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Introduction.

Let $k$ be an algebraic number field. It is well-known that the obstruction
to the validity of Hasse’s norm theorem for a finite Galois extension $K/k$ is
described as a factor group of certain cohomology group ([2], Th. 20.6). T.
Ono has noticed that there is a very close connection between the validity
of Hasse’s norm theorem and the Tamagawa number of the torus $R_{K/k}^{(1)}(G_{m})$

$([6], n^{o}6)$ .
In this paper, we extend slightly the problem to the case of an arbitrary

finite extension $L/k$ . Thus the problem becomes the following one; If an
element $x$ of $k$ is ”local norm” at every place $\mathfrak{p}$ , that is, if $\chi\in NL_{\mathfrak{p}}^{*}$ for every

$\mathfrak{p}$, where $NL_{\mathfrak{p}}^{*}$ is the subgroup of $k_{\mathfrak{p}}^{*}$ generated by $N_{i}L_{\mathfrak{q}_{i}}^{*}$ , then is $x$ contained
in $NL^{*}$ ? Note that $q_{i}$ runs all places of $L$ above $\mathfrak{p}$ , and that $N_{i}$ is the norm
map of $L_{\mathfrak{q}_{i}}$ into $k_{\mathfrak{p}}$ . This problem is affirmatively solved for any cubic exten-
sion of $k$ ($n^{o}3$ , Example). But we do not know for which type of extension
of $k$ this problem can be solved affirmatively.

In our paper, we denote by $V$ the torus $R_{K/k}^{(1)}(G_{m})$ , and by $U$ the torus
whose character module is the dual of that of $V$ . These tori can be defined
in general situation. It is comparatively easy to calculate the Tamagawa
number of $U$ ($n^{o}3$ , Prop. 4). Following Ono’s method, we calculate the Tama-
gawa number of $V$ ($n^{O}4$ , Th.).

It is probable that our results can be expressed in terms of cohomology
groups. But it seems to the author that our method in this paper is useful
in the theory of non-Galois extensions of fields of dimension one.

1. Preliminaries.

Let $G$ be a finite group and $H$ be its subgroup of index $n$ . One puts

$G=\bigcup_{i=0}^{n-1}g_{i}H$ with $g_{0}=1$ (the identity of $G$). We consider the following left G-

module:

(1) $\Lambda=Z[G/H]$ ,
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where $Z[G/H]=.\sum_{?=0}^{n-1}Za_{i}$ , and $a_{i}=g_{i}H$.
Let $A$ and $B$ be (left) G-modules. Then $Hom(A, B)=Hom_{Z}(A, B)$ and

tensor product $A\otimes B=A\otimes_{Z}B$ are G-modules in natural way. We put $A^{0}$

$=Hom(A, Z)$ which will be called the dual G-module of $A$ . For a G-module
$M$, we denote by $M^{G}$ the submodule of $M$ which consists of all G-invariant
elements. We noticed in our previous paper ([7], n’l) that the following
Lemma 1 and Lemma 2 hold:

LEMMA 1. Let $M$ be a G-module. If we consider the Tate cohomology
groups of $G$ , we have

(2) $H^{i}(G, \Lambda\otimes M)\cong H^{i}(H, M)$ , $(i\in Z)$

(2) $(\Lambda\otimes M)^{G}\cong M^{H}$ .
Now consider the following exact sequences;

$c$

(3) $0\rightarrow C\rightarrow\Lambda\rightarrow Z\rightarrow 0$ ,

(4)
$0\rightarrow Zu\rightarrow^{r}\Lambda\rightarrow R\rightarrow 0$ ,

where $c(\sum p_{i}a_{i})=\sum p_{i}$ , and $u=\sum a_{i}$ and $r$ is the canonical injection. So
$Zu\cong Z$ as G-modules. It is easy to see that $C\cong R^{0}$ and $R\cong C^{0}$ . Clearly the
sequences (3) and (4) split over $Z$. Thus we have the following exact sequ-
ences for a G-module $M$ :

$c\otimes 1$

(5) $0\rightarrow C\otimes M\rightarrow\Lambda\otimes M\rightarrow M\rightarrow 0$ ,

(6)
$0\rightarrow M\rightarrow\Lambda\otimes Mr\otimes 1\rightarrow R\otimes M\rightarrow 0$ .

LEMMA 2. The map $c\otimes 1$ in (5) induces the map of $H^{i}(H, M)$ into $H^{i}(G, M)$ .
Then this map is the corestriction map which we will denote by $c$ . The map
$r\otimes 1$ in (6) induces the map of $H^{i}(G, M)$ into $H^{i}(H, M)$ . Then this map is the
restriction map which we will denote by $r$.

Considering the derived Tate cohomology sequences of (3) and (4), we
have

PROPOSITION 1. Let $C$ and $R$ be Z-free G-modules in (3) and (4), respec-
tively. We have

$H^{-1}(G, C)\cong G/H\cdot G^{\prime}$ , $H^{0}(G, C)=0$ , $H^{1}(G, C)\cong Z_{n}$ ;

$H^{-1}(G, R)\cong Z_{n}$ , $H^{0}(G, R)=0$ , $H^{1}(G, R)\coprod G/H\cdot G^{\prime}$ ;

where $Z_{n}$ is the cyclic group of order $n$ .
Note that $A\coprod B$ means that $A$ and $B$ are in (Pontrjagin) duality. So if
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$A$ and $B$ are finite abelian groups, then $A$ and $B$ are isomorphic (but not
canonically).

PROOF. If $G$ is a Galois group of an extension of an algebraic number
field, one can use the class field theory and Tate-Nakayama’s theorem ([4],

Cor. 3).

Or more directly, one can prove $C^{G}=R^{G}=0$ (cf. $n^{o}4$ Prop. 6 and 7), so
it follows that $H^{0}(G, C)=H^{0}(G, R)=0$ . The cohomology group $H^{-1}(G, C)$ is
the cokernel of the corestriction map of $H^{-2}(H, Z)$ into $H^{-2}(G, Z)$ . As
$H^{-2}(H, Z)\cong H/H^{\prime}$ and $H^{-2}(G, Z)\cong G/G^{\prime}$ , and the corestriction map is given
by $ h\cdot H^{\prime}-\rangle$ $h\cdot G^{\prime}$ , it is clear that $H^{-1}(G, C)\cong G/H\cdot G^{\prime}$ . The rest is clear, because
$H^{1}(G, R)\coprod H^{-1}(G, C)$ . (q. e. d.)

Let $M$ be a G-module such that $H^{1}(G, M)=H^{1}(H, M)=0$ . Considering
the derived cohomology sequences (not Tate cohomology sequences) of (5)

and (6), we have
$c$

$0-(C\otimes M)^{G}\rightarrow M^{H}\rightarrow M^{G}-H^{1}(G, C\otimes M)\rightarrow 0$ ,

$c$

$0-H^{2}(G, C\otimes M)\rightarrow H^{2}(H, M)\rightarrow H^{2}(G, M)$ ,

$\gamma$

$0-M^{G}\rightarrow M^{H}\rightarrow(R\otimes M)^{G}\rightarrow 0$ ,

$0-H^{1}(G, R\otimes M)-H^{2}(G, M)\rightarrow^{r}H^{2}(H, M)$ .

PROPOSITION 2. Let $M$ be a G-module satisfying the conditions $H^{1}(G, M)$

$=0,$ $H^{1}(H, M)=0$ . Then we have the following isomorphisms:

$c$

(7) $(C\otimes M)^{G}\cong ker(M^{H}\rightarrow M^{G})$ ;

(8) $H^{1}(G, C\otimes M)\cong M^{G}/c(M^{H})$ ;
$c$

(9) $H^{2}(G, C\otimes M)\cong ker(H^{2}(H, M)\rightarrow H^{2}(G, M))$ ;

(10) $(R\otimes M)^{G}\cong M^{H}/r(M^{G})$ ;

(11) $H^{1}(G, R\otimes M)\cong ker(H^{2}(G, M)\rightarrow^{r}H^{2}(H, M))$ .

2. Ono’s theorem on the Tamagawa numbers of tori.

Let $k$ be a field of dimension one, that is, either an algebraic number
field of finite degree over $Q$ , or an algebraic function field of one variable
over a finite constant field. Suppose that $K$ is a finite Galois extension of $k$

with the Galois group $G$ . We denote by $J_{k}$ and $J_{K}$ the id\‘ele groups of $k$ and
$K$, respectively. We also denote by $\mathfrak{C}_{k}$ and $\mathfrak{C}_{K}$ the id\‘ele class groups of $k$
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and $K$, respectively. Then it is clear from the class field theory that $J_{K}$ and
$\mathfrak{C}_{K}$ are G-modules satisfying the conditions of Prop. 2, for any subgroup $H$.

Let $T$ be a torus defined over $k$ which splits over $K$. We denote by $T_{k}$

the group of k-rational points of $T$, and by $T_{A_{k}}$ the ad\‘ele group of $T$ over $k$ .
Putting $\mathfrak{C}_{k}(T)=T_{A_{k}}/T_{k}$ , we call $\mathfrak{C}_{k}(T)$ the ad\‘ele class group of $T$ over $k$ . We
denote by $X(T)$ the character module of $T$ which is a Z-free G-module.
There is an isomorphism between the category of tori defined over $k$ and
split over $K$, and the dual of the category of finitely generated Z-free G-
modules, which is defined by $T-X(T)^{0}$ , where $X(T)^{0}$ is the dual G-module of
$X(T)$ . For a splitting field $K$ of $T$, it is known that $T_{K}\cong X^{0}\otimes K^{*},$ $ T_{A_{K}}\cong X^{0}\otimes$

$J_{K},$ $\mathfrak{C}_{K}(T)\cong X^{0}\otimes \mathfrak{C}_{K}$ , as G-modules, where $X^{0}=X(T)^{0}$ ([6], (2.1.2)). It is easy
to see that $T_{k}=(T_{K})^{G}$ and $T_{A_{k}}=(T_{A_{K}})^{G}$ , but $\mathfrak{C}_{k}(T)\subseteqq \mathfrak{C}_{K}(T)^{G}$ and the equality
does not hold in general.

T. Ono has defined the numbers $i(T),$ $h(T)$ and $\tau(T)$ for a torus $T([6]$ ,
$n^{o}3)$ :

(12) $i(T)=[\mathfrak{C}_{K}(T)^{G} : \mathfrak{C}_{k}(T)]$ ,

(13) $h(T)=[H^{-1}(G, X(T)^{0})]$ ,

and $\tau(T)$ is the Tamagawa number of $T$ over $k$ . Note that $[A:B]$ means
the index of $B$ in $A$ , and $[A]=[A:1]$ . It is known that $i(T)$ is finite ([6],
n’2.3). Note also that $[H^{-1}(G, X(T)^{0})]=[H^{1}(G, X(T))]$ because of the finite-
ness of $H^{-1}(G, X(T)^{0})$ and the duality between them.

He has proved the following fundamental formula ([6], Main theorem):

(14) $\tau(T)i(T)=h(T)$ .

3. The tori $V$ and $U$ .
Let $L$ be a separable extension of finite degree $n$ over the field $k$ of

dimension one, and $K$ be a finite Galois extension of $k$ containing $L$ . We
denote by $G$ and $H$ the Galois group of $K/k$ and $K/L$ , respectively.

To the Z-free G-modules $C$ and $R$ in (3) and (4), there correspond the
tori $U$ and $V$ such that $X(U)=CandX(V)=R$ . So $X(U)^{0}=R$ and $X(V)^{0}=C$.
From Prop. 1, it follows

(15) $h(V)=[H^{-1}(G, C)]=n_{a}$ ,

(16) $h(U)=[H^{-1}(G, R)]=n$ ,

where $n_{a}=[L_{a} ; k]$ and $L_{a}$ is the maximal abelian extension of $k$ contained
in $L$ .

Now we consider the sequence
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(17) $0\rightarrow V_{K}\rightarrow V_{A_{K}}\rightarrow \mathfrak{C}_{K}(V)\rightarrow 0$ .
As $K^{*},$ $J_{K}$ and $\mathfrak{C}_{K}$ satisfy the conditions of Prop. 2, the derived cohomology
sequence (not Tate cohomology sequence) of (17) can be written

$0\rightarrow V_{k}\rightarrow V_{A_{k}}\rightarrow \mathfrak{C}_{K}(V)^{G}\rightarrow k^{*}/NL^{*}\rightarrow J_{k}/NJ_{L}\rightarrow \mathfrak{C}_{k}/N\mathfrak{C}_{L}$

$\rightarrow H^{2}(G, V_{K})\rightarrow H^{2}(G, V_{A_{K}})\rightarrow 0$ .

Note that the map $c$ in Prop. 2 is the norm map of $L$ into $k$ , and that
$H^{2}(G, \mathfrak{C}_{K}(V))=0$ because this group is the kernel of the corestriction map of
$H^{2}(H, \mathfrak{C}_{K})$ into $H^{2}(G, \mathfrak{C}_{K})$ which is known to be zero from the class field theory.
Clearly the map $J_{k}/NJ_{L}\rightarrow \mathfrak{C}_{k}/N\mathfrak{C}_{L}$ is surjective. Taking inductive limit (with
respect to the inflation map) of the above sequence to the separable closure
$\Omega$ of $k$ , and denoting by $\mathfrak{g}$ the Galois group of $\Omega$ over $k$ , we have

PROPOSITION 3. For the torus $V$ , we have

(18) $0\rightarrow Q\rightarrow k^{*}/NL^{*}\rightarrow J_{k}/NJ_{L}\rightarrow \mathfrak{C}_{k}/N\mathfrak{C}_{L}\rightarrow 0$ ,

(19) $0\rightarrow H^{2}(\mathfrak{g}, V_{\Omega})\rightarrow H^{2}$ ( $\mathfrak{g}$ , VA $9$
) $\rightarrow 0$

where $Q=\mathfrak{C}_{K}(V)^{G}/\mathfrak{C}_{k}(V)$ .
From definition, we have $i(V)=[Q]$ . The sequence (18) means that the

validity of Hasse’s norm theorem is equivalent to $Q=0$ or $i(V)=1$ . For the
exact structure of $NJ_{L}$ , see the formula (27) of the next section. The sequence
(19) is the Hasse principle for the (central simple) algebra class of $L$ whose
corestriction to $k$ is zero. In particular, if $L$ is a separable quadratic exten-
sion of $k$ , we know that, to an element of $H^{2}(g, V_{g})$ , there corresponds an
algebra class of $L$ which has involutions of the second kind over $k$ ([7], n’2,
Th.).

Next we consider the sequence

(20) $0\rightarrow U_{K}\rightarrow U_{A_{K}}\rightarrow \mathfrak{C}_{K}(U)\rightarrow 0$ .

The derived cohomology sequence (not Tate cohomology sequence) of (20) is

$ 0\rightarrow U_{k}\rightarrow U_{A_{k}}\rightarrow \mathfrak{C}_{K}(U)^{G}\rightarrow H^{1}(G, R\otimes K^{*})\rightarrow^{\lambda}H^{1}(G, R\otimes J_{K})\rightarrow$ .
By Prop. 2 (11), we can consider $H^{1}(G, R\otimes K^{*})$ as contained in $H^{2}(G, K^{*})$ ,

and $H^{1}(G, R\otimes J_{K})$ as contained in $H^{2}(G, J_{R})$ . It follows from the class field
theory that $\lambda$ is injection ([2], Th. 20.3). Thus we have $\mathfrak{C}_{K}(U)^{G}\cong U_{A_{K}}/U_{k}$

$=\mathfrak{C}_{k}(U)$ . That is,

(21) $i(U)=1$ .

It follows from (14) and (16),

PROPOSITION 4. For the torus $U$ , we have
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$\tau(U)=h(U)/i(U)=n$ ,
where $n=[L : k]$ .

Now consider the derived Tate cohomology sequence of (5) in which we
put $M=\mathfrak{C}_{K}$ .

$\rightarrow H^{0}(G, \mathfrak{C}_{K})\rightarrow^{r}H^{0}(H, \mathfrak{C}_{K})\rightarrow H^{0}(G, R\otimes \mathfrak{C}_{K})\rightarrow 0$ .
Zll Zll

$\mathfrak{C}_{k}/N_{k}\mathfrak{C}_{K}$ $\mathfrak{C}_{L}/N_{L}\mathfrak{C}_{K}$

Though we do not need in the later, we summarize the above result.
PROPOSITION 5. Let $R$ be the G-module defined in (4). Then

$H^{-2}(G, R)=\mathfrak{C}_{L}/\mathfrak{C}_{k}\cdot N_{L}\mathfrak{C}_{K}$ ,

and $H^{-2}(G, R)$ is the cokernel of “ Verlagerung” of $H^{-2}(G, Z)$ into $H^{-2}(H, Z)$ .
PROOF. By Tate-Nakayama’s theorem [4], we have $H^{0}(G, R\otimes \mathfrak{C}_{R})=$

$H^{-2}(G, R)$ . Our proposition follows from the above exact sequence. $(q. e. d.)$

EXAMPLE. Let $L$ be a separable cubic (cyclic or not) extension of $k$ . It
is well-known that Hasse’s norm theorem is valid for cyclic extensions ([3],
p. 274-275). So we consider non-cyclic case. Let $K$ be the minimal Galois
extension of $k$ containing $L$ . Then the Galois group of $K$ over $k$ is the sym-
metric group $S_{8}$ on three letters, and the Galois group $H$ of $K$ over $L$ is the
subgroup of order 2 of $S_{3}$ . Consider the Tate cohomology sequence derived
from (17). We have

$\rightarrow H^{0}(G, C\otimes \mathfrak{C}_{K})\rightarrow k^{*}/NL^{*}\rightarrow J_{k}/NJ_{L}\rightarrow$ .
Now consider the sequence

$c$

$H^{-3}(G, Z)\rightarrow H^{-2}(G, C)\rightarrow H^{-2}(H, Z)\rightarrow H^{-2}(G, Z)$ .
It is clear that the map $c$ is an isomorphism and $H^{-3}(G, Z)=0$ , because the
group $G=S_{3}$ has the period 4 ([1], Chap. 12, n’ll). By Tate-Nakayama’s
theorem, we have $H^{0}(G, C\otimes \mathfrak{C}_{K})=0$ . Thus we have

$0\rightarrow k^{*}/NL^{*}\rightarrow J_{k}/NJ_{L}\rightarrow \mathfrak{C}_{k}/N\mathfrak{C}_{L}$ .
This shows that Hasse’s norm theorem is valid and $\tau(V)=1$ for a non-cyclic
cubic extension $L$ of $k$ , because $n_{a}=1$ in our case.

4. Tamagawa number $\tau(V)$ .
We investigate more precise structure of $C\otimes M$ and $R\otimes M$ for a G-

module $M$.
We putG $=\bigcup_{i=0}^{n-J}g_{i}H,$ $withg_{0}=1$ . $Bydefinition,$ $\Lambda=\sum_{i=0}^{n-1}Za_{i}$ . $ThenC=\sum_{i=1}^{n-1}Zc_{i}$
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and $R=\sum_{t--1}^{n-1}Zb_{i}$ , where $c_{i}=a_{i}-a_{0}$ and $b_{i}=\overline{a}_{i}$ (the class of $a_{i}mod Zu$), $ 1\leqq i\leqq$

$n-1$ . Note that $u=\sum_{i=0}^{n-1}a_{i}$ . So we have $\overline{a}_{0}=-\sum_{i=1}^{n-1}b_{i}$ .
For a G-module $M$, we define the map $N$ of $M^{H}$ into $M^{G}$ , by putting

(22) $Nm=\sum_{\iota=0}^{n-1}g_{i}m$ .

This map is well-defined. We denote by $\nu(M^{H})$ the kernel of $N$ in $M^{H}$ .
PROPOSITION 6. For any G-module $M$, we have

$(C\otimes M)^{G}=\{\Sigma c_{i}\otimes g_{i}m;m\in\nu(M^{H})\}\cong v(M^{H})$ .

PROOF. If $h\in H$, then $h$ induces a permutation on $\{c_{i}\}$ . That is, $hc_{i}=c_{h(i)}$ ,
where $hg_{i}\in g_{h(i)}H$.

If $f\not\in H$, then $f$ induces a permutation on $\{a_{i}\}$ which will be considered
as a permutation on $n$ letters $\{0,1, \cdot.. , n-1\}$ and will be denoted also by $f$.
Clearly one has $f(O)\neq 0$ . So we have

$fc_{i}=\left\{\begin{array}{l}c_{f(i)}-c_{\gamma(0)}.\cdot f(i)\neq 0,\\-c_{f(0)} .\end{array}\right.$

$f(i)=0$ .

Then it is easy to conclude the proposition. $(q. e. d.)$ .
PROPOSITION 7. If $H^{1}(G, M)=0$ , we have

$(R\otimes M)^{G}=\{\Sigma b_{i}\otimes(g_{i}-1)m;m\in M^{H}\}\cong M^{H}/M^{G}$ .

PROOF. It is clear that $\sum b_{i}\otimes(g_{i}-1)m(m\in M^{H})$ is contained in $(R\otimes M)^{G}$ .
From the sequence (6), one has

$0\rightarrow M^{G}\rightarrow M^{H}\rightarrow(R\otimes M)^{G}-0$ .
Thus we have $(R\otimes M)^{G}\cong M^{H}/M^{G}$ . $(q. e. d.)$ .

$C\otimes Q$ is a self-dual G-space, in the sense that, for the representation $\rho$

of $G$ defined over $Q$ induced from G-module $C,{}^{t}\rho^{-1}$ is equivalent to $\rho$ over
Q. (For example, take a G-invariant positive definite quadratic form on
$C\otimes Q)$ . So $R\otimes Q\cong C\otimes Q$ as G-space, that is, the tori $U$ and $V$ defined by $C$

and $R$ are isogeneous over $k$ ([5], Prop. 1.3.2).

We will determine a canonical k-isogeny from $V$ onto $U$ . From now on,
we suppose that the characteristic of $k$ does not divide $n$ . Under this assump-
tion we can show that the isogeny defined below is separable.

The map $\epsilon$ : $c_{i}\rightarrow d_{i}=b_{i}+\sum_{s=1}^{n-1}b_{s}$ is an injective G-homomorphism of $C$ into
$R$ . The elementary divisors of the matrix $(1+\delta_{ij})$ are $\langle n, 1, \cdots , 1\rangle$ , and
[cok $\epsilon$] $=n$ . Let $M$ be a G-module such that $H^{1}(G, M)=0$ . Putting

$\epsilon\otimes 1:C\otimes M\rightarrow R\otimes M$ ,
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where $\epsilon\otimes 1(\sum c_{i}\otimes g_{i}m_{i})=\sum_{l}\sum_{i}b_{s}\otimes(1+\delta_{is})g_{i}m_{i}$ , we call this map a canonical

isogeny. This map induces the following map $\alpha$ :
(23) $\alpha$ : $(C\otimes M)^{G}\rightarrow(R\otimes M)^{G}$ ,

where $\alpha(\sum c_{i}\otimes g_{i}m)=\sum b_{i}\otimes(g_{i}-1)m$ . Thus we have
PROPOSITION 8. The canonical isogeny induces the following map which

will be denoted also by $\alpha$ :

$\alpha$ : ))$(M^{H})-M^{H}/M^{G}$ ,

where $\alpha(\gamma n)=the$ class of $mmod M^{G}(m\in\nu(M^{H}))$ . Thus we have

$ker\alpha\cong\nu(M^{H})\cap M^{G}$ ,

cok $\alpha\cong M^{H}/\nu(M^{H})\cdot M^{G}=N(M^{H})/N(M^{G})$ ,

where $N$ is the map defined by (22).
REMARK. If one can prove directly that $(R\otimes M)^{G}=M^{H}/M^{G}$ , then one

may apply Prop. 8 to the G-module $M$.
Hereafter, we denote the composition in $M$ multiplicatively, because we

consider multiplicative G-modules in applications. So we have $N(M^{G})=(M^{G})^{n}$ ,

where $(M^{G})^{n}=\{x^{n} ; \chi\in M^{G}\}$ .
For a homomorphism $\beta$ : $A\rightarrow B$ , we put

(24) $q(\beta)=[cok\beta]/[ker\beta]$ .

T. Ono has proved the following theorem ([5], Th. 3.10.1).

THEOREM (Ono). Let $\alpha$ be a separable k-isogeny of $T$ onto $T^{\prime}$ , where $T$ and
$T^{\prime}$ are tori defined over $k$ . Then

(25) $\tau(T^{\prime})/\tau(T)=\tau(\alpha)\cdot q(\hat{\alpha}_{k})$ ,

where $\tau(\alpha)=q(\alpha_{s})/q(\alpha_{k}^{s})$ , and $S$ is a suitably large finite set of places of $k$ .
In our case, $U$ and $V$ are anisotropic tori, so $q(\hat{\alpha}_{k})=1$ . We calculate the

numbers $q(\alpha_{S})$ and $q(\alpha_{k}^{s})$ .
Let $\mathfrak{p}$ be a place of $k$ . Suppose that $\mathfrak{p}=\prod_{i=1}^{t}q_{\iota^{i}}^{e}$ is the decomposition of $p$

in $L$ , and that, if $\mathfrak{p}$ is a finite place, $Nq_{i}=\mathfrak{p}^{f_{i}}$ . Let $\mathfrak{P}$ be a place of $K$ above
$\mathfrak{p}$ . We denote by $G(\mathfrak{P})$ the decomposition group of $\mathfrak{P}$ . We put

(26)
$M_{\mathfrak{p}}=\prod_{\rangle g^{\eta\backslash }}K_{g^{\mathfrak{P}}}^{*}$

,

where $g$ runs over the coset space $G/G(\mathfrak{P})$ . Then $M_{\mathfrak{p}}$ is a G-module such
that $H^{1}(G, M_{\mathfrak{p}})=H^{1}(H, M_{0})=0$ ([2], Th. 12.1). It is easy to see that $(M_{p})^{H}$

$=\prod_{i=1}^{t}L_{\mathfrak{q}_{i}}^{*},$ $(M_{\mathfrak{p}})^{G}=k_{\mathfrak{p}}^{*}$ , and

(27) $N(M_{\mathfrak{p}}^{H})=NL_{\mathfrak{p}}^{*}$ ,



338 T. TASAKA

where $NL_{\mathfrak{p}}^{*}$ is the subgroup of $k_{\mathfrak{p}}^{*}$ generated by $N_{i}L_{w_{i}}^{*}(1\leqq i\leqq t)$ and $N_{i}$ is the
norm map of $L_{q_{i}}$ into $k_{\mathfrak{p}}$ . In this case, we have

(28) $q(\alpha_{\mathfrak{p}})=[NL_{\mathfrak{p}}^{*} : (k_{\mathfrak{p}}^{*})^{n}]/[\mu_{n}\cap k_{\mathfrak{p}}^{*}]$ ,

where $\mu_{n}$ is the group of n-th roots of unity in $k_{p}$ . We put

$q(\alpha_{\infty})=\Pi q(\alpha_{\lambda})$ ,

where $\lambda$ runs over the set $S_{\infty}$ of all infinite places of $k$ . Then it is easy to
see that

(29) $q(\alpha_{\infty})=(2^{d}\cdot n^{r_{2}})^{-1}$ ,

where $r_{2}$ is the number of complex places of $k$ , and $d$ is the number of real
places which are totally ramified in $L/k$ .

For a finite set $S$ of places of $k$ containing $S_{\infty}$ , and for a torus $T$ defined
over $k$ , we put

$T_{A}^{s}=\prod_{\mathfrak{p}\leftarrow S}T_{k\mathfrak{p}}\times\prod_{\iota\epsilon\in s}T_{o_{\mathfrak{p}}}$
,

$T_{k}^{s}=T_{k}\cap T_{A}^{s}$ .
We call $T_{k}^{S}$ the S-unit group of $T$ over $k$ .

Let $S$ be a finite set of places of $k$ satisfying the following conditions
$(i)\sim(iv)$ , and $\overline{S}$ be the finite set of all places of $L$ above $\mathfrak{p}\in S$ :

(i) $S$ is a self-conjugate set with respect to the prime field $Q$ which contains
all infinite places of $k$ and all places of $k$ ramifying in $K/k$ (for an algebraic
number field).

$(i^{\prime})$ $S$ is a non-empty set of places of $k$ which contains all places of $k$

ramifying in $K/k$ (for an algebraic function field).

(ii) $S$ contains a complete system of representatives by prime ideals of the
ideal classes in $k$ .

(iii) $J_{L}=L^{*}\cdot J_{L}^{\overline{S}}$ .
(iv) $NL^{*}\cap E_{k}^{s}=N(E_{L}^{\overline{s}})$ ,

where $J_{k}^{s}=\prod_{\mathfrak{p}\leftarrow S}k_{\mathfrak{p}}^{*}\times\prod_{\iota\oplus s}\mathfrak{u}_{\mathfrak{p}}$ , and $E_{k}^{s}=k^{*}\cap J_{k}^{s}$ (the S-unit group of $k^{*}$), etc. Note

that $u_{P}$ denotes the unit group of $k_{\mathfrak{p}}^{*}$ .
The existence of such $S$ comes from the finiteness of $[V_{A} : V_{k}\cdot V_{A^{\infty}}^{S}]$ and

the fact that, under the condition (iii), one has $[V_{A} : V_{k}\cdot V_{A}^{S}]=[NL^{*}\cap E_{k}^{s}$ :
$N(E_{L}^{\overline{S}})]$ .

Let $\tilde{S}$ be the set of all places of $K$ above $\mathfrak{p}\in S$ . We put

(30) $M_{0}=\prod_{g\mathfrak{P}}\mathfrak{U}_{g\mathfrak{P}}\mathfrak{p}$

as in (26), where $\mathfrak{U}_{\mathfrak{P}}$ is the unit group of $K_{\grave{\mathfrak{P}}}^{*}$ . If $\mathfrak{p}\not\in S$ , then $\mathfrak{p}$ is unramified
over $K/k$ , so it follows that $H^{1}(G, M_{o_{\mathfrak{p}}})=0$ ([2], Th. 12.1), and we have
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$U_{A}^{s}=\prod_{\mathfrak{p}\in S}(M_{\mathfrak{p}}^{H}/M_{\mathfrak{p}}^{G})\times\prod_{\mathfrak{p}\in s}(M_{o\mathfrak{p}}^{H}/M_{o\mathfrak{p}}^{G})\cong J_{L}^{\overline{s}}/]_{k}^{S}$ .

If we consider $U_{A}^{S}$ and $U_{k}$ as contained in $J_{L}/J_{k}$ , then

$U_{A}^{s}\cong J_{L}^{\overline{s}}\cdot J_{k}/J_{k}$ ,

$U_{k}\cong L^{*}\cdot J_{k}/J_{k}$ .
It follows that the S-unit group of $U$ is

$U_{k}^{s}=(J_{L}^{\overline{s}}\cdot J_{k}\cap L^{*}\cdot J_{k})/J_{k}$ .
LEMMA 3. If $S$ is a finite set of places of $k$ satisfying the conditions $(i)\sim$

(iv), then one has

$L^{*}\cdot J_{k}\cap J_{L}^{\overline{s}}\cdot J_{k}=E_{L}^{\overline{s}}\cdot J_{k}$ .
PROOF. Suppose that $\eta J_{k}$ is contained in $J_{L}^{\overline{S}}\cdot J_{k}$ , where $\eta\in L^{*}$ . One can

choose an id\‘ele $\mathfrak{a}$ of $J_{k}$ such that $\eta \mathfrak{a}\in J_{L}^{\overline{S}}$ . We denote by $\langle\eta\rangle$ the ideal of $L$

defined by an id\‘ele $\eta$ , and by $\langle \mathfrak{a}\rangle$ the ideal of $k$ defined by an id\‘ele $\mathfrak{a}$ . We
also denote by $\langle \mathfrak{a}\rangle$ the extension of $\langle \mathfrak{a}\rangle$ to the ideal of $L$ . As $S$ contains a
complete system of representatives by prime ideals of the ideal classes of $k_{J}$

there exists an id\‘ele $\mathfrak{b}$ of $J_{k}$ whose component is 1 outside $S$ such that $\langle a\rangle\cdot\langle b\rangle$

$=\langle\xi\rangle$ is a principal ideal in $k$ . Then it is easy to see that $\eta\xi$ is an S-unit
of $L$ . It follows

$\eta J_{k}=(\eta\xi)J_{k}\in E_{L}^{\overline{6}}\cdot J_{k}$ .

The inverse inclusion is clear. $(q. e. d.)$

As $E_{L}^{\overline{s}}\cap J_{k}=E_{k}^{s}$ , one has $U_{k}^{s}=E_{L}^{\overline{s}}/E_{k}^{s}=M_{1}^{H}/M_{1}^{G}$ , where $ M_{1}=E_{K}^{S}\sim$ . It is
clear that $V_{k}^{s}=(C\otimes M_{1})^{G}$ . From definition, one has

$\alpha_{k}^{s}$ : $V_{k}^{s}\rightarrow U_{k}^{s}$ .
So we can apply Prop. 8 to this module $M_{1}$ , and we have

(31) $q(\alpha_{k}^{s})=[N(E_{L}^{\overline{S}}):(E_{k}^{s})^{n}]/[\mu_{n}\cap E_{k}]$ .
Note that $[\mu_{n}\cap E_{k}^{s}]=[\mu_{n}\cap E_{k}]$ is the number of n-th roots of unity contained
in $k$ .

Because $\tau(U)=n$ , it follows from (25)
THEOREM. Let $L$ be a finite separable extension of $k$ such that the charac-

teristic of $k$ does not divide $n=[L:k]$ , and $V$ be the torus defined over $k$ whose
k-rational points consist of the element $x$ of $L^{*}$ such that $Nx=1$ , where $N$ is
the norm map of $L$ into $k$ . Let $S$ be a finite set of places of $k$ satisfying the
conditions $(i)\sim(iv)$ , and put $S_{f}=S-S_{\infty}$ . Then

(32) $\tau(V)=2^{a}\cdot n^{r_{2+1}}\cdot q(\alpha_{k}^{s})/\rho(S)$ ,
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where $r_{2}$ is the number of complex places of $k$ , and $d$ is the number of real
places of $k$ which are totally ramified in $L/k$ , and

(33)
$\rho(S)=\prod_{\mathfrak{p}\equiv s_{f}}([NL_{p}^{*} : (k_{\mathfrak{p}}^{*})^{n}]/[\mu_{n}\cap k_{\mathfrak{p}}^{*}])$

,

and $q(\alpha_{k}^{s})$ is the number given in (31).

It is known that $E_{k}^{s}$ is a direct product of the group of the roots of unity
contained in $k$ and the torsion free group of Z-rank $s-1$ , where $s$ is the
cardinality of the set $S$ . From (iv), we have q(\mbox{\boldmath $\alpha$}\S ) $=n^{s- 1}$ . $[E_{k}^{s} : E_{k}^{s}\cap NL^{*}]^{-1}$ .

For a finite place $\mathfrak{p}$ , we put

$n_{\mathfrak{p}}=[k_{\mathfrak{p}^{\backslash }}^{*} : NL_{p}^{*}]$ .
This number has a certain meaning from the local class field theory. It is
well-known that

$[k_{\mathfrak{p}}^{*} : (k_{\mathfrak{p}}^{*})^{n}]/[\mu_{n}\cap k_{\mathfrak{p}}^{*}]=n\cdot w_{\mathfrak{p}}(n)^{-1}$ .
(For example, Serre, Local class field theory. 1.7. Prop. 5. In the same volume
as [3]). Note that $w_{\mathfrak{p}}(n)$ means the normalised valuation of $n$ in $k_{\mathfrak{p}}$ in the
sense of ([2], n’l). From the product formula, it follows

COROLLARY 1. Let $k$ be an algebraic number field. We assume that $S$

satisfies the additional condition
(v) $S$ contains all places dividing $n$ .

Then we have
$\tau(V)=2^{a}\cdot(\prod_{\mathfrak{p}\in s_{f}}n_{\mathfrak{p}})\cdot[E_{k}^{s} : E_{k}^{s}\cap NL^{*}]^{-1}$ ,

where $d$ is the number of real places of $k$ which are totally ramified in $L/k$ .
COROLLARY 2. Let $k$ be an algebraic function field of one variable over a

finite constant field. We have

$\tau(V)=(\prod_{\mathfrak{p}\in S}n_{\mathfrak{p}})\cdot[E_{k}^{s} : E_{k}^{s}\cap NL^{*}]^{-1}$ .

Finally we remark that Hasse’s norm theorem is valid for the extension
$L/k$ , if and only if

(34) $i(V)=n_{a}/\tau(V)$

is equal to 1.
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