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An m-dimensional pseudo-Riemannian manifold (M, g) is by definition a
differentiable manifold M with a definite or indefinite Riemannian metric
tensor g of signature (7, s). If the signature of g is (m, 0), then we say that
(M, g) is a Riemannian manifold. The purpose of this note is to generalize
the results on transformations of Riemannian manifolds to those of pseudo-
Riemannian manifolds.

In section 1 we give the basic relations of connections or various tensors
satisfied by projective or conformal transformations. In section 2 we consider
affine transformations and, for example, we get

COROLLARY 2.5. If (M,g) is a compact irreducible pseudo-Riemannian
manifold of signature (v, s) satisfying r+s, then any affine transformation of
M is an isometry.

In sections 3, 4, 5 and 6 we study projective and conformal transformations
leaving some tensors invariant, in a similar way as in K. Yano and
T. Nagano’s paper [10]. However, some statements of theorems in seem
to be imcomplete, and so we give here complete statements and prove them
in pseudo-Riemannian manifolds. For example we have

PROPOSITION 5.1. Let (M, g) and (N, ’g) be pseudo-Riemannian manifolds
of dimension m=4. If there is a conformal transformation ¢ of M to N which
leaves the covariant derivatives of the Weyl conformal curvature tensors invari-
ant and if the set of points where ¢ is non-affine is dense in M, then M and
N are conformally flat.

As a consequence of this proposition we have

PROPOSITION 5.3. Let M (m=4) be an irreducible locally symmetric pseudo-
Riemannian manifold of signature (r,s), r+ s. Then we have either

(i) M is of constant curvature, or

(i) M does not admit any non-homothetic conformal transformation.

In the last section we give examples which support our statements of
IProposition 3.1l and [Proposition 5.1,
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§1. Preliminaries.

(i) Let M and N be differentiable manifolds with linear connections J
and V. If ¢ is a transformation (diffeomorphism) of M to N, then ¢ induces
a map of geometric objects ‘K on N to those on M denoted by ¢K. Especially
for '/V on N we have an induced connection ¢/ defined by

1.1 VxY =0V, ,x(0Y)

for any vector fields X and Y on M, where ¢ itself denotes the differential
of ¢. From now on by V, X, Y and Z we denote vector fields on M. Since
the difference of the connections ¢/ and J/ makes a tensor field of type (1, 2)
we denote it by W, and we define Wy by

1.2 Y-V Y =W, X)=Wx(Y).
If K is a tensor field of type (1, 1), for example, then we have
VK-V yK)Y =Wx(KY)—K- - Wi(Y).

In the last equation if we replace K by ¢K, and notice the relation #J K
=%V ,x'K), then we get

LEMMA 1.1. Let ¢ be a transformation of (M, F) to (N,’V) and let 'K be
a tensor field of type (1, 1), for example, on N. Then we have

1.3 OV ,x' K)—V x?K)Y = WxPKY)—¢K - Wx(Y).

(ii) Suppose that the linear connections [/ and ’J are symmetric. A trans-
formation ¢ of M to N is projective if and only if we have a 1-form p on M
such that

(L. W (Y)= WY, X)=p(Y)X+p(X)Y.

We say that ¢ is non-affine at x of M if p,+#0. The Riemannian curvature
tensors R and ¢R, the Ricci curvature tensors R, and ¢R, are, as is well known
(for example, see [I]), related by

(L5 PR(X, Y)Z=R(X, Y)Z+W v D)) X—W x pYZ)Y +p(2)p(X)Y
— PP X+ pXX)—W xp)Y NZ,
(1.6) ?Ri(X, Y)=Ry(X, Y)+m—D(B(X)p(YV)—Frp)(X))

T+ YY) —Fpp)(X) .
Now we define a tensor P, of type (0, 2) by
.7 (m*—1DP(X, Y)=—mR,(X,Y)—R,(Y, X).
Then the Weyl projective curvature tensor P defined by
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(1.8) P(Z, X, V)= R(X, Y)Z+P(Z, X)Y —P(Z, V)X
+(P (X, Y)—P (Y, X)Z

is invariant under any projective transformation, i.e. YP=P. For m=3 we
define a tensor Q of type (0, 3) by defining (m—2)Q(Z, X, Y) to be the trace
of the map V—W,P)Z, X,Y). If the Ricci tensor is symmetric, then
is written as

3y P(Z, X, Y)=R(X, Y)Z—(m—1)""R(X, Z)Y —R(Y, 2)X).

LEMMA 1.2. For a projective transformation ¢ of a differentiable manifold
(M, V)(m = 3) with symmetric connection and symmetric Ricci tensor to another
such (N,’V) we have

(1'9) ¢Q(Z: X: Y)_Q(Z: Xr Y) = p(P(Z) X’ Y)) .

Proor. If we apply (1.3) to the projective curvature tensor P, then, using
*P=P, we get

(m—2)¢Q(Z, X, Y)—Q(Z, X, Y))=trace[V—W,P(Z, X, Y)—P(W,Z, X, V)
—P(Z, WX, Y)-P(Z, X, W;Y)].
By applying (1.4), the right hand side is written as
trace [V — p(P(Z, X, Y)V=-2p(V)P(Z, X, Y)—p(ZH)P(V, X, V)
—p(XDPZ, V, Y)—p(Y)P(Z, X, V)].

By (1.8)’ we see that trace [V —P(Z, X, V)]=0. Similarly we get trace[V —
P(V,X,Y)]=0 and trace[V—P(Z, V, Y)]1=0. Then (1.9) follows from

trace [V —p(P(Z, X, Y)V—2p(VIP(Z, X, Y)]=m—2p(P(Z, X, Y)).

(iiliy Let ¢ be a conformal transformation of a pseudo-Riemannian mani-
fold (M, g) to (N, ’g) such that Yg=¢**g for a function « on M. With respect
to the Riemannian connections J/ and ‘' on M and N we have
1.10) WiY=Xa)Y+Ya)X—g(X, V) grad «,

where grad o is a vector field associated with da defined by the metric tensor
g. We say that ¢ is non-homothetic at x of M if (da),~0. The relation
between the Riemannian curvature tensors is

(111 *R(X, Y)Y Z=R(X, YYZ4+F(Z, Y)X—F(Z, X)Y

+g(Z, YYF(X)—g(Z, X)F(Y),
where

(112 F(Z,Y)=F zda)(Y)—(Za)(Ya)+2'g(grad a, grad a)g(Z, Y)
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and F(X) is defined by g(F(X), Y)=F(X, Y). We have also the relations be-
tween the Ricci curvature tensors, and scalar curvatures S and ¢S. The Weyl
conformal curvature tensor C defined for m =3 by

1.13) CZ, X, Y)=R(X, Y)Z—(m—2)""(R(Z, X)Y —R(Z, )X
+g(Z, X)R'(Y)—g(Z, Y)R'(X))
F+(m—D)"1m—2)"S(gZ, X)Y—g(Z, Y)X)

is invariant under any conformal transformation, where R'(X) is defined by
g(RY(X), Y)=R,(X,Y). If m=3, then we have C=0. For m=4, we define
(m—3)HE(Z, X,Y) to be the trace of the map V—(V,C)Z, X, Y). Then E is
a tensor field of type (0,3). Similarly to we have

LEMMA 1.3. For a conformal transformation ¢ of a pseudo-Riemannian
manifold (M, g)(im =4) to another (N, ’g) we have

1.14) YEZ, X, Y)-EZ, X, Y)=da(C(Z, X, Y)).

Proor. If we apply (1.3) to the conformal curvature tensor C, then, using
*C=C, we get

(m—3)CEZ, X, Y)—E(Z, X, Y))=trace [V — W, C(Z, X, V)
—CWyZ, X, Y)-CZ, Wp X, Y)—C(Z, X, Wy Y)].
By (1.10) the right hand side is written as

trace [V — da(C(Z, X, Y ) V—=2Va)C(Z, X, Y)
—g(V,C(Z, X, V) grad a—(Za)C(V, X, Y)
—(Xa)C(Z, V, V) —(Y)C(Z, X, V)
+g(V, Z)Cgrad a, X, Y)+g(V, X)C(Z, grad a, ¥)
+g(V, Y)C(Z, X, grad a)] .
First we have
trace [V — da(C(Z, X, Y H)V-2Va)C(Z, X, Y)]=(m—2)da(C(Z, X, Y)),
trace [V — —g(V,C(Z, X, V)) grad a]= —g(grad a, C(Z, X, Y))
=—da(C(Z, X, Y)).

Next by we get trace[V—C(V, X, Y)]1=0, trace[V—C(Z, V, Y)]=0
and trace[V—C(Z, X, V)]=0. If we write C(Z, X, Y)=C(X, Y)Z, then it is
known that C satisfies the same algebraic equations as those satisfied by the
Riemannian curvature tensor R, and so we have
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trace [V — g(V, Z2)C(grad a, X, Y)]=g(Z, C(grad a, X, Y))
=—g(grada, C(Z, X, Y))
=—da(C(Z, X, Y)),
trace [V — g(V, X)C(Z, grad a, Y)+g(V, Y)C(Z, X, grad a)]
=g(X, C(Z, grad o, Y)+g(V, C(Z, X, grad a))
=—-g(Z,C(X, grad a, Y)+C(Y, X, grad a))
=g(Z,C(grad a, Y, X))
=g(grada, C(Z, X, Y))
=da(C(Z, X, Y)).

Therefore, adding these results together we have [1.14).

By AM), H(M) and I(M) we denote the group of affine (W =0), homothetic
(da=0) and isometric (a« =0) transformations of M, respectively.

If a transformation ¢ of (M, g) to (N, ’g) satisfies g= —¢**g we say that
¢ is an anti-conformal transformation, an anti-homothety, or an anti-isometry.

§2. Affine transformations.

In the previous paper [6] generalizing we obtained the following

ProrOSITION 2.1. Let (M, g) and (N, 'g) be irrveducible pseudo-Riemannian
manifolds and assume that the signature (v, s) of g satisfies vr+s. If there is
an affine transformation ¢ of M to N, then the signature of ‘g is (r, s) or (s, r)
and ¢ is a homothety or an anti-homothety, respectively.

REMARK 2.2. Any 2-dimensional orientable pseudo-Riemannian manifold
(M, g) of signature (1,1) is reducible. In fact for any point x of M each
1-dimensional subspace of the tangent space M, at x defined by null vectors
is invariant by the restricted homogeneous holonomy group.

REMARK 2.3. Since the distinction between g and —g in a pseudo-Rieman-
nian manifold M is not essential, in many cases we may assume that the
signature (7, s) of g satisfies r=s.

PROPOSITION 2.4. Any homothety (or anti-homothety) of a compact pseudo-
Riemannian manifold (M, g) is an isometry (or anti-isometry).

ProOF. We assume that M is orientable. Then we have the volume ele-
ment (e det g)"*dx* A --- A dx™ defined by the determinant of g in each coordinate
neighborhood (the order (x!, ---, x™) being compatible with the orientation and
¢ being the sign of detg). Then the proof for a homothety is the same as in
the Riemannian case (cf. [5]). An anti-homothety can exist only when the
signature of g is (r,7). And for an anti-homothety ¢ of (M, g), we consider
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a homothety ¢ of (M, g) to (M, —g).

By Propositions 2.1l and 2.4 we get

COROLLARY 2.5. If (M, g is a compact irreducible pseudo-Riemannian
manifold of signature (r, s) satisfying r +#s, then any affine transformation of
M is an isometry.

Similarly to [2], we have

COROLLARY 2.6. Let M be an irreducible pseudo-Riemannian manifold of
signature (v, s) satisfying r+s. Then we have:

() Any compact subgroup of A(M) is a subgroup of I(M).

(i) The commutator subgroup [AM), A(M)] is a subgroup of I(M).

REMARK 2.7. Let M and N be pseudo-Riemannian manifolds. If an affine
transformation of M to N is isometric at some point of M, then it is an iso-
metry (see [9], p. 57).

§3. [V P-preserving projective transformations.

PRrROPOSITION 3.1. Let M(m=3) and N be differentiable manifolds with sym-
metric connections V and 'V, and symmetric Ricci tensors R, and 'R,. If there
is a projective transformation ¢ of M to N which leaves the covariant deriva-
tives of the Weyl projective curvature tensors invariant and if the set of points
where ¢ 1s non-affine is dense in M, then M and N are projectively flat.

PrROOF. By ?('FV'P)=VFP, we have #Q=(. Next by Lemma 1.2 we have
p(P(Z, X, Y)=0. If we apply (1.3) to P, using ¢('V'P)=FVP and ¢P=P, we
get

0=Wu(PZ, X, Y)—PWyZ, X, Y)—P(Z, Wi X, Y)—P(Z, X, W, Y).
By (1.4), using p(P(Z, X, Y))=0, we get
3.1 0=2p(V)P(Z, X, Y)+p(Z)P(V, X, Y)
+p(X)PZ, V, Y)+p(Y)P(Z, X, V).

Take a point x of M such that p,+0. Then we have a basis (e, -, ¢,) of
M, and the dual basis (W', ---, w™) such that w!'=p,. -

If we put V=e, Z=¢, X=¢;, Y =¢,in (3.1), then we get P(e, ¢;, ¢,) =0
for j, k, I 1.

If we put V=~Z=¢,, X=¢;, Y =¢, in (3.1), then we have P(e, ¢;, ¢,)=0
for j, b+ 1.

If we put V=X=¢, Z=¢, Y=¢, in (3.1), then we get P(e, ¢, ¢,)=0
for k, 1+ 1.

Finally if we put V=Z2=X=¢,, Y =¢, in (3.1), then we have P(e, ¢,, ¢)
=0 for k1.
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Therefore we have P=0 at x. Since the set of points x such that p,=0
is dense in M, we have P=0 on M.

REMARK 3.2. In section 7, we give an example showing necessity of the
assumption that “the set of points where ¢ is non-affine is dense in M ” in
the above Proposition.

A pseudo-Riemannian manifold M is said to be of constant curvature at
x, if the Riemannian curvature tensor satisfies

R(X, Y)Z=Fk(8(Z, Y)X—g(Z, X)Y)

at x for some real number k, If k, is constant on M, M is said to be of
constant curvature. It is known that any projectively flat pseudo-Riemannian
manifold is of constant curvature. Thus we get

ProrosiTION 3.3. Let (M, g) and (N,’g) be pseudo-Riemannian manijfolds
(m=3). If there is a projective transformation ¢ of M to N which leaves the
covariant derivatives of the Weyl projective curvature tensors invariant and if
the set of points where ¢ is non-affine is dense in M, then M and N are of
constant curvature.

COROLLARY 34. Suppose that a pseudo-Riemannian manifold M(m=3) is
not of constant curvature on any open set in M. Then any projective trans-
Jormation of M to another N which leaves the covariant derivatives of the Weyl
projective curvature tensors invariant is affine.

PROPOSITION 3.5. Let (M, g)(m=3) be a locally symmetric pseudo-Riemann-
1an manifold. Then either

(i) M is of constant curvature, or

(i1) M does not admit any non-affine projective transformation.

PROOF. Since M is locally symmetric we have FPR=0 and hence FP=0.
Suppose that M is not of constant curvature. Then P does not vanish at some
point of M. Since P is a parallel tensor field, it does not vanish anywhere.
Thus any projective transformation of M is necessarily affine.

REMARK 3.6. When the metric is positive definite, Proposition 3.3 and
Corollary 3.4 for non-affine infinitesimal projective transformation were stated
by K. Yano and T. Nagano in [10] without the condition that the set of points
where ¢ is non-affine is dense in M.

Proposition 3.5 is a generalization of a result due to T. Sumitomo [5] on
Riemannian manifolds.

§4. Ricci-curvature-tensor-preserving projective transformations.

First we remark that a projective transformation leaves the Ricci curva-
ture tensor invariant if and only if it leaves the Riemannian curvature tensor
invariant. In fact, each condition is equivalent to (Fyp)(Y)=p(X)p(Y) in
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and (L5}

ProposiTiON 4.1. Let M and N be irreducible pseudo-Riemannian mani-
folds and assume that the signature (v, s) of g satisfies r+s. Then any pro-
jective transformation of M to N which leaves the Ricci curvature tensors
tnvariant is a homothety, or anti-homothety.

Especially, further, if both Ricci curvature tensors of M and N wvanish,
then any projective transformation is a homothety, or anti-homothety.

Proor. Since the restricted holonomy group of M is irreducible, it has
no invariant covector. By S. Ishihara’s result ([1], p. 209) any Ricci-curvature-
tensor-preserving projective transformation is affine. So if we apply Proposi-
tion 2.1, then the proof is completed.

§5. P C-preserving conformal transformations.

An analogous proposition to [Proposition 3.3 is as follows.

PropPOSITION 5.1. Let (M, g) and (N,’g) be pseudo-Riemannian manifolds
(m=4). If there is a conformal transformation ¢ of M to N which leaves the
covariant derivatives of the Weyl conformal curvature tensors invariant and if
the set of points where ¢ is non-homothetic is dense in M, then we have C=0
and, M and N are conformally flat.

ProOOF. By ¢C=C and ?('F’'C)=VFC, we have YE=F. Then by Lemma
1.3 we getda(C(Z, X, Y))=0, and this also implies C(grad o, X, Y)=0. If we
apply (1.3) to C, then we get

0=W,(C(Z, X, Y)—CW,Z, X, Y)—C(Z, Wy X, Y)—C(Z, X, W;;)Y).

Using (1.10) and above relations, we get

(GRY) 0=2(Va)C(Z, X, Y)+g(V,C(Z, X, Y)) grad «
F(Za)CV, X, V) +(Xa)C(Z, V, )+ Y a)CZ, X, V).

Taking the inner product with U we get

(5.2) 0=2Va)g(U, CZ, X, Y)+Uwx)g(V,CZ, X, Y))
+(Za)g U, C(V, X, Y )+ Xe)g(U, C(Z, V, Y))
+Ya)gU,CZ, X, V)).

If da +0 at x of M, then we can take a basis (¢, ---, ¢,,) of M, and the
dual basis (w?, ---, w™) at x such that w'=da. In the following calculation we
read (Va) =da(V), etc.

If we put V=e, X=¢;, Y=¢, Z=¢, U=e¢; in (5.2), then we have
g(e;, Cley, ej, 0))=0 for 1,7, k, [ 1.

If we put V=U=¢, X=¢;, Y=0¢, Z=¢,in (5.2), we get g(e,, Cle,, ¢;, ex))
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=0 for j, &k, [+ 1.

If weput V=U=X=¢,, Y=¢;, Z=¢, in[5.2), then we have g(e,, C(e,, ¢,, €x))
=0 for k, [ #1.

Thus we have g(U,C(Z, X, Y))=0 at x for any U, Z, X, and Y, and we
get C=0 at x. Since the set of points x such that (da),+# 0 is dense in M,
we have C=0 on M.

COROLLARY 5.2. Suppose that a pseudo-Riemannian manifold M(im=4) is
conformally non-flat on any open set in M. Then any conformal transforma-
tion of M to another N which preserves the covariant derivatives of the Weyl
conformal curvature tensors is a homothety.

PROPOSITION 5.3. Let M(m=4) be an irreducible locally symmetric pseudo-
Riemannian manifold of signature (v,s), r +s. Then we have either

(i) M is of constant curvature, or

(i) M does not admit any non-homothetic conformal transformation.

Proor. By local symmetry of M we have FR=0 and FC=0. If C is
not trivial at some point, then it is not trivial anywhere. So we have (ii).
Otherwise we have C=0 on M, and so if we show the next Lemma, we get (i).

LEMMA 5.4. If an irreducible pseudo-Riemannian manifold (M, g) has signa-
ture (v, s) satisfying r+s and has parallel Ricci curvature tensor, then it is an
Einstein space.

In fact, if we define a (1, 1)-tensor A by R,(X, Y)=g(X, AY), then by the
same argument as in [6] we have A=al, where a is constant since g and R,
are parallel. Therefore M is an Einstein space.

REMARK 5.5. [Proposition 5.1 (as well as for a Riemannian
manifold was first stated by K. Yano and T. Nagano for a non-homothetic
infinitesimal conformal transformation without specifying that the set of points
where ¢ is non-homothetic is dense in M. We give an example in the last
section which shows that this condition is necessary.

REMARK 5.6. [Proposition 5.3 is a generalization of T. Sumitomo’s result
on Riemannian manifolds.

§6. Ricci-curvature-tensor-preserving conformal transformations.

As in the case of a projective transformation, a conformal transformation
leaves the Ricci curvature tensor invariant if and only if it leaves the Rie-
mannian curvature tensor invariant.

Now we prove

ProroSITION 6.1. Let (M, g)(m=3) be a pseudo-Riemannian manifold such
that the Riemannian connection is complete. Then any Ricci-curvature-tensor-
preserving conformal transformation of (M, g) to another (N,’g) is a homothety.
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Proor. By YR,=R,, we have YR=R and F=0:
6.1) Fdao—da@da+2'g(grad a, grad a)g=0.

If grada is a null vector field everywhere, then we have Vda=da@da.
Since J is complete, we have da=0 by S. Ishihara’s Lemma ((1], p. 210). If
grad « is not a null vector at some point x of M, then we apply the argument
of S. Ishihara’s Lemma ([17], p. 216). Transvecting (6.1) with grad «, we have

6.2) 2F graa « 8rad o = g(grad «, grad o) grad « .

This implies that each trajectory of grad a« is a geodesic. So we take a tra-
jectory x(#) of grad a passing through x. Since grad « is not null at x, we
can assume that the parameter ¢ is the arc-length parameter. Consider a
function A defined by

A*=¢g(grad a, grad a) =|grad a|®

on x(t) such that 1>0 at x, ¢ being the sign of g(grad a, grad @). Let
X=(grad a)/2 in the domain where 1>0. Then we have

22dA/dt = eV y(g(grad «, grad a))
=e2(1/Dg(grad a, Vgraa « grad )
=e(l/D)(g(grad a, grad «))* by (6.2).

Thus we have 2dA/dt =¢A® and A= —2¢/(t—c¢) for some constant ¢. Now notice
that the arc-length parameter ¢ for a non-light-like geodesic is also an affine
parameter (in our case we have [ g, ((grad a)/2) =0). By completeness of
the Riemannian connection, 22 must be defined for ¢t =¢. But this is impossible,
namely, we have 1=0 everywhere, and « must be constant on M.

§7. Examples.

EXAMPLE 7.1. There exist projectively non-flat differentiable manifolds (M, V)
and (N,'V) with symmetric connections and symmetric Ricci tensors, such that
they admit a non-affine projective transformation which maps VP into 'V'P.

Let M be a sphere with the natural metric g*. The Riemannian connec-
tion /* is symmetric and the Ricci tensor Rf is also symmetric. Since g* is
of constant curvature, (M, '*) is projectively flat. Take a small open set U*
in M and define a non-constant positive C>-function f* on M such that f*
takes value 1 outside U*. Let '/ be the Riemannian connection defined by
f*g*. Then we have 'V =J* outside U* and there is a point x in U* where
‘V is not projectively flat (because, as is known, any projectively flat Rieman-
nian manifold is of constant curvature, but f*g* is not of constant curvature
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in U¥*). Notice that 'R, is symmetric. Take an open set U outside U* and
take a non-trivial Ce-function f on M which vanishes outside UU. Then we
have a 1-form p defined by p=4df on M vanishing outside U. Now define a
connection F by

VY ="TyY+pX)Y+p(¥)X.

Then F is symmetric and the Ricci curvature tensor R, is also symmetric by
[(1.6), since 'R, is symmetric and p is a derived form. By the way the identity
transformation ¢: (M, V)—(N= M, V) is projective on M and affine on U*.
Therefore on U* we have ?(‘FP)=FP. Outside U* we have "P=P=0 and
hence ?('F’P)=F P. Since f and p are not trivial, ¢ is not affine at some
point. Moreover, we have '‘P=P=+0 at x.

ExaMPLE 7.2. There exists a Riemannian manifold which is not conformally
flat and which admits a non-homothetic (infinitesimal) conformal transformation
which leaves the covariant derivative of the Weyl conformal curvature tensor
invariant.

A simple example is constructed on an odd dimensional sphere M= S?*+1,
Since M admits a Sasakian structure, namely, a normal contact metric struc-
ture, we denote the structure tensors by (¢, &, n, g) where & is a unit Killing
vector field with respect to the metric g induced from that in E®**** (cf. [4).
Let x be an arbitrary point of A and take two small neighborhoods U and V
such that the closure of U is contained in V. Since & generates a l-parameter
group of isometries exp t&, we have a great circle (expt£-x;0=¢<2r) and
its tubular neighborhoods *U =(exptf-U; 0<i<2zx) and *V=(expit&-V;
0<t<2r). We define a non-negative C=-function / on M such that

(1) f is invariant by exp ¢,

i) f=1 on *U,

(iii) f=0 outside *V.

Now we define a new metric *g on M for a constant o« >1 by

(7.1) *g=gt+a—1f(g+tan®m).

Then *g on *U is ag+(a®—a)p@n, and this is an associated Riemannian
metric with respect to another Sasakian structure on *J. But *g on *U is
not of constant curvature (cf. [8]). On the other hand, if the associated Rie-
mannian metric of a Sasakian structure is conformally flat, then it is of con-
stant curvature (3], [7]). Therefore *g is not conformally flat on *U. Since
& leaves 7 invariant too, by & is a Killing vector field also with respect
to *g. Next we take a small open set W outside *V and define a positive
C=-function & such that

(iv) there is a point y in W where h(y)=+1, and

(v) for any z outside W we have h(z)=1.
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Then the metric G defined by G = h*g is the one required. Namely, we have

(1]
(21
£31]
[4]
(51
L6]
£7]
(8]

[9]
[10]

(vi) G is not conformally flat (on *UJ).

(vii) M admits an infinitesimal conformal transformation & which is a
Killing vector field with respect to G outside W and which is non-
homothetic on some open set in W, since L:G = (L:h)(1/h)G.

(viii) The covariant derivative JC of the Weyl conformal curvature ten-
sor may be non-vanishing only in *V. Since & is a Killing vector
field on *V we have L/C=FVL:.C=0 on *V and hence on M.

Tohoku University
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