B_{n}^{c}(t)u_{n}(t)|)$ .
Consequently, $|u_{n}(t+h)-u_{n}(t)|\leqq|u_{n}(a+h)-u_{n}(a)|\exp(\int_{a^{t}}|c(s)|ds)+hM\int_{a^{t}}(1$

$+2|B_{n}^{c}(s)u_{n}(s)|)\exp(\int_{s^{t}}|c(r)|dr)ds$ for all $0<h\leqq\delta,$ $n\geqq 1$ , and $t$ in $I$. Dividing

by $h$ , letting $h\rightarrow+0$ , and noting that $B_{n}^{c}(s)u_{n}(s)=u_{n}^{f}(s)$ , we have $|u_{n}^{\prime}(t)|\leqq$

$|u_{n}^{\prime}(a)|\exp(\int_{\alpha^{t}}|c(s)|ds)+2M\int_{a^{t}}(1+2|u_{n}^{\prime}(s)|)\exp(\int_{s^{t}}|c(r)|dr)ds$ . Since $|u_{n}^{\prime}(a)|=$

$|B_{n}^{c}(a)z|$ is bounded by part iv) of Lemma 2.4, it follows from Gronwall’s
inequality (see $e$ . $g$ . $[3$ , p. 19]) that $|u_{n}^{\prime}(t)|$ is bounded for all $t$ in $I$ and $n\geqq 1$ .

LEMMA 4.6. If $Q=$ { $x\in E:x=J_{n}^{c}(t)u_{n}(t)$ for $n\geqq 1$ and $t$ in $I$ }, then $Q$ is
bounded and the family $\{A(t):t\in I\}$ has uniform logarithmic derivative on $I\times Q$

(see Definition 3.1).
INDICATION OF PROOF. Since $|u_{n}(t)|\leqq K,$ $Q$ is bounded by Lemma 4.3.

Since $|A(t)J_{n}^{c}(t)u_{n}(t)|=|B_{n}^{c}(t)u_{n}(t)|\leqq K$, we have by Lemma 4.2 that there is a
constant $K^{\prime}$ such that $|A(s)x|\leqq K^{\prime}$ for all $s$ in $I$ and $x$ in $Q$ . Let $\beta$ and $\epsilon$ be
positive numbers. From Lemma 4.1 there is a $\delta^{\prime}>0$ and an $M^{\prime}>0$ such
that if $|t-s|\leqq\delta^{\prime}$ and $x$ is in $Q$ , then $|A(t)x-A(s)x|\leqq|t-s|K_{1}$ where $K_{1}$

$=M^{\prime}(1+2K^{\prime})$ . Let $(r_{i})_{0}^{m}$ be a partition of $I$ such that $|r_{i}-r_{i-1}|\leqq\min\{\delta^{\prime}, \epsilon/(4K_{1})\}$

and choose $\delta_{i}>0$ such that if $x$ and $y$ are in $Q$ with $|x-y|\geqq\beta$ , and $0<h\leqq\delta_{i}$ ,

then $(|x-y+h[A(r_{i})x-A(r_{i})y]|-|x-y|)/h\leqq L^{\prime}[A(r_{i})]|x-y|+\epsilon/2$ . Now take
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$\delta=\min\{\delta_{i} : 1\leqq i\leqq m\}$ and let $K_{2}=\sup\{|c(s)| : s\in I\}\geqq\sup\{L^{\prime}[A(s)]:s\in I\}$ .
If $t$ is in $I$ there is an integer $i$ such that $|t-r_{i}|\leqq\delta^{\prime}$ . Thus, if $x$ and $y$ are
in $Q$ with $|x-y|\geqq\beta$ , and $ 0<h\leqq\delta$ , then $(|x-y+h[A(t)x-A(t)y]|-|x-y|)/h$

$\leqq(|x-y+h[A(r_{i})x-A(r_{i})y]|-|x-y|)/h+|A(t)x-A(r_{i})x|+|A(t)y-A(r_{i})y|\leqq K_{2}|x$

$-y|+\epsilon/2+2|t-r_{i}|K_{1}$ and the assertion of the lemma follows since $2|t-r_{i}|$

$\leqq\epsilon/(2K_{1})$ .
LEMMA 4.7. There is a Lipschitz continuous function $u$ from I into $E$ such

that $u_{n}(t)\rightarrow u(t)$ uniformly on $I$.
INDICATION OF PROOF. Let $Q$ be as in Lemma 4.6 and suppose that $\epsilon$ is

a positive number. Since the family $\{A(t):t\in I\}$ has uniform logarithmic
derivative on $I\times Q$ (Lemma 4.6) let $K$ be as in Definition 3.1 and assume that
$K$ is positive. For the pair $\beta^{\prime}=\epsilon\exp(-KT)/6$ and $\epsilon^{\prime}=\epsilon K\exp(-KT)/3$ ,
choose $\delta>0$ such that $(|x-y+h[A(t)x-A(t)y]|-|x-y|)/h\leqq K|x-y|+\epsilon^{\prime}$ when-
ever $x$ and $y$ are in $Q$ with $|x-y|\geqq\beta^{\prime}$ and $ 0<h\leqq\delta$ . Since $|u_{n}(s)-J_{n^{c}}(s)u_{n}(s)|$

$=n^{-1}|A_{n}^{c}(s)u_{n}(s)|\leqq n^{-1}|B_{n}^{c}(s)u_{n}(s)|+n^{-1}|c(s)]_{n^{C}}(s)u_{n}(s)|\leqq n^{-1}K_{1}$ for some constant
$K_{1}$ , there is an integer $n_{0}$ such that $2n_{0}^{-1}K_{1}\leqq\epsilon\exp(-KT)/6$ and $n_{0}^{-1}(2KK_{1}$

$+4K_{1}/\delta)\leqq\epsilon K\exp(-KT)/3$ . Suppose, for contradiction, that there are integers
$n>m\geqq n_{0}$ and a $t_{1}$ in $I$ such that $|u_{n}(t_{1})-u_{m}(t_{1})|>\epsilon$ . Let $p(t)=|u_{n}(t)-u_{m}(t)|$

for all $t$ in $I$. Since $p(a)=0$ and $ p(r_{1})>\epsilon$ , there is a $t_{0}$ in $[a, t_{1}$) such that
$p(r_{0})=2\beta^{\prime}$ and $p(t)\geqq 2\beta^{\prime}$ for all $t$ in $[t_{0}, t_{1}]$ . We have from Lemma 3.2 that

$ p_{+}^{\prime}(r)\leqq(|u_{n}(t)-u_{m}(t)+\delta[B_{n}^{c}(t)u_{n}(t)-B_{m}^{c}(t)u_{m}(t)]|-|u_{n}(t)-u_{m}(t)|)/\delta$

$\leqq(|J_{n^{c}}(t)u_{n}(t)-J_{m}^{c}(t)u_{m}(t)+\delta[A(t)]_{n^{C}}(t)u_{n}(t)$

$-A(t)J_{m}^{c}(t)u_{m}(t)]|-|J_{n^{c}}(t)u_{n}(t)-J_{m}^{c}(t)u_{m}(t)|)/\delta$

$+2|J_{n^{c}}(t)u_{n}(t)-u_{n}(t)|/\delta+2|J_{m}^{c}(t)u_{m}(t)-u_{m}(t)|/\delta$ .
Since $|J_{n^{c}}(t)u_{n}(t)-J_{m}^{c}(t)u_{m}(t)|=|J_{n^{C}}(t)u_{n}(t)-u_{n}(t)+u_{n}(t)-u_{m}(t)+u_{m}(t)-J_{m}^{c}(t)u_{m}(t)|$

$\geqq|u_{n}(t)-u_{m}(t)|-|J_{n^{C}}(t)u_{n}(t)-u_{n}(t)|-|J_{m}^{c}(t)u_{m}(t)-u_{m}(t)|\geqq\epsilon\exp(-KT)/3-2n_{0}^{-1}K_{\iota}$

$\geqq\epsilon\exp(-KT)/6=\beta^{\prime}$ for all $t$ in $[t_{0}, t_{1}]$ , we have by the choice of $\beta^{\prime}$ that
$p_{+}^{\prime}(t)\leqq K|J_{n}^{c}(t)u_{n}(t)-J_{m}^{c}(t)u_{m}(t)|+4n_{0}^{-1}K_{1}/\delta+\epsilon^{\prime}$

$\leqq Kp(t)+n_{0}^{-1}(2KK_{1}+4K_{1}/\delta)+\epsilon^{\prime}$

$\leqq Kp(t)+2\epsilon K\exp(-KT)/3$ .
Thus, for each $t$ in $[t_{0}, t_{1}]$ we have $p(r)\leqq p(t_{0})\exp(K(t-t_{0}))+2\epsilon K\exp(-KT)$

$[\exp(K(t-t_{0}))-1]/(3K)$ and since $p(t_{0})=\epsilon\exp(-KT)/3$ and $t_{1}-t_{0}\leqq T$, it fol-
lows that $ p(t_{1})\leqq\epsilon/3+2\epsilon/3=\epsilon$ . This contradicts the assumption that $ p(t_{1})>\epsilon$ .
Consequently, the sequence $(u_{n})$ is uniformly Cauchy and since $E$ is complete,
there is a continuous function $u$ from $I$ into $E$ such that $u_{n}(t)\rightarrow u(t)$ uniformly
on $I$. As $|u_{n}^{\prime}(t)|$ are bounded for $t$ in $I$ and $n\geqq 1$ , it follows that $u$ is Lipschitz
continuous on $I$ so that the lemma is true.
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LEMMA 4.8. The function $u$ in Lemma 4.7 maps I into $D$ , the function
$t\rightarrow A(t)u(t)$ of I into $E$ is weakly continuous, and for each $f$ in $E^{*}$ the function
$t\rightarrow(u(t), f)$ of I into the field over $E$ is continuously differentiable with
$d(u(t), f)/dt=(A(t)u(t), f)$ for all $t$ in $I$.

INDICATION OF PROOF. Since $u_{n}(t)\rightarrow u(t)$ and $|B_{n}^{c}(t)u_{n}(t)|\leqq K$, we have

$|A_{n}^{c}(t)u_{n}(t)|$ are bounded and hence, $u(t)$ is in $D,$ $B_{n}^{c}(t)u_{n}(t)\rightarrow A(t)u(t)w$ and
$|A(t)u(t)|\leqq K$ (this follows from the conclusions of Lemma 2.5 which are valid
due to the assumption of condition 3) of $(4a))$ . Let $\delta$ and $M$ be as in Lemma
4.1 with $Q=$ { $x\in E:x=u(t)$ for $t$ in $I$ }. Then if $s$ is in $I$ and $|t-s|\leqq\delta$ ,

$|A(t)u(t)-A(s)u(t)|\leqq|t-s|M(1+2|A(t)u(t)|)\leqq|t-s|M(1+2K)$ . Furthermore,
$w$

since $u(t)\rightarrow u(s)$ as $t\rightarrow s$ , we have by condition 3) of (4a) that $A(s)u(t)\rightarrow A(s)u(s)$ .
$w$

Hence, $A(t)u(t)-A(s)u(s)=A(t)u(t)-A(s)u(t)+A(s)u(t)-A(s)u(s)\rightarrow 0$ and it fol-
lows that $t\rightarrow A(t)u(t)$ is weakly continuous on $I$. If $f$ is in $E^{*}$ , then $(u_{n}(t), f)$

$=(z, f)+\int_{a^{t}}(B_{n}^{c}(s)u_{n}(s), f)ds$ for all $n\geqq 1$ and $t$ in $I$. Since $u_{n}(t)\rightarrow u(t),$ $B_{n}^{c}(t)u_{n}(t)$

$\rightarrow wA(t)u(t)$ , and $|(B_{n}^{c}(s)u_{n}(s), f)|\leqq K|f|$ , we have $(u(t), f)=(z, f)+\int_{a^{t}}(A(s)u(s), f)ds$

and the assertion of the lemma follows.
LEMMA 4.9. The function $t\rightarrow A(t)u(t)$ of I into $E$ is Bochner integrable and

for each $t$ in $I,$ $u(t)=z+(B)\int_{a^{t}}A(s)u(s)ds$ .
The proof of this lemma is the same as [4, Lemma 4.6] and is omitted.
We have now established the existence of a function $u$ from $[a, \infty$) into

$D$ which is Lipschitz continuous on bounded subintervals of $[a, \infty$) and satisfies
parts i) and ii) of Theorem 4.1. Suppose that $w$ is in $D$ and $v$ is a function
from $[a, \infty$) into $D$ which is Lipschitz continuous on bounded subintervals of
$[a, \infty)$ and satisfies each of the conditions i) and ii) of $u$ in Theorem 4.1
except that $v(a)=w$ . For each $t$ in $[a, \infty$) let $p(r)=|u(t)-v(t)|$ . By Lemma
3.2 $p_{+}^{\prime}(r)$ exists for almost all $t$ in $[a, \infty$) and for all such $t$,

$p_{+}^{\prime}(t)=\lim_{h-+0}(|u(t)-v(t)+h[A(t)u(t)-A(t)v(t)]|-|u(t)-v(t)|)/h$

$\leqq L^{\prime}[A(t)]|u(t)-v(t)|$ .
By part 1) of (4a) we have that $L^{\prime}[A(t)+c(t)1]\leqq 0$ so by part iii) of Proposi-
tion 2.1, $L^{\prime}[A(t)]\leqq-c(t)$ . Hence, $p_{+}^{\prime}(t)\leqq-c(t)p(t)$ for almost all $t$ in $[a, \infty$)

and since $p$ is absolutely continuous on bounded subintervals of $[a, \infty$), it
follows that

$|u(t)-v(t)|\leqq|z-w|\exp(-\int_{a}^{t}c(s)ds)$

for each $t$ in $[a, \infty$). The uniqueness of $u$ and the last assertion of Theorem
4.1 follow easily from this inequality and the proof of Theorem 4.1 is complete.
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5. Semi-groups of operators.

In this section we will give sufficient conditions for a member $A$ of
$H(D, E)$ to generate a semi-group $U$ of operators in LIP $(E, E)$ .

DEFINITION 5.1. A function $U$ from $S$ into LIP $(E, E)$ will be called a
semi-group of operators in LIP $(E, E)$ if the following holds:

1) $U(O)=1$ and $U(t)U(s)=U(t+s)$ for all $t$ and $s$ in $S$ .
(5a) 2) There is a constant $K$ such that $N^{\prime}[U(t)]\leqq\exp(Kt)$ for all $t$ in $S$ .

3) If $z$ is in $E$ and $u_{z}(t)=U(t)z$ for all $t$ in $S$ then $u_{z}$ is continuous on $S$ .
If $D$ is a dense subset of $E$ and $A$ is a member of $H(D, E)$ , then $A$ is said
to be a generator (resp. weak generator) of $U$ if for each $z$ in $D$ ,

$w$

$[U(h)z-z]/h\rightarrow Az$ (resp. $[U(h)z-z]/h\rightarrow Az$) as $h\rightarrow+0$ .
THEOREM 5.1. Suppose $A$ is in $H(E, E),$ $A$ is continuous, ${\rm Re}(Ax-Ay, f)$

$\leqq K|x-y|^{2}$ for all $x$ and $y$ in $E$ and $f$ in $F(x-y)$ , and either
1) each $z$ in $E$ has a neighborhood $V_{z}$ such that the restriction of $A$ to $V_{z}$

is in $LN(V_{z}, E)$ , or
2) $A$ is locally uniformly continuous on $E$ .

Then A generates a semi-group of operators $U$ satisfying (5a). Furthermore,
$u_{z}$ is differentiable on $S$ for each $z$ in $E$ and $u_{z}^{\prime}(t)=Au_{z}(t)$ for all $t$ in $S$ .

INDICATION OF PROOF. The local existence of solutions to $u^{\prime}(t)=Au(t)$

where $A$ satisfies either 1) or 2) follows from Theorems 3.1 or 3.3. To com-
plete the proof we need only show that $u$ can be extended to $S$ . Let $T>0$

and suppose that $u$ is defined on $[0, T$ ). Let $0<t_{1}<t_{2}<T$ and for each $t$ in
$[0, t_{1}]$ define $p(t)=|u(t+t_{2}-t_{1})-u(t)|$ . Then $p_{+}^{\prime}(r)=\lim_{l\iota-\dashv 0}(|u(t+t_{2}-t_{1})-u(t)$

$+h[Au(t+t_{2}-t_{1})-Au(t)]|-|u(t+t_{2}-t_{1})-u(t)|)/h\leqq Kp(t)$ and hence, $|u(t_{2})-u(t_{1})|$

$\leqq\exp(KT)|u(t_{2}-t_{1})-u(O)|$ . Thus, $\lim_{\iota-\tau^{-}}u(t)$ exists and the theorem follows.

THEOREM 5.2. Suppose that $A$ is in $H(D, E)$ and either of the following is
satisfied:

1) $D$ is dense in $E,$ $-(A-K1)$ is uniformly m-monotonic, and if $(x_{n})$ is a
sequence in $D$ such that $x_{n}\rightarrow x$ and $|Ax_{n}|$ are bounded, then $x$ is in $D$

$w$

and $Ax_{n}\rightarrow Ax$.
2) $D=E,$ $A$ is demicontinuous on $E,$ ${\rm Re}(Ax-Ay, f)\leqq K|x-y|^{2}$ for all $x$

and $y$ in $E$ and $f$ in $F(x-y)$ , and each $z$ in $E$ has a neighborhood $V_{z}$

such that $A$ is bounded on $V_{z}$ and the restriction of $A$ to $V_{z}$ is in
$LN(V_{z}, E)$ .

Then $A$ is a weak generator of a semi-group of operators $U$ satisfying (5a).

Also, for each $z$ in $D$ the weak derivative $(u_{z})_{w}^{\prime}$ of $u_{z}$ exists on $S$ and $(u_{z})_{w}^{\prime}(t)$

$=Au_{z}(t)$ for all $t$ in S. Furthermore, for almost all $t$ in $S,$ $u_{l}^{\prime}(t)$ exists and
equals $Au_{z}(t)$ .
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INDICATION OF PROOF. If $A$ satisfies 1) then the conclusions are an im-
mediate consequence of Theorem 4.1. In a manner similar to the proof of
Theorem 3.1, for each $z$ in $E$ and some $T>0$ we can find a locally Lipschitz
continuous function $u$ from $[0, T$ ) into $E$ which is weakly differentiable and
satisfies $u(O)=z$ and $u_{w}^{\prime}(t)=Au(t)$ for all $t$ in $[0, T$ ). Thus, for each $t$ in

$[0, T)$ we have $u(t)=z+(B)\int_{0^{t}}Au(s)ds$ (where $(B)$ denotes the Bochner integral)

and hence, $u^{\prime}(t)$ exists for almost all $t$ in $[0, T$ ) and equals Au $(t)$ . The proof
now follows in a manner similar to the proof of Theorem 5.1 by using the
Lebesgue integral in solving the differential inequalities.

REMARK. If $A$ is a continuous member of $H(E, E)$ and $A$ generates a
semi-group $U$ satisfying (5a) with $K=0$ and with the functions $u_{z}$ being
differentiable and satisfying $u_{z}^{\prime}(t)=Au_{z}(t)$ for all $t$ in $S$ and $z$ in $E$ , then $-A$

is necessarily accretive. This can easily be seen for if $x$ and $y$ are in $E$ and
$p(r)=|u_{x}(t)-u_{y}(t)|$ , then $p$ is nonincreasing on $S$ and hence, $p_{+}^{\prime}(r)\leqq 0$ . Con-
sequently, $\lim_{h\rightarrow+0}(|x-y+h[Ax-Ay]|-|x-y|)/h=p_{+}^{\prime}(0)\leqq 0$ so $-A$ is accretive

by Proposition 2.5. If $Q$ is a bounded subset of $E$ and for each $\epsilon>0$ there
is a $\delta>0$ such that if $x$ is in $Q$ and $ 0<h\leqq\delta$ , we have $|[u_{x}(h)-x]/h-Ax|\leqq\epsilon$ ,
then the restriction of $A$ to $Q$ is in $LN(Q, E)$ and $-A$ is uniformly mono-
tonic on $Q$ . This can easily be seen for if $x$ and $y$ are in $Q$ and $ 0<h\leqq\delta$ ,

then

$(|x-y+h[Ax-Ay]|-|x-y|)/h\leqq(|x-y+[u_{x}(h)-x-u_{y}(h)+y]|-|x-y|)/h+2\epsilon$

$=(|U(h)x-U(h)y|-|x-y|)/h+2\epsilon$

$\leqq 2\epsilon$

since $|U(h)x-U(h)y|\leqq|x-y|$ . In particular, if $A$ is locally uniformly con-
tinuous on $E$ , then $-A$ is accretive if and only if $-A$ is locally uniformly
monotonic ( $i$ . $e$ . for each 2 in $E$ there is a neighborhood $V_{z}$ of $z$ such that
the restriction of $A$ to $V_{z}$ is in $LN(V_{z}, E)$ and $L^{\prime}[A|V_{z}]\leqq 0$).
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