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The present paper is a continuation of our previous paper and the
object is to investigate the structure of compact complex manifolds of dimen-
sion 3 with (meromorphic) function fields of dimension 1 or 0. The results
are stated in the following two theorems.

THEOREM 1. Let ¢ : M— A4 be a holomorphic mapping of a compact complex
manifold of dimension 3 onto a compact Riemann surface. If the mapping ¢
induces an isomorphism of the meromorphic function field of 4 to the mero-
morphic function field of M, then a general fibre of ¢ must be one of surfaces
of the following classes; (i) K3 surface, (ii) surface with first Betti number b, =1,
(iii) complex torus, (iv) elliptic surface with a trivial canonical bundle, (V) ruled
surface with irregularity g =1, (vi) rational surface, (vii) Enriques surface.

THEOREM 2. A compact Kdhler manifold of dimension 3 which has no
non-constant meromorphic functions is bimeromorphically equivalent to (i) a
complex torus, (ii) an elliptic fibre space or a projective line bundle over a com-
plex torus, or (iii) a regular manifold with geometric genus p,=0 or 1.

§1. Proof of Theorem 1.

In Kodaira surfaces are classified into the following classes:
I) the class of algebraic surfaces with p,=0;
II) the class of K3 surfaces;
[II) the class of complex tori;
IV) the class of elliptic surfaces with p,=1;
V) the class of algebraic surfaces with p,=>1;
VI) the class of elliptic surfaces with b, =1(2), p,=1;
VII) the class of surfaces with b, =1.
Here p, and b, are the geometric genus and the first Betti number, respec-
tively. Surfaces of class (I) are classified furthermore into (i) rational sur-
faces, (ii) Enriques surfaces, (iii) elliptic surfaces, (iv) ruled surfaces with
irregularity ¢=1, (v) ruled surface with ¢=2, and (vi) surfaces of which
pluri genera increase infinitely.
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In the sequel we shall check whether any surface may appear as a fibre
of ¢ in the theorem.

PROPOSITION 1. Let ¢: M— A4 be a holomorphic mapping of a compact
complex threefold onto a compact Riemann surface. If a general fibre of ¢ is
a surface of class (IV) or (V), or a surface of class (VI) with a non-trivial
canonical bundle, then the dimension of the function field of M is greater than 1.

PrROOF. Let ® be the canonical bundle of M and ©(m&) the sheaf of
holomorphic sections of the bundle m®. By a fundamental theorem of Grauert
[1] the direct image ¢4(©(mK)) is a coherent sheaf. Hence, by means of
Grothendieck [2], the projective space A: P(p4(0(mf)))— 4 is defined. Let U
be the set of points of M where the canonical homomorphism ¢*(¢.(O(m&)))
—0O(m&) is surjective, then U is a complement of an analytic set of M, and
a morphism @ of U to P(px(©(mR))) over 4 is Q. UC M— Plp (0(mf)))

AN
Y|
defined canonically. If u is a general point of 4, then A17%(u) is a projective
space defined by the vector space H°(p *(u), o(mf)/m,0(mK)), where m, is the
maximal ideal of the local ring at u, and the restriction @, of @ to (W)U
is a morphism defined by a base of H°(¢ '(w), o(mf)/m,o(mK)). Now the
sheaf o(m&)/m,o(m&) is isomorphic to the sheaf of sections of multi-canonical
bundle mK of S,= ¢ %u), K being the canonical bundle of S,. By results of
Kodaira we know that the dimension of H°(S, ©(mK)) increases infinitely as
an integer m increases. Hence for a large m the morphism @, is defined
almost everywhere and meromorphic on S,, and the image by @, is not a
point. Therefore U is non-empty, @ is extensible to a meromorphic map of
M, and the image by @ is an irreducible analytic set of P(¢4«(©(mR))) of
dimension greater than 1. Since the analytic space P(p(@(m&))) is algebraic,

its analytic subset is also algebraic. Consequently dimension of the function
field of M is greater than 1.

PROPOSITION 2. Let ¢: M—4 be as in the above. If a general fibre S,
over ue 4 is a surface with geometric genus p,=0 and irregularity ¢=1, then
there are a complex space A2:V—4d over 4 and a meromorphic mapping ¥ of
M to V over 4 such that the restriction ¥, of W to S, is Albanese map of S,
onto the image of Albanese map, that is, a non-singular curve with genus q.

ProoOF. Let {a;} be a finite set of points of 4 such that the restriction
o’ of ¢ to M'=M—¢~'({a;}) is a simple morphism of M’ onto 4’'=4—{a;}.
We may assume that 4’ 4. Let £},, be the sheaf of holomorphic 1-differ-
entials along fibres of ¢ (cf. Grothendieck [2]). By Grauert the sheaf ¢.(2Y,)
is a coherent sheaf and for u & 4'¢x(2Y0u/Mux(£2%,4). i canonically isomor-
phic to H'(S,, £%,4/m, 2%, which is the space of holomorphic 1-differentials
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on S,. Here m, is the maximal ideal of the local ring at u. Since the space
4’ is affine, there are sections (w!, ---, w9 of I'(4’, ¢x(2%,0) =1 (M, 24,4
which generate H*(S,, Q%4/m.2%,4. Adding some a,, if necessary, we may
assume that (w!, ---, w? generate H(S,, 2%4/Mm, 2%, for every ues 4’. We
denote by (w'(w), ---, w¥u)) the elements of H(S,, 2%.4/m,82%,4,) which corre-
spond to (w!,---,w%. We fix a fibre S;=S,, and a base (y,, ---, 1,,) of the
first Betti group of S,. The fibre space ¢’: M’ — 4’ being topologically locally
trivial, we have a base (y,(u), ---, 72,(W) of the first Betti group of S. such
that each y;(u) depends continuously on u and y;(u)=ry; If we deform
(71, =+ » 72¢) continuously along a path 8 e n,(4") =m,(4’, uy), (1 -+, I'2q) iS trans-
formed into (X a; (B, -+ » 2 a;,,(B)r), where (a;(B)) is a unimodular matrix.
J J
The integral f , w®(u) is a multi-valued holomorphic functions of u. Putting
ALY
wj(u):(f ”wl(u), ,f ()wq(u)), the multi-vector-valued function w,(u) is
~ T]' u, T (U
transformed into Zakj(‘é)wk(u), by the analytic continuation along a path fj.
k
Let w: U’— 4’ be the universal covering of 4’. We denote simply by ;i)
the single vector-valued holomorphic function w;(w(#)) of #i € U’. Identifying
7,(4") with the covering transformation group with respect to w, we consider

the following automorphism of U’XC?;
2q
g, n): @ O— (i, ¢ +sz1 N ; ai(Boi),

" where fen,(4d), n=mnyeZ®, dc U, {eC% Theset G={g(B, n)|per, ),
ne Z*} is a group of automorphisms of U’/X(C? without fixed points. We
form the quotient space U’ XC?/ G, which is a complex manifold and is denoted
by B’. The natural projection of U’XC? to U’ induces a holomorphic map g
of B’ onto 4’ and the map U’'=#— (@, 0) € U’XC? induces the holomorphic
map v of 4’ to B’ such that poy=identity. Here 0 is the null-element of
vector space C1.

Let {U;} be an open covering of 4’ such that there is a holomorphic sec-
tion s; to M’ over U;. The map

z

¢y (Up 22— (0@ (]

is a well-defined holomorphic map and it holds ¢j;os;=v|U;. If U;N\U; is
non-empty, we have a unique automorphism A of B/|U;\Uy= p(U; N\ Up),
which is a translation along a fibre, such that 40y =¢;o0s,. We see immedi-
ately that Ay -Ap=A4; if UnUNU,+ ¢. Hence we can patch together
B'|U;=p~*(U;) by automorphisms {A4,;}. The space obtained by patching
together is denoted by A’. The map g may be considered as a map of A’
to 4’ and {¢;} induce a holomorphic map ¥’ of M’ to A’. By the theory of

wip@), -, |

Sj(/)

L U'xC%G=B
o L)) e Ux ey
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surfaces we know the image ¥(S,) of S, is a non-singular curve with genus
g. Hence the image V/=¥'(M’) of M’ is a complex submanifold of A’. We
denote by 4’ the restriction of g to V.

Now we shall extend the complex manifold V’ over 4’ to the complex
space V over 4. Take an a; and a small open disk U; with center a;, let m
be the least common multiple of the multiplicities of irreducible components
of ¢7!(a;) and let n: D— U,; be an m-fold covering with the point & lying over
a; as a branch point of degree (m—1). Considering the normalization M} of
the fibre product (M|U;)Xy,D and the natural projection ¢, from MF¥ to D,
we see immediately that each irreducible component of ¢;'(4¢) has multiplicity
1. Hence for every simple point of ¢~%(@) there exists a section s;: D— M¥.
Since D is a Stein manifold, there are sections (w?!, .-+, w?) of (goi)*(‘Q}W;k,D) over
D which generate (¢.)«(2¥0)/Ms(¢)x(Lu¥,0) for every point ¢ of D'=D—a.
In the same notation as before w/(¢) is a holomorphic 1-differential in simple
points of S,=¢;!(0) for 6 = D. We fix a point o, 0f D’ and a first Betti base
T oty T2q O Sy As before we denote by 7,(0), -+, 7,,(0) the first Betti base
such that y,(¢) depends continuously on ¢ and 7;(6,)=7,; An element 3 of
the fundamental group =,(D’) induces a transformation (r,-)a(zk) ap(Brw). Let

w: U— D’ be the universal covering with the covering transformation group
identified with =,(D’). Putting

w;(0) = (f

(()](6') = a)](m’(&)) for6eU ,
g8, m): (@, O— (B, L+ m 2 au(Bwy9))
G={g(B, m},

we form the quotient manifold B;,=UXC?%G. As before we let y; be the
natural projection from B, to D’ and let ¢; be the holomorphic map

wl(o-), cee, j.r '(0)11)‘1(0')) ,

74

dit M¥| D 52— (%(Z), (f;wz))wl(goi(z)), ey Jz wq(goi(z))» €B,;.

51(pi(2)

The analytic set E’ = ¢; " (¢i(s,(D"))) is extensible to the analytic set E of M#.

In fact fi(2)= f z( ()wf(goi(z)) is holomorphic in simple points of ¢;!(@). Hence
83(pi(2)

E’ is holomorphically extensible to simple points of ¢;%a@). Therefore by a

theorem of Remmert-Stein E’ is holomorphically extensible to M¥ over all.
The analytic set E is an irreducible surface, to which corresponds the com-
plex line bundle [E] on M¥. Let 2;: V,=P{(¢)«(@(mE)))— D be the projec-
tive space defined by the coherent sheaf (¢,)x(©@(m[E7J)) on D, where m is a
large integer, and let ¢;: M¥— V, be the canonical meromorphic mapping.
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Then the fibre A;%(c) over o = D’ is isomorphic to the image ¢{(S,) of S, in its
Albanese variety p;(o)C B;, and ¢;|S, is equivalent to the Albanese map
¢i1S,. Now the covering transformation group ¢ of D with respect to «
operates naturally on M¥ and we have M¥/¢=M|U,. It is easily seen that
an element of ¢ transforms the surface E onto itself, and that it induces the
automorphism of the line bundle [E7], which also induces the automorphism
of the complex space V,. Thus we may consider ¢ to be a group of auto-
morphisms of V,. Since & is a finite group, we can form the quotient space
Vi/@ which we denote by the same notation V,;. The mapping ¢; induces a
meromorphic mapping ¥; of M;|U; to V;. Seeing the construction it is clear
that V/|U} is canonically isomorphic to V;|Uj}, and that ¥;|U} is equivalent
to ¥’. Here U/=U,—a;. Thus we can extend the manifold V’ to the com-
plex space V and the holomorphic map ¥’ to the meromorphic map ¥.

COROLLARY. If a general fibre S, of ¢: M—d is a ruled surface with
wrregularity q = 2 or an elliptic surface with canonical bundle K such that mK~0
for a positive integer m, the dimension of the function field of M is greater
than 1.

PROOF. In the same notation as above a general fibre C, of 1: V—4 is
a curve with genus ¢ or an elliptic curve. In the latter case it is known by
a surface theory of Kodaira that the general fibre S, is an elliptic surface
over C, with multiple singular fibres. Since the set of points of indeterminacy
of the meromorphic map ¥ and points where ¥ is regular and not simple
constitute an analytic set of M, the image by ¥ of singular fibres of elliptic
surfaces S, forms a curve @ of V such that A(@)=4. Therefore in both
cases by results of Kodaira the surface V is bimeromorphically equivalent to
an algebraic surface. The dimension of the function field of M is not less
than that of V. This ends the proof.

§2. Examples and some propositions.

PROPOSITION. Let ¢: M— 4 be a holomorphic map of a compact complex
threefold onto a compact Riemann surface. If therelies on M a surface which
has no non-constant meromorphic functions, then dimension of the function field
of M is 1.

PrOOF. Supposing that dimension of the function field of M is greater
than 1, we shall obtain a contradiction. In case the dimension is 3, it is easy.
So we suppose that the dimension of the function field is 2. Then there are
a compact complex threefold M and a holomorphic map f (resp. ¢) onto M
(resp. an algebraic surface V). It suffices to prove that every irreducible
surface S on M has infinitely many curves. In case ¢)(S) has positive dimen-
sion, it is clear. In case ¢(S) is a point « of V, take a general simple point
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z, of ¢~'(«) which belongs to S and let &, {, » (resp. x, y) be local coordinates
with center z, (resp. o). Put x=x(@)=g(¢, {, n), y=3(()=hE, {, ) for
a neighboring point z of z, We may assume that S is defined by the
equation £=0 in a neighborhood of z, and that the functions g(&, {, n), h(&, C, p)
are expressed as

8 & ) =&%a& m+ayl, ME+ ), h(E, L ) =E0b(C p+ ).

Furthermore we may assume that g(§, , ) =£&¢ the point z, being a general
point. Now in case b, ») is non-constant, the inverse image ¢~ *(C;) of the
curve C, defined by the equation x#—Ay*=0 on 4 cuts a variable curve on S,
where 4 is a variable. If b0, ) is a constant b, and b,({, ) is non-constant,
the inverse image ¢~(C;) of the curve C, defined by the equation (y*—bgx#)*
—2Ax*y=0 cuts a variable curve on S, and so on. q.e.d.

PROPOSITION. Let ¢: M— 4 be an analytic fibre bundle of abelian varieties
of general type over a compact Riemann surface. If the manifold M is non-
algebraic, then dimension of its function field is 1.

PrROOF. Suppose that dimension of the function field of M is greater than
1. Then there is an irreducible hypersurface S on M such that ¢(S)=4.
Since each fibre ¢~!(u) is an abelian variety of general type, Sne¢~!(u) is an
ample divisor on ¢~'(u). Therefore the complex line bundle m [S] is very
ample for a large integer m by Grothendieck [2].

ExaMPLE 1. Let S be an elliptic surface with a trivial canonical bundle.
If S is not a complex torus, then by Kodaira [5] it is isomorphic to a quotient
manifold C?/G, G being an affine transformation group generated by g, g,
g, g, defined as

giw, =wytaj, gWw,=w,+o;w, 4By j=1,--,4 for (w,, w,) = C?,
where «ay, -+, a,, By, -+, B, are constant satisfying the conditions
o, —a,=0, aza,—aog=mp,+0,
m being a positive integer.

We put M=C?/G’, G’ being an affine transformation group generated by
o, T, g1, . & g, defined as

oz=2z+1, ow,=w,, ow,=w,
tz=2z++—1, tw,=w,+a, tw,=w,,

gz=2, gw,=w,+a; gw,=aw,+B; for (z,w,w,)esC?,
where

o 3@+2) | —4+3V2 —
— i + 4 V=1

By=— B(Z—ZN/T) -+ 4‘}_2\/‘? v =1, ‘BZ=2«/TI, Bs=Bi=0
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a,=a,=0, a,=1, a,=2++—1.

Let 4 be the complex torus C/{l, ~/—1} and let ¢ : M— 4 be the natural pro-
jection. Then a fibre of ¢ is the elliptic surface S and dimension of the
function field of M is 1. In fact, putting

0'z=2z+1, c'w,=w,,

tz=z+v—1, t'w,=w,+a,

giz=2z, gw,=w,+a; j=3,4 for (z, w) e C?,
and letting H be an affine transformation group generated by ¢/, 7/, g, and
g, we obtain an elliptic surface T=C?/H. By results of Kodaira [4] it is
easily proved that T is non-algebraic. Let A: M—T and p:T—4 be the
natural projections. If dimension of the function field of M were greater than

1, there would be a surface D on M such that A(D)=7T. Then the elliptic
surface S would be algebraic, which yields a contradiction.

EXAMPLE 2. Let P! be a projective line with non-homogeneous coordinate
x. Putting

oz=2z+1, ox=ax+0,
tz2=2z++—1, tx=cx+d, ac+0 for (z, x)e CXP*,

and letting G be a group of automorphisms of CxX P! generated by ¢ and =,
we obtain a compact surface R=CXP!/G. The natural projection induces a
holomorphic mapping 2 of R onto a 1-dimensional complex torus 7 with periods
(1, /—1). The surface R is a ruled surface with irregularity 1. Let S be
an analytic principal bundle with group T over a compact Riemann surface
4 which is not an algebraic surface, the existence of which is proved easily.
Since translations of C commute with ¢ and 7, the group T operates naturally
on K. Hence an analytic fibre bundle M with fibre R associated to S is defined.
Let ¢ : M— 4 and.¢: M— S be the natural projections. Now we shall show
that dimension of the function field of M is greater than 1 if a, b, ¢ and d
are general complex numbers. Suppose that dimension of the function field
is greater than 1. Then we see by [3] that M is elliptic and that almost all
irreducible surfaces on M are elliptic. Hence a general fibre of ¢, that is, R
is an elliptic surface. However R is non-elliptic for general a, b, ¢ and d.
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In fact; if R is an elliptic surface, it contains infinitely many elliptic curves
C such that A(C)=T. It is easily proved by Hurwitz’s formula that elliptic
curve C is an unramified covering of 7. Consequently a projective line bundle
induced from the bundle 2: R— T on an appropriate unramified covering of
T has infinitely many holomorphic sections. Therefore we infer readily that
there are positive integers m, n and infinitely many meromorphic functions
f(2) of z such that

fGe+m)=a™f()+b(l+a+ -+ +a™),
Ffz+nv—1)=c"f(2)+dA+c+ - +c™ ).
This yields the relation

n— m— m—1 n—
a™d 21 cd+b Zla": b Y at-d Zlcj .
i=o =0 k=0 =0

Thus R is not an elliptic surface for general a, b, ¢, d, €. 8., a=b=1, c=d=2.

REMARK. I have no example of a compact threefold M with a function
field of dimension 1 such that there is a holomorphic map ¢ of M onto a
compact Riemann surface 4 and a general fibre of ¢ is an Enriques surface
or a rational surface.

§3. Proof of Theorem 2.

Let M be a compact Kidhler manifold of dimension 3 on which there is
no non-constant meromorphic functions. We denote by 4” the dimension of
the linear space of holomorphic yv-forms on M.

PROPOSITION 3. A*=<1.

Proor. Suppose that A*=2. Let w,, w, be linearly independent holo-
morphic 3-forms. By local coordinates (2%, 2% 2z°) w; is expressed as fi(z)
dz* A dz? A dZ® and the function F(2) = fi(z)/f,(z) is a well-defined meromorphic
function on M which is not a constant. This is a contradiction.

PROPOSITION 4. A'<3.

PrOOF. Suppose that A'=4. Let ¢, ¢,, ¢, ¢, be linearly independent
holomorphic 1-forms. By the above proposition there are constants a and §,
either of which does not vanish, such that

agplAgDZ/\(p3+18§01/\gpzA§D4:O.

If ¢, A¢@,+#0, then there are meromorphic functions fj, f, such that ap,+4 ¢,
= f1¢0,+ ., Which yields a contradiction. If ¢; A ¢,=0, then there is a mero-
morphic function f and we have ¢,= fio,. This is a contradiction, too. Q.E.D.

Now we write h' =g and let ¢,, ---, ¢, be linearly independent holomorphic
1-forms. Since M is Kédhlerian by assumption, its first Betti number is 2gq.
Let 7y, -+, 72 be a base of the first Betti group and put
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Wy = (‘La@n ) j.raﬁ[’q\) ’
L={no-+ - FNyqwe | N E Z} .

Then £ is a discrete subgroup of C? of rank 2¢ and T¢=C%/ £ is a complex
torus of dimension ¢q. We fix a point z, of M and consider the mapping

@: Mzsz—»(j;%, . L}pq) eCyYR="T1.

The mapping ¢ is a well-defined holomorphic map and is called Albanese map..
PROPOSITION 5. The underlying continuous map of ¢ is a surjection.
PrROOF. In case ¢=3, we express the 3-form ¢, A ¢, A ¢, by local coordi-

nates as ¢, A @, A\ @, = f(2)dz* AN dz* ANdz*. Then the points of degeneracy of

¢ are defined by the equation f(z)=0. If f(2)+ 0 at some point (2), it is clear
that ¢ is a surjection. If otherwise, we have ¢, A ¢, A ¢, =0. This produces.

a contradiction as in the proof of the above proposition. The other case are:

dealt similarly.

PROPOSITION 6. [In case q=3, the mapping ¢ is one to one almost every-
where. Therefore the threefold M is bimeromorphically equivalent to a complex
torus.

ProOF. There exist no surfaces on 7. In fact let there be an irreducible
surface D on T2 and let #(x) be a reduced theta function defining D, then the
function f(x) = 0(x+a)f(x—a)/f(x)* is a non-constant meromorphic function on
T?® for general constant vector ¢, which contradicts the assumption to the
effect that no non-constant meromorphic function exists on M. We denote
by A the set of points of degeneracy of ¢. The set A is an analytic set and
has dimension not greater than 1 by the above. Clearly the map ¢ induces.
a surjective homomorphism of the fundamental group =,(M) of M to the:
fundamental group =,(7T) of 7. Therefore the restriction ¢|(M—A) of ¢
induces a surjective homomorphism of =z, (M—A) to 7 (T—e(A)), for ¢(A) is.
an analytic set of codimension greater than 1. The map ¢|(M—A) is a cover-
ing map. Hence the manifold AM— A is homeomorphic to the manifold T—¢@(A),.

q.e. d.

PROPOSITION 7. In case g=2, a general fibve of ¢ : M—T? 1is a rational
curve or an elliptic curve.

ProOF. We shall prove at first that every fibre of ¢ is connected. Let

¢,

o:M— T’——i’]‘ be the Stein factorization of the map ¢. The analytic
space T’ is by definition a space having connected components of fibres of ¢ as.
points. Hence the map ¢,: 7"— T is a covering map possibly with ramifica-
tion. Since T has no curve by the assumption, the covering map ¢, is un-
ramified. The map ¢, induces a surjective homomorphism of the fundamental
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groups, because ¢ =¢,0¢, induces a surjective homomorphism of the funda-
mental groups. Consequently the covering map ¢,: 7/— T is an isomorphism
and every fibre is connected. Next we shall prove that genus g of a general
fibre of ¢ is less than 2. Suppose that g=2. Let A be the set of degeneracy
points of the map ¢. The image ¢(A) consists of points {a;} of a finite num-
ber, for there lies no curve on 7T because of the fact that it has no non-
constant meromorphic functions. Let R, be the space of moduli of algebraic
curves with genus g. It is well-known that R, is a Zariski-open set of a pro-
jective variety. Since a fibre C, over a point ¢ of T"=T-—{a;} is an alge-
braic curve with genus g, we have a natural map ¢ of 7" to R,. By Hartogs’
theorem the holomorphic map ¢ is meromorphic on 7 over all. From the
fact that 7 has no non-constant meromorphic function, we infer readily that
the image ¢(7") is a single point. Consequently the fibre space ¢|[(M—A):
M—-A—T’ is an analytic fibre bundle. Its fibre is denoted by C. Taking a
polycylinder E; in a coordinate neighborhood with center a;, we are to replace
M|E;= ¢ Y(E;) by E;xC. Clearly there exists an isomorphism g of (E;—a;)XC
to M|(E;—a;). 1If we prove the existence of many meromorphic functions on
M| E;, we see by Hartogs’ theorem that g is extensible to a bimeromorphic
map of E;XC to M|E;,. We denote by & the canonical bundle of M. The
direct image @.(@(m&)) of the sheaf of holomorphic sections to m& is a coher-
ent sheaf on T by a fundamental theorem of Grauert. Since F; is a Stein
manifold, for a large integer m we have sections f, ---, f, of ©(O(m&)) over
E, such that the well-defined mapping

(MIE;) 22— (9@, (f2), -+, fa) € EXPT

is a bimeromorphic map which is an isomorphism on M|(E;—a;). Here P” is
a projective space of dimension ». Thus we have proved the existence of
many meromorphic functions on M|E; and we see that p is extensible to a
bimeromorphic map of E; X C and M|E,. By means of the isomorphism y replac-
ing M|E; by E;xXC, we obtain an analytic fibre bundle ¢*: M*—T. The
threefold M* is bimeromorphically equivalent to M. There are only a finite
number of automorphisms on C and we see immediately the existence of non-
constant meromorphic functions on AM*. This is a contradiction.

In case ¢g=1, T is an elliptic curve and has non-comstant meromorphic
functions. Thus we have completed the proof of the theorem.

As a corollary to the theorem we obtain the following proposition.

PROPOSITION. There are only a finite number of irreducible surfaces on a
compact Kahler manifold M of dimension 3 which has no non-constant mero-

morphic function.
PROOF. In case the irregularity of M is equal to 3, the proof of Proposi-

tion 6 shows that there are only a finite number of irreducible surfaces on
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M. Let ¢: M—T be an elliptic fibre space over a complex torus which has
no non-constant meromorphic function and suppose that M has infinitely many
irreducible surfaces. There lies an irreducible surface S on M such that
¢o(S)=T. Using the same notations as in the proof of Proposition 7, we infer
readily that the fibre space ¢|{(M—A): M—A—T—¢(A) is an analytic fibre
bundle. Its fibre is denoted by C. We take a small simply connected neigh-
borhood U; of a point a; of ¢(A). We put M;=M|U;, S;=S\M;, U,=U;—a,,
M,=M|\U}, S;=SM; Each connected component of S; is an unramified
covering of U/, which is simply connected. Hence each irreducible component
of S, is bimeromorphically equivalent to U; and consequently we have a holo-
morphic section to M} over U; which is extensible to a meromorphic mapping
of U, to M,;. Therefore we can prove in a similar manner to Kodaira
that there is a bimeromorphic map of M; to U;XC. By means of this bimero-
morphic map replacing M; by U;XC for each a;, we obtain an elliptic fibre
space ¢*:M*—T which is an analytic fibre bundle. The threefold M* is
bimeromorphically equivalent to M. Let S* be the irreducible surface on M*
corresponding to S. We put ¢*=¢*|S* and let ¢*: S*—T"— T be the Stein
factorization. It is easily seen that 7” is an unramified covering of 7. Clearly
the induced bundle from M* on 7 has a holomorphic section and consequently
it is isomorphic to a product bundle. Thus we see that M* has non-constant
meromorphic functions. The case where M is a fibre space of projective lines
can be dealt with similarly. In case the irregularity of M vanishes, from the

exact sequence
0 Z o o* 0

we have the exact sequence

HYM, ©) — HM, %) — H*M, Z),

in which H(M, ©)=0. Hence if there were an infinite sequence S, S,, ---, S;, -+
of irreducible surfaces on M, there would be integers n,, ---, 1, all of which

did not vanish, and the divisor f‘_, n;S; was linearly equivalent to zero. This
is a contradiction, - q.e. d.

As an example we prove the following

PROPOSITION. Let ¢ : M—S be a projective line bundle on a K3 surface S
which contains no irreducible curve. If M has non-constant meromorphic furnc-
tions, then it 1s equivalent to a product bundle.

Proor. If M has non-constant meromorphic functions, there are infinitely
many irreducible surfaces S, such that ¢(S,)=S. We shall prove that each
S, is isomorphic to S and S, does not intersect S, for y#v. Let A be the
set of singular points of S, and simple points where the restriction of ¢ to
S, degenerates. By the assumption the image ¢(A) consists of points {a;} of
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a finite number. Since S is simply connected, S—¢(A) is also simply connected
and S,—A is isomorphic to S—¢(A), for it is clear that S,—A is an unramified
covering of S—¢(A). Hence there is a meromorphic map s, of S to M which
is the inverse of the restriction of ¢ to S,. The map s, is holomorphic on S
over all. In fact if s,(a;) is a point for a point a; of ¢(A4), clearly s, is holo-
morphic at a;. Suppose that s,(e;) is not a point. Then it must be a projec-
tive line and s, is a quadratic transformation in a neighborhood of a;. Taking
a small neighborhood U; of a; and letting P' be a projective line, we identify
M|U, with U;xP*'. Then the surface S,|U; is defined by the equation
A'x—2% =0, where (x, y) are appropriate coordinates with center a; and (2, o)
is a system of homogeneous coordinates of P'. Now S,NS, is a curve for
r#v and o(S,NS,) consists of a finite number of points to which the point
a; belongs. Therefore taking an appropriate system of coordinates (x,, y,)
with center a,, the surface S,|U; is defined by the equation A'x,—2°,=0.
Consequently ¢(S,NS,) contains a curve defined by the equation xy,—x,y=0,
which is a contradiction. Thus we see S, is isomorphic to S and there is a
holomorphic section s, to M over S. We can prove in a similar manner that S,
does not intersect S, for #+v. Once we have infinitely many holomorphic
sections to M which do not intersect one another, it is clear that the projective
line bundle ¢ : M— S is equivalent to the product bundle Sx P

NotTE. In the following manner we see the existence of a projective line
bundle which is not equivalent to a product bundle. From the exact sequence

(1) — C* — GL(2) — PGL(1) — (1),

we have the exact sequence

H(S, %) — HY(S, GL2) — HXS, PGL()).

By a result of Kodaira [5] we have H'(S, ©*)=0 for a general K3 surface S.
Let zg be the tangent bundle of S and let ¢ : M— S be the associated projec-
tive line bundle to p(rg). Then it is not equivalent to a product bundle, and
M is Kihlerian if S is Kédhlerian.
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