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\S 1. Introduction.

A hypersurface of an almost contact manifold does not in general possess
an almost complex structure as is seen by the example of $S^{4}$ in $R^{5}$ or in $S^{6}$ .
When considered as a unit sphere in $R^{6},$ $S^{6}$ carries a contact metric structure
with respect to which $S^{4}$ cannot be imbedded as an invariant hypersurface.
In fact, Theorem 5 says that it is impossible to imbed a manifold as an in-
variant hypersurface of a contact space. This situation is in marked contrast
with the well-known fact that a hypersurface (real codimension 1) of an almost
complex manifold admits an almost contact structure. However, this hyper-
surface is clearly not invariant, since the real codimension is 1, for, otherwise
it admits an almost complex structure.

We are thereby led to consider noninvariant hypersurfaces of almost
contact manifolds $M$. These again admit almost complex structures, but, in
addition, there is a distinguished l-form $\alpha$ induced by the contact form of $M$.
This situation is examined in detail when the ambient space is affinely co-
symplectic.

The metric case is especially interesting. Indeed, if $M$ is quasi-Sasakian
($e$ . $g.$ , a normal contact or cosymplectic space) and $P$ is a noninvariant hyper-
surface, then $P$ carries a symplectic, in fact, a Kaehlerian structure, with
Kaehler metric $\gamma$ .

\S 2. Hypersurfaces of almost contact manifolds.

Let $M(\phi, \xi, \eta)$ be a $(2n+1)$-dimensional almost contact manifold whose
structure is defined by a linear transformation field $\phi$ acting in each tangent
space $M_{m}$ of $M,$ $m\in M$, a vector field $\xi$ on $M$ and a contact form $\eta$ such that
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$\eta(\xi)=1$ , $\phi\xi=0$ ,
(2.1)

$\eta\circ\phi=0$ , $\phi^{2}=-I_{Mm}+\xi\otimes\eta$ ,

where $I_{Mm}$ is the identity of $M_{m}$ .
An almost contact manifold $M(\phi, \xi, \eta)$ is called normal if the almost

complex structure $J^{\prime}$ on $M\times R$ given by

$J^{\prime}(x,$ $f\frac{d}{dt})=(\phi x-f\xi,$ $\eta(x)\frac{d}{dt})$ ,

where $f$ is a $C^{\infty}$ real-valued function and $\chi$ is a vector field on $M$, gives rise
to a complex structure on $M\times R$ . In this case, the tensor field $[\phi, \phi]+d\eta\otimes\xi$

of type $(1,2)$ vanishes where

$[\phi, \phi](x, y)=[\phi x, \phi y]-\phi[\phi x, y]-\phi[x, \phi y]+\phi^{2}[x, y]$ .
Consider a $2n$-dimensional manifold $P$ imbedded in $M$ with imbedding map

$i$ : $P\rightarrow M$ ,

and assume that for each $m\in P$ the vector $\xi_{i(m)}$ does not belong to the tangent
hyperplane of the hypersurface. We therefore have

(2.2) $\phi i_{*}X=i_{*}JX+\alpha(X)\xi$ ,

(2.3) $\phi\xi=0$ ,

where $J$ and $\alpha$ are tensor fields of type $(1,1)$ and $(0,1)$ , respectively, on $P$, and
$i_{*}$ is the differential of $i$ . If $\alpha\neq 0$, then the submanifold $i(P)$ is called a
noninvariant hypersurface of $M$. On the other hand, if the l-form $\alpha$ vanishes,
$i(P)$ is called an invariant hypersurface of $M$. A hypersurface may, of course,
be neither invariant nor noninvariant. In the remainder of this section, unless
specified otherwise $i(P)$ will be a noninvariant hypersurface of the almost
contact manifold $M$. We shall occasionally refer to $P$ as the hypersurface.

Applying $\phi$ to the relation (2.2) and then using (2.1), (2.2) and (2.2) again,
we obtain

$-i_{*}X+\eta(i_{*}X)\xi=i_{*}(J^{2}X)+\alpha(JX)\xi$ ,

from which

(2.4) $J^{2}=-I_{P_{m}}$

and

(2.5) $ C\alpha=i^{*}\eta$ ,

where $I_{P_{m}}$ is the identity of $P_{m},$ $m\in P,$ $i^{*}$ is the dual map of $i_{*}$ and $ C\alpha$ is
the l-form on $P$ defined by $C\alpha(X)=\alpha(JX)$ .

Thus, the hypersurface $P$ admits an almost complex structure $J$ and a
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l-form $\alpha$ whose vanishing means that the tangent hyperplane of the hyper-
surface is invariant by $\phi$ , that is, the hyperplane defined by $\eta(i(m))=0$ is the
tangent hyperplane $i(P)_{i(m)}$ .

We introduce a symmetric affine connection $\tilde{\nabla}$ on $M$ and define an $aMne$

connection $\nabla$ on $P$ with respect to the affine normal $\xi$ by

(2.6) $\tilde{\nabla}_{i*X}i_{*}Y=i_{*}\nabla_{X}Y+h(X, Y)\xi$ ,

where $h$ is a symmetric tensor field of type $(0,2)$ on $P$ called the second
fundamental form of $P$ with respect to $\xi$ .

Suppose that the almost contact structure on $M$ is normal. Then, since
$[J^{\prime}, J^{\prime}]=0$, the torsion tensor field $S$ on $M$ of type $(1, 2)$ given by

(2.7) $ S(x, y)=[\phi x, \phi y]-\phi[\phi x, y]-\phi[x, \phi y]+\phi^{2}[x, y]+d\eta(x, y)\xi$

vanishes. Putting $ y=\xi$ in (2.7), we obtain

(2.8) $L_{\xi}\phi=0$ , $L_{\xi}\eta=0$ ,

where $L_{\xi}$ is the Lie derivative operator with respect to $\xi$ . The tensor field
$S$ is also given by

$S(x, y)=\tilde{\nabla}_{\phi x}(\phi y)-\tilde{\nabla}_{\phi v}(\phi x)-\phi(\tilde{\nabla}_{\phi x}y-\tilde{\nabla}_{y}(\phi x))$

$-\phi(\tilde{\nabla}_{x}(\phi y)-\tilde{\nabla}_{\phi y}x)+\phi^{2}(\tilde{\nabla}_{x}y-\tilde{\nabla}_{y}x)$

$+(\tilde{\nabla}_{x}\eta(y)-\tilde{\nabla}_{y}\eta(x)-\eta([x, y]))\xi$ ,
or
(2.9) $S(x, y)=(\tilde{\nabla}_{\phi x}\phi)y-(\tilde{\nabla}_{\phi y}\phi)x+\phi(\tilde{\nabla}_{y}\phi)x-\phi(\tilde{\nabla}_{x}\phi)y$

$+[(\tilde{\nabla}_{x}\tilde{\nabla}_{y})x]\xi$ .
Thus, by (2.2) and (2.6)

$S(i_{*}X, i_{*}Y)=(\tilde{\nabla}_{i*JX+\alpha(X)\xi}\phi)i_{*}Y-(\tilde{\nabla}_{i*JY+\alpha(Y)\xi}\phi)i_{*}X$

$+\Phi((\tilde{\nabla}_{i*Y}\phi)i_{*}X-(\tilde{\nabla}_{i*X}\phi)i_{*}Y)+((\tilde{\nabla}_{i*x\eta)i_{*}Y-(\tilde{\nabla}_{i*Y\eta)i_{*}X)\xi}}$

$=(\tilde{\nabla}_{i*JX}\phi+\alpha(X)\tilde{\nabla}_{\xi}\phi)i_{*}Y-(\tilde{\nabla}_{i*JY}\phi+\alpha(Y)\tilde{\nabla}_{\xi}\phi)i_{*}X$

$+\phi\{(\tilde{\nabla}_{i*Y}\phi)i_{*}X-(\tilde{\nabla}_{i*X}\phi)i_{*}Y)+((\tilde{\nabla}_{i*X}\eta)i_{*}Y-(\tilde{\nabla}_{\iota_{*Y}}\eta)i_{*}X\}\xi$

$=\tilde{\nabla}_{i*JX}(\phi i_{*}Y)-\phi\tilde{\nabla}_{i*JX}(i_{*}Y)+\alpha(X)(\tilde{\nabla}_{\xi}\phi)i_{*}Y-\tilde{\nabla}_{i*JY}(\phi i_{*}X)$

$+\phi\tilde{\nabla}_{i*JY}(i_{*}X)-\alpha(Y)(\tilde{\nabla}_{\xi}\phi)i_{*}X$

$+\phi(\tilde{\nabla}_{i*Y}(\phi i_{*}X)-\phi\tilde{\nabla}_{i_{*}Y}(i_{*}X)-\tilde{\nabla}_{i*X}(\phi i_{*}Y)+\phi\tilde{\nabla}_{i*X}(i_{*}Y))$

$+\{\tilde{\nabla}_{i*X}(\eta(i_{*}Y))-\eta(\tilde{\nabla}_{i*X}(i_{*}Y))-\tilde{\nabla}_{i*Y}(\eta(i_{*}X))+\eta(\tilde{\nabla}_{i_{*}Y}(i_{*}X))\}\xi$

$=\tilde{\nabla}_{i*JX}(i_{*}JY+\alpha(Y)\xi)-\phi(i_{*}\nabla_{JX}Y+h(JX, Y)\xi)+\alpha(X)(\tilde{\nabla}_{\xi}\phi)i_{*}Y$

$-\tilde{\nabla}_{i*JY}(i_{*}JX+\alpha(X)\xi)+\phi(i_{*}\nabla_{JY}X+h(JY, X)\xi)-\alpha(Y)(\tilde{\nabla}_{\xi}\phi)i_{*}X$

$+\phi\{\tilde{\nabla}_{i*Y}(i_{*}JX+\alpha(X)\xi)-\phi(i_{*}\nabla_{Y}X+h(Y, X)\xi)$
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$-\tilde{\nabla}_{i*X}(i_{*}JY+\alpha(Y)\xi)+\phi(i_{*}\nabla_{X}Y+h(X, Y)\xi)\}$

$+\{\tilde{\nabla}_{i*X}((\alpha\circ J)Y)-\eta(i_{*}\nabla_{X}Y+h(X, Y)\xi)$

$-\tilde{\nabla}_{i*Y}((\alpha\circ J)X)+\eta(i_{*}\nabla_{Y}X+h(Y, X)\xi)\}\xi$

$=i_{*}\nabla_{JX}(JY)+h(JX, JY)\xi+\nabla_{JX}(\alpha(Y))\xi+\alpha(Y)\tilde{\nabla}_{idX}\xi$

$-i_{*}J\nabla_{JX}Y-\alpha(\nabla_{JX}Y)\xi+\alpha(X)(\tilde{\nabla}_{\xi}\phi)i_{*}Y$

$-i_{*}\nabla_{JY}(JX)-h(JY, JX)\xi-\nabla_{JY}(\alpha(X))\xi-\alpha(X)\tilde{\nabla}_{i*JY}\xi$

$+i_{*}J\nabla_{JY}X+\alpha(\nabla_{JY}X)\xi-\alpha(Y)(\tilde{\nabla}_{\xi}\phi)i_{*}X$

$+\phi(i_{*}\nabla_{Y}(JX)+h(Y, JX)\xi)+\alpha(X)\phi(\tilde{\nabla}_{\tau*Y}\xi)+i_{*}\nabla_{Y}X-\eta(i_{*}\nabla_{Y}X)\xi$

$-\phi(i_{*}\backslash \nabla_{X}(JY)+h(X, JY)\xi)-\alpha(Y)\phi(\tilde{\nabla}_{i*X}\xi)-i_{*}\nabla_{X}Y+\eta(i_{*}\nabla_{X}Y)\xi$

$+\{\nabla_{X}((\alpha\circ J)Y)-\eta(i_{*}\nabla_{X}Y)-\nabla_{Y}((\alpha\circ J)X)+\eta(i_{*}\nabla_{Y}X)\}\xi$

$=i_{*}\nabla_{JX}(JY)+\nabla_{JX}(\alpha(Y))\xi+\alpha(Y)\tilde{\nabla}_{\phi i*X-\alpha(X)\xi}\xi$

$-i_{*}J\nabla_{JX}Y-\alpha(\nabla_{JX}Y)\xi+\alpha(X)(\tilde{\nabla}_{\xi}\phi)i_{*}Y$

$-i_{*}\nabla_{JY}(JX)-\nabla_{JY}(\alpha(X))\xi-\alpha(X)\tilde{\nabla}_{\phi i*Y-\alpha(Y)\xi}\xi$

$+i_{*}J\nabla_{JY}X+\alpha(\nabla_{JY}X)\xi-\alpha(Y)(\tilde{\nabla}_{\xi}\phi)i_{*}X$

$+i_{*}J\nabla_{Y}(JX)+\alpha(\nabla_{Y}(JX))\xi+\alpha(X)\phi\tilde{\nabla}_{i*Y}\xi+i_{*}\nabla_{Y}X$

$-i_{*}J\nabla_{X}(JY)-\alpha(\nabla_{X}(JY))\xi-\alpha(Y)\phi\tilde{\nabla}_{i*X}\xi-i_{*}\nabla_{X}Y$

$+\{\nabla_{X}((\alpha\circ J)Y)-\nabla_{Y}((\alpha\circ J)X)\}\xi$

$=i_{*}\{\nabla_{JX}(JY)-\nabla_{JY}(JX)-J(\nabla_{JX}Y-\nabla_{Y}(JX))$

$-J(\nabla_{X}(JY)-\nabla_{JY}X)-(\nabla_{X}Y-\nabla_{Y}X)\}$

$+(\tilde{\nabla}_{\xi}\phi+\phi\tilde{\nabla}\xi-(\tilde{\nabla}\xi)\phi)(\alpha(X)i_{*}Y-\alpha(Y)i_{*}X)$

$+\{\nabla_{JX}(\alpha(Y))-\nabla_{JY}(\alpha(X))-\alpha(\nabla_{JX}Y)+\alpha(\nabla_{JY}X)$

$-\alpha(\nabla_{X}(JY))+\alpha(\nabla_{Y}(JX))+\nabla_{X}((\alpha\circ J)Y)-\nabla_{Y}((\alpha\circ J)X)\}\xi$

$=i_{*}\{[JX, JY]-J[JX, Y]-J[X, JY]-[X, Y]\}$

$+L_{\xi}\phi\{\alpha(X)i_{*}Y-\alpha(Y)i_{*}X\}$

$+\{(\nabla_{JX}\alpha)Y-(\nabla_{JY}\alpha)X+(\nabla_{X}\alpha)(JY)-\nabla_{Y}\alpha(JX)\}\xi$ ,

that is,

(2.10) $S(i_{*}X, i_{*}Y)=i_{*}[J, J](X, Y)+L_{\xi}\phi\{\alpha(X)i_{*}Y-\alpha(Y)i_{*}X\}$

$+\{d\alpha(JX, Y)+d\alpha(X, JY)\}\xi$ .
Hence, we have
THEOREM 1. A noninvariant hypersurface of a normal almost contact

manifold $M(\phi, \xi, \eta)$ is a complex manifold carrying a l-form $\alpha=C^{-1}i^{*}\eta$ whose
differential has bidegree $(1, 1)$ with respect to the complex structure $J$.
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COROLLARY ([2], [4]). An invariant hypersurface of an almost contact
manifold is an almost complex manifold. If the almost contact structure is
normal, then the almost complex structure is integrable.

The above computation also yields
THEOREM 2. Let $\xi$ be an infinitesimal automorphism of the almost contact

structure $M(\phi, \xi, \eta)$ . If, for every noninvariant hypersurface, (a) the induced
almost complex structure $J$ is integrable and (b) the differential of the induced
l-form $ C^{-1}i^{*}\eta$ is of bidegree $(1, 1)$ with respect to $J$, then $M(\phi, \xi, \eta)$ is normal.

\S 3. Hypersurfaces of affinely cosymplectic and normal contact manifolds.

Let $M$ be an almost contact manifold with a symmetric connection $\tilde{\nabla}$ and
denote by $\nabla$ the induced connection on the noninvariant hypersurface $P$ [see

formula (2.6)]. If we put

$(\nabla_{X}i_{*})Y=\tilde{\nabla}_{\iota_{*X}}i_{*}Y-i_{*}\nabla_{X}Y$ ,

the equation of Gauss and Weingarten are

(3.1) $(\nabla_{X}i_{*})Y=h(X, Y)\xi$ , $h(X, Y)=h(Y, X)$ ,

and

(3.2) $\tilde{\nabla}_{i*X}\xi=-i_{*}HX+\dot{\omega}(X)\xi$ ,

where $h$ and $H$ are the second fundamental tensors (of type $(0,2)$ and $(1, 1)$ ,
respectively) of $P$ with respect to $\xi$, and $\tilde{\omega}$ is a l-form on $P$ defining the
connection on the affine normal bundle.

Covariant differentiation of (2.2), in which $X$ is replaced by $Y$, yields after
applying (3.1), (3.2) and then (2.2) again

(3.3) $(\tilde{\nabla}_{i*X}\phi)i_{*}Y=[h(X, JY)+(\nabla_{X}\alpha)(Y)+\alpha(Y)\cdot\omega(X)]\xi$

$+i_{*}[(\nabla_{X}J)Y-\alpha(Y)HX]$ .
Case I: $M$ is affinely cosymplectic. An almost contact manifold $M(\phi, \xi, \eta)$

with a symmetric affine connection $\tilde{\nabla}$ is said to be affinely cosymplectic (see

[5]) if

(3.4) $\tilde{\nabla}\phi=0$ , $\tilde{\nabla}\eta=0$ .
An affinely cosymplectic manifold is clearly normal as is seen from (2.9).

From (2.1) one easily sees that the relations (3.4) imply that

(3.5) $\tilde{\nabla}\xi=0$

also. Hence, by (3.2), $HX=0$ and $0$)$(X)=0$ . Moreover, $\tilde{\nabla}\phi$ being zero, we also
have

$\nabla J=0$
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and
$(\nabla_{X}\alpha)(Y)=-h(X, JY)$ .

Case II: $M$ is affinely Sasakian. An almost contact manifold $M(\phi, \xi, \eta)$

with a symmetric affine connection $\tilde{\nabla}$ is said to be affinely Sasakian if it is
normal and

$\phi=\tilde{\nabla}\xi$ .
If $M(\phi, \xi, \eta)$ is affinely Sasakian, then by (2.2) and (3.2), we have

$ i_{*}JX+\alpha(X)\xi=-i_{*}HX+\omega(X)\xi$ ,

that is

(3.6) $J=-H$

and

(3.7) $\alpha=\omega$ .
If $M$ is Sasakian (see \S 4), that is, if $M$ is a normal contact manifold with

a compatible metric $g$, then $M$ is affinely Sasakian with respect to the Rieman-
nian connection, so the relation (3.6) cannot hold; for, $H$ is symmetric and $J$

is skew symmetric with respect to $g$. Thus, there are no noninvariant hyper-
surfaces of a Sasakian manifold.

If for every vector field $X$ on $P,$ $HX=0$ , then $\tilde{\nabla}_{i*X}\xi$ and $\xi$ are proportional
by (3.2). Hence the affine normals are parallel along the hypersurface. In this
case, $P$ is said to be totally flat.

PROPOSITION 1. Let $P$ be a noninvariant hypersurface of an affinely cosym-
plectic manifold. Then $P$ is totally flat and

$\nabla J=0$ ,

$(\nabla_{X}\alpha)(Y)=-h(X, JY)$ ,

$\omega=0$ .
COROLLARY. Let $P$ be an invariant hypersurface of an affinely cosymplectic

manifold. Then
$\nabla J=0$ ,

$h=0$ ,

$\omega=0$ .
PROPOSITION 2. Let $P$ be a noninvariant hypersurface of an affinely Sasa-

kian manifold. Then

$J=-H$
and

$\alpha=\omega$ .
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PROPOSITION 3. There are no noninvariant hypersurfaces of a Sasakian
manifold.

If the affine normal $\xi$ of $i(P)$ is torse-forming (see [7]), $P$ is said to be
affinely umbilical. In this case, $H=\lambda I$ for some function $\lambda$ on $i(P)$ . If the
ambient space is affinely cosymplectic, $\lambda$ vanishes. On the other hand, if the
ambient space is affinely Sasakian, then, by Proposition 2, the hypersurface
cannot be totally umbilical.

PROPOSITION 4. A noninvariant hypersurface of an affinely Sasakian space
cannot be affinely umbilical.

\S 4. Hypersurfaces of almost contact metric spaces.

An almost contact manifold $M(\phi, \xi, \eta)$ admits a Riemannian metric $g$

such that
$g(\phi X, Y)=-g(X, \phi Y)$ ,

(4.1)
$g(X, \xi)=\eta(X)$ ,

and in this case we denote the manifold with structure $(\phi, \xi, \eta)$ by $M(\phi, \eta, g)$ .
Let $P(J, \alpha, G)$ be a noninvariant hypersurface of $M(\phi, \eta, g)$ where $G$ is

the induced metric on $P$, that is $G=i^{*}g$. By (4.1),

$g(\phi i_{*}X, i_{*}Y)=-g(i_{*}X, \phi i_{*}Y)$ ,
so by (2.2)

$g(i_{*}JX, i_{*}Y)+\alpha(X)\eta(i_{*}Y)=-g(i_{*}X, i_{*}JY)-\alpha(Y)\eta(i_{*}X)$ .
The induced metric $G$ on $P(J, \alpha)$ is given by

$G(X, Y)=g(i_{*}X, i_{*}Y)$ .
Hence by (2.5)

$G(JX, Y)+\alpha(X)C\alpha(Y)=-G(X, JY)-\alpha(Y)C\alpha(X)$ ,

that is
$(G+\alpha\otimes\alpha)(JX, Y)=-(G+\alpha\otimes\alpha)(X, JY)$ .

PROPOSITION 5. The noninvariant hypersurface $P(J, \alpha, G)$ of the almost
contact manifold $M(\phi, \eta, g)$ admits an hermitian metric

(4.2) $ G^{*}=G+\alpha\otimes\alpha$ .
We show that a Kaehlerian metric can be defined on $P$ . To this end, put

(4.3) $\Omega^{*}(X, Y)=G^{*}(JX, Y)$

and

(4.4) $\Phi(x, y)=g(\phi x, y)$ ,
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where $x$ and $y$ are vector fields on $M$. The 2-forms $\Omega^{*}$ and $\Phi$ are known as
the fundamental forms of $P(J, G^{*})$ and $M(\phi, \eta, g)$ , respectively. Then,

$\Phi(i_{*}X, i_{*}Y)=g(\phi i_{*}X, i_{*}Y)$

$=g(i_{*}JX+\alpha(X)\xi, i_{*}Y)$

$=g(i_{*}JX, i_{*}Y)+\alpha(X)g(\xi, i_{*}Y)$

$=G(JX, Y)+\alpha(X)\eta(i_{*}Y)$

$=G(JX, Y)+\alpha(X)C\alpha(Y)$

$=G^{*}(JX, Y)-C\alpha(X)\alpha(Y)+\alpha(X)C\alpha(Y)$ ,
that is,

(4.5) $ i^{*}\Phi=\Omega^{*}-C\alpha\Lambda\alpha$ .
Since the 2-form $\Phi$ is of maximal rank and $i$ is a regular map, the tensor
$\gamma=G-C\alpha\otimes C\alpha$ defines a positive definite Riemannian metric, and it is easily
checked that it is hermitian with respect to $J$. In fact, if $\Phi$ is closed, $\gamma$ is
an almost Kaehler metric and $\Omega^{*}-C\alpha\wedge a$ is the fundamental 2-form of the
almost Kaehler manifold $P(J, \gamma)$ . If the structure on $M$ is normal, $P(J, \gamma)$ is
Kaehlerian.

A $(2n+1)$-dimensional manifold $M$ carrying a l-form $\eta$ with the property

$\eta$ A $(d\eta)^{n}\neq 0$

is said to have a contact structure, and in this case, $M$ is called a contact
manifold. It is well-known that on a contact manifold there exists an almost
contact metric structure $(\phi, \eta, g)$ with contact form $\eta$ defining the contact
structure and

$g(\phi x, y)=d\eta(x, y)$ .
A normal contact metric manifold is also called a Sasakian manifold.

An almost contact metric manifold is almost cosymplectic if its fundamental
and contact forms are both closed. If, in addition, the structure is normal,
it is called cosymplectic, and in this case, the contact form has vanishing
covariant derivative. Examples are provided by $N\times R$ or $N\times S^{1}$ where $N$ is
an (almost) Kaehler manifold. For complete simply connected cosymplectic
spaces by the de Rham decomposition theorem, one sees that the only ex-
amples are products with one factor Kaehlerian [3].

An almost contact metric structure is said to be quasi-Sasakian if it is
normal and its fundamental form is closed (see [1]). Thus, Sasakian and
cosymplectic manifolds are quasi-Sasakian.

THEOREM 3. Let $M(\phi, \eta, g)$ be a quasi-Sasakian manifold and $P(J, \alpha, G)a$

noninvariant hypersurface of $M$ with metric $G$ induced by $g$. Then, $P(J, \alpha, \gamma)$

is Kaehlerian.
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COROLLARY ([2]). Let $M(\phi, \eta, g)$ be a quasi-Sasakian manifold and $P(J, G)$

an invariant hypersurface of $M$ with metric $G$ induced by $g$. Then, $P(J, G)$ is
a Kaehler manifold.

We show that the hermitian metric $G^{*}$ of Proposition 5 is also a Kaehler
metric provided the ambient space is cosymplectic and $\alpha=0$ is completely
integrable.

Let $M(\phi, \eta, g)$ be a cosymplectic manifold. Then, since $\Phi$ is closed,

(4.6) $(\tilde{\nabla}_{i*X}\Phi)(i_{*}Y, i_{*}Z)+(\tilde{\nabla}_{i*Y}\Phi)(i_{*}Z, i_{*}X)+(\tilde{\nabla}_{\iota_{*Z}}\Phi)(i_{*}X, i_{*}Y)=0$ .
On the other hand, from (4.5)

(4.7) $\nabla_{X}(i^{*}\Phi)=\nabla_{X}\Omega^{*}-\nabla_{X}C\alpha\wedge\alpha-C\alpha\wedge\nabla_{X}\alpha$ .
Substituting (4.7) in (4.6), we get

$(\nabla_{X}\Omega^{*})(Y, Z)+(\nabla_{Y}\Omega^{*})(Z, X)+(\nabla_{z}\Omega^{*})(X, Y)$

$-\{(\nabla_{X}C\alpha)Y\cdot\alpha(Z)+C\alpha(Y)(\nabla_{X}\alpha)Z$

$-(\nabla_{X}C\alpha)Z\cdot\alpha(Y)-C\alpha(Z)(\nabla_{X}\alpha)Y$

$+(\nabla_{Y}C\alpha)Z\cdot\alpha(X)+C\alpha(Z)(V_{Y}\alpha)X$

$-(\nabla_{Y}C\alpha)X\cdot\alpha(Z)-C\alpha(X)(\nabla_{Y}\alpha)Z$

$+(\nabla_{Z}C\alpha)X\cdot\alpha(Y)+C\alpha(X)(\nabla_{Z}\alpha)Y$

$-(\nabla_{z}C\alpha)Y\cdot\alpha(X)-C\alpha(Y)(\nabla_{Z}\alpha)X\}$

$=0$ .
But, since $\eta$ is closed,

$(V_{X}C\alpha)Y=(\nabla_{Y}C\alpha)X$ ,
so that

$d\Omega^{*}(X, Y, Z)+C\alpha(X)d\alpha(Y, Z)$

$+C\alpha(Y)d\alpha(Z, X)+C\alpha(Z)d\alpha(X, Y)=0$ .
By Theorem 1, since $M$ is normal, $J$ is integrable and $ d\alpha$ is of bidegree

$(1, 1)$ . Hence,

$d\Omega^{*}(X, Y, Z)+C\alpha(X)d\alpha(JY, JZ)$

$+C\alpha(Y)d\alpha(JZ, JX)+C\alpha(Z)d\alpha(JX, JY)=0$ .
If $\alpha=0$ is completely integrable, then $ d\alpha=\alpha\wedge\beta$ for some l-form $\beta$ . Thus,
in particular

$C\alpha(X)d\alpha(JY, JZ)=C\alpha(X)\cdot\alpha\wedge\beta(JY, JZ)$

$=C\alpha(X)\{C\alpha(Y)C\beta(Z)-C\alpha(Z)C\beta(Y)\}$ .
We conclude that $\Omega^{*}$ is closed and the metric $ G+\alpha\otimes\alpha$ is a Kaehler metric.

THEOREM 4. If $M(\phi, \eta, g)$ is a cosymplectic manifold, then the hypersurface
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$P(J, a, G+\alpha\otimes\alpha)$ is Kaehlerian if and only if $\alpha=0$ is completely integrable.
From (4.7), we obtain
COROLLARY 4.1. An invariant hypersurface of an (almost) cosymplectic

manifold is an (almost) Kaehler manifold.
An application of Proposition 3 also yields
COROLLARY 4.2. Let $M(\phi, \eta, g)$ be a cosymplectic manifold and $P(J, \alpha, G)$

a totally flat hypersurface of M. Then, the manifold $P(J, \alpha)$ with metric $ G+\alpha$

$\otimes\alpha$ is Kaehlerian.
THEOREM 5. There does not exist an invariant hypersurface of a contact

manifold.
PROOF. Let $i(P)$ be an invariant hypersurface of the contact manifold $M$.

Since the fundamental form $\Phi$ of $M$ is derived, namely, $\Phi=d\eta$ , and since
$i(P)$ is invariant, $ i^{*}\eta$ vanishes. Hence

$i^{*}\Phi=i^{*}d\eta=di^{*}\eta=0$ .
Moreover, $i(P)$ being invariant, we have

$\phi i_{*}X=i_{*}JX$ ,

from which
$ 0=i^{*}\Phi=\Omega$ ,

which is impossible.
Theorem 5 also follows from a theorem of Sasaki: The highest dimension

of integrable submanifolds of the contact distribution of a contact manifold
of dimension $2n+1$ is $n$ . ([6], Theorem 17.3).

COROLLARY. $S^{4}$ cannot be imbedded as an invariant hypersurface of $R^{5}$ or
$S^{6}$ regarded as a (normal) contact manifold.

This is also a consequence of the corollary to Theorem 3 since the second
Betti number of $S^{4}$ vanishes.
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