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Introduction.

T. T. Frankel [5] applied Morse theory to the Stiefel manifolds using the
trace function. The critical sets in this case are Grassmann manifolds. In
this note we apply Morse theory to the Stiefel manifolds using “ length func-
tion”. We think of Stiefel manifolds as imbedded in Euclidean spaces and
use methods similar to R. Bott [3]. Finally, using some results on P. A.
Smith theory of periodic transformations we show that the Morse inequalities
are equalities. This method is due to Frankel [5]. The CW-decomposition
and the Poincar\’e polynomials obtained for Stiefel manifolds are, of course,
known. For this reason detailed proofs are omitted.

The referee points out that “ the length function “ is essentially the same
as the function used by Takeuchi and Kobayashi [7] generalizing the trace
function of Frankel [5]. The author is grateful to the referee for this and
other valuable suggestions and comments.

Preliminaries.

Let $F$ be $R$ , the field of real numbers, $C$ the field of complex numbers or
$Q$ , the quaternions. Let $U(n;F)=\{A|A\overline{A}^{t}=I_{n}\}$ where $A$ is an $n\times n$ matrix
with coefficients in $F$. The ‘ bar ‘ denotes complex conjugation or the quater-
nionic conjugation as the case may be. Let $U_{0}(n;F)$ be the identity com-
ponent of $U(n;F)$ . Hence $U_{0}(n;F)$ is $SO(n)$ if $F=R$ , is $U(n)$ if $F=C$, and
is $sp(n)$ if $F=Q$ . Let $\underline{u}(n;F)$ be the Lie algebra of $U(n;F)$ . Let $V_{p+q,p}(F)$

$=\frac{U_{0}(}{U}\frac{p+qjF)}{0(q,F)}$ be Stiefel manifold over $F$. If $q=0$ , we get the classical

groups; $V_{p+q,p}(F)$ is the set of all orthogonal p-frames in $F^{p+\underline{q}}$ space with
respect to the standard metric $\sum x_{i}\overline{x}_{i}$ .

The Stiefel manifolds are imbedded in Euclidean spaces as follows: Let
$G$ be a compact connected Lie group with an invariant Riemannian metric.
(We will take $G$ to be $U_{0}(n;F)$). Let $\sigma;G\rightarrow G$ be an involution with the full
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fixed group $K$. The Lie algebra $\underline{g}$ of $G$ splits into a direct sum $\underline{g}=\underline{k}\oplus\underline{p}$

where $\underline{k}$ is the Lie algebra of $K$. Of course $\underline{p}$ will be the eigenspace of eigen-
value $-1$ for the involution on $\underline{g}$ induced by $\sigma$ . The group $K$ acts on $\underline{p}$ by
adjoint action. The Stiefel manifolds arise as orbits for this action.

Let $G=U_{0}(n;F)$ with $n=2p+q$ and consider the involution $ X\rightarrow$

$I(p+q, p)XI(p+q, p)$ on $G$ where $I(p+q, p)$ is a diagonal matrix with the first
$p+q$ entries equal to 1 and the next $p$ entries equal to $-1$ . The full fixed
set $K$ is $\{U(p+q;F)\times U(p;F)\}\cap U_{0}(2p+q;F)$ .

$p+q$ $p$

Hence $\underline{p}=(_{*}^{0}$
$op^{+q}*|^{p}\subset\underline{u}(n;F)$ .

Let $\tau=(\frac{0}{-10}-1|^{1}\frac{01}{0})’\in\underline{p}$ . Then the orbit of $\tau$ under the adjoint action of

$K$ is $K/K^{*}$ , where $K^{*}$ is
$p$ $q$ $p$

$ppq\left(\begin{array}{lll}X & 0 & 0\\0 & Y & 0\\0 & 0 & X\end{array}\right)\in U_{0}(n;F)$ .

LEMMA. Stiefel manifold $V_{p+q,p}(F)$ can be identified with $K/K^{*}$ .
PROOF. This lemma is essentially due to Ehresmann. The following

proof is a slight modification of the proof in M. Takeuchi [8]. The group
$K$ acts on $U_{0}(p+q;F)$ by

$\left(\begin{array}{ll}X & 0\\0 & Y\end{array}\right)\cdot U=XU\left(\begin{array}{ll}Y & 0\\0 & I\end{array}\right)$

$X=(p+q)\times(p+q)$

$Y=p\times p$

for $U\in U_{0}(p+q;F)$ . This action is transitive and induces a transitive action

of $K$ on $\frac{U_{0}}{U}\frac{p+q;F)}{0(q;F)}$(. If le $=\left(\begin{array}{ll}X & 0\\0 & Y\end{array}\right)\in K$ leaves the identity coset fixed
then

$XU_{0}(q;F)\left(\begin{array}{ll}Y & 0\\0 & I\end{array}\right)=U_{0}(q;F)$

$x\left(\begin{array}{ll}I_{p} & 0\\0 & U(q.F)\end{array}\right)=(_{0^{p}}^{I}$ $o_{1}U_{0}(q;F)\left(\begin{array}{ll}Y & 0\\0 & I\end{array}\right)=\left(\begin{array}{ll}Y & 0\\0 & U_{0}(q.F)\end{array}\right)$
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X $E\left(\begin{array}{ll}Y & 0\\0 & U_{0}(q.F)\end{array}\right)\left(\begin{array}{ll}I_{p} & 0\\0 & U_{0}(q.\cdot F)\end{array}\right)X=\left(\begin{array}{ll}Y & 0\\0 & V\end{array}\right)$ , $V\in U_{0}(q ; F)$ .

Hence $k=\left(\begin{array}{lll}Y & & \\ & V & Y\end{array}\right)\in K^{*}$ . Thus the Stiefel manifold $V_{p+q,p}(F)$ can be

identified with $K/K^{*}$ .

Length function and its critical set.

Let $M^{m}$ be an m-dimensional manifold differentiably imbedded in a Eucli-
dean space $R^{n}$ . Let PE $R^{n}-M^{m}$ . Let $L_{P}(x)=square$ of the distance between
$x\in M^{m}$ and the fixed point $P$. Then $Q\in M^{m}$ is a critical point for $L_{P}(x)$ if
and only if the straight line $PQ$ is perpendicular to the tangent space $M_{Q}$ of
$M$ at $Q$ . For details see [3] or [6].

We are considering the Stiefel manifolds $V_{p+q,p}(F)$ imbedded $inp-\cdot$ (For

notations, see the previous section.) It is known that for the decomposition
$\underline{g}=\underline{k}\oplus\underline{p},$ $[\underline{k}, \underline{k}]\subset\underline{k},$ $[p, \underline{k}]-\subset\underline{p}$ and $[\underline{p}, \underline{p}]\subset\underline{k}$ . A maximal sub-algebra $\underline{h}$ of $\underline{p}$

is abelian and is called a Cartan subalgebra. In our cases $\underline{h}$ will be of the
form

$p+q$ $p$

$p+qp(\frac{0}{*,0*...0*}|_{0}^{*}\underline{0*.*})$ (all entries real).

We choose $P=(\frac{0}{-1,0-p-2}|\frac{012...0p}{00}1\in\underline{h}.$ $agen^{3}eralpointSuch^{r}apointh.avingdistinctentriesonthediagona1isca11ed$

The orbit of $a$ general point is $\frac{U_{0}(p+q;F)}{U(1;F)\times\cdots\times U(1;F)\cap U_{0}(q;F)}$

It is well known that the tangent space to the orbit of $P$ at $P$ is $XP-PX$
for all $X\in\underline{k}$ , the Lie algebra of $K=\{U(p+q;F)\times U(p;F)\}\cap U_{0}(2p+q;F)$ . If
we take $P$ to be general point, then the normal space to the orbit of $P$ at $P$

is precisely $\underline{h}$ . Also, if a straight line is perpendicular to an orbit at a
point, then it is perpendicular to all the orbits it meets $[3, 4]$ . Hence all the
critical points on the Stiefel manifold for the function $L_{P}(x)$ are matrices of
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the form

$(\prime o_{\overline{1}}\mp_{0\mp 1}|\frac{\pm 100\pm 1}{00})$

There are $2^{p}$ such isolated critical points.
It is clear that choosing a point in $\underline{p}$ suitably orbits such as

$\frac{U_{0}(p+q;F)}{U(q_{1};F)\times\cdots\times U(q_{k};F)\cap U_{0}(qjF)}q_{1}+\cdots+q_{k}=q$ can be obtained, and these

spaces can be studied in a similar way as Stiefel manifolds. These orbits

would have $ 2^{p}q_{!}\frac{!}{q_{k}!}\overline{q_{1}!q_{2}}\cdots$ critical points.

REMARK. These imbeddings of the orbits obtained by the adjoint action

of $K$ on $\underline{p}$ have been studied by Kobayashi and Takeuchi [7] and shown to

be minimal in the sense of total curvature.

Non-degeneracy and Index of the critical points.

R. Bott [2] has outlined a procedure to find the indexes of the critical

points. Let $P$ be a general point and let $\sigma$ be a critical point. Then find all

points $Q$ between $P$ and $\sigma$ where $\sigma P$ meets an orbit of lower dimension. (Recall

Pisonanorbit of maximum dimension.) The index of $\sigma=\sum\dim O(P)-\dim O(Q)$

where $0(P)=orbit$ of $P$ and the index can be readily computed. Also if $P$ is

a general point then $\sigma$ will be a non-degenerate critical point.

As a concrete example consider $\frac{U}{U}(4)_{-}(2)$ Here $p=q=2$ . The four critical

points for $L_{P}(x)^{\tau}.are$

$4\times 4$

$(\mp_{0\mp 100}10\overline{000}|_{2x^{0}2^{\pm 1}}^{0}\underline{\pm 100000})$

For simplicity we will write them as $(\pm 1, \pm 1)$ . Also $(a, b)$ would mean the

matrix

$(_{\overline{-a000}}0-b000|_{0}^{a0}\underline{0b0000})$
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Thus $P=(1,2)$ .
Critical points Points $Q$ where $P$ meet Index

orbits of lower dimension
$(1,1)$ $0$

$(-1,1)$ (0,3/2) 5
(1, -1) $(1,0)$ , $(1,1)$ $5+2=7$

$(-1, -1)$ $(0,1/2),$ $(-1/5,1/5)$ $5+2+5=12$
$(-1/3,0)$

The relationship between critical points and homology is stated in the
form of (weak) Morse inequalities $i$ . $e.,$ $b_{i}(V_{p+q,q}(F))\leqq c_{i}$ , where $b_{i}$ is the ith
Betti number with a field as coefficients. (If $F=R$ we use $Z_{2}$ as coefficients
and in the other two cases any field may be used). Also $c_{i}$ is the number of
critical points of index $i$ .

Applications of fixed point theory.

In this last section we show that the Morse inequalities are equalities.
For this we use results on P. A. Smith theory of periodic maps. (This method
of showing the Morse inequalities to be equalities is due to Frankel [5].) In
particular we use the following two theorems. More general results and
proofs can be found in [1].

Let $\Gamma=(\frac{\Gamma^{\prime}I}{0}q|\frac{0}{\Gamma’})$ , where $\Gamma^{\prime}=\left(\begin{array}{ll}\pm 1. & 0\\0 & \pm 1\end{array}\right)$ , $p\times p$ matrix.

THEOREM I. If $\Gamma$ acts on a compact differentiable manifold $M$, if $F$ is the

fixed set then $\sum b_{i}(F;Z_{2})\leqq\sum_{i}b_{i}(M;Z_{2})$ .
This theorem is applied to $M=V_{p+q,p}(R)$ . For the adjoint action of $\Gamma$ on

$M$, the fixed set is precisely the set of critical points for the function $L_{P}(x)$ .
These are $2^{p}$ in number and we get $2^{p}\leqq\sum_{i}b_{i}(M;Z_{2})$ . Hence the Morse in-
equalities for $V_{p+q,p}(R)$ become equalities.

For the case $V_{p+q,p}(F),$ $F=C$ or $Q$ , we use
THEOREM II. If a toral group operates on a compact differentiable manifold

$M$ and if $F$ in the fixed set, then $\sum_{i}b_{i}(F;K)\leqq\sum_{i}b_{i}(M;K)$ where $K=R$ or $Z_{p},$ $p$

prime.

Let $T=(\frac{\cos\theta_{!}.\cdot 0\sin\theta 0\cos\theta\sin\theta I_{q}0}{-\sin\theta\cos\theta_{1},-\sin\theta 0\cos\theta_{p}^{0}0_{p}}1$
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$T$ operates on $V_{p+q,p}(F)$ by adjoint action and fixed points are the criticaR
points. Thus $2^{p}\leqq\sum_{t}b_{i}(M;K)$ . Hence the Morse inequalities in these two:

cases become equalities. Further $V_{p+q,p}(F),$ $F=C$ or $Q$ , has no torsion.
By induction the Poincar\’e polynomials for the three Stiefel manifolds calk

be obtained.
University of Washington

Seattle, Washington
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