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An m-dimensional pseudo-Riemannian manifold $(M, g)$ is by definition a
differentiable manifold $M$ with a definite or indefinite Riemannian metric
tensor $g$ of signature $(r, s)$ . If the signature of $g$ is $(m, 0)$ , then we say that

\langle $M,$ $g$) is a Riemannian manifold. The purpose of this note is to generalize
the results on transformations of Riemannian manifolds to those of pseudo-
Riemannian manifolds.

In section 1 we give the basic relations of connections or various tensors
satisfied by projective or conformal transformations. In section 2 we consider
affine transformations and, for example, we get

COROLLARY 2.5. If $(M, g)$ is a compact irreducible pseudo-Riemannian
manifold of signature $(r, s)$ satisfying $r\neq s$ , then any affine transformation of
$M$ is an isometry.

In sections 3, 4, 5 and 6 we study projective and conformal transformations
leaving some tensors invariant, in a similar way as in K. Yano and
T. Nagano’s paper [10]. However, some statements of theorems in [10] seem
to be imcomplete, and so we give here complete statements and prove them
in pseudo-Riemannian manifolds. For example we have

PROPOSITION 5.1. Let $(M, g)$ and $(N, /g)$ be pseudo-Riemannian manifolds
of dimension $m\geqq 4$ . If there is a conformal transformation $\varphi$ of $M$ to $N$ which
leaves the covariant derivatives of the Weyl conformal curvature tensors invari-
ant and if the set of points where $\varphi$ is non-affine is dense in $M$, then $M$ and
$N$ are conformally flat.

As a consequence of this proposition we have
PROPOSITION 5.3. Let $M(m\geqq 4)$ be an irreducible locally symmetric pseudo-

Riemannian manifold of signature $(r, s),$ $r\neq s$ . Then we have either
(i) $M$ is of constant curvature, $or$

(ii) $M$ does not admit any non-homothetic conformal transformation.
In the last section we give examples which support our statements of

Proposition 3.1 and Proposition 5.1.
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\S 1. Preliminaries.

(i) Let $M$ and $N$ be differentiable manifolds with linear connections $\nabla$

and $/\nabla$ . If $\varphi$ is a transformation (diffeomorphism) of $M$ to $N$, then $\varphi$ induces
a map of geometric objects $\prime K$ on $N$ to those on $M$ denoted by $\varphi K$. Especially
for $\nabla$ on $N$ we have an induced connection $\varphi\nabla$ defined by

(1.1) $\varphi\nabla_{X}Y=\varphi^{-1./}\nabla_{\varphi X}(\varphi Y)$

for any vector fields $X$ and $Y$ on $M$, where $\varphi$ itself denotes the differential
of $\varphi$ From now on by $V,$ $X,$ $Y$ and $Z$ we denote vector fields on $M$. Since
the difference of the connections $\Phi\nabla$ and $\nabla$ makes a tensor field of type $(1, 2)$

we denote it by $W$, and we define $W_{X}$ by

(1.2) $\varphi\nabla_{X}Y-\nabla_{X}Y=W(Y, X)=W_{X}(Y)$ .
If $K$ is a tensor field of type $(1, 1)$ , for example, then we have

$(\varphi\nabla_{X}K-\nabla_{X}K)Y=W_{X}(KY)-K\cdot W_{X}(Y)$ .
In the last equation if we replace $K$ by $\varphi K$, and notice the relation $\varphi\nabla_{x^{\varphi}}K$

$=\varphi(/\nabla_{\varphi X^{\prime}}K)$ , then we get
LEMMA 1.1. Let $\varphi$ be a transformation of $(M, \nabla)$ to $(N, ’\nabla)$ and let $\prime K$ be

a tensor field of type $(1, 1)$ , for example, on N. Then we have

(1.3) $(\varphi(’\nabla_{\varphi X^{\prime}}K)-\nabla_{x^{\varphi}}K)Y=W_{X}(\varphi KY)-\varphi K\cdot W_{X}(Y)$ .
(ii) Suppose that the linear connections $\nabla$ and $’\nabla$ are symmetric. A trans-

formation $\varphi$ of $M$ to $N$ is projective if and only if we have a l-form $p$ on $M$

such that

(1.4) $W_{X}(Y)=W(Y, X)=p(Y)X+p(X)Y$ .
We say that $\varphi$ is non-affine at $x$ of $M$ if $p_{x}\neq 0$ . The Riemannian curvature
tensors $R$ and $\varphi R$ , the Ricci curvature tensors $R_{1}$ and $\varphi R_{1}$ are, as is well known
(for example, see [1]), related by

(1.5) $\varphi R(X, Y)Z=R(X, Y)Z+(\nabla_{Y}p)(Z)X-(\nabla_{X}p)(Z)Y+p(Z)p(X)Y$

$-p(Z)p(Y)X+((\nabla_{Y}p)(X)-(\nabla_{X}p)(Y))Z$ ,

(1.6) $\varphi R_{1}(X, Y)=R_{1}(X, Y)+(m-1)(p(X)p(Y)-(\nabla_{Y}p)(X))$

$+(\nabla_{X}p)(Y)-(\nabla_{Y}p)(X)$ .
Now we deflne a tensor $P_{1}$ of type $(0,2)$ by

(1.7) $(m^{2}-1)P_{1}(X, Y)=-mR_{1}(X, Y)-R_{1}(Y, X)$ .
Then the Weyl projective curvature tensor $P$ defined by
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(1.8) $P(Z, X, Y)=R(X, Y)Z+P_{1}(Z, X)Y-P_{1}(Z, Y)X$

$+(P_{1}(X, Y)-P_{1}(Y, X))Z$

is invariant under any projective transformation, $i$ . $e$ . $\varphi P=P$. For $m\geqq 3$ we
define a tensor $Q$ of type $(0,3)$ by defining $(m-2)Q(Z, X, Y)$ to be the trace
of the map $V\rightarrow(\nabla_{V}P)(Z, X, Y)$ . If the Ricci tensor is symmetric, then (1.8)
is written as
(1.8)i $P(Z, X, Y)=R(X, Y)Z-(m-1)^{-1}(R_{1}(X, Z)Y-R_{1}(Y, Z)X)$ .

LEMMA 1.2. For a projective transformation $\varphi$ of a differentiable manifold
$(M, \nabla)(m\geqq 3)$ with symmetric connection and symmetric Ricci tensor to another
such $(N, ’\nabla)$ we have

(1.9) $\varphi Q(Z, X, Y)-Q(Z, X, Y)=p(P(Z, X, Y))$ .

PROOF. If we apply (1.3) to the projective curvature tensor $P$, then, using
$\varphi P=P$, we get

$(m-2)(\varphi Q(Z, X, Y)-Q(Z, X, Y))=trace[V\rightarrow W_{V}P(Z, X, Y)-P(W_{V}Z, X, Y)$

$-P(Z, W_{V}X, Y)-P(Z, X, W_{V}Y)]$ .
By applying (1.4), the right hand side is written as

trace $[V\rightarrow p(P(Z, X, Y))V-2p(V)P(Z, X, Y)-p(Z)P(V, X, Y)$

$-p(X)P(Z, V, Y)-p(Y)P(Z, X, V)]$ .
By (1.8) we see that trace $[V\rightarrow P(Z, X, V)]=0$ . Similarly we get trace $[V\rightarrow$

$P(V, X, Y)]=0$ and $trace[V\rightarrow P(Z, V, Y)]=0$ . Then (1.9) follows from

trace $[V\rightarrow p(P(Z, X, Y))V-2p(V)P(Z, X, Y)]=(m-2)p(P(Z, X, Y))$ .

(iii) Let $\varphi$ be a conformal transformation of a pseudo-Riemannian mani-
fold $(M, g)$ to $(N, \prime g)$ such that $\varphi g=e^{2\alpha}g$ for a function $\alpha$ on $M$. With respect
to the Riemannian connections $\nabla$ and $/\nabla$ on $M$ and $N$ we have

(1.10) $W_{X}Y=(X\alpha)Y+(Y\alpha)X-g(X, Y)grad$ a ,

where $grad$ a is a vector field associated with $ d\alpha$ defined by the metric tensor
$g$. We say that $\varphi$ is non-homothetic at $x$ of $M$ if $(d\alpha)_{x}\neq 0$ . The relation
between the Riemannian curvature tensors is

(1.11) $\varphi R(X, Y)Z=R(X, Y)Z+F(Z, Y)X-F(Z, X)Y$

$+g(Z, Y)F(X)-g(Z, X)F(Y)$ ,

where

(1.12) $F(Z, Y)=(\nabla_{Z}d\alpha)(Y)-(Z\alpha)(Y\alpha)+2^{-1}g(grad\alpha, grad\alpha)g(Z, Y)$
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and $F(X)$ is defined by $g(F(X), Y)=F(X, Y)$ . We have also the relations be-
tween the Ricci curvature tensors, and scalar curvatures $S$ and $\varphi S$ . The Weyl
conformal curvature tensor $C$ defined for $m\geqq 3$ by

(1.13) $C(Z, X, Y)=R(X, Y)Z-(m-2)^{-1}(R_{1}(Z, X)Y-R_{1}(Z, Y)X$

$+g(Z, X)R^{1}(Y)-g(Z, Y)R^{1}(X))$

$+(m-1)^{-}(m-2)^{-1}S(g(Z, X)Y-g(Z, Y)X)$

is invariant under any conformal transformation, where $R^{1}(X)$ is defined by
$g(R^{1}(X), Y)=R_{1}(X, Y)$ . If $m=3$ , then we have $C=0$ . For $m\geqq 4$ , we define
$(m-3)E(Z, X, Y)$ to be the trace of the map $V\rightarrow(\nabla {}_{V}C)(Z, X, Y)$ . Then $E$ is
a tensor field of type $(0,3)$ . Similarly to Lemma 1.2, we have

LEMMA 1.3. For a conformal transformation $\varphi$ of a pseudo-Riemannian

manifold $(M, g)(m\geqq 4)$ to another $(N, \prime g)$ we have

(1.14) $\varphi E(Z, X, Y)-E(Z, X, Y)=d\alpha(C(Z, X, Y))$ .

PROOF. If we apply (1.3) to the conformal curvature tensor $C$, then, using
$\varphi C=C$ , we get

$(m-3)(\varphi E(Z, X, Y)-E(Z, X, Y))=trace[V\rightarrow W_{V}C(Z, X, Y)$

$-C(W_{V}Z, X, Y)-C(Z, W_{V}X, Y)-C(Z, X, W_{V}Y)]$ .

By (1.10) the right hand side is written as

trace $[V\rightarrow d\alpha(C(Z, X, Y))V-2(V\alpha)(C(Z, X, Y)$

$-g(V, C(Z, X, Y))grad\alpha-(Z\alpha)C(V, X, Y)$

$-(X\alpha)C(Z, V, Y)-(Y\alpha)C(Z, X, V)$

$+g(V, Z)C(grad\alpha, X, Y)+g(V, X)C(Z, grad\alpha, Y)$

$+g(V, Y)C(Z, X, grad\alpha)]$ .
First we have

trace $[V\rightarrow d\alpha(C(Z, X, Y))V-2(V\alpha)C(Z, X, Y)]=(m-2)d\alpha(C(Z, X, Y))$ ,

trace $[V\rightarrow-g(V, C(Z, X, Y))grad\alpha]=-g(grad\alpha, C(Z, X, Y))$

$=-d\alpha(C(Z, X, Y))$ .
Next by (1.13) we get trace $[V\rightarrow C(V, X, Y)]=0$ , trace $[V\rightarrow C(Z, V, Y)]=0$

and trace $[V\rightarrow C(Z, X, V)]=0$ . If we write $C(Z, X, Y)=C(X, Y)Z$, then it is
known that $C$ satisfies the same algebraic equations as those satisfied by the
Riemannian curvature tensor $R$ , and so we have
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trace $[V\rightarrow g(V, Z)C(grad\alpha, X, Y)]=g(Z, C(grad\alpha, X, Y))$

$=-g(grad\alpha, C(Z, X, Y))$

$=-d\alpha(C(Z, X, Y))$ ,

trace $[V\rightarrow g(V, X)C(Z, grad\alpha, Y)+g(V, Y)C(Z, X, grad\alpha)]$

$=g(X, C(Z, grad\alpha, Y))+g(Y, C(Z, X, grad\alpha))$

$=-g(Z, C(X, grad\alpha, Y)+C(Y, X, grad\alpha))$

$=g(Z, C(grad\alpha, Y, X))$

$=g(grad\alpha, C(Z, X, Y))$

$=d\alpha(C(Z, X, Y))$ .
Therefore, adding these results together we have (1.14).

By $A(M),$ $H(M)$ and $I(M)$ we denote the group of affine $(W=0)$ , homothetic
$(d\alpha=0)$ and isometric $(\alpha=0)$ transformations of $M$, respectively.

If a transformation $\varphi$ of $(M, g)$ to $(N, /g)$ satisfies $\varphi g=-e^{2\alpha}g$ we say that
$\varphi$ is an anti-conformal transformation, an anti-homothety, or an anti-isometry.

\S 2. Affine transformations.

In the previous paper [6] generalizing [2] we obtained the following
PROPOSITION 2.1. Let $(M, g)$ and $(N, \prime g)$ be irreducible pseudo-Riemannian

manifolds and assume that the signature $(r, s)$ of $g$ satisfies $r\neq s$ . If there is
an affine transformation $\varphi$ of $M$ to $N$, then the signature $of\prime g$ is $(r, s)$ or $(s, r)$

and $\varphi$ is a homothety or an anti-homothety, respectively.
REMARK 2.2. Any 2-dimensional orientable pseudo-Riemannian manifold

$(M, g)$ of signature $(1, 1)$ is reducible. In fact for any point $x$ of $M$ each
l-dimensional subspace of the tangent space $M_{x}$ at $x$ defined by null vectors
is invariant by the restricted homogeneous holonomy group.

REMARK 2.3. Since the distinction between $g$ and $-g$ in a pseudo-Rieman-
nian manifold $M$ is not essential, in many cases we may assume that the
signature $(r, s)$ of $g$ satisfies $r\geqq s$ .

PROPOSITION 2.4. Any homothety (or anti-homothety) of a compact pseudo-
Riemannian manifold $(M, g)$ is an isometry (or anti-isometry).

PROOF. We assume that $M$ is orientable. Then we have the volume ele-
ment $(\epsilon\det g)^{1/2}dx^{1}\wedge\cdots\wedge dx^{m}$ defined by the determinant of $g$ in each coordinate
neighborhood (the order $(x^{1}, \cdots , x^{m})$ being compatible with the orientation and
$\epsilon$ being the sign of $\det g$). Then the proof for a homothety is the same as in
the Riemannian case (cf. [5]). An anti-homothety can exist only when the
signature of $g$ is $(r, r)$ . And for an anti-homothety $\varphi$ of $(M, g)$ , we consider
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a homothety $\varphi$ of $(M, g)$ to $(M, -g)$ .
By Propositions 2.1. and 2.4 we get

COROLLARY 2.5. If $(M, g)$ is a compact irreducible pseudo-Riemannian

manifold of signature $(r, s)$ satisfying $r\neq s$ , then any affine transformation of
$M$ is an isometry.

Similarly to [2], we have
COROLLARY 2.6. Let $M$ be an irreducible pseudo-Riemannian manifold of

signature $(r, s)$ satisfying $r\neq s$ . Then we have:
(i) Any compact subgroup of $A(M)$ is a subgroup of $I(M)$ .

(ii) The commutator subgroup $[A(M), A(M)]$ is a subgroup of $I(M)$ .
REMARK 2.7. Let $M$ and $N$ be pseudo-Riemannian manifolds. If an affine

transformation of $M$ to $N$ is isometric at some point of $M$, then it is an iso-
metry (see [9], p. 57).

\S 3. $\nabla P$-preserving projective transformations.

PROPOSITION 3.1. Let $M(m\geqq 3)$ and $N$ be differentiable manifolds with sym-
metric connections $\nabla$ and $/\nabla$ , and symmetric Ricci tensors $R_{1}$ and $/R_{1}$ . If there
is a projective transformation $\varphi$ of $M$ to $N$ which leaves the covariant deriva-
tives of the Weyl projective curvature tensors invariant and if the set of points
where $\varphi$ is non-affine is dense in $M$, then $M$ and $N$ are projectively flat.

PROOF. By $\varphi(^{\prime}V^{\prime}P)=\nabla P$, we have $\varphi Q=Q$ . Next by Lemma 1.2 we have
$p(P(Z, X, Y))=0$ . If we apply (1.3) to $P$, using $\varphi(^{\prime}\nabla^{\prime}P)=\nabla P$ and $\varphi P=P$, we
get

$0=W_{V}(P(Z, X, Y))-P(W_{V}Z, X, Y)-P(Z, W_{V}X, Y)-P(Z, X, W_{V}Y)$ .
By (1.4), using $p(P(Z, X, Y))=0$ , we get

(3.1) $0=2p(V)P(Z, X, Y)+p(Z)P(V, X, Y)$

$+p(X)P(Z, V, Y)+p(Y)P(Z, X, V)$ .
Take a point $x$ of $M$ such that $p_{x}\neq 0$ . Then we have a basis $(e_{1}$ , $\cdot$ .. , $e_{m})$ of
$M_{x}$ and the dual basis $(w^{1}, \cdots , w^{m})$ such that $w^{1}=p_{x}$ .

If we put $V=e_{1},$ $Z=e_{\iota},$ $X=e_{j}$ , $Y=e_{k}$ in (3.1), then we get $P(e_{\iota}, e_{j}, e_{k})=0$

for $j,$ $k,$ $1\neq 1$ .
If we put $V=Z=e_{1},$ $X=e_{j},$ $Y=e_{k}$ in (3.1), then we have $P(e_{1}, e_{j}, e_{k})=0$

for $j,$ $k\neq 1$ .
If we put $V=X=e_{1},$ $Z=e_{\iota},$ $Y=e_{k}$ in (3.1), then we get $P(e_{l}, e_{1}, e_{k})=0$

for $k,$ $l\neq 1$ .
Finally if we put $V=Z=X=e_{1},$ $Y=e_{k}$ in (3.1), then we have $P(e_{1}, e_{1}, e_{k})$

$=0$ for $k\neq 1$ .
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Therefore we have $P=0$ at $x$ . Since the set of points $x$ such that $p_{x}\neq 0$

is dense in $M$, we have $P=0$ on $M$.
REMARK 3.2. In section 7, we give an example showing necessity of the

assumption that “ the set of points where $\varphi$ is non-affine is dense in $M$ ’ in
the above Proposition.

A pseudo-Riemannian manifold $M$ is said to be of constant curvature at
$x$ , if the Riemannian curvature tensor satisfies

$R(X, Y)Z=k_{x}(g(Z, Y)X-g(Z, X)Y)$

at $x$ for some real number $k_{x}$ . If $k_{x}$ is constant on $M,$ $M$ is said to be of
constant curvature. It is known that any projectively flat pseudo-Riemannian
manifold is of constant curvature. Thus we get

PROPOSITION 3.3. Let $(M, g)$ and $(N, \prime g)$ be pseudo-Riemannian manifolds
$(m\geqq 3)$ . If there is a projective transformation $\varphi$ of $M$ to $N$ which leaves the
covariant derivatives of the Weyl projective curvature tensors invariant and if
the set of points where $\varphi$ is non-affine is dense in $M$, then $M$ and $N$ are of
constant curvature.

COROLLARY 3.4. Suppose that a pseudo-Riemannian manifold $M(m\geqq 3)$ is
not of constant curvature on any open set in M. Then any projective trans-
formation of $M$ to another $N$ which feaves the covariant derivatives of the Weyl
projective curvature tensors invariant is affine.

PROPOSITION 3.5. Let $(M, g)(m\geqq 3)$ be a locally symmetric pseudo-Riemann-
ian manifold. Then either

(i) $M$ is of constant curvature, $or$

(ii) $M$ does not admit any non-affine projective transformation.
PROOF. Since $M$ is locally symmetric we have $\nabla R=0$ and hence $\nabla P=0$ .

Suppose that $M$ is not of constant curvature. Then $P$ does not vanish at some
point of $M$. Since $P$ is a parallel tensor field, it does not vanish anywhere.
Thus any projective transformation of $M$ is necessarily affine.

REMARK 3.6. When the metric is positive definite, Proposition 3.3 and
Corollary 3.4 for non-affine infinitesimal projective transformation were stated
by K. Yano and T. Nagano in [10] without the condition that the set of points
where $\varphi$ is non-affine is dense in $M$.

Proposition 3.5 is a generalization of a result due to T. Sumitomo [5] on
Riemannian manifolds.

\S 4. Ricci-curvature-tensor-preserving projective transformations.

First we remark that a projective transformation leaves the Ricci curva-
ture tensor invariant if and only if it leaves the Riemannian curvature tensor
invariant. In fact, each condition is equivalent to $(\nabla_{X}p)(Y)=p(X)p(Y)$ in
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(1.5) and (1.6).
PROPOSITION 4.1. Let $M$ and $N$ be irreducible pseudo-Riemannian mani-

folds and assume that the signature $(r, s)$ of $g$ satisfies $r\neq s$ . Then any pro-
jective transformation of $M$ to $N$ which leaves the Ricci curvature tensors
invariant is a homothety, or anti-homothety.

Especially, further, if both Ricci curvature tensors of $M$ and $N$ vanish,
then any projective transformation is a homothety, or anti-homothety.

PROOF. Since the restricted holonomy group of $M$ is irreducible, it has
no invariant covector. By S. Ishihara’s result ([1], p. 209) any Ricci-curvature-
tensor-preserving projective transformation is affine. So if we apply Proposi-
tion 2.1, then the proof is completed.

\S 5. $\nabla C$ -preserving conformal transformations.

An analogous proposition to Proposition 3.3 is as follows.
PROPOSITION 5.1. Let $(M, g)$ and $(N, \prime g)$ be pseudo-Riemannian manifolds

$(m\geqq 4)$ . If there is a conformal transformation $\varphi$ of $M$ to $N$ which leaves the
covariant derivatives of the Weyl conformal curvature tensors invariant and if
the set of points where $\varphi$ is non-homothetic is dense in $M$, then we have $C=0$

and, $M$ and $N$ are conformally flat.
PROOF. By $\varphi C=C$ and $\varphi(^{\prime}\nabla^{\prime}C)=\nabla C$ , we have $\varphi E=E$ . Then by Lemma

1.3 we get $d\alpha(C(Z, X, Y))=0$ , and this also implies $C(grad\alpha, X, Y)=0$ . If we
apply (1.3) to $C$ , then we get

$0=W_{V}(C(Z, X, Y))-C(W_{V}Z, X, Y)-C(Z, W_{V}X, Y)-C(Z, X, W_{V}Y)$ .
Using (1.10) and above relations, we get

(5.1) $0=2(V\alpha)C(Z, X, Y)+g(V, C(Z, X, Y))grad$ a

$+(Z\alpha)C(V, X, Y)+(X\alpha)C(Z, V, Y)+(Y\alpha)C(Z, X, V)$ .
Taking the inner product with $U$ we get

(5.2) $0=2(V\alpha)g(U, C(Z, X, Y))+(U\alpha)g(V, C(Z, X, Y))$

$+(Z\alpha)g(U, C(V, X, Y))+(X\alpha)g(U, C(Z, V, Y))$

$+(Y\alpha)g(U, C(Z, X, V))$ .
If $d\alpha\neq 0$ at $x$ of $M$, then we can take a basis $(e_{1}, \cdots , e_{m})$ of $M_{x}$ and the

dual basis $(w^{1}, \cdots , w^{m})$ at $\chi$ such that $ w^{1}=d\alpha$ . In the following calculation we
read $(V\alpha)=d\alpha(V)$ , etc.

If we put $V=e_{1},$ $X=e_{j},$ $Y=e_{k},$ $Z=e_{\iota},$ $U=e_{i}$ in (5.2), then we have
$g(e_{i}, C(e_{\iota}, e_{j}, e_{k}))=0$ for $i,$ $j,$ $k,$ $l\neq 1$ .

If we put $V=U=e_{1},$ $X=e_{j},$ $Y=e_{k},$ $Z=e_{\iota}$ in (5.2), we get $g(e_{1}, C(e_{\iota}, e_{j}, e_{k}))$
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$=0$ for $j,$ $k,$ $l\neq 1$ .
If we put $V=U=X=e_{1},$ $Y=e_{k},$ $Z=e_{l}$ in (5.2), then we have $g(e_{1}, C(e_{\iota}, e_{1}, e_{k}))$

$=0$ for $k,$ $l\neq 1$ .
Thus we have $g(U, C(Z, X, Y))=0$ at $x$ for any $U,$ $Z,$ $X$, and $Y$, and we

get $C=0$ at $x$ . Since the set of points $\chi$ such that $(d\alpha)_{x}\neq 0$ is dense in $M$,

we have $C=0$ on $M$.
COROLLARY 5.2. Suppose that a pseudo-Riemannian manifold $M(m\geqq 4)$ is

conformally non-flat on any open set in M. Then any conformal transforma-
tion of $M$ to another $N$ which preserves the covariant derivatives of the Weyl
conformal curvature tensors is a homothety.

PROPOSITION 5.3. Let $M(m\geqq 4)$ be an irreducible locally symmetric pseudo-
Riemannian manifold of signature $(r, s),$ $r\neq s$ . Then we have either

(i) $M$ is of constant curvature, $or$

(ii) $M$ does not admit any non-homothetic conformal transformation.
PROOF. By local symmetry of $M$ we have $\nabla R=0$ and $\nabla C=0$ . If $C$ is

not trivial at some point, then it is not trivial anywhere. So we have (ii).

Otherwise we have $C=0$ on $M$, and so if we show the next Lemma, we get (i).

LEMMA 5.4. If an irreducible pseudo-Riemannian manifold $(M, g)$ has signa-
ture $(r, s)$ satisfying $r\neq s$ and has parallel Ricci curvature tensor, then it is an
Einstein space.

In fact, if we define a $(1, 1)$ -tensor $A$ by $R_{1}(X, Y)=g(X, AY)$ , then by the
same argument as in [6] we have $A=aI$, where $a$ is constant since $g$ and $R_{1}$

are parallel. Therefore $M$ is an Einstein space.
REMARK 5.5. Proposition 5.1 (as well as Corollary 5.2) for a Riemannian

manifold was first stated by K. Yano and T. Nagano [10] for a non-homothetic
infinitesimal conformal transformation without specifying that the set of points
where $\varphi$ is non-homothetic is dense in $M$. We give an example in the last
section which shows that this condition is necessary.

REMARK 5.6. Proposition 5.3 is a generalization of T. Sumitomo‘s result
[5] on Riemannian manifolds.

\S 6. Ricci-curvature-tensor-preserving conformal transformations.

As in the case of a projective transformation, a conformal transformation
leaves the Ricci curvature tensor invariant if and only if it leaves the Rie-
mannian curvature tensor invariant.

Now we prove
PROPOSITION 6.1. Let $(M, g)(m\geqq 3)$ be a pseudo-Riemannian manifold such

that the Riemannian connection is complete. Then any Ricci-curvature-tensor-
preserving conformal transformation of $(M, g)$ to another $(N, \prime g)$ is a homothety.
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PROOF. By $\varphi R_{1}=R_{1}$ , we have $\varphi R=R$ and $F=0$ :

(6.1) $\nabla d\alpha-d\alpha\otimes d\alpha+2^{-1}g(grad\alpha, grad\alpha)g=0$ .
If $grad\alpha$ is a null vector field everywhere, then we have $\nabla d\alpha=d\alpha\otimes d\alpha$ .
Since $\nabla$ is complete, we have $d\alpha=0$ by S. Ishihara’s Lemma ([1], p. 210). If
$grad\alpha$ is not a null vector at some point $x$ of $M$, then we apply the argument
of S. Ishihara’s Lemma ([1], p. 216). Transvecting (6.1) with $grad\alpha$ , we have

(6.2) $ 2\nabla_{grad\alpha}grad\alpha=g(grad\alpha, grad\alpha)grad\alpha$ .
This implies that each trajectory of $grad$ a is a geodesic. So we take a tra-
jectory $x(t)$ of $grad$ a passing through $x$ . Since $grad$ a is not null at $x$ , we
can assume that the parameter $t$ is the arc-length parameter. Consider a
function $\lambda$ defined by

$\lambda^{2}=\epsilon g(grad\alpha, grad\alpha)=|grad\alpha|^{2}$

on $x(t)$ such that $\lambda>0$ at $x,$ $\epsilon$ being the sign of $g(grad\alpha, grad\alpha)$ . Let
$ X=(grad\alpha)/\lambda$ in the domain where $\lambda>0$ . Then we have

$2\lambda d\lambda/dt=\epsilon\nabla_{X}(g(grad\alpha, grad\alpha))$

$=\epsilon 2(1/\lambda)g(grad\alpha, \nabla_{grad\alpha}grad\alpha)$

$=\epsilon(1/\lambda)(g(grad\alpha, grad\alpha))^{2}$ by (6.2).

Thus we have $2d\lambda/dt=\epsilon\lambda^{2}$ and $\lambda=-2\epsilon/(t-c)$ for some constant $c$ . Now notice
that the arc-length parameter $t$ for a non-light-like geodesic is also an affine
parameter (in our case we have $\nabla_{grad\alpha}((grad\alpha)/\lambda)=0$). By completeness of
the Riemannian connection, $\lambda^{2}$ must be defined for $t=c$ . But this is impossible,
namely, we have $\lambda=0$ everywhere, and $\alpha$ must be constant on $M$.

\S 7. Examples.

EXAMPLE 7.1. There exist projectively non-flat differentiable manifolds $(M, \nabla)$

and $(N, ’\nabla)$ with symmetric connections and symmetric Ricci tensors, such that
they admit a non-affine projective transformation which maps $\nabla P$ into $’\nabla^{\prime}P$ .

Let $M$ be a sphere with the natural metric $g^{*}$ . The Riemannian connec-
tion $\nabla^{*}$ is symmetric and the Ricci tensor $R_{1}^{*}$ is also symmetric. Since $g^{*}$ is
of constant curvature, $(M, V^{*})$ is projectively flat. Take a small open set $U^{*}$

in $M$ and define a non-constant positive $C^{\infty}$-function $f*onM$ such that $f*$

takes value 1 outside $U^{*}$ . Let $’\nabla$ be the Riemannian connection defined by
$f^{*}g^{*}$ . Then we have $/\nabla=\nabla^{*}$ outside $U^{*}$ and there is a point $x$ in $U^{*}$ where
$/\nabla$ is not projectively flat (because, as is known, any projectively flat Rieman-
nian manifold is of constant curvature, but $f^{*}g^{*}$ is not of constant curvature
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in $U^{*}$). Notice that $\prime R_{1}$ is symmetric. Take an open set $U$ outside $U^{*}$ and
take a non-trivial $C^{\infty}$ -function $f$ on $M$ which vanishes outside $U$ . Then we
have a l-form $p$ defined by $p=df$ on $M$ vanishing outside $U$ . Now define a
connection $\nabla$ by

$\nabla_{X}Y=’\nabla_{X}Y+p(X)Y+p(Y)X$ .

Then $\nabla$ is symmetric and the Ricci curvature tensor $R_{1}$ is also symmetric by
(1.6), since $R_{1}$ is symmetric and $p$ is a derived form. By the way the identity
transformation $\varphi:(M, \nabla)\rightarrow(N=M, /\nabla)$ is projective on $M$ and affine on $U^{*}$ .
Therefore on $U^{*}$ we have $\varphi(^{\prime}\nabla P)=\nabla P$. Outside $U^{*}$ we have $\prime P=P=0$ and
hence $\varphi(^{\prime}\nabla^{\prime}P)=\nabla P$ . Since $f$ and $p$ are not trivial, $\varphi$ is not affine at some
point. Moreover, we have $/P=P\neq 0$ at $x$ .

EXAMPLE 7.2. There exists a Riemannian manifold which is not conformally

flat and which admits a non-homothetic (infinitesimal) conformal transformation
which leaves the covariant derivative of the Weyl conformal curvature tensor
invariant.

A simple example is constructed on an odd dimensional sphere $M=S^{2n+1}$ .
Since $M$ admits a Sasakian structure, namely, a normal contact metric struc-
ture, we denote the structure tensors by $(\phi, \xi, \eta, g)$ where $\xi$ is a unit Killing
vector field with respect to the metric $g$ induced from that in $E^{2n+2}$ (cf. [4]).

Let $x$ be an arbitrary point of $M$ and take two small neighborhoods $U$ and $V$

such that the closure of $U$ is contained in $V$ . Since $\xi$ generates a l-parameter
group of isometries $\exp t\xi$ , we have a great circle $(\exp t\xi\cdot x;0\leqq t<2\pi)$ and
its tubular neighborhoods $*U=(\exp t\xi\cdot U;0\leqq t<2\pi)$ and $*V=(\exp t\xi\cdot V$ ;
$0\leqq t<2\pi)$ . We define a non-negative $C^{\infty}$ -function $f$ on $M$ such that

(i) $f$ is invariant by $\exp t\xi$ ,

(ii) $f=1$ on $*U$ ,

(iii) $f=0$ outside $*V$ .
Now we define a new metric $*g$ on $M$ for a constant $\alpha>1$ by

(7.1) $*g=g+(\alpha-1)f(g+\alpha\eta\otimes\eta)$ .

Then $*g$ on $*U$ is $\alpha g+(\alpha^{2}-\alpha)\eta\otimes\eta$ , and this is an associated Riemannian
metric with respect to another Sasakian structure on $*U$ . But $*g$ on $*U$ is
not of constant curvature (cf. [8]). On the other hand, if the associated Rie-
mannian metric of a Sasakian structure is conformally flat, then it is of con-
stant curvature ([3], [7]). Therefore $*g$ is not conformally flat on $*U$ . Since
$\xi$ leaves $\eta$ invariant too, by (7.1) $\xi$ is a Killing vector field also with respect
to $*g$ . Next we take a small open set $W$ outside $*V$ and define a positive
$C^{\infty}$-function $h$ such that

(iv) there is a point $y$ in $W$ where $h(y)\neq 1$ , and
(v) for any $z$ outside $W$ we have $h(z)=1$ .
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Then the metric $G$ defined by $G=h^{*}g$ is the one required. Namely, we have
(vi) $G$ is not conformally flat (on $*U$ ).

(vii) $M$ admits an infinitesimal conformal transformation $\xi$ which is a
Killing vector field with respect to $G$ outside $W$ and which is non-
homothetic on some open set in $W$, since $L_{\xi}G=(L_{\xi}h)(1/h)G$ .

(viii) The covariant derivative $\nabla C$ of the Weyl conformal curvature ten-
sor may be non-vanishing only in $*V$ . Since $\xi$ is a Killing vector
field on $*V$ we have $L_{\xi}\nabla C=\nabla L_{\xi}C=0$ on $*V$ and hence on $M$.

T\^ohoku University
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