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A theorem on the second-order arithmetic
with the o-rule®

By Motoo TAKAHASHI

(Received Dec. 3, 1968)

It is well known that the first order arithmetic with the w-rule is complete.
Moreover, J.R. Shoenfield has shown that the same holds also when the
w-rule is recursively restricted. On the other hand, the second-order arithmetic
with the w-rule is not complete. So Shoenfield has raised a question whether
every sentence of the second-order arithmetic provable with the w-rule is
provable with the recursively restricted w-rule. Concerning this problem,
H. Tanaka has shown that every sentence of the second-order arithmetic
provable with the w-rule is provable with the hyper-arithmetically restricted
w-rule,

The purpose of this paper is to give an affirmative answer to Shoenfield’s
problem stated above. This result can be extended to one corresponding to
any higher order arithmetic. We shall use notations and terminologies in [2].

Roughly speaking, the outline of proof is as follows. For a given formula
¢, we define a tree T (consisting of formulas) whose only root is ¢ and which
has the following properties: (i) whenever ¢ is a provable formula, the tree
T is well-founded (in a suitable sense), and (ii) in T if ¢, ¢,, -+ are direct
predecessors of ¢ then we can effectively construct a “recursive proof ” of
¢ from information for recursive proofs of ¢;’s. Then by means of Kleene’s
recursion theorem, there exists a partial recursive function = such that if
¢, oy ¢y, -+ are as above-mentioned and if #(¢h;) is a recursive proof of ¢;
for each i, then n(¢) is a recursive proof of ¢. Thus, if ¢ is provable, then
n(¢) gives a recursive proof of ¢, as is shown by the induction using the
well-foundedness of T.

In what follows, we shall carry out a detailed proof based on this idea.

§1. As a formal system of second order arithmetic, we shall use A4, in
[1]. By a familiar way we can assign, to each formula ¢ of A,, a number

*) After the completion of this manuscript the author learned that Lopez-Escobar
proved the theorem for the case of the weak second-order logic (not the full system
of second-order arithmetic) by a similar way as ours.
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Tp7 called the Godel number (abbreviated by G.n.) of ¢, satisfying the follow-
ing conditions:

11.1. If ¢ and ¢ are distinct, then FpT2T¢7;

1.1.2. The number-theoretic predicates, F(a), AX(a), C(a, b, ¢), UF(a),
UF(a) and FO(a, b) defined below are recursive;

1.1.2.1. F(a)={a is the G.n. of a formula},

1.1.2.2. AX(a)={a is the G.n. of an axiom of A,},

1.1.23. Ca, b, o)={a="T¢7, b="¢7, c="y1 and ¢ is the consequence of
¢ and y by modus ponens},

11.24. UF,(a)={a is the G.n. of a formula of the form (x)¢, where x
is a number variable} ;

1.1.25. UFy(a)={a is the G.n. of a formula of the form (a*)¢ where a*
is a function variable} ;

1.1.2.6. FO(a, b)={b is the G.n. of a function variable and it does not
occur in the formula whose G.n. is a};

1.1.3. There exist recursive functions gy(a, b), g,(a, b) and v(a, b) such that

1.1.3.1. whenever a=T"(x)e(x)7, gla, n) =T¢@)7, where # is the numeral
for a natural number n;

1.1.3.2. whenever a="(a®)¢(a®)? and b=, g(a, b)="e(B1;

1.1.3.3. whenever a=T¢1 and b="¢7, v(a, b)="T¢V ¢

Now we define predicates Pr(a), P*(p) and Pr*(a) as follows:

1.2.1. If AX(a), then Pr(a);

1.2.2. If Pr(b), Pr(c) and C(a, b, ¢), then Pr(a);

1.2.3. If UFya) and Pr(g,(a, n)) for all n, then Pr(a);

1.24. Y UF\(a), FO(a, by and Pr(ga, b)), then Pr(a);

1.2.5. Pr(a), only as required by 1.2.1-4.

1.3.1. If AX(a), then P*(3%;

1.3.2. P*(p), P*(g) and C(a, (p);, (¢),), then P*(2.395779);

133. If UF,a) and, for any n, P*({e}(n)) and ({e}(n)),=ga, n), then
P*(2%.3%.5%;

1.34. If UF,(a), FO(a, b), P*(p) and (p),= g,(a, b), then P*(2:3°5°7%);

1.35. P*(p), only as required by 1.3.1-4.

L4, Pr¥(@=3p [P*(D) A(Ph=al

If P*(p) and (p),="T¢7, we say that p is a recursive proof of ¢ and ¢ is
recursively provable.

It is clear that

15. Pr(a) if and only if @ is the G.n. of a formula provable in A,;
and that

1.6. If Pr*(a), then Pr(a).

The converse of 1.6 will give the affirmative answer to Shoenfield’s problem,.
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that is:

1.7. THEOREM. If Pr(a), then Pr*(a).

Before proceeding to the proof of 1.7 we remark the following.

Let X be a set, R be a binary relation over X and A be a subset of X
such that aRb and be A imply e A. We say R well-founds X relative to A
if for each sequence {x,}7., of elements of X such that x,.,Rx, for n=0,
there exists an n such that x, € A.

1.8. LEMMA. Suppose that R well-founds X relative to A. Then the follow-
ing induction principle holds:

181, If AcQ<c XandVxe X[Vye X[ yRx=>ye Ql=xe Q], then Q=X.

PRrOOF. Suppose X—Q is not empty, and x,€ X—@Q. By assumption there
exists an x, such that x,Rx, and x, € X—Q. Continuing this procedure, we
get a sequence {x,}7-, such that x,,,Rx, and x, € X—Q for all n. But, since
R well-founds X relative to A, there must exist an x, € AS Q. Thisis a
contradiction. Hence Q = X.

1.8 is a generalization of the so-called bar-induction, and is well known
when A=¢.

§2. Proof of 1.7.

2.1. The definition of P(a, ), where p ranges over ordinals.
2.1.1. If AX(a), then P(a, 0).

2.1.2. If P(b, p), P(c,v) and ((a, b, ¢), then P(a, max (g, v)+1).
2.1.3. If UFy(a) and P(gy\a, n), p,) for all n, then

P(a, sup {¢»+1|n=0,1,-}).

2.1.4. If UF(a), FO(a, b) and P(g,(a, b), p), then P(a, p+1).
2.15. P(a, p), only as required by 2.1.1-4.
2.2. LEMMA. Pr(a)e3pP(a, p).
Proor. This is obvious from the definitions of Pr and P.
2.3. LEMMA. Let ¢o(a®) be a formula and let 8* be a variable not occurring
in o(a®). Then
P, & PCoE, 1).
ProoOF. By the induction on p.
2.4. We define a recursive function ¢(a, n, m) as follows:
24.1. o(a, 0, m)=2%+;
242 If (n),=0 and C((o(a, n, (M)q))ny,~1, (n),, (1)), then
a(a, n, (m),) - p.<P2*, when (m), is even,

o(a, n+1, m) =
a(a, n, (m),) - PP, when (m), is odd;

243. If (n),=1 and UF((o(a, n, (M)e))ny,~1), then
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a(a, n+1, m) = a(a, n, (m),)
X Prss €XP [ g((a(a, 1, (M)))ny, =1, (M) +11;
24.4. If (n),=2 and UF,((o(a, n, (M)))ny,~1), then
o(a, n+1, m) = o(a, n, (m),)
X D €xD [ 2(0(a, 7, (Moo 1, H+17

where s = px[Vi < n FO({(o(a, n, (m)y));~1, x)]1;
2.45. Otherwise,

o(a, n+1’ m) = a(a, n, (m)o) * Ppy1 €XP [(0‘((1, n, (m)o))(n)l:l .

Then ¢ has the following properties:

25.1. Seq(a(a, n, m)) A lh(a(a, n, m)) =n-1,
where Seq(g) means that a is a sequence number i.e., a=x0AVYi<Ih(a)
[(a); % 0.

25.2. Fla)=VYi<n F((o(a, n, m));=1).

25.3. Yi=n [(a(a, n, (m)y); = (a(a, n+1, m));].

Let w(a, n) be defined by

2.6.1. w(a, 0)=(a),~1, and

2.6.2. w(a, n+1)=vw(a, n), (Q)ps,;~1);
and we set

2.6.3. z(a, n, m)=w(a(a, n, m), n).

Then we have

2.7.1. (a, 0, m)=aq,

2.7.2. F(a)= F(z(a, n, m)),

2.13. F(a)yA(n),=O0APr(z(a, n+1, 2" A Pr(z(a, n+1, 2™ 3)) = Pr(z(a, n, m)),

2.74. FlaA(n),=1AVYEkPr(z(a, n+1, 2™.3"))= Pr(z(a, n, m)),

2.17.5. F(ayN(n)y=2NPr(z(a, n+1, 2™) = Pr(z(a, n, m)).

More generally, we have that

2.76. F(a) AVI[(1)¢=m= Pr(z(a, n+1, 1))]= Pr(z(a, n, m)).

2.8. Let X be the set of all pairs (n, m) of natural numbers and let
(ny, my)R(n,, m,) hold if and only if n,=n,+1 and (m)),=m, Moreover let

Ag={(n, m)| i = n AX((o(a, n, m));=1)}.
29. LEMMA. If Pr(a), then R well-founds X relative to A,.
PROOF. Let
Kby SV ViVa [VEL(alk-+1)), = a(By] A i< n
N(a(a, n, am));~1=b=3l=n A(, al)) € A]],

where « ranges over all number-theoretic functions of one variable. We shall
prove that P(b, )= K(b) by the induction on g. So assume the following:
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29.1. Vc[P(c, v)=K(c)], for all vy <,

29.2. P, p),

2.9.3. VE[(a(k+1)y=ak)I Ni=Zn A(o(a, n, a(n)));~1=>.
We must prove that i[I=n A, a(l)) € A,

Case 1. AX()A p=0. Then we may take n as [

Case 2. P(c, v,) A P(d, v,) \ C(b, ¢, d) N\ p=max (v, v,)+1.
Then, by 2.9.1, we have K(c) A k(d). Let t=35°7%11". Then (f),=0 and t=n.
Successive uses of 2.5.3 with 2.9.3 show that

(o(a, t, a(®));=1=(o(a, n, a(n)));=~1=b.

Hence by definition of g, o(aq, t+1, a(t+1)) is o(a, t, a(®)) - pus™ or o(a, t, a?))
- bt according as (a(t-+1)), is even or odd. In either case, using K(c) or
K(d) (taking t+1 as n and {), we have that

JI=t+H1IAL all) e A
Hence
Jill=znAd, al)) e A].

Case 3. UFy®) and P(gy(b, n), pn) for all n and
p=sup {p,+1|n=0,1,--}.

Then, by the induction hypothesis, we have Vj K(g,(, 7)). Now let t=2-3'5".
So, (),=1 and t=n. Since

(a(a, t, a())i+1=(o(a, n, a(n));=~1="0
as before, we have that
o(a, t+1, a(t+1)) = o(a, t, a(t))
X Pesr €XP [ 20, (a(t+1)))+1].
Hence, by using K(g,b, (a(t+1)),)), we have

A zt+H1 A ald)) € Ad].
Hence
JiflznAN{, al)) € A,].

Case 4. UF,(b) A FOGb, &) A P(gyb, ), ) A g =v-+1.
Let ¢t =223"5", Then (t),=2 and t=n. Since

(a(a, t, a(®))i=1=(a(a, n, a(m)));~1=0b,
o(a, t+1, a(t+1) =o(a, t, a() X prss €xXp (810, )+1),

where s= pux[Vj = tFO((o(a, t, a(t)));~1, x)].
By 2.3 and the assumption that P(g,(, ¢), v), we have P(g,(b, s), v).
Hence K(g,(b, s)), since y < p. So we have that



20 M. TAKAHASHI

UzZt+1AL al) e A .
Hence

llzn A, al) e AJ.
Thus we have completed the proof of YuVb[P(®, p)=K(b)]. So by 2.2, if
Pr(a), then K(a). By setting n=1=0, we have that
Ya [VE[(alk+1)), = a(R)]=3U[{, all)) € A]].
This proves 2.9.

Now it is clear that there exist recursive functions &(a, p, 9), 7(a, 1), y(a, D),
{(a, p) and @(a) such that

2.10.1. F(@ AF® ANF(@© AF@)AP¥P)APHQOA(D),=vb, OA(G), = (b, d)
N Ca, ¢, dy=P*(&(a, p, 9) N (&, D, )= v(b, @) ;

2.10.2. UF\(a) A F(0) AVFLP*({e}() A ({e} (7)) = v(b, gi(a, 7)1 = P*(z(a, &)
N (n(a, ), =v(b, a);

2.103. UFy(a) ANF(b) ANFO(a, ¢) ANFO(b, c) AN P*(p) A (p),=v(b, gi(a, ¢))=
P*(y(a, o) A (r(a, D)1 =v(b, a);

2.10.4. Seq (a) A2=Ih(@AVi<I(@)F((a);=~DA Fi <lh(a)=-1[(a); = (@)inwy~1]
A P¥(p) A (D)= w(a, Ih(a)=1)=> P*((a, p)) A (L(a, p)), = w(a, lh(a)=2);

2.105. Seq(a)AVi<Ih(a)F{(a);=~)AFi<lh(a)AX((a);~1)=> P*0(a)) \(0(a)),
=w(a, lh(a)=-1).

211. LEMMA. There exists a partial recursive function p(e, a, n, m) such
that

F(@) ANVIL)o=m=P*({e}D)) A ({e}(1), = 7(a, n+1, [)]
={p(e, a, n, m) is defined} N\ P*(o(e, a, n, m)) A\ (o(e, a, n, m)),
=z(a, n, m).

Proor. First, define p,(e, a, n, m) as follows:
2.11.1.1. If (n),=0 and C((o(a, n, M)y, 1, (1), (n);), then

pue, a, n, m) = &(o(a, n, M)y, 1, {e}(@™), {e}(@2™- 3));
2.11.1.2. If (n),=1 and UF((o(a, n, m))ny,~1), then
po(e, a; n: m) = 77((0'((1, n’ m))(n)l'.—l’ S%(h’ e’ m)) ?
where 4 is the G6del number of Aemj {e}(2™37);
2.11.1.3. 1f (n)y=2 and UF,(a(a, n, m))ny,~1), then
poe, a, n, m) = y((o(a, n, M), =1, {e}(2™)
2.11.1.4. Otherwise,
Po(e: a, n, m) = {e}(zm) .

Then p, is partial recursive and has the following property:
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2.112. F(a) AVI[()y=m=P*{e}()) A ({e}()),=7(a, n+1, [)1=P*(ple, a,

n, m)) A (pe, a, n, m)), =w(a(a, n, m) X Pry, €xp [(a(a, 1, M))iny, 1, n-+1).
To prove 2.11.2, assume that

F(a) ANVIL@),=m=P*({e}) A ({e})=(a, n+1, 1)].

Case 1. (n),=0 and C((a(g, 1, M))iny, =1, (M), (M)s)-
By assumption, P*({e}(2™)) and

({e}@™)=(a, n+1, 2™)
=w(o(a, n+1, 2™), n+1)
= v(w(o(a, n+1, 2™), n), (6(a, n+1, 2™),,,=1)
=v(w(o(a, n, m), n), (n),)
=v(z(a, n, m), (n),) .
Similarly, P*({e}(@2™- 3)) and
({e}@™ - 3), =v(z(a, n, m), (n),) .
Hence, by 2.10.1, P*(o(e, a, n, m)) and
(oe, a, n, m)), =v(z(a, n, m), (a(a, n, M)y, 1)
= w(o(a, n, m) - Pny, €Xp [(0(a, 7, M)wy, 1, n+1).

Case 2. (n),=1 and UFy(a(a, n, m))u,,~1).
By assumption, for any j, P*({e}(2™3%)) and

({e}(2™37), = z(a, n+1, 2™37)
=v(w(o(a, n+1, 2™3%), n), (e(a, n+1, 2™3)),4,-1)
=w(z(a, n, m), g((a(a, n, M), =1, 1) .
Since {e}(2™37) = {S¥h, e, m)}(j), by 2.10.2, P*(p,(e, a, n, m)) and
(oule, @, 1, M), = v(z(a, 1, m), (9(@, 1, MY)uy=1)
=w(o(a, n, M) - pns, €Xp [(o(a, n, M)y, J, n+1).

Case 3. (n),=2 and UF,((o(a, n, m))m,~1).
By assumption, P*({e}(2™)) and, as before,

({e}(zm))l = U(T(d, n, m)) gl((a(ax 7'l, m))(n)l"-—]-, S)) ’

where s= px[Vi=<n FO((o(a, n, m));~1, x)].
By the choice of s, we have FO(z(a, n, m), s) and

FO((a(a, n, m))ny, =1, 5) .

Hence P*(p.(e, a, n, m)) and
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(po(e: a, n, m))l :U(T(a, n, m)’ (O'(Cl, n, n’l))(mlivl)
= w(a(a, n, WL) * Pny1 €XP [(0‘(0, n, m))(n)l:li n+1) .

Case 4. Otherwise.
By assumption, P*{({e}(2™)) and

({e}@™),=v(w(o(a, n+1, 2™), n), (o(a, n+1, 2™)44,=1)
=v(w(a(a, n, m), n), (a(a, n, M)y, 1)
= U}(O'((Z, n, 7’}’1.) * pn-t—l exp [(0‘(0, n, m))(n)ljr n+1) .

Hence we have 2.11.2.
NOW let ‘0(8, a, n, m) = C(O'(CZ, n, m) . pn+1 exp I:(O‘(Cl, n, m))(n)lj, (00(89 a, n, m)) *

Then p has the desired property in view of 2.10.4 and of the fact that
n=(n),, as well as 2.11.2. This completes the proof of 2.11.
2.12. Consider the following recursion equation:

8(a(a, n, m), if (n, m) & A,;

{f}a, n, m)== )
o(S¥ 1, a, n+1), a, n, m), if (n, m) & A, .

By the recursion theorem of Kleene, let f, be a solution of this equation
for f and let

w(a, n, m) = { fo}(a, n, m).

Then 7 is partial recursive.

2.13. LEmMA. If Pr(a), then, for any n and m, n(a, n, m) is defined and
P*(n(a, n, m)) A (z(a, n, m)), = z(a, n, m). '

PRrROOF. Suppose Pr(a) and let

Qo= {(n, m) | n(a, n, m) is defined A P*(x(a, n, m)) A (z(a, n, m)), = z(a, n, m)} .

Then F(a) and A, S Q, < X, by the property of # described above.

Next suppose (n+1,l)eQ, for all [ such that (/),=wm, and suppose
(n, m) & A,. Then =w(a, n+1,1) is defined and P*(n(a, n+1, D) A (z(a, n+1, 1)),
=z(a, n+1, 1), for all [ with ({),=m. Since f, is the Goédel number of =, e
=S¥ f,, a, n+1) is a Godel number of Al xn(a, n+1, [).

Hence

F(a) ANVILU),=m= P*({e}(D)) A ({e} ), =(a, n+1, [)].

Therefore, by 2.11, P*(p(e, a, n, m)) A (o(e, a, n, m)), = z(a, n, m).

So, by definition, 7(a, n, m) is defined and (z(a, n, m)), = z(a, n, m)(since (n, m)
& A,). Therefore (n, m) e Q,.

Because of well-foundedness of X by R relative to A, and of 1.8, we now
conclude that Q,= X. This proves 2.13.
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2.14. Let n(a)==(a, 0,0). By 2.13 and 2.7.1, we have that
2.14.1. Va[Pr(a)= P*(x(a)) A (n(a)), = a].
From this it follows that

Va[Pr(a)= Pr*(a)].

The proof of our main theorem 1.7 is now complete.
Moreover 2.14.1 shows that we can uniformly construct a recursive proof
of each provable formula.

Appendix

Complete list of axioms and rules of inference of the system A,.

1.

= e e
B wh=o

15.

16.
17.
18.

19.
20.
21.
22.
23.

24.
25.

© PN oUW

PP De),

@PoONDUeDPD D@D,

POWPD0&Y),

& ¢dDo,

P& PP,

(DD 02@VID,

PO9V Y,

¢$DeV e, ,

DO DUeD7PD7P),

T T,

@DP D@D De=9)),

(e=P)DeDP),

e=PDWPD0)

(D) D (@),

where = is a term which is free for x in ¢(x),
(e D PN D (@ D (NP,

where x does not occur free in ¢ and y does not occur in ¢(x),
(Ex)ep(x) = 7x) 7 ¢(x),

(@)p(a®) D o),

(@)@ D @) D (@ D (BIP(E),

where a® does not occur free in ¢ and * does not occur in ¢(a®),
(Ea®)p(a®) = 7 () 7 ¢(ah),

T=r,

7= p D (@) = P(p)),

(B! 0 A (e V (7 (B 0e(x) A (cx)p(x) =0),
(Ea®)(x)) -+ ()@ (xy o+, 1) =7),

where «* does not occur free in x,

7 (x+1=0),

x+0=zx,

23
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26. x+(y+D=(x+n+1,

27. xx0=0,

28. xX(y+1)=(xX¥)+x,

29. x+l=y+1Dx=y,

30. a'(0)=0 & (X)(a'(x) = a*(x+1)) DX (a'(x)=0),
3. £E20 ¢,

()
32 el
33. (8

(@p(a®
9O, o), p(1+1), -

34 D)

g

Clearly 30 and 32 are redundant on account of 34.
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