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Introduction.

In this paper, we determine the first and second cohomology groups of
the following tori: G, Rg.(G,), and some tori associated with Ry, (G,) (U
and V defined in §2) and discuss relations between them. As an application,
we also determine H%(k, Z), where Z is the center of a simply connected sim-
ple algebraic group F defined over a perfect field k.. Since any simply con-
nected simple algebraic group F defined over % is obtained by an inner twist
from a certain quasi-split simple algebraic group F, defined over k, in order
to determine H?%(k, Z), it suffices to determine H%(k, Z,), where Z, is the center
of F,.

In n°1, we state some lemmas which are well-known. In n°2, we deter-
mine the cohomology groups of some special tori, applying the lemmas to the
case M= k¥, where k; is the separable closure of 2. In n°3 and n°4, we deter-
mine H%*k, Z) and define an H*-invariant of a k-form of a simple algebraic
group. N°5 has a nature of an appendix which will explain in a certain
sense the meaning of the table obtained in n°3. Let K be a separable quadratic
extension of an arbitrary field k. We prove that a central simple algebra B
over K has an anti-automorphism over k if and only if B+ j5=0, where B is
the class of B in the Brauer group B(K) of K. We also prove that B has an
involution over k if and only if ¢(8)=0, where ¢ is the corestriction of B(K)
into B(k).

The author would like to express his hearty thanks to Dr. T. Kondo and
Dr. H. Hijikata who have read his first manuscript critically and have given

him useful suggestions.

§1. Preliminaries.

Let g be an arbitrary group and § be its subgroup of finite index n. Put

g= g}, with g,=1. Putting
i=1
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A=Z[a/9)= 3} Za,

where a; = g5 is the left coset of g; modulo ), we can easily see that 4 is a
left g-module of Z-rank n. In this paper, we assume that all g-modules are
left g-modules. For any g-modules A and B, Hom (A, B) is the group of Z-
homomorphism of A into B, and AX B is the tensor product of A and B taken
over Z. These can be considered as g-modules in natural way. For an arbi-
trary g-module A, we put A°=Hom (A4, Z). A° is called the dual g-module
of A.

LEMMA 1. We have A°= A, as g-modules.

PrROOF. Any element x of g induces a permutation on (a, -, a,). It is
clear that the permutation representation is self-dual.

LEMMA 2. Let M be a g-module. Then we have

@ AQ@ M = Homgy(Z[g], M),

as g-modules, where Homy((Z[g]), M) is considered as g-module in the following
way: for fe Homy(Z[g), M) and s g, we put sf(x)=f(xs), for x & Z[g].

PrOOF. AQM={a,Qgm,: m;e M}. On the other hand, we have g="\Uhg; .
For f e Homy,(Z[g], M), we put f;=f(g;9). Then f is completely determined
by (f1, -+, fn). We put a;(m)=a,Qg;m, and determine S8;(m) € Hom(Z[g], M)
by putting B,(m)(g;") =d;;m. The map a;(m)— B,(m) is clearly a Z-isomorphism.
For x =g, we write x=g;hg;'. If we fix 1, then j is uniquely determined by
x and i. So we have xa;(m)=x(a;Qg,m)=a;RQg;Aim=a;hm), and we have
(XBum)(g7) = Bi(m)(hgi) = hm, and (xB.(m)(g7?) = Bu(m)(hg ) =0, if s+, that
is, xB,(m)=B,(hm). This proves that the above Z-isomorphism is a g-isomor-
phism. (q.e.d.).

COROLLARY 1. Let g be a group and Y be its subgroup of finite index. For
a g-module M, we have

@ Hi(g, AQM)=H'(H, M),
for 1=0.

COROLLARY 2. Let g be a pro-finite group (that is, a compact and totally
disconnected group (Serre [7]. 1.1.1.)), and 1) be its open subgroup. We suppose
that M is a discrete g-module. If we consider the topological cohomology group

(that is, the cohomology group defined by continuous cocycles and continuous
coboundaries), we also have

3 Hi(g, AQM)=H¥Y, M),
for i=0.

COROLLARY 3. Let G be a finite group and H be its subgroup. We consider
the Tate cohomology group of G (Serre [6]. VIIL1), then we have
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@ HYG, AQM)=H"H, M),

for any ie Z.
ProOOF. In each case, we have

H¥(g, Homyry(Z (g, M) = H'(h, M),

(Shapiro’s Theorem). For example, in case Corollary 2, see Serre [7]. 1.2.5.
Thus we have a canonical isomorphism of H'(g, AQ M) onto H), M).
Sometimes we identify H%(g, AQM) with H*(), M) by this canonical isomor-
phism.
Now we consider the following exact sequences.

C
®) 0— C—A—Z—0,

'd
©) 0> Zu——>A—R——0,

where ¢(3 pa;)= 3 p;, and u= 3 a,; and 7 is the injection. So we have Zu=2
as g-modules. One can easily see that C°= R and R°= C as g-modules. As
the sequences (5) and (6) are split over Z, we have for any g-module M the
following exact sequences.

%) 0—CQM—AQM— M—-0,
) 0—M—AQM—RRQM—0.

Taking the cohomology of these exact sequences, we have, through the
above mentioned identifications, the following exact sequences.

C
9) 0—H@, CQM)— H°(9, M)— H°(@@, M)—H' (3, CQM)—
C
= HYg, CQM)—— H(§h M)— H*g, M)—— H*'(3, CQM)—,
v
(10) 0— H@g, M)— H°"%, M)— H'(@, RQM)—— H(g, M)—

’
- ——H%g, M)— H'(9, M)— H'(g, RQ M) — H**(3, M)— .

These are valid for a pro-finite group g and its open subgroup Y, with respect
to the (topological) cohomology groups. If G is a finite group and we use the
Tate cohomology groups, we have

1) ——HYG, CQM)— HYH, M)-c—>H"(G, M)— H"*Y(G, CQ M)— ,

v
12) — HYG, M)—— H¥H, M)— H G, RQ M)— H"*(G, M)—,

for any 1= Z.
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LEMMA 3. In each case, c is the corestriction and v is the restriction.
PrOOF. In case of pro-finite groups, see Serre [7]. 1.2.5. The others also
can be easily verified. (qg.e. d.).

§2. Cohomology of some special tori.

Let & be a field and k, be the separable closure of k. We denote by g
the Galois group of k, over k. The group g is a pro-finite group by the Krull
topology. For an open subgroup J, there corresponds a subfield K of 2, which
is a separable finite extension of k. If % is normal in ¢, then K is a finite
Galois extension of k2, with the Galois group G = g/J.

We put M=(G,);,= k¥, where G,, is the multiplicative group of the uni-
versal domain over k. Clearly M is a discrete g-module in natural way. Let
T be a torus defined over k. We denote by X(7T) the character module of T.
Then X(T) is a discrete g-module. We see easily that T} = X(T)QM. We
put Hi(k, T)=H¥g, T,

We put S= Ry ,(G,) (for the definition and the properties of R/, see Ono
[3] 1.4), then X(S)= A= Z[ga/h], where K is a finite extension of £ with the
Galois group § in k. By we have

(13 Hk, S)= H'(h, M)=0.  (Hilbert’s theorem 90)
ey H*k, S)= H*%, M) = B(K),

where B(K) is the Brauer group of K (see Serre [6] X.4).

To the Z-free g-modules C and R in (5) and (6), there correspond the tori
U and V defined over k, respectively (cf. Ono Prop. 1.2.3 and Prop. 1.2.4).
So we have U,,=C°QM=RQM,and V, = R°QM=CQRM. Using the exact
sequences (9) and (10), we have

0 Vi Sy k* H'(k, V) 0 0 H*k, V)

4
—— B(K)—— B(k),
0 k* Sk Uy 0 0 H(k, U)— B(k)

;B(K)——»Hz(k, U).

That is, H'(k, V)=Fk*/NK*, U,= K*/k*, and

15) 0—— H?(k, V)————>B(K)—C~»B(k),

r
(16) 0— H'(k, Uy—> B(k)— B(K)——H?*k, U).

If n is an open and normal subgroup of g contained in %), we put G=g/n
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and H=Y/n. Then the sequences (5) and (6) can be considered as
an 0—C—Z[G/H]—Z—0,
(18) 0—Z—Z[G/H]—> R—0,

because n operates trivially on each g-modules above.

In the following, we shall consider the case where § is normal in g, and
we put n=1§) and G=g/f). Then the sequences and are the usual
ones in the cohomology of finite groups. For any G-module M,, we have

(19) HYG, M) =H"(G, CQ M)=H" G, RQM,).

If we put M,=YQRM"=YXRK*, where Y is a Z-free G-module considered as
a discrete g-module, using the fact the H'(f, Y @ M)=0, we have

inf

(20) 0— H'G, Y®K*)iH1(g, YQM)—0,
inf

2D 0— H*G, Y®K*)1H2(Q, YQM)

T
—H*), YRM) —H¥G, Y QRK*),
where inf is the inflation and z is the transgression (Serre [6]. VII. 6). If we
put Y =4 (= Z[G]), we have
@2) 0— HXg, AQM)— H*®, AQM)® ——0.

By easy computation, we can show that H(), AQM)¢ = H*(h, M). That is,
H%*k, S)= B(K). Thus we have an explicit form of the isomorphism of H?*(%, S)
onto B(K) in (14) when K is a finite Galois extension of k2, which we will
utilise in the following sections.

To determine H%*(k, V)= H?@, CQ M) when ) is normal in g, we consider
the following exact sequence, substituting M by CQ M in (10),

,
H'(g, RQCQQM)——H* (g, CQM)——H*®H, COQM)——H*g, RCRQM) .

By and [20), we have
HY(g, RCRQM)=H G, RQCRQK*)=HG, CRQK*)=H'(G, K*)=0.

So we have

,
(23) 0——H*g, CQM)— H*(, CQM)— H*5, RQCKM).

Now we consider the simpler case where G=gq/) = Z,, the group of order
2. Then C=R and CRQR=Z as g-modules, and C= R=Z as })-modules. So
we have
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(29) 0-~~H2(Q,C®M)—r—>H2(f), M)— H*@g, M).

That is,

(25) O——>H2(g,C®M)—»B(K)—E—>B(k).

Using the isomorphism [22), we can show that & = —c, where ¢ is the corestric-

tion. Thus we have proved
PropPOSITION 1. Let K be a separable quadratic extension of k. The kernel
of the corestriction ¢ of B(K) into B(k) is the subgroup of B(K) of the classes
of cocycles of Yy into M which can be extended to the cocycles of g into CR M.
We also suppose that g/h=Z,. In [2I), we put Y=C. So we have

0—H*g, CQM)—H*(), CR M) — H¥G, CQK*),

because H*G, CQRQK*)=H' G, K¥)=0. Moreover we have H¥G, CQK*)
= H¥G, K¥) = k*/NK*, and H*®, CQ M)" = {f e B(K): -+ =0}, where bar
means the action of the non-trivial automorphism of K over k2 on B(K).

In n°5, we will prove the following two propositions.

PROPOSITION 2. Let B be a central simple algebra over K, and (8 be 1its
class in B(K). The algebra B has an anti-automorphism over k, if and only
if B+p=0.

PrROPOSITION 3. Let B be a central simple algebra over K, and B be 1iis
class in B(K). The algebra B has an involution over k, if and only if ¢(8)=0.

REMARK. We mean by an anti-automorphism over 2 an anti-automorphism
whose restriction on the center K is the non-trivial automorphism of K over
k. An involution is an anti-automorphism of order 2.

In this place, we notice that the conditions (22.a, b and ¢) or (55; a, b and
¢) in Satake [5] are equivalent to ¢(A)=0 or ¢(¢) =0 (cf. n°5).

From the proposition 3 and (15), it follows

THEOREM. To each element of H*k, V), where V is the unique one dimen-
stonal torus defined over k which is not k-trivial and splits over separable qua-
dratic extension K of k, there corresponds an algebra class of central simple
algebra over K which has an involution over k.

ProoOF. The torus V is the torus whose character module is isomorphic
to C or, what is the same, to R (cf. Ono [3]. Prop. 1.2.3 and Prop. 1.2.4).

§3. Applications to the Galois cohomology of simple algebraic groups.

From now on, we assume that the base field %2 is a perfect field having
more than three elements. Let F be a simple algebraic group quasi-split over
K/k 8] 1) (in this paper, we mean by a simple algebraic group a simple
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algebraic group over the algebraic closure 2z of ). Moreover we assume that
F is of adjoint type. F is uniquely determined by K/k and its type over the
algebraic closure. We denote by ¢X,, the type of F or that of the algebraic
groups associated with F by in n°4, where d=[K; k] and X, is the type
of F over the algebraic closure of k. Suppose that A4 is a maximal k-trivial
torus of F. Then T=Z(A) is a maximal torus of F defined over k, where
Z(A) means the centraliser of A in F (ibid.). Let £ be the universal covering
of F defined over k with the covering isogeny =, A and T be the correspond-
ing tori of F to A and T by =, respectively (for the definition and the ex-
istence of the universal covering, see Tits [9]. 2.6.1. Prop. 2). We have shown
in our previous paper [8] 3.(26), that T = T'= a[ R 4(G)1 X b[G,], except the
type °D,, and that T= T'= R, ,(G,) X G,, for the type °D,, where L is a subfield
of K of degree 3 over k. Note that b[G, ] means the direct product of b-
copies of G, for example. Let Z be the kernel of = in 7. Then Z is the
center of F, and we have

n

0 Z T T 0.

So we have the exact sequence

72'- N
0 Z, T, T, H¥k, Z)— HXE, T)

TC*

—— HYk, T)— H¥k, Z)— H¥k, T)—— H¥k, T).
As H'(k, T)= H'(k, T)=0 (see (13)), we have
(26) HY(k, Z) = T/ (T,
27 H(k, Z)=Ker o*,
where 7*: H%k, T)—H%k, T). On the other hand, we have
0—Z—F—F—0.

So we have the following exact sequence of pointed sets.

o™y ~ 5
0 Zy Fy Fy HYk, Z)— H'(k, F)— H'(k, F)— H*k, Z).

In [8] 2. Th. 1, we have the natural isomorphism of F,/z(Fy) onto T./a(T%).
Thus we have

Fo/a(F) = Tw/a(T) = H'(k, Z).
It follows from these

b
28 0—— H'(k, FY— H'(k, F)— H*k, Z) .

We shall determine H?%(k, Z) in each case.
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Suppose that F is split over k, that is, T=A. Let (e, ---, e,) be the ele-
mental divisors of X(7T) in X(7"). Then Z= In]f,uei, where y, is the group of
=1
e-th roots of unity in G,. Using the following sequence,

e
0— pty—— Gp— Gpy——0,

where e(x) = x% we have H'(k, p,) = k*/(k*)’, and
29) H%*k, p)={a s Bk): ea=0},

where B(k) is the Brauer group of k.
If F is quasi-split over K/k, Ker z* is the subgroup of H%(k, T) containing
(¢4 -+, &) such that

(C(i, ])) * t(al’ Tt en) =0,

where c(i, ) = 2(a;, a;)/(a;, a;) is the Cartan integer and {q;} is the fundamental
root system of F. Using the isomorphism [22), we can calculate explicitly
H?*, Z)=FKer n* in each case.

A Hk, Z)={Bc BK): mf=(m+1)8}.

2Apmrr : " = {(a, B) € B(R)x B(K): (o) =(m+1)B, 2a = mc(B)} .
2D, r ={(a, B)e BEYXBK): (n—2r(a) =28, (n—Da=c(8)} .
2, : 7 = {(a, B) e BRYXBK): 2r(a) =3B, 3a=2¢(B)}.

3D, 7 ={(a, B)e Br)XBEK): r(@)=28, 2a=-c(p)}.

D,: 7 =Z{(a, pe B)yxBL): r()=28, 2a =c(P)}.

Explanation: (i) r is the restriction and c is the corestriction.

(ii) Bar (in ) means the action of the non-trivial automorphism of K over
k on B(K), where K is a quadratic extension of k.

@ii) In ¢D,, L is a subfield of K of degree 3 over £.

Using the following facts, we can simplify the above table. When K is a
quadratic extension of k, c(r(a)) =2a; 7(c(B)=B+B; ¢(B)=0 implies f+5=0;
B+B=0 implies c(B) = H(K/E) (the kernel of the restriction r in B(k)); and
B=p implies Be=r(B(k)). The last statement can be obtained by putting
Y=Zin The similar formulae also hold for the case where K is not a
quadratic extension of k. Thus we have the following table.

'4,: {ae Bk): n+Da=0}, a~—a.

*Am: {B e BK): Cm+1)B=0, ¢(8)=0}, B~5.

*Asmint (2, pEBEYXBEK): 2a=0, r(@)=0n+1)p, c(§)=0}, (o, f)~(a, f).
B, and C,: {a€ B(k): 2a=0}.
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"Domir: {a€BR): da=0}, a~—a.

*Domss: {(at, B) € BYXB(K): 2a=0, r(a)=28, c(f)=0}, (&, )~ (a, f)-

Dym(m>2): {(ay, ay) € BlR)X B(k): 2a, =20, =0}, (a;, a,) ~(ay ay) -

*Dy(m >2): {fe BE): 28=0}, B~p.

Es: {aeBlk): 3a=0}, a~—a.

*E¢: {BeB(K): 3=0, ¢(B)=0}, p~F5.

E,: {aeBk): 2a=0}.

E,;, F, and G,: trivial.

Dy: {(ary, ay) € B(R)X B(k): 20, =2a, =0}, (ay, a,) ~ (a;+a,, a,)
~(ay, ayFoa,) ~ (o, a) ~(ay, a,+ay)~(a+a,, a).

!D,: {feB(K): 28=0}, B~5.

Dyt {BeBE): 28=0,c(B)=0}, B~F~5.

‘Dy: {peBL): 28=0, c(f)=0}.

For the meaning of equivalence relations ~, see the next section.

If K is a quadratic extension of k, then the characterisation of ¢(8)=0 is
done in the proposition 3. But if K is not a quadratic extension, the meaning
of ¢(8)=0 is not known yet. Note that, if K is a quadratic extension of £,
2t=0 and ¢(8)=0 imply that 3 is contained in Im» ~ Kerc. Moreover we
can easily see that Im» ~\Ker c= {r(a): a € B(k), 2a =0}.

§4. H*-invariant of k-forms.

In this section, we utilise the terminology and several results in Serre’s
[7]. 15 and IIL1.

Let F be a simple algebraic group defined over k, and F, be the split
adjoint form of F over k. We call F a k-form of F,. By the theory of Galois
cohomology of the algebraic groups, we have a one-to-one correspondence be-
tween k-forms of F, and the cohomology set H!(k, A(F,), where A(F,) is the
automorphism group of F,. The structure of A(F,) is well-known, that is,
A(F)=F,xU, a semi-direct product, where F;, is normal in A(F,), and
So=A(F)/F, (22U, is the automorphism group of Dynkin diagram of F, on
which g operates trivially. Moreover we have

30) H(k, A %H%k, 59 —0,
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where ¢ is the canonical cross-section, that is, for b= H'(k, S,), there corre-
sponds a certain Galois extension K of %k, and to ¢(b) corresponds a quasi-
split group F; over K/k which we assume to be of adjoint type.

Let F, be the universal covering of F, over k and Z, be the center of F,.
We suppose that F corresponds to f < H'(k, A(F,)). We put ¢(f)=0>, then we
have

@D rZy =02y,

as g-modules, where ,Z, and ,Z, are the torsions of Z, by f and b, respectively.
We put S,=,S, and Z,=,Z,. We know that

(32) e i (b)=H'(k, F))/~,

where ~ means the action of H%%,S,). For an element d of H&, S,), we
have the following commutative diagram.

0
(33) H'(k, Fy) — H*k, Z))

d[ 5 dl
HYk, F)) — H*k, Z,),

where the action of d in H%*, Z,) is induced by the automorphism of Z, in-
duced by d (Kneser [2] 4). So we have

4
3D H(k, F)/~ —— H*k, Z})/~ .

For an element g of H(k, F,)/~, we may call 4(g) is the H%*invariant of F,
where F corresponds to g.

We shall determine the group S,, or H%&%, S)), in each case.

(i) Except the type D,, S; =S, as g-groups.

(ii) For the type D, If Imb=1, H®%,S)=S,, I Imb=2Z, Hk,S)
=Imb. If Imb=2Z, Hk S)=Imb. lf Imb=6,, H, S,)=1.

The action of H°%, S;) on Z, or on H*k, Z) can easily be determined
which we have given in the table of the last section.

§5. Involutorial algebras of the second kind.

Let & be an arbitrary field and K be its separable quadratic extension.
A central simple algebra B over K is said to have an anti-automorphism over
k, if there exists an anti-automorphism of B whose restriction on the center
K is the non-trivial automorphism of X over k.

LEMMA 4. Let B= M,(D), where D is a central division algebra over K.
The algebra B has an anti-automorphism over k if and only if D has.
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Proor. See, for example, Albert [17. X. Th. 12.

PROOF OF THE PROPOSITION 2 (see n°2). By lemma 4, we can suppose
that B is a crossed product (N, p), where N is a finite Galois extension of K
and p is a 2-cocycle of G(N/K) into N*. Moreover we can suppose that N is
a Galois extension of k. We put G=G(N/k) and H=G(N/K). We fix an
element o0 of G—H. We denote by § the class of p in H?*(H, N*). Then J
corresponds to the class of p, where p is the 2-cocycle defined by p(S, T)
=a(p(S?, T?)). Note that we use the notation S°=0¢"'Se and °S=0So~*. The

crossed product (N, p) is constructed in the following way. B= 3 Nug, usz
ScH

=S@us (z= N) and ugur = p(S, T)ugy. Note that we suppose that H operates
on N* from the left.

Assume B+p5=0. That is, p(S, T)-p(S, T)=m(ST)/m(S)- Sm(T), where
m is a l-cochain of H into N*. Changing {ug}, we can suppose that p(1, 1)=1.
Necessarily m(1)=1 and u, is the unit element of B. We put

p(Xzsug) =2 mCSHuocg)™ - 0(zs) .

We can show that p is an anti-automorphism of B over % (cf. [1]. X. the
proof of Th. 16).

Conversely assume that B=(N, p) has an anti-automorphism p over k.
We put N,=p(N). Of course, there exists an isomorphism of N onto N, over
K. By [1]. IV. Th. 14, there exists an invertible element X in B such that
XN, X'=N. Put p,(uw)= Xp(u)X-*. Then p,(N)=N and p, is also an anti-
automorphism of B over k. So we can suppose from the first that p(N)= N.
The restriction of p on N is an element ¢ of G—H. Now one has p(usx)
=o0(x)ous) = p(S(X)us) = p(us)-0S(x). So one has usgp(ug)0S(x) = Usg-0(x)- p(Us)
= 9S(e(x))ussp(us) = 0S(x) - usgp(ug), for all ¢S(x) in N. As N is a maximal
subfield of B, ussp(us) is contained in N*. We put ussp(ug) =m(°S)"?, that is,
p(ug)™ = m(CSHuss. From ugur = p(S, T)ugr, one has pup)p(us) = p(usr) -
a(p(S, T)). From this, it follows that p(ug)-!- p(up)*=0a(@(S, T p(usr)™
=o(p(S, T)*m((STY) - thospy and p(us)™ - p(ur)™ = m(°S)tes - mCT Yoy = m(°S)
-9SmCT) - pCS, °T) - s g;,» Thus we have p(S, T) - a(p(S?, T?)=m(ST)/m(S)
- Sm(T). This proves that g+5=0.

PROOF OF THE PROPOSITION 3. It is known that B= M,(D) has an involu-
tion over k, if and only if D does ([1]. X. Th. 12), where D is a central divi-
sion algebra over K. So it is sufficient to prove the proposition in the case
where B is a crossed product (N, p). Moreover we may suppose that N is a
finite Galois extension of k. We put G=G(N/k) and H=G(N/K). Let p be
a 2-cocycle of H into N*. We put
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p(S, T)=p(S, T) " p(S, T)=0p(c7'So, 67'T0)
p(aS, T)= p(aSa, 6-*Ta) p(0S, T)=0ap(S, T)

Di(S, oT) = p(S, 6To) (S, 0T)=0p(07'Se, T)
p,(@S, oT)= p(aSa, T) 0,(aS, eT)=0cp(S, ¢To),

where S and T run in H. Then a,®p,(S, T)+a,Qp,(S, T) is a 2-cocycle of G
into Z[G/H]®QN*. To the 2-cocycle p,(S, T) - p,(S, T') of G into N* corresponds
c(f) in B(k), where p is the class of p(S, T) in B(K). We assume that c(f)
=0, that is, p,(S, T)- (S, T)=m(ST)/m(S) - Sm(T) for all Sand T in G. From
the definition of p;, it follows that

(35) p(S, T)-oplc7*Sa, 67'To) =m(ST)/m(S) - Sm(T),
(36) p(oSo, 671T0o) - ap(S, T) =m(cST)/m(cS) - cSm(T),
37 p(S, 0To) - op(o7*Sa, TY=m(SaT)/m(S) - Sm(cT),
(38 p(eSo, T) - op(S, 0To)=m(cSeT)/m(@S) - cSm(cT).

From [(38), we can deduce the following formulae.
(39 m(o) - om(o) = m(A),
) m(e™) - o7 'm(c~*) =m(A™"),

where A=o0° Now we take an anti-automorphism p over % as in the proof

of Then p* is an automorphism of B over K. As the
restriction of p® to N is A=o¢? we have p*(u) = 2u u(Au,)~*, with some 1 N*.
On the other hand, by direct calculation, we have p*(ug)=[m(4S)/om(’S)]

~Ugs4-1

From [(36) and [37), we have
p(A, S)Y=p(A, S)-0p(, 6So-*)y=m(ASe~?)/m(o) - om(¢Sc™),
P(ASA-Y, A)=p(ASA~, A)-op(eSo~1, 1) =m(ASa~*)/m(4S) - ASm(o) .
If we put 1=m(o), then we have
m(o)u zus = A@m(0)p(A, S)u,s = Al@)Im(ASe~")/om(eSo~")Ju s,
p*ugym(o)u 4 = A@Lm(1S)/om("S)] - “Sm(o) - p(ASA™, Auys
= A@Um(ASe~")/m(eSe~")Ju 45 -

Thus we have proved that p*(u)=m(o)u u(m(c)u,)*. By direct calculation,
one can see that B has an involution over % if and only if there exists an
invertible element X in B such that Xp(X) 'm(o)u,=>b, where b is a certain
element in K*. That is, if we can solve the equation
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(42 m(@yu, X=>b-p(X),

with an invertible element X in B, we can construct an involution of B over k.
If 0°=1(A=1), from [(39), it follows m(s)-om(c)=1. There exists an
element w in N* such that m(o) =o(w)/w. Thus we have m(o)u,w=oWw). So
the equation is solved with b=1 and X=w.
If o*=A=+1, we put X=0(y)/m(e-*)+yu -1, where y is a certain element

in N*, From and (41), it follows that
m(o)uy-(9(3)/m(o=")+yu -1) = m(@) AW p(A, A)+Lm(e)Aa(y)/ Am(e~)]uy
= A(y)/om(c)+[Ao(y)m(o)/ Am(a=")Ju 4,
pLo(n)/mleD)+yu~1]= A(y)/om(o~)+m(A Hu,—)~" - a(y)
= A(y)/om(c)+[Ao(y)/ Am(A)p(A, A ]uy
= A(y)/om(o=)+LAo(y)m(o)/ Am(o=")Ju , -

Thus the equation [(42) is solved with b=1 and X=o(y)/m(c-*)+yu,-1. Note
that (u,—)'=T[1/p(A4, AY)Ju,. Let n be the order of A in G. (u,~)"=t
is an element of N* If we put Y=-—-[ymloY)/o(»)]u,~1, then Y"=

(—1)"[o(me™) - v(3)/ov(y)Jt = ¢ is an element of N*, where w(w)="TI A~‘uw).

Changing y appropriately, we can suppose that ¢+ 1. Then X is invertible.
More precisely,

X+ =[1/A-9]- 8 Y- [me)/o(s)]

Thus, if ¢(8)=0, B has an involution over k.

Conversely we assume that B=(N, p) has an involution J over k. Put
N,=J(N). As there exists an isomorphism over K of N onto N,, there exists
an inner automorphism x of B such that x(N)= N,, where x(u)= XuX"'. We
put p(u) = X"'J(w)X, that is, J(u)= Xp(w)X*. Then clearly p(N)=N. Denot-

ing by o the restriction of p on N, we have o(Tzsus) =3 (mM(°S)uss)™* - 0(zs),
and

(43) (S, T)-op(67'Se, 67 Ta) = m(ST)/m(S) - Sm(T),

for all S and T in H (cf. the proof of Prop. 2). On the other hand, putting
o= A, there exists A in N* such that

44 0*(w) = Auu(Au ).

We write X = 3 xsug. As X is invertible, there exists an S such that xg = 0.
If we put p,(u) = xsug X *J(u)X(xsus)™*, then p, is an anti-automorphism of B
over k such that p,(N)=N. Thus we can assume from the first that x, =1.
As J is an involution of B over k, X is a solution of [(42), that is,
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45) Auy X=0>-p(X),

where b e K*. We put m(e)=2/b. As b is contained in the center of B, the
equation holds also with m(o)u .

Suppose that ¢>=1 (A=1). Comparing the coefficients of u, in [45), we
have A=0b, that is, m(o)=1. As X,=1 is also a solution of [45), p, is an
involution of B over k. So we have m(4S)=om(°S). Thus we have m(aSc™?)
=om(S). For each T in H, we put m(¢T)=om(T). Then one can easily verify
that the formulae [35), ---,[38) hold. That is, ¢(8)=0, where j is the class of
p in B(K).

Now suppose that ¢* = A=+1. Comparing the coefficients of u, and u, in
[(45), we have A=10b- Ao (y)/p(A, A~*)- Am(A~*) and 2- A(Y) - p(A, A~Y) =0, where
y=x4-1. Note that x, =1 from the assumption. From these, it follows that

46) m(o) - om(a) - p(A, A -ap(4, A ) Am(AH=1,

where we have put 1/b=m(o). In [44), we put u=ug, then we have
47 m(o)p(A, S)=m(ASA™) - ASA*m(o) - p(ASA-?, A)/om(eSc~?).
Now we put

(48 m(eT) = m(a) - om(T) - p(A, 6= Ta).

Then, from [(46), it follows that

(49) m(e™Y - o 'm(e~Yy=m(A™Y).

Note that p(A, A~")=m(e"Y)/m(o) - om(A~*). From [43), [(48) and [49), we have
0 m(o) - om(o) = m(A).

In [(47), we substitute S by A-'SA, then we have

G1)) p(A, A1SA)/p(S, A) = m(S) - Sm(a)/m(c) - om(c~*So) .

That is,

(52) Sm(o) = m(o) - [p(A, A 'SA) - om(c~'S0)/p(S, A)- m(S)].

Now we can show that the formulae [35), ---, [(38) hold. holds trivially by
[(43). From and we have

m(eST)/m(aS)-aSm(T)
=a[m(ST)/m(S) - Sm(T)] - p(A, 0-'STa)/p(A, 6-'So)
=0p(S, T)- Ap(o-1Sa, 673 Ta)- p(A, 6-ST)/ (A, 0-1S0)
= p(0Sa, 671 Ta) - ap(S, T).
Thus holds. Note that p is a 2-cocycle of H. From [43), and [(51),
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we have

m(SoT)/m(S) - Sm(aT) = p(S, 6T0o) - op(67Sa, T).

Thus also holds. From [43), [48), (50) and [(52), in the similar but more

complicated way, we have

m(eSoT)/m(aS) - oSm(eT)= p(aSo, T) - op(S, cTo).

Thus we have proved

L6]

[9]
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