On the rank and curvature of non-singular complex hypersurfaces in a complex projective space*

By Katsumi NOMIZU

(Received July 23, 1968)

Let M be a non-singular connected complex hypersurface in the complex projective space $P^{n+1}(C)$ with Fubini-Study metric of constant holomorphic sectional curvature 1. In [2] it was shown that the rank of the second fundamental form A of M at a point x of M is determined by the curvature tensor of M at x. Thus the rank of A is intrinsic at each point and is simply called the rank of M.

In the present paper we shall obtain the following results:

THEOREM 1. If M is compact and if the rank of M is $\leq n-1$ at every point, then M is imbedded as a projective hyperplane in $P^{n+1}(C)$.

THEOREM 2. Let $n \ge 3$. If M is compact and if the sectional curvature of M with respect to the induced Kählerian metric is $\ge \frac{1}{4}$ for every tangent 2-plane, then M is imbedded as a projective hyperplane.

1. Preliminaries. We recall the terminology and a few results from [1] and [2]. Let M be a complex hypersurface in $P^{n+1}(C)$. Let J denote the complex structures of $P^{n+1}(C)$ and M, and let g denote the Fubini-Study metric of holomorphic sectional curvature 1 in $P^{n+1}(C)$ as well as the Kählerian metric induced on M. For each point x_0 of M, choose a field of unit normals ξ defined on a neighborhood U of x_0 .

Denoting by $\tilde{\mathcal{V}}$ and \mathcal{V} the Kählerian connections of $P^{n+1}(C)$ and M, we have the basic formulas (cf. [1])

$$\begin{split} \tilde{\mathcal{V}}_X Y &= \mathcal{V}_X Y + h(X, Y)\xi + k(X, Y)J\xi \\ \tilde{\mathcal{V}}_X \xi &= -AX + s(X)J\xi \ , \end{split}$$

where X and Y are vector fields tangent to M, h and k are bilinear symmetric forms, s is a 1-form, and A is a tensor field of type (1, 1), called the second fundamental form. Moreover, we have h(X, Y) = g(AX, Y), k(X, Y) =g(JAX, Y), and AJ = -JA. The Gauss equation expresses the curvature ten-

^{*} Work supported by an NSF Grant GP-7610.

sor R of M as follows:

$$R(X, Y) = \widetilde{R}(X, Y) + D(X, Y)$$
,

where \tilde{R} is the curvature tensor of $P^{n+1}(C)$ given by

$$\widetilde{R}(X, Y) = \frac{1}{4} \{X \land Y + JX \land JY + 2g(X, JY)J\}$$

and D is a tensor of type (1, 3) defined by

$$D(X, Y) = AX \wedge AY + JAX \wedge JAY.$$

In these formulas, $X \wedge Y$, where X, $Y \in T_x(M)$, denotes the skew-symmetric endomorphism of the tangent space $T_x(M)$ defined by

$$(X \wedge Y)(Z) = g(Y, Z)X - g(X, Z)Y, \qquad Z \in T_x(M).$$

In [2] it was shown that the kernel of A at $x \in M$ is equal to $\{X \in T_x(M); (R - \tilde{R})(X, Y) = 0 \text{ for all } Y \in T_x(M)\}$. Thus the rank of A at x is intrinsic; we call it the rank of M at the point x.

Suppose that, at every point of an open subset W, the rank of M is equal to a constant, say, 2r, where r is a positive integer. Then we get a distribution T^0 of dimension 2n-2r which assigns to each $x \in W$ the kernel of A. In the arguments leading to Proposition 1 in [2], it is shown that T^0 is involutive and invariant by the complex structure J so that any of its maximal integral manifolds is a complex submanifold which is, in fact, totally geodesic in $P^{n+1}(C)$. This means that there exist a projective subspace P^{n-r} in $P^{n+1}(C)$ and an open subset U of $P^{n+1}(C)$ such that $U \cap P^{n-r} \subset M$. We shall make use of this fact in the following section.

2. PROOF OF THEOREM 1. If the rank of M is zero everywhere, then M is totally geodesic and hence is a projective hyperplane. Assume that the rank of M has a maximum, say, 2r > 0, at some point x_0 of M. Then the rank of A is identically equal to 2r in a neighborhood W of x_0 . As we stated in section 1, there exist a projective subspace P^{n-r} in $P^{n+1}(C)$ and an open subset U in $P^{n+1}(C)$ such that $U \cap P^{n-r} \subset M$. We shall now show that the entire subspace P^{n-r} is contained in M^{10} . Let $(z_0, z_1, \dots, z_{n+1})$ be a projective coordinate system in $P^{n+1}(C)$ such that the subspace P^{n-r} is given by $z_0 = z_1 = \dots = z_r = 0$. Since M is algebraic by a well-known theorem of Chow, it is the zero set of a certain homogeneous polynomial $f(z_0, z_1, \dots, z_{n+1})$. Denoting the coordinates of the point x_0 by $(a_0, a_1, \dots, a_{n+1})$, we may assume that

$$U = \{(z_0, z_1, \cdots, z_{n+1}); |z_k - a_k| < d\}, \quad d > 0.$$

267

¹⁾ We thank H. Hironaka for conversations which have led to the following reasoning.

The condition $U \cap P^{n-r} \subset M$ implies that $f(0, 0, \dots, 0, z_{r+1}, \dots, z_{n+1}) = 0$ for all $(z_{r+1}, \dots, z_{n+1})$ such that $|z_k - a_k| < d, r+1 \le k \le n+1$. It follows that $f(0, 0, \dots, 0, z_{r+1}, \dots, z_{n+1}) = 0$ for all z_{r+1}, \dots, z_{n+1} . Thus P^{n-r} is contained in M.

Now by the proposition below we may conclude that M is a projective hyperplane; but then the rank of M is identically 0. This contradiction coming from the assumption that the rank of M is not 0 at some point, we have proved Theorem 1.

PROPOSITION. Let M be a compact complex hypersurface in $P^{n+1}(C)$. If M contains a certain projective subspace P^{n-r} , where $2r \leq n-1$, then M is a projective hyperplane.

The following proof is an extension of the argument for Theorem 6 in [2], which will now be contained in our Theorem 1. We write the homogeneous polynomial f defining M in the form

$$f(z_0, z_1, \dots, z_{n+1}) = F(z_{r+1}, \dots, z_{n+1}) + \sum_{k=0}^r z_k f_k(z_{r+1}, \dots, z_{n+1}) + \sum_{k_0 + \dots + k_r \ge 2} z_0^{k_0} z_1^{k_1} \dots z_r^{k_r} f_{k_0 k_1 \dots k_r}(z_{r+1}, \dots, z_{n+1})$$

where F, f_k and $f_{k_0k_1\cdots k_r}$ are homogeneous polynomials in the variables z_{r+1} , \cdots , z_{n+1} . Since $P^{n-r} \subset M$, we have $f(0, \cdots, 0, z_{r+1}, \cdots, z_{n+1}) = 0$ for all z_{r+1}, \cdots, z_{n+1} . Thus F is identically 0. Consequently, we get

$$\partial f/\partial z_j = f_j + \sum_{k_0 + \dots + k_r \ge 2} k_j z_0^{k_0} \cdots z_j^{k_j - 1} \cdots z_r^{k_r} f_{k_0 \cdots k_r}, \quad 0 \le j \le r,$$

and

$$\partial f/\partial z_m = \sum_{j=0}^r z_j \partial f_j/\partial z_m + \sum_{k_0 + \dots + k_r \ge 2} z_0^{k_0} \cdots z_r^{k_r} \partial f_{k_0 \cdots k_r}/\partial z_m$$
, $r+1 \le m \le n+1$.

At $(0, \dots, 0, z_{r+1}, \dots, z_{n+1}) \in P^{n-r} \subset M$, we have

 $\partial f/\partial z_j = f_j$, $0 \leq j \leq r$, and $\partial f/\partial z_m = 0$, $r+1 \leq m \leq n+1$.

We consider r+1 homogeneous polynomials f_j , $0 \le j \le r$. If $r+1 \le n-r$ (that is, $2r \le n-1$ as we are assuming), it follows from the dimension theorem for intersections of varieties (cf. the main theorem of § 5, [3]) that, unless f_j 's are constants, there is a non-trivial common solution $(b_{r+1}, \dots, b_{n+1})$ of the system of equations $f_j = 0$, $0 \le j \le r$. Then the point $(0, \dots, 0, b_{r+1}, \dots, b_{n+1})$ of $P^{n+1}(C)$ lies in M and, at that point, all partial derivatives $\partial f/\partial z^k$, $0 \le k \le n+1$, are 0. This contradicts the premise that f defines our non-singular hypersurface M. We conclude that f_j 's are constants and f is of degree 1, that is, M is a projective hyperplane.

3. PROOF OF THEOREM 2. At any point x of M, there is an orthonormal basis in $T_x(M)$ of the form $\{e_1, \dots, e_n, Je_1, \dots, Je_n\}$ such that

268

Rank and curvature of non-singular complex hypersurfaces

$$Ae_i = \lambda_i e_i$$
 and $A(Je_i) = -\lambda_i (Je_i)$, $1 \leq i \leq n$,

where we may assume $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ (see Lemma 1 of [1]). By Corollary 1 of [1], the sectional curvature for the plane spanned by e_j and $Je_k, j \neq k$, is equal to $\frac{1}{4} - \lambda_j \lambda_k$. Since all sectional curvatures are $\geq \frac{1}{4}$, we have $-\lambda_j \lambda_k \geq 0$. Thus, if $\lambda_1 > 0$, then $\lambda_2 = \cdots = \lambda_n = 0$ and the rank of M is at most 2 at x. If $\lambda_1 = 0$, then, of course, A is 0 at x. Thus our assumption on sectional curvature implies that the rank of M is at most 2 everywhere. Since $n \geq 3$ by assumption, Theorem 1 can be applied to conclude that M is a projective hyperplane.

4. REMARK. For a compact connected Kählerian manifold M of complex dimension n, consider the following conditions:

- a) M admits a holomorphic, isometric imbedding into $P^{n+1}(C)$;
- b) all sectional curvatures of M are $\geq \frac{1}{4}$;
- c) the scalar curvature of M is constant.

Our Theorem 2 says that, for $n \ge 3$, conditions a) and b) imply that M is holomorphically isometric to $P^n(C)$. A result due to Berger and Goldberg-Bishop [4] implies that b) and c) give rise to the same conclusion. Finally, Kobayashi [5] proved, by using the main theorem in [1], that a) and c) imply that M is either $P^n(C)$ or a complex quadric, provided that $n \ge 2$.

Brown University

Bibliography

- [1] B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math., 85 (1967), 246-266.
- [2] K. Nomizu and B. Smyth, Differential geometry of complex hypersurfaces II, J. Math. Soc. Japan, 20 (1968), 498-521.
- [3] P. Samuel, Méthodes d'algèbre abstraite en géométrie algébrique, second edition, Springer-Verlag, Berlin, 1967.
- [4] I. Goldberg and R. L. Bishop, On the topology of positively curved Kähler manifolds II, Tôhoku Math. J., 17 (1965), 310-318.
- [5] S. Kobayashi, Hypersurfaces of complex projective space with constant scalar curvature, J. Differential Geometry, 1 (1967), 369-370.