On the rank and curvature of non-singular complex hypersurfaces in a complex projective space*

By Katsumi Nomizu

(Received July 23 , 1968)

Let M be a non-singular connected complex hypersurface in the complex projective space $P^{n+1}(C)$ with Fubini-Study metric of constant holomorphic sectional curvature 1. In [2] it was shown that the rank of the second fundamental form A of M at a point x of M is determined by the curvature tensor of M at x. Thus the rank of A is intrinsic at each point and is simply called the rank of M.

In the present paper we shall obtain the following results:
Theorem 1. If M is compact and if the rank of M is $\leqq n-1$ at every point, then M is imbedded as a projective hyperplane in $P^{n+1}(C)$.

Theorem 2. Let $n \geqq 3$. If M is compact and if the sectional curvature of M with respect to the induced Kählerian metric is $\geqq \frac{1}{4}$ for every tangent 2-plane, then M is imbedded as a projective hyperplane.

1. Preliminaries. We recall the terminology and a few results from [1] and [2]. Let M be a complex hypersurface in $P^{n+1}(C)$. Let J denote the complex structures of $P^{n+1}(C)$ and M, and let g denote the Fubini-Study metric of holomorphic sectional curvature 1 in $P^{n+1}(C)$ as well as the Kählerian metric induced on M. For each point x_{0} of M, choose a field of unit normals ξ defined on a neighborhood U of x_{0}.

Denoting by \tilde{V} and ∇ the Kählerian connections of $P^{n+1}(C)$ and M, we have the basic formulas (cf. [1])

$$
\begin{aligned}
& \tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \xi+k(X, Y) J \xi \\
& \tilde{V}_{X} \xi=-A X+s(X) J \xi
\end{aligned}
$$

where X and Y are vector fields tangent to M, h and k are bilinear symmetric forms, s is a 1 -form, and A is a tensor field of type (1,1), called the second fundamental form. Moreover, we have $h(X, Y)=g(A X, Y), k(X, Y)=$ $g(J A X, Y)$, and $A J=-J A$. The Gauss equation expresses the curvature ten-

[^0]sor R of M as follows:
$$
R(X, Y)=\tilde{R}(X, Y)+D(X, Y)
$$
where \tilde{R} is the curvature tensor of $P^{n+1}(C)$ given by
$$
\tilde{R}(X, Y)=\frac{1}{4}\{X \wedge Y+J X \wedge J Y+2 g(X, J Y) J\}
$$
and D is a tensor of type $(1,3)$ defined by
$$
D(X, Y)=A X \wedge A Y+J A X \wedge J A Y
$$

In these formulas, $X \wedge Y$, where $X, Y \in T_{x}(M)$, denotes the skew-symmetric endomorphism of the tangent space $T_{x}(M)$ defined by

$$
(X \wedge Y)(Z)=g(Y, Z) X-g(X, Z) Y, \quad Z \in T_{x}(M)
$$

In [2] it was shown that the kernel of A at $x \in M$ is equal to $\left\{X \in T_{x}(M)\right.$; $(R-\widetilde{R})(X, Y)=0$ for all $\left.Y \in T_{x}(M)\right\}$. Thus the rank of A at x is intrinsic; we call it the rank of M at the point x.

Suppose that, at every point of an open subset W, the rank of M is equal to a constant, say, $2 r$, where r is a positive integer. Then we get a distribution T^{0} of dimension $2 n-2 r$ which assigns to each $x \in W$ the kernel of A. In the arguments leading to Proposition 1 in [2], it is shown that T^{0} is involutive and invariant by the complex structure J so that any of its maximal integral manifolds is a complex submanifold which is, in fact, totally geodesic in $P^{n+1}(C)$. This means that there exist a projective subspace P^{n-r} in $P^{n+1}(C)$ and an open subset U of $P^{n+1}(C)$ such that $U \cap P^{n-r} \subset M$. We shall make use of this fact in the following section.
2. Proof of Theorem 1. If the rank of M is zero everywhere, then M is totally geodesic and hence is a projective hyperplane. Assume that the rank of M has a maximum, say, $2 r>0$, at some point x_{0} of M. Then the rank of A is identically equal to $2 r$ in a neighborhood W of x_{0}. As we stated in section 1, there exist a projective subspace P^{n-r} in $P^{n+1}(C)$ and an open subset U in $P^{n+1}(C)$ such that $U \cap P^{n-r} \subset M$. We shall now show that the entire subspace P^{n-r} is contained in M^{11}. Let $\left(z_{0}, z_{1}, \cdots, z_{n+1}\right)$ be a projective coordinate system in $P^{n+1}(C)$ such that the subspace P^{n-r} is given by $z_{0}=z_{1}$ $=\cdots=z_{r}=0$. Since M is algebraic by a well-known theorem of Chow, it is the zero set of a certain homogeneous polynomial $f\left(z_{0}, z_{1}, \cdots, z_{n+1}\right)$. Denoting the coordinates of the point x_{0} by ($a_{0}, a_{1}, \cdots, a_{n+1}$), we may assume that

$$
U=\left\{\left(z_{0}, z_{1}, \cdots, z_{n+1}\right) ;\left|z_{k}-a_{k}\right|<d\right\}, \quad d>0 .
$$

[^1]The condition $U \cap P^{n-r} \subset M$ implies that $f\left(0,0, \cdots, 0, z_{r+1}, \cdots, z_{n+1}\right)=0$ for all $\left(z_{r+1}, \cdots, z_{n+1}\right)$ such that $\left|z_{k}-a_{k}\right|<d, r+1 \leqq k \leqq n+1$. It follows that $f(0,0, \cdots$, $\left.0, z_{r+1}, \cdots, z_{n+1}\right)=0$ for all z_{r+1}, \cdots, z_{n+1}. Thus P^{n-r} is contained in M.

Now by the proposition below we may conclude that M is a projective hyperplane; but then the rank of M is identically 0 . This contradiction coming from the assumption that the rank of M is not 0 at some point, we have proved Theorem 1.

Proposition. Let M be a compact complex hypersurface in $P^{n+1}(C)$. If M contains a certain projective subspace P^{n-r}, where $2 r \leqq n-1$, then M is a projective hyperplane.

The following proof is an extension of the argument for Theorem 6 in [2], which will now be contained in our Theorem 1 . We write the homogeneous polynomial f defining M in the form

$$
\begin{gathered}
f\left(z_{0}, z_{1}, \cdots, z_{n+1}\right)=F\left(z_{r+1}, \cdots, z_{n+1}\right)+\sum_{k=0}^{r} z_{k} f_{k}\left(z_{r+1}, \cdots, z_{n+1}\right) \\
+\sum_{k_{0}+\cdots+k_{r} \geqq 2} z_{0}^{k_{0} z_{1}^{k_{1}} \cdots z_{r}^{k_{r}} f_{k_{0} k_{1} \cdots k_{r}}\left(z_{r+1}, \cdots, z_{n+1}\right)}
\end{gathered}
$$

where F, f_{k} and $f_{k_{0} k_{1} \cdots k_{r}}$ are homogeneous polynomials in the variables z_{r+1}, \cdots, z_{n+1}. Since $P^{n-r} \subset M$, we have $f\left(0, \cdots, 0, z_{r+1}, \cdots, z_{n+1}\right)=0$ for all z_{r+1}, \cdots, z_{n+1}. Thus F is identically 0 . Consequently, we get

$$
\partial f / \partial z_{j}=f_{j}+{ }_{k_{0}+\cdots+k_{r} \geq 2} k_{j} z_{0}^{k_{0}} \cdots z_{j}^{k_{j}-1} \cdots z_{r}^{k_{r} r} f_{k_{0} \cdots k_{r}}, \quad 0 \leqq j \leqq r,
$$

and

$$
\partial f / \partial z_{m}=\sum_{j=0}^{r} z_{j} \partial f_{j} / \partial z_{m}+\sum_{k_{0}+\cdots+k_{r} \geqq 2} z_{0}^{k_{0}} \cdots z_{r}^{k_{r}} \partial f_{k_{0} \cdots k_{r}} / \partial z_{m}, \quad r+1 \leqq m \leqq n+1 .
$$

At $\left(0, \cdots, 0, z_{r+1}, \cdots, z_{n+1}\right) \in P^{n-r} \subset M$, we have

$$
\partial f / \partial z_{j}=f_{j}, 0 \leqq j \leqq r, \quad \text { and } \quad \partial f / \partial z_{m}=0, r+1 \leqq m \leqq n+1 .
$$

We consider $r+1$ homogeneous polynomials $f_{j}, 0 \leqq j \leqq r$. If $r+1 \leqq n-r$ (that is, $2 r \leqq n-1$ as we are assuming), it follows from the dimension theorem for intersections of varieties (cf. the main theorem of §5, [3]) that, unless f_{j} 's are constants, there is a non-trivial common solution (b_{r+1}, \cdots, b_{n+1}) of the system of equations $f_{j}=0,0 \leqq j \leqq r$. Then the point ($0, \cdots, 0, b_{r+1}, \cdots, b_{n+1}$) of $P^{n+1}(C)$ lies in M and, at that point, all partial derivatives $\partial f / \partial z^{k}, 0 \leqq k \leqq n+1$, are 0 . This contradicts the premise that f defines our non-singular hypersurface M. We conclude that f_{j} 's are constants and f is of degree 1 , that is, M is a projective hyperplane.
3. Proof of Theorem 2. At any point x of M, there is an orthonormal basis in $T_{x}(M)$ of the form $\left\{e_{1}, \cdots, e_{n}, J e_{1}, \cdots, J e_{n}\right\}$ such that

$$
A e_{i}=\lambda_{i} e_{i} \quad \text { and } \quad A\left(J e_{i}\right)=-\lambda_{i}\left(J e_{i}\right), \quad 1 \leqq i \leqq n
$$

where we may assume $\lambda_{1} \geqq \lambda_{2} \geqq \cdots \geqq \lambda_{n} \geqq 0$ (see Lemma 1 of [1]). By Corollary 1 of [1], the sectional curvature for the plane spanned by e_{j} and $J e_{k}, j \neq k$, is equal to $\frac{1}{4}-\lambda_{j} \lambda_{k}$. Since all sectional curvatures are $\geqq \frac{1}{4}$, we have $-\lambda_{j} \lambda_{k}$ $\geqq 0$. Thus, if $\lambda_{1}>0$, then $\lambda_{2}=\cdots=\lambda_{n}=0$ and the rank of M is at most 2 at x. If $\lambda_{1}=0$, then, of course, A is 0 at x. Thus our assumption on sectional curvature implies that the rank of M is at most 2 everywhere. Since $n \geqq 3$ by assumption, Theorem 1 can be applied to conclude that M is a projective hyperplane.
4. Remark. For a compact connected Kählerian manifold M of complex dimension n, consider the following conditions:
a) M admits a holomorphic, isometric imbedding into $P^{n+1}(C)$;
b) all sectional curvatures of M are $\geqq \frac{1}{4}$;
c) the scalar curvature of M is constant.

Our Theorem 2 says that, for $n \geqq 3$, conditions a) and b) imply that M is holomorphically isometric to $P^{n}(C)$. A result due to Berger and GoldbergBishop [4] implies that b) and c) give rise to the same conclusion. Finally, Kobayashi [5] proved, by using the main theorem in [1], that a) and c) imply that M is either $P^{n}(C)$ or a complex quadric, provided that $n \geqq 2$.

Brown University

Bibliography

[1] B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math., 85 (1967), 246-266.
[2] K. Nomizu and B. Smyth, Differential geometry of complex hypersurfaces II, J. Math. Soc. Japan, 20 (1968), 498-521.
[3] P. Samuel, Méthodes d’algèbre abstraite en géométrie algébrique, second edition, Springer-Verlag, Berlin, 1967.
[4] I. Goldberg and R. L. Bishop, On the topology of positively curved Kähler manifolds II, Tôhoku Math. J., 17 (1965), 310-318.
[5] S. Kobayashi, Hypersurfaces of complex projective space with constant scalar curvature, J. Differential Geometry, 1 (1967), 369-370.

[^0]: * Work supported by an NSF Grant GP-7610.

[^1]: 1) We thank H. Hironaka for conversations which have led to the following reasoning.
