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Introduction.

Let %, be the alternating group on m letters {1, 2, ---, m}. Put m=4n-r7,
where n is a positive integer and 0<r<3. Let &, be an involution of I,
which has a cycle decomposition

A, 2@, 4)--- (4n—3, dn—2)(4n—1, 4n).

a, is contained in the center of a 2-Sylow subgroup of %,. For r=1, 2 and
3, we denote by H(n, ) the centralizer in N, of &, In the present paper, we
shall prove the following two theorems.

THEOREM 1. Let G(n, r) be a finite group with the following properties:

1) G(n,r) has no subgroup of index 2, and

2 G, r) contains an involution a, in the center of a 2-Sylow subgroup
of G(n, r) whose centralizer Cgen,r(@,) is isomorphic to A, 7).

Then if r=2 or 3, G(n, 7) is isomorphic t0 Wy, except for the case n=1
and r=2 where G(1, 2)= %A, or PSL (2, 7).

For the case =1, the author has not obtained the analogous result.
But we can prove much weaker result. We note that H(n, 1) has a unique
elementary abelian subgroup S of order 22* up to conjugacy (cf. Appendix,
Proposition 5). Then we have

THEOREM II°°. Let G(n, 1) be a finite group containing an involution whose
centralizer H(n, 1) is isomorphic to H(n,1). Let S be an elementary abelian
snbgroup of order 2* of H(n,1). Assume that there exists a one-to-one mapping
0 from Hn, l)UNsum(g) (the set theoretic union in UA,) onto H(n, 1)U Nga,1(S)
such that 8 induces an isomorphism between H(n, 1) (resp. Ny, (S)) and H(n, 1)
(resp. Non,(S))-

Then G(n, 1) is isomorphic to Wy 07 Wynay-

The proof of Theorem I depends on Theorem A of the author’s previous
paper which was proved only in the case r==2 or 3. But we have not
obtained such result for the case r=1. This is the reason why the stronger
condition is necessary for the case »=1. However, we note: Theorem Il shows
that, if we can prove a result in the case r=1 similar to Theorem A of [9],
we shall be able to at once obtain a characterization of ¥%,, and %,,,, under
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a weaker condition”. The special cases n <3 of Theorems I and II were ob-
tained by M. Suzuki [10], D. Held [4], [5], T. Kondo [7] and H. Yamaki [12].

The main work of the present paper is to determine the structure of the
centralizer of every involution of G(n, 7). The arguments depend on Theorem
A of (the condition of Theorem II in the case »=1) and the knowledge
of conjugacy classes of involutions of the wreath product Z,? &,,. The latter
is summarized in §1. In §3, we determine the precise structure of the nor-
malizer of an elementary abelian 2-subgroup of G(n, 7). §4 is the collection
of technical lemmas. In §5 and §6, we determine the structure of the cen-
tralizer of every involution of G(n, ). Especially, the argument in §6 is due
to H. Yamaki who proved the special case n =3 of Theorems I and II (a
slightly better result for the case n=23 and r=1 than Theorem II). The final
step of the proof is an application of a theorem of [8]

The author wishes to express his hearty thanks to Professor M. Suzuki
for leading him to this work.

Notation and Terminology

xY y-lxy

Lx, ¥] Xy ixy

x~yin X x is conjugate to y in a group X

xX:y—z y'=z

ool o> a group generated by -.- with the conditions -.-.

{-} a set consisting of elements ---

XY the wreath product of a group X by a permutation group Y

0*(X) the smallest normal subgroup of X such that X/0*X) is a
2-group

0,(X) the largest normal 2-subgroup of X

Z(X) the center of X

S, the symmetric group of degree n

A, the alternating group of degree n

Z, a cyclic group of order n.

The other notations are standard.

Let X be a group isomorphic to &, X is generated by /[—1 elements
Xy Xgy -+, X-y Subject to the relations; xi= .- =xf;=(xx;4,)" = (x50 =1
(1=5ig1-2,1<j, k<I—1 and |j—k|>1). We call an ordered set of such
generators of X a set of canonical generators of X [1; p. 287]. Let Y be a
group isomorphic to ;. Y is generated by /—2 elements y,, y,, ---, y,_, subject
to the relations:

0) Cf. (24) and Lemma A’ in (3.1).
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Vi=yi= - :y%—2:(yiyi+1)3=(yjyk)2: 1
(l=1s1-3, 154, k12 and |j—Ek|>1).

We call an ordered set of such generators of Y a set of canonical generators
of Y (cf. [1; p. 2890).

§1. Some properties of the wreath product Z,? S,,.

(1.1) Let 28, be a finite group isomorphic to the wreath product of a
group of order 2 by the symmetric group of degree 2n. In this section, we
shall give some properties of 28, which are necessary for the proof of Theo-
rems I, IL

Let X, be an elementary abelian group of order 2% with the set of gen-
erators x; (1 =<i1=<2n) and ¥, be a group isomorphic to &,, with {y,, z,, ¥, 2,,
-, Zn-1, Yn} @s a set of canonical generators of ¥),. Define the action on X,
of 9, as follows:

X8 = Xy, [x5 3:1=1 A=si1=n,5#2-—-1, 2)
) X% = Xpipy [x5,2,1=1 Agign—-1,7+2i, 214+1).
Thus 9, can be regarded as the symmetric group on the set {x;, x,, .-+, Xpn}.
Construct the semi-direct product 28,=%, - 9,. Then B, is isomorphic to the
wreath product Z,?&,,. Further we define a subgroup 28* of 28, of index
2. Put
X% = (XaXay XXy, wv s XonoyXon) -

Then X* is an elementary abelian group of order 2**-, normal in 28, and
DN XEF=1. Put
BWr=%%-D.
Further put

P
%f:x#(<ylv By "y yk> X <yk+19 Zre1r yn>) (1 § k é 7’1)
and
Er = Xop-1%ak A=k ny.

We note that 2/8\;’::?228;’:.
(1.2) LEMMA. The orbit of &, under the action on X¥ of V), generates X¥.
Proor. Since 9), operates doubly transitively on {x,, x,, ---, x,} and X*=
{xx;]1=1<j=<n), our lemma is obvious.
(1.3) LEMMA®. The representatives of conjugacy classes of involutions of

1) In W. Specht the conjugacy classes of elements, not necessarily involutions,
of W, were determined. We note that this lemma (also the next lemma) was used in
the author’s previous papers [8; (1.3)] and [9; (5.2)] with the omission of the proof.
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W, are as follows:

Y1¥s o y(g Em) O<s+t=n),

and

S+t
Yi¥e e ys( i)%n-1 O=s+t=n—1).

PROOF. Let xy (x=X%, and y=9%),) be an involution of 2B,. Then it is
easy to see that x and y are involutions of ¥, and ¥), respectively. Since 9,
is isomorphic to &,, and {y,, z,, -, ¥,} is a set of canonical generators of 9),,
the representatives of the conjugacy classes of involutions of ), are y,¥, -+ ¥;
(1<s<n). Therefore we may assume y=y,y, -+ ¥; by taking a suitable con-
jugate of xy by an element of 9),. Then, from the fact that yx=y,y, --- y,x

8
is an involution, it follows that x=T[ &% - IT x§/ where d;, 6;=0 or 1. Since
i=1 i>2s

(3:£)™ =y, and [ y;, X-,1=1 (j # 1), We may assume that yx=y,3, -y, [T x .
J>2s
Since {Ygpyy Zsgrs 0 > Y » = Syn-sy Operates multiply-transitively on the set

{Xp541, -+ » %o} and centralizes y,, y,, -+, ¥;, a suitable conjugate of yx by an

element of Yy, Zs41s -+, Yoy DECOMES ¥, Y, -+ ys( :;[i[l 5s+i> or ¥, ¥, -+ ys(i{ §s+i>x2n-1'
This completes the proof of our lemma.

(1.4) LEMMA. The representatives of conjugacy classes of involutions of
%@% are as follows:

(120 (o) o) () CRTZELF 2

<1'I:I1yi> . (;1—/]; $s+t> : (jtl;[lykﬂ) . (}i[lsk-l—t+j>x2k-—1x2n-l

O0=Zs+s" <k, k<k+t+t' <n),
and Vil o yn&n- s :
In particular those of W} are TIy; - TI & O<s+Ei=<n) and 3,9, - Y6y
i=1 i=1

PrOOF. Let yx (y=9, and x = X}) be an involution of 2*. As in the
proof of (1.3), we may assume

yx~ny11:155i I xy- ny,m ,Hs"kﬂ I ok,

i=1 2kZ 5> 2(n—k)Zj>2(k+t)
Note that 3 d;+ > 0jsx+: =0 mod 2 since x =¥X¥. Firstly suppose
2k=>2s 2(')1.—76)_2_j>2(7€+t)

that s=% and t=n—%k. Then we have

n

k k — s
:il;.[ 1:—.[5 1;[ Ic-l-zHEkE:Z-

By transforming by elements of X} with the form x,;_,x,;.; 1 Zi<j<n), we
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easily see that a suitable conjugate of yx becomes y;¥, -+ ¥, OF ¥, ¥, ++* Vu&pe
Secondly suppose that 0<t<n—k. (We can work similarly also in the case
0<s<k) By transforming by elements of X} with the form x,;_,x,,-,
(1<i<n-—1), a suitable conjugate of yx becones

s
Ojvk
My~ II =x jj H;Vzm 11 x ekt .
i=1 2= >2 T b= 2(n—k)Zi>2(k+1)

Since {(Vergs Zsgrs o+ s Vi DA Vproyr1r Lyt **° » Yoy ODerates multiply transi-
tively on {Xpeps o+, Xor} and {Xpgsnen o+ » X} respectively, and centralizes

8 t
I1y; and TI y..; respectively, yx is conjugate to
i=1 =1

(;I_Il yt) ( :_I—I1 Es+i>x2k—1( iIt:Ikaw)( zt:].—ll—i §k+c+i>x2n—1

or

1

n}jw

I;[ 5s+i : fliyk+ig$k+t+i
according to whether :V‘_, 0; =0 mod 2 or 82 0;=0 mod 2. This completes the
proof of our lemma. = =

(1.5) LEMMA. Let 2’ be a non-identity element of 2B, (vesp. W}) with the
following properties:

(1) [ex'z/, X,1=1 (vesp. [25'z’, Xt ]1=1) and

() ()= @ V)’ =1,
where k is a fixed integer such that 1<k<n—1.

Then we have 2’ =2z, 07 ZyXyXoprr, ANA Y =LV1, Z1r *** » Yi» 2’y Viewsr *** » Yn > 18
isomorphic to &,,, and for the action on X, (resp. X¥) of %), the same relations
as (x) of (1.1) hold by replacing z; by z’.

ProOOF. We shall prove the first statement. Then the second and the
third statements are obvious. Since X, (resp. X¥) is selfcentralizing in 28,

(resp. I}), it follows from (i) that z’:zkﬁxf" where ;=0 or 1. Then we
i=1
have, by using the relations (x),

1=z’ 3—(ykzkﬂx Nywze Il x; Z)J’kz"

d; ] 0
:ykzkyk(< I x; )legklxw?k 1>Zk(szi)ykZ/
2k —1,2k i
0; 7] Oop—
= ez I1 od )Gttty ( T 477) 3oz
.

Ogpt- 0, ] +d Ogp—1+0
J— 2 2k 2k—1 2k+1 2% 2k—179%20+1 14
= (Vr2)*(X 3255 * Xojg X 9k+1 )V

= (D20 R 2 g Ok Qe Ok (T 2 9)
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O9xt09%—1 , Ok —1-+ 0 Oopt Ogf— J;
= () (e P e ook P (T e )
(2

= (Xo- 1x2kx2k+1) H xi')i
2% >1

where 0=0,;,_,+0,,+0,z4;,- This yields that
6,=0 lt—2k|>1

€y
{ 5:52k—1+52k+52k+1:__—0 m0d2.

Similarly, from (z/y;.,)*=1, we get
) 0,=0 |i—2k—1]>1
Okt 02k41T 05142 =0 mod 2.

Then (1) and (2) yields the first statement of our lemma.

(1.6) LEMMA. Assume that 28, is a subgroup of a finite group & and 2-
Sylow subgroup of W, is that of &. If x,~y,~x,x, in @, & has no subgroup
of index 2.

ProOF. We have O*B,)=<yyp ¥izp %x;]1si<j<n) and B,=
{xy, OO (WB,). Assume that @ has a subgroup &, of index 2. Then we have
S, 20%*@28,). Since x;~y,~x;x, in @ and x,x, = O*(W,) =G, we get x, and
¥ E G,

This implies [®: &,]=o0dd because of the assumption of our lemma. This
is a contradiction.

§2. The groups H(n, v) and G(n, 7).

(2.1) Here we shall define the groups H(n, r) for a positive integer n and
r=1,2,3. Firstly we define H(n, 2). Let H(n, 2) be a finite group with a set
{7yl o5l1<i<n, 1 <j<n—1} of generators subject to the following rela-
tions :

(0) <Ay 7y ooy Ay T, is an elementary abelian 2-group of order 2%,

@ L,=<=r!, o, r} -, 0, x> is isomorphic to &,, and the ordered set
{m1, o1, -+, an_l, 7} is a set of canomcal generators of L,

(ii) At=Am; (1<i<n) and Qm)° —Zm A=sisn-1),

(i) [my mil=[4; ni3=1 @ =#)) and [y, 05]1="[Aimr;, 05]1=1 @ =#)).

Then H(n,2) is isomorphic to 28, defined in (1.1) by the correspondence
Ty, 0525, Ao Xy-y and ;o X, Put

H(n’ 1) = Ln . <751’ Toy ***y Ty /2122: '22'23! ) 2n—12n> .

Then H(n, 1) is a subgroup of H(n, 2) of index 2 and isomorphic to 28* defined
in (1.1). We have H(n, 2)=<2,>)H(n,1). Finally we define H(n, 3). By defini-
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tion, H(n, 3) is a group generated by H(n, 2) and an element v subject to the
following relations:

vi=1, [H(n,1),v]=1 and yl=p-?t,

We note that each element of H(n, 2)—H(n, 1) inverts y. If there is no
confusion, we frequently write H= H(n, 7).
(2.2) For r=1,2,3, H(n, r) is isomorphic to the centralizer in ., of an

involution
an=>1,2)3,4) - 4n—-3, in—2)(4n—1, 4n)

by the following mapping &, :

%, =(4i—3, 4i—2)(4i—1, &) — 7
7= (4i—3, 4i—1)(4i—2, 4) — 7}
0n: 4 1,=@i—3, 44—2)(dn+1, 4n+2) — 4,
6= i—1, u+1)(41, 4i+2) — 0}
g =Un+1, 4nt2, 4n-+3) —y

For later use, besides #;, #, ---, etc.,, we define some elements of ... as
follows :

~

Gy =TTy - Ty l=i=n),

I

5= A<j<n—1),
Bi=i—3, 4—2, 4i—1) (1<ign)
S=<#, &, 7%, &, -, Fny FL> .
Further we introduce some notations:
O =TTy o+ T A=gign),
0= (mmu)?  (1=j<n—1),

S:SIX82>< o ><Sn7 Si:<n’.i’ ﬂ'g>,

P={0,,0, ,0,.1),
<7Z'1, gy =y Tpy 2112: "',zn-12n> if r=1
U 2 T A s T A if r=2.

Then we have 0,(&)=a;, 0.(3;) =0, and 0,5)=S.

S is an elementary abelian group of order 22* and M is an elementary
abelian group of order 22"-! or 2*® according to whether r=1 or *=2. P is
isomorphic to &, and {o,, 0, ---,0,-,} is a set of canonical generators of P.
If =1, any elementary abelian subgroup of H(n, 1) of order 22* is conjugate
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in H(n,1) to S and S is normal in a 2-Sylow subgroup of H(n, 1) containing
it (see Appendix). So every 2-Sylow subgroup of H(n,1) has the only one
elementary abelian subgroup of order 2%~

2.3) Let G(n, 1) be a finite group with the following properties:

(i) G, r) contains H(n,r) as a subgroup in such a way that H(n,r) is the
centralizer in G(n, r) of an involution a, in the center of a 2-Sylow subgroup of
G(n, ), and

() if r=2, G(n,r) has no subgroup of index 2, and if r=1, there exists
a one-to-one mapping 0 from Cugpmei(@n)\J Nugei(S) onto H(n, 1)U Nge,1o(S)
such that @ induces an isomorphism from Cuyypsei (@) (resp. Nusmsa(S)) onto H(n, 1)
(resp. Ngn,(S))-

(24) REMARK. Suppose that r=1. Then the assumption that «, is a
central involution of G(n, 1) is not necessary. In fact, if D is a 2-Sylow sub-
group of Cuynri(@) N NuninS), D is that of Cyuns,(@,) and so (D) is a 2-
Sylow subgroup of H(n, 1) containing S. Denote by D, a 2-Sylow subgroup
of G(n, 1) with ()< D,. If (D)< D,, we have Np(S)> (D) since S is the
unique elementary abelian subgroup of 8(/J) of order 2** as remarked in the
last paragraph of (2.2). This contradicts 0Nyl (S))=Ng(S). Further we
remark that, if S; is an arbitrary elementary abelian group of H(n, 1) of order
2**, the condition (ii) for the specified S holds also for S;, because S; is con-
jugate in H(n, 1) to S. Therefore we may assume without loss of generality
that the restriction of 6 to Cyynsi(@,) coincides with ¢, where @, is the iso-
morphism defined in (2.2). So we shall assume 6,=60|Cy4n+.(a,) throughout
the present paper. For the sake of brevity, if there is no confusion, we fre-
quently write G=G(n, r) and H=H(n, 7).

(25 LeEMMA. If D is a 2-subgroup of G containing S, D normalizes S.
We have Cx(S)=S or Sx{v) according to whether r <2 or r=3.

PrROOF. The first statement follows from the uniqueness of S if =1 and
[9; 26)] if r=2. The second follows from the structure of H(n, 7).

§3. The structure of N, (S).

(3.1) In [9] we have proved the following result for G =G(n, r) where
r=2or 3.

THEOREM A. (i) G has exactly n classes of involutions with the repre-
sentatives ay, ay, -+, Ay, and

(ii) there exist 2n elements B, and y, (1 £s=n) with the following pro-
perties:

Q) Bs and 7, are of odd order, B; Ny(S) and y; € No(M),

(2) ﬁs: Ty — T — ey and [ﬁs’ m]= [ﬂsr = [‘831 Al=1 (1 =s,t=n,s#1),
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@) 1s:me— A — A, and L7s rl=[re Aml=[renil=1 A=s, t=n,s+10).
In particular we have

) 7rG o ATy o Ty ™~ Ay

(O Ahy o+ Ags yToTagyy *o Tos—140 ™~ Ay ++ AgsTasss *** Tagas ™ Cassy

6) 7y e TRy e Tagihn ~ Agppqy (LS s+ <),

In the case =1, we have not obtained the analogous result. But G(n, 1)
satisfies a stronger condition (ii) of (2.3) than the case » = 2. This yields the
following lemma.

LEMMA A’. (i) G=G(n, 1) has exactly n classes of involutions with the
representatives a,, a,, -+, a,. (i) there exist n elements B, 1 =< s=n) of Ng(S)
with the following properties:

1) Bs is of order 3,

) ‘Bs: Ty — i — ey and I:‘BS! T]= [ﬁs: T = [ﬁs: A ]=1 (s # 1, u).

In particular we have

() WA o Mgy =+* Ty ™ Uiy

@ rwy whr,~ay, and

(O) Ahy o AgsTrosny =o* Tagas ™~ Cgpye

PrROOF. Let B, 1=<s=mn) be elements defined in (2.2). Then we have
Es e N%I4n+1(§)r Es: T, -y — a7, and [Bs: )= [.és! T = [Bs’ jtju] =1 (S #t, u)
Put B;=0(f;). Then the B; 1=s=n) have the properties (1) and (2). By
(1.4) the representatives of conjugacy classes of involutions of H(n, 1) are
Ty v TiTrgyy = Wy (O <s+t=<n) and =zn{z}--- w,7,. Since any one of these is
conjugate to «, for some k£ by (2), any involution of G is conjugate to one of
ay, Ay, -+, o, Which yields (i) of our lemma. (3) and (4) follow from (2), while
(5) follows from the structure of H(n, 1) (cf. (1.4)).

Theorem A and Lemma A’ are fundamental for the proof of Theorems I,
II. We shall refer to these as (4) throughout this paper.

(3.2) LEMMA. Suppose that r=1. NgS) is generated by S, B A <s<n),
A At n-1), o, A £ u=<n—1) which satisfy the following relations besides
Q) and (2) of Lemma A’:

Bt =B (s#D, BPE=pfu and [Byo]=1 (+s, s+1),

where the o, 1 = u=n—1) are elements defined in (2.2).

PROOF. We easily see that N (S) =8 M<(f, 6. ]1<s<n, 1<u<n—1)
(cf. Appendix, Lemma 4). Then our lemma follows from the existence of the
mapping 6.

3.3) In (3.4)~(3.6) of this section, we shall determine the precise struc-
ture of Ng(S) for the case »r=2. We assume that »r=2 or 3 in (3.4)~ (3.6).
It is convenient to put y=1if r=2. So we have Cg(S)=Sx<v) in both cases
r=2,3.
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(34) LEMMA. Put K={By, Bs -+, Bu Ce(S)) and K,={ 2, Bsy w5, s> (L<s
<n). Then the followings hold: (i) {By, Ba -+ Bu» v) is a 3-Sylow subgroup of
K and is an elementary abelian subgroup of order 3**"-2, and (ii) K, is isomor-
phic to &,.

ProOOF. From the action of B, and 2, (1<s<n) on S, it follows that
B2 e Cu(S), Bls= ;! mod Cy(S) and [Bs, Bl € Ce(S). Since B; is of odd order
and Bie Ce(S)=S x vy, we have Bi=1* (1=0,1or 2). By using the fact that
Bi= ()% = (H* =v-" (s = 1) (cf. Theorem A (2)), we get vi=1. Thus f; is of
order 3. From [, B:] < Cu(S), it follows that B;'8,8,= B,xv* where x & S and
1=0,1 or 2. Since j; is of odd order, we get x & (x,, 7;> by (2) of Theorem
A. From B;18,8,=xv'B;!, we get x € {m, njy by the same reason. Hence we
get x €<z, wjy N<{m, wjy and so x=1. Then we have y-!=("H=[f, BI*
=[Bs B:1=1" for u+s, 1. Hence we get v*=1 and so [f, B, J=1. Since
vy A K, we have [B;,v]=1 (1=<s=n) and so {B,, By **, Bn, v) is an elemen-
tary abelian group. This proves (i). From the fact that g{s= ;' mod Cs(S),
we have = S;x for some x = Sand i=0,1 or 2. Since B, is of odd order,
we have x € {(m,, ©jy. Further if s # ¢, we have v = (V)% = (x8,54)% = xB,Bls=*
by (2) of Theorem A. Hence we get Bl = f;'x. This implies that K is iso-
morphic to &,. This completes the proof of our lemma.

(35) LEEMA. We may assume that the B, 1<s<mn) have the following
additional properties besides (1) and (2) of Theorem A.

Bés =B,

Bes= s and [o, B 1=1 Ags<n—1, t+s, s+1),
[Bs B1=1 (A=s<t=mn),

where the o, A <s<n—1) are elements defined in (2.3).

ProOOF. Since K,=<4,, 8;, =, #{y is isomorphic to &, by (3.4), we may
assume that Bf1=pg;' by interchanging B, by B,x for suitable x e {x, nf)y if
necessary. Put p;=0,0,--0,.;, 1=s=n and p,=1) and Bi=ps (1<s=<n
and B{=p8,). We shall show that the B, (1<s=mn) have all the required
properties. It is obvious from the definition that fi%s= B{;;. Further from
ABids = (A, BiA)°s and BM= B!, we get i = F;". Similarly we have §;:z;— =}
— i, Since we have

and

b if t>s
-1
T =1 if t=s

U g if t<s,

2) If n<2, we can not choose u such that u=s, . However, in the case n=<2, our
Theorem I were proved (cf. Introduction). So we may assume that n=3. It is easy
to prove directly that [8; §5;]=1 also in the case n<2.
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we get [, z]=[p} =.* 1]”8= LB, m,0° or [B, 7,5, ¢ according to whether t>s
or t<s. Thus, if s+t we get [, 7,]=1 from the fact that f{=p4, and (2
of [Theorem Al Similarly, if s=1f, we have [8, n/]=[f, 4.1J=1. Thus the g
(1 =<s=<mn) have the properties (1) and (2) of Theorem A and so we have
[Bs Bid=1 by (3.4). It remains to show that [g,, fi]=1 (t #s, s+1). Suppose
that t+s, s+1. If  <s, we have p,0,=0,p, and so B;%s = B{#"s = §/7s%t = Bi{ft = .
If s+1<t, we have

005 = (0 +++ 05054y =+ O;_1)0
=0y - (0'30'3+10'3) Oy
=0y (0'5_,_10'30'3,,_1) e Oy by (asas+1)3 =1

= 0y41(0y *++ 05104054y - O4y)

= O0s5410¢ -

This yields that gi%s = fjrtos = Bi®s+1°t = Bi*t = B;. Thus we have verified that
the fB; (1 <s<n) have all the required properties.

(3.6) LEMMA. Ng(S) is generated by v, K, XK, X -+ X K, and P. (KX -
XK)P 1s a complement of Ng(S) over {v)» and is isomorphic to the wreath
product ©; 0 ©,. The structure of Ng4S) is completely determined.

Proor. From (3.4) and (3.5), we see that K, (1<s<mn) is isomorphic to
&, and [K,, K,]=11if s#t. Let N be a subgroup of Ny(S) generated by v,
K, X -+ XK, and P=<{g,, 0, -+,0,_;> (cf. (2.2)). Then we have [N: Cx(S)]
=3".n!.2" On the other hand, we know by [9; (4.5)] that [Ng(S): Cs(S)]
=3".n!.2" This yields N= Ng(S). This proves the first statement of our
lemma. The other follows from (3.4) and (3.5).

3.7 LEMMA. Put

<’2i/zj;ﬁsyat12§i<]‘§nﬂ 2ésénr 2_§_t§n——l> lf 7":1’
Ni=1 Ay B 0,|2<i<n, 2<s<n, 2<t<n—1> if r=2,

Qi B0y v|2=i<m, 2=5s=n, 2=5t=n—-1) if r=3.
Then we have
No(S)N Colmy, w)) = {my, ) X (Sy X SgX -+ X SN, .

In particular, a 2-Sylow subgroup of Ng(S) N Celmy, ©)) splits over {z,, \>.
Proor. This follows from (3.2), (3.5) and (3.6).

§4. Technical Lemmas.

(4.1) In this section, we collect some technical lemmas which will be used
in the proof of lemmas in §6. The arguments depend on (4) and lemmas in
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§1. Firstly we introduce some notations.
E, ={m, my, -+, Ty Aihoy Ahs, -y A1) nzkz=1)
Ty =Ey-<{mj, 01, =+, 06,1y (nzkzl)
U=Amy, -+, Tiy Ahsy =+ s Aphpo{Th, 04, =+, by, T n—1=k=2)
Vie=LTrsss = s Tny Aprrhirns 5 AuarAn) Ty, Ohisr, -, Ty (n—1zkz1)
U X Vi)X2glny if r=1
UeXVi)lApy Ay i r=2.

E, is an elementary abelian group of order 2%*-!. [,, V, and T, are iso-
morphic to ¥, W¥ , and W¥ respectively. W, is isomorphic to a subgroup
?fﬁ,:k of W, if r=1, and a group W;_,xW,_, if r=2. So we can apply lem-
mas in §1 to these groups.

It is convenient to say that, if an involution x of G is conjugate in G fto
Ay, X is of length k.

(4.2) LEMMA. Suppose that z =<z, )XW, and niz~n, and wiaz~ oy,
in G. Then we have z¥=rnir, or wnix, for some y & U,.

PROOF. Suppose that z=v; where vi<{r, 7> and v, W, From (4)
and the assumption of our lemma it follows that the v, (1 <i1<2) are at most
of length 1. Put C,={1, n, =}, m,;7{} and C,={1, m,, 7}, Tps1> Thr1» Axhn} OF
{1, my, 7h, Try1s Thits AxAns Axs An} @ccording to whether r=1 or r=2. Then C,
and C, are the sets of the representatives of conjugacy classes of involutions
with at most length 1 of {x,, #{> and W, respectively. This follows by apply-
ing (1.3) and (1.4) with 74, T}y, A444, 0544 in place of &;, y;, Xy-p, 2, A1 n—1,
1<;<n—2). Therefore we can find an element y & W, such that z¥=vvy
with vy € C,. Put v,=v{ and v,=v{’. So we have z¥=vw, with v, € {(x,, 7
and v,C,. If v,=1, we have n, ~7n{z¥ =7n{v, and v, + 1 because of [y, n]]=1
and the assumption of our lemma. This is impossible because T, is at least
of length 2 if 1#v,eC,. If v,=m, we must have v,=1 by (4) because
T, ~7RY =nimw, in G. Then we get aj-,~ wiaz¥ = mija;w, ~a; which is im-
possible by (4). If v, =={r,, we must have v,=1 and so z¥==n{r,. Then we
may assume that y € U, since [ V{4, A, wim,1=1. This proves our lemma
in this case. Finally suppose that v, =z{. Then we have =, ~v, and av,~ay_,
in G by the assumption of our lemma. If v, 7,, we see from (4) that “ a,v,
~a, in G” is violated. Hence we get z¥=r=xir,. Again we may assume
that y e U, since [ Vil 4>, wim,]=1. Our lemma is complete.

(4.3) LEMMA. Suppose that 1#zc{m, sdXW, and ni~riz and oz~
agmiz in G. Then we have z¥=mr,, nir, wA A, o wa, for some y< W, where
A, appears only in the case r=2. In particular, if z+=x,, we have z~a, in
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G and z + a,.

Proor. Let C, and C, be the sets defined in the proof of (4.2). Then we
can find y € W, such that 2¥=v,v, where v, C; 1<1<2). Since n|~riz¥ in
G, the v; must be at most of length 1. If v,=1, #{z¥ ==y, would be at least
of length 2, which is impossible because n{~ rz¥ in G and so njz¥ is of length
1. If vy=mn, we get v,=1 from the fact that n|~rjz¥ =r/z,v, in G. Then
we have z¥=m,. If v,=n={r,, we must have v,=1 since n{~nrjzY =m,v,. Then
we get ay~ agm]~ a,mz¥ = a,T,~ a;., which is impossible by (4). Finally
suppose that v, =={. If v,=r,, we have a, ~a,w]~ a7z = a7, ~ a;-, which
is impossible. Similarly “v,=m.y,, 7y Or 4,7 is impossible. Thus we must
have v, ==}, 444, or A,. This completes the proof of our lemma.

(4.4 LemMMA. Put
(Te X Vi)lAAksry if r=1

(TeX Vi)lAy, Agary i r=2.

Suppose that x € Colay) and nf € Wy. Then we have =¥ € E,.

PROOF. Put C={m,, 7, Tpy1, Thas, Axdn} OF {Ty, T, Tpass Thisy Aedny Ais An}
according to whether »=1 or »r=2. Then C is the set of the representatives
of conjugacy classes of involutions with length 1 of W, by (1.3) and (1.4).
(Remark that ¥, is isomorphic to a subgroup 8% of %%, or a group 8;X2W,_
according to whether » =1 or »>2.) Therefore we can find an element y = W,
such that 7% = C. Since x, y € Cglay), we have a;_, ~ (o) = a,rf¥. There-
fore if n{¥ =+ x,, we would obtain a,_;~a; or a,,, which is impessible by (A4).
Thus we have obtained #z¥ =x,. Since =, € E, and E, < W;, we get ¥ & E,.
This completes the proof of our lemma.

a

§5. The structure of Cyila;) and Ny (E,) (R=1).

(5.1) The proof of our Theorems I, II proceeds by induction on n. In this
section, we shall determine the structure of Cq(a,) and Ng(E,) by using the
inductive hypothesis.

(5.2) LEMMA. (i) A 2-Sylow subgroup of Ng(S)N Cgqlar) 1Lk <n) is that
of Colay). (1) A 2-Sylow sucgroup of Ng(S)N Celrmy, m)) is that of Cg(my, 7).

PrOOF. (i) We have Cqila,) 2S. Denote by D, a 2-Sylow subgroup of
Colay) with SE D, S Cylary). Since D, > S by (2.5), we have D, S Ng(S)N Celay)-
This proves (i). Also the proof of (ii) is quite similar.

(5.3) LEMMA. Cglry, n)) =<my, wyx X, where X, =Wy or Ny tf v=1
and X, = Winer_y if v=22.

Proor. From (3.7) and (5.2), we see that 2-Sylow subgroup of Cy(x,, )
splits over <z, #{>. Then a theorem of Gaschiitz [6; p. 121] yields that
Cq(my, m)) =<z, iy X X, for some subgroup X, of Cy(x,, #)). We shall determine
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the structure of X,. From the structure of Cgle,)= H(n, r), we see that

<7T1, TE;>>< Vl lf r= 1

C 1 1 C n) =
@ OO px Vit s i 722,

where V, is the subgroup defined in (4.1). Firstly suppose that r=1. Since
Bs is of odd order and B, Cy(m, 7)) 2<s<n), we have B, X, 2=s=n).
Then we get X, > r, 7; (2= s<n) because f,: n;—n;,—nizr, and so each of
T, m, mwws, is commutator. If we put p,=rwio; Q< k<n), p, is of order 3
and p, is contained in Cq(r,, n)) (cf. (2.1)). So we have o}, LA € X, @k
<n—1) because n}, 7 € X, and p;: 7, —Agdre;- Then we see from (3.7) and
(#) that X, satisfies the inductive hypothesis for Theorem II with n—1, m,m,
-om, and S, XS, X -+ XS, in place of n, @, and S respectively. This vyields
that X, =%,,., or A,_;. Secondly suppose that » = 2. Since 3, and 7, 2<s<n)
are contained in Cg(r,, 7)), we have B, y,€ X; 2<s=<mn). Then from the fact
that B,:7n,—=w,—zm; and 7, w,— A, —Aws, it follows that =z, 7} and 4, & X,
(2<s<n). Since r,o} is of order 3 and is contained in Cgy(x,, nf) if k=2, we
have Cy (7, - )= V<> by (#). Further we see from (1.6) that X, has no
subgroup of index 2. This implies that X, satisfies the inductive hypothesis
for Theorem I, and so we get X, = ,n1r-,. This completes the proof of our
lemma.

(5.4) In the preceding arguments, we have considered three groups G =
G(n, ) (r=1,2,3). But it is convenient to put G=G(n,0) and H=H(n,0) if
r=1and X, =%,,,. So hereafter we have r=0, 1, 2, or 3. We note that
H(n, 0)= H(n, 1).

(5.5) Let D, be a 2-Sylow subgroup of V, or V,{4,> according to r=1 or
r =2, which normalizes S (cf. (3.7)). Here we remark that v, normalizes M
where M is the group defined in (2.2).

Put

Dy=<LryD,,
and
D={4,4,, =, 7DD,

Then D is a 2-group by the above remark. We note that D,=<x,> XD, and,
if r=2, D={A4, my, n{>XD,. Further we have D =<{,4,, #{>D,, D/D, is isomor-
phic to a dihedral group of order 8 and D is a 2-Sylow subgroup of Cgla,)
by (5.2).

(5.6) LEMMA. Any element of {2, A,wi>D,—D, is at least of order 4 and
A 4,7t s not conjugate in Cgla,) to any element of D,.

PROOF. Since {14,710 Dy=<{A4,n>D, and (1,1,#))? = x,, the first statement
is obvious. Suppose that (1,4,7{)’ =x where x = D, and z & Cgzla,). Then we
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have n3=2x* and x? < D, by taking the squares of both sides of the equation
(A4, =x. This is impossible because n{==x, and =, & D,.

(5.7 LEMMA. 2,4, is not conjugate in Cgla,) to any element of {A,A;,wiyD,.

PROOF. Suppose that (A,4,)=x for some x & {A,d,7»D, and z e Celay).
Then, by (5.6), we have x & D,. Write x=n=fy where ye D, and =0 or 1.
If y=1, we have x=m=, which is obviously impossible since z € C4(a,). If
y+#1, we can find an element z’ of X, such that y* =m,x, -7, @k <n)
because the =m,7, --- 7, (2<[<n) are the representatives of conjugacy classes
of involutions of X,. Then we have (1,4,)* ==rlr, -+ m;, and so (A, 4,)* =,
because 4,4, ~a, in G by (A). Since zz’ € Cy4la,), we get (A,2,7)* = w7,
which is impossible because A,4,m,~a, and z,7,=a, This completes the
proof.

(5.8) LEMMA. There exists a subgroup K, of Cqla,) of index 2 such that
K, does not contain 2,2, and a 2-Sylow subgroup of K, is {(A,2,%x>-D, or
{my, ©py - D,.

ProOF. From (5.7) and a lemma of Thompson® it follows that Cs;(a;) has
a subgroup K, of index 2, which does not contain A,4,. Obviously we have
K, D<Lr ) x X, D<4x; )X D,. From this our lemma follows.

(5.9) LEMMA. K, has a subgroup K, of index 2 with {zx )X D, as a 2-Sylow
subgroup.

ProOF. Firstly suppose that {A,4,z/>D, is a 2-Sylow subgroup of K,.
From (6.6) and a lemma of Thompson® it follows that K, has a subgroup K,
of index 2 which does not contain 4,2,#{. Since K,2 X, 2 D,, we must have
K,D<x,>XD,. Secondly suppose that <=z, n{> X D, is a 2-Sylow subgroup of
K, If zff=nly for ye D, and z € C4(ar,) (6 =0 or 1), we must have =0 and
y# 1. Then there is an element 2’ of X, such that y* ==x,, and so #{* =r,.
By multiplying both sides of #*' ==, by =x,, we get (x,n))* =z, which is
impossible because m,7{~«a, and =,7,—a,. Thus we have proved that =] is
not conjugate in Cg(a,) to any element of {x,>xX D,. Then a lemma of Thomp-
son® yields that K, has a subgroup of index 2 which does not contain =]
This implies that Cg(a,) has a normal subgroup of K, of index 4. But clearly
K, must contain {z;>x X, and so {m;»xD;. This completes the proof of our
lemma.

(.10) LeEmMMA. K,={m )X X,.

ProoOF. Since a 2-Sylow subgroup of K, is {x,> X D, and «, is in the center
of K,, a theorem of Gaschiitz [6; p. 121] yields that K,=<{x,>x Y, for some
subgroup Y, of K,. Obviously we have Y, 2 X, and Cy (7, -+ 7,) 2 Cx, (7, -+ 7).
Further we have

3) See [2; p. 265 Exercise 3] or [3; Lemma 16]. The latter is a slight generali-
zation of the former. For the first application in (5.9) [3; Lemma 167 should be used.
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Ayhs, THV,4 if r<1

Cola) N\ Celmy o+ wa) = Cola) N Colan) = )
CAhe T VikAs v) ifr=2,

and

Colay) N\ Ng(S) = {434, DSy X ==+ X Sp)Ny,

where N, is the groups defined in (3.7).

From these, it follows that Cy (7, -+ 7,) = Cyx (7, -+ w,) and Ny, (S, X -+ XSp)
=Nz (S;X =+ XSp). If r=2, by the inductive hypothesis, we must have
Y, =Wpr-y and so Y, =X,. (Note that Y,=0*Y,) because X, =0%X,) and
[Y,: X,]J=o0dd). If =<1, the induction hypothesis yields that Y, =%,,., or
Wn-s- So if =1, we get Y, =X, since X, =W,,-,in this case. But we must
have Y, = X, also in the case r=0 because Cglar,) =<4, 4, DK, 2Y,2 X, and
[Celay): X, 1=8. This completes the proof.

(5.11) LEMMA. Cglay) = (Kry, > X XA,y and X {2, 4,0 = S nipeye

Proor. The first statement is obvious from Cg(a,) =<2;4,, 7> K, and (5.3).
We shall prove X,{A,4,> =& ppr-y. Suppose false. Then there is an element
x of X, such that [4,4,x, X;,1=1. Put F={m,, --+, Ty, Apds -+, Aghny OF {7y, -+,
Ty Ay Agy -+, Az according to whether ¥ <1 or r=2. Since [A,4;, F]=1 and
Fc X, we get [x, F]=1. Since F is self-centralizing in X,, we see that
x € F. On the other hand, we can find one of the B, 2=<s<n) such that
[4:4:9, Bs1#+1 for any nonidentity element y of F. In particular, we have
[A2:%, 8]+ 1 for some & (2<k<m). This is a contradiction because 8, € X,
and [1,2,x, X,]=1.

(5.12) LeEmMA (H. Nagao). Let X be a group isomorphic to &, and Y be
a subgroup of X which is of the form SPXS®xX - SXSUHD ywhere SH =G,
Agigl) and SV =&, (=0, 1, 2 or 3). Assume that

(i) I—-1=4U'+k and [+6, 17,

(i) S® is conjugate in X to S (1<14, j<1I) and SY*Y is contained in a
subgroup conjugate in X to S® for every 1 AZi< 1), and

(i) S & X’ (=the alternating subgroup of X). Then each member of a
set of canonical generators of S® (1<i1<U/+1) is a transposition in X*.

ProoOr. This is a reformulation of [8; (1.8)], the proof of which is due
to Professor H. Nagao.

(5.13) LEMMA. There are n—2 involutions dP 2<j=<n—1) or n—1 involu-
tions 8P (2=j=n) of Xi{A A, according to whether r=0 or r=1 such that
the following ordered set is a set of canonical generators of X,{A;4;) = Gnpr_y:

4) We say that an involution of X is a transposition in X if, for a fixed isomor-
phism @ from &; to X, x=0(y) for some transposition y of &;. It is well known that,
if [+6, this definition does not depend on the choice of an isomorphism 4.
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T {25 4238 A5, 3P} U {2y 2idnBs Adaita}  if 7=0
=2
U {42, AdiBy Adymy, 80} if r=1,
i=2

U {0y Wiy 2dsmy, OPYUALYif r=2
and

\njz {2125, 2,2;8;5 A Amy, 0PY U {4y, 4w} if r=3.
s

ProoF. We shall prove the case »=3. Alsoin any other cases, the proof
is quite similar. Put S®=<{2A4;41, LAis1Bir1s AhsaaTisy 1<i<n—1) and S®@
=<4,). Then it is easy to see that S =&, 1 <i<n—1)and {1,2;41, 21 4i218:+1>
A 21T} 18 a set of canonical generators of S°. Since ¢4, 44501 — 214510
Bis1— Bise and mip — iy, by (35), and 7,: 1,4, —2;, by (4), we see that the
S® (1 <1< n) satisfy the condition (ii) of (5.12) with X,{1,4,>, 4n—1, n—1 and
2 in place of X, [, I and k in (5.12) respectively. The other conditions can
be checked easily. Then (5.12) yields that 2,4, 2,4;8;, 2,A4;@w; and A, <7< n)
are transposition in X,{A;4,) =&,,_,. From this our lemma follows.

(5.14) Put m=4n+r. From (5.11), we see that Cg(a,) is isomorphic to
Cy,(@). Further, (5.13) implies that we can find an isomorphism §, from Cy,(&,)
to Cglar,) as follows:

S0 =, 2)4i, 4i+1) — 6® 2gign)
R—}
Tj——7; A==m
T —— )
g—oy,
where the elements of the left hand side were defined in (2.2) except for the
S
" -Deﬁne the set 2, =<k <n—1) of m—4k elements as follows:

Qo= {4k+1, 4k+2, -, m} .

Then we note that ¢, induces an isomorphism from the alternating group g,
on the set 2, onto X,.
Put
Xp=0,Up,) (A=sk=mn),
and
00 = Ay A, 050 k+1gi1<0),
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where the 0{» are defined inductively. Then the ordered set

B o SN (U {uadis Aunaiin Auwadimsr 00} ) U (20, Auv)

is a set of canonical generators of X,. Here we remark that the last 3—7r
generators do not appear in the above set. Moreover we easily see by using

the isomorphism 6, that
Co(Ex)=E, X X; 2=k=mn),

where the E, are elementary abelian groups defined in (4.1).

(5.15) LEMMA. [of, X,1=1, where o] is defined in (2.1).

Proor. We know that Cg(E,)=E,;xX,. Since E, is normalized by p,=
r,o] (cf. (2.1)), so does X,. Since p, is of order 3, p, induces an inner auto-
morphism of X,=WN,.; (m=4n-+7). So we can find an element v € X, such
that (o, X,]1=1. Put F={m,, -+, Ty, Ashs, =+, Aghn) OF Ty, Ty, ++, Tpy Agy Agy +oy
2> according to whether =<1 or r =2 when n=4, and F={m,, n{) or {med;)
according to whether » <1 or =2 when n=3. Then we easily see that F is
an elementary abelian group and self-centralizing in X,. Since [p, Fl=1=
Cow, F1=1, we have [v, F]1=1. Therefore we get v< F and then v=1 be-
cause v is of odd order. This yields that [p;, X,]=1. Then we must have
[o], X,]=1 because n] centralize X, and X, D X,. The proof is complete.

(5.16) LEMMA. Without loss of generality, we may assume o}=A;m;ds0)%
2=sign—1.

PROOF. Put ¢/=mlu)% (2<i<n—1). It is easy to see that [} a7,
M1=1 and (#}0)® = (ofxn};)*=1. (Compute directly by using the isomorphism
@,. For the definition of M, see (2.2)). Then we can apply (1.5) with ={, g}, 6/
in place of y;, z;, z in (1.5). Our lemma follows from the third statement of
1.5).

(.17 The definition of a mapping ¢. In (2.2), we defined an isomorphism
0, from Cy,(@,) to Hn, r)=Cgla,). Then (5.16) yields that the restrictions of
0, and @, to Cy,(@,) N Cyx,(a,) coincide. Therefore we can define a one-to-one
mapping ¢ from Cy, (@) \J Cu,(@) to Cgla,)\JCsla,) sucn that ¢|Cy (4,)=
0] Cop(én) and ¢|Ca, (@) =0,|Cu,(@).

(5.18) LEMMA. NgEp) =T X X ){A Ay CZ kL n) where T, is defined
in (4.1).

PrROOF. From (5.14), (5.15) and (5.16) it follows that [Ty, X;]=1. Put
V=T X X){AAksy. Clearly we have Y, S Ng(E,). Denote by B, the set of
elements of E, which are conjugate to «, in G. Then it follows from (A)
that By is the orbit of «; under conjugation of T,. This implies that Y,
operates transitively on B, by conjugation. Further, by (1.2), E, is generated
by elements of B,. Therefore, in order to see Y, = Ng(E,), it is sufficient to
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see that Cgla,) \Ng(E) S Y,. But from (5.14) we see that Cgla,) N\ Ng(Ey) =
Kmy, ) X (VX Xi){A1Akerp. This completes the proof of our lemma.

(5.19) REMARK. In the next section, we shall prove that Ng(E;)= Cglay)
(2=k=n). Then, roughly speaking, the mapping ¢ induces an isomorphism
from Cy,(@) to Ng(E;) as seen from (5.14), (5.16) and (5.18), and ¢ and n
involutions a,, a,, -, @, of G will satisfy the conditions of a theorem of [8]
which yields that G is isomorphic to %,. In §7, we shall describe more strictly
these situations.

§6. The structure of Cylay) (£ =2).

(6.1) In this section, we shall use lemmas proved in §4 and notations
introduced in (4.1).

6.2) LEMMA. (i) We have Cgn)) N Celay) = Celmim) N Celar) =<{m, wi) X
(U X X2k 4>+ (1) Lry, > X Wy, contains a 2-Sylow subgroup of Ce(mDN\Celar)-
In particular, if v is an involution of Cg(n)) N Celar), there is an element ye X,
such that v¥ € <{my, 7)) X Wy

Proor. From (5.3) and (5.11), we know that Cu(x,, n}) = (7, 7{> X X, and
Ce(m,) = (my, miy X X)X A,). Since B, : 7w, —n{—mni, B, normalizes X, and so
Colm)) =y, T X X)X (A" and Colaim,) = Ky, > X X)X, A)80. If y elay,
x> x X, ¥(2,4.)°! does not centralize a;. In fact, if [ay, y(2,4,)P1]1=1, we should
have 1="[ay, (1;2.)"" [ a;, y14%@P1 which yields z}=[a, ¥]. This is impossible
since [ay, y]e<{m,>X X,. Therefore we get Cq(n}) N Celay) = {my, wi> X Cx, (T, -+
7). Similarly we have Cg(nin)) N Celar) =<y, 7id X Cx ,(; -+ w). On the other
hand, from (5.14) we see that Cy,(x, --- 7)) = (Up X Xp){A341+,». This proves (i).
Then (ii) is obvious from the definition of W,.

(6.3) LEMMA. Suppose that x € Cglay) and nf & Cgla) N\ Colay). Then we
have nf € E,.

Proor. From (5.11) and (5.14) it follows that Cgla,) N\ Celar) =Ky, ) X
Ui X X){ 2k 0){ 21 A,>. Let W, be a group defined in (4.4). Clearly W, con-
tains a 2-Sylow subgroup of Cg(a,) N\ Cglay). Therefore we can find an element
y of X, such that zf¥ € W,. Then (4.4) yields =¥ = E,. Since [y, E,]=1, we
get nf € E,.

(6.4) LEMMA. If x<Cqla,), we have n¥f € E,.

Proor. We have nf # 7] in Cy4(a,) for any x € Cg(a,). In fact, if zf¥=x]
for some y  Cyla,), we must have nf¥ = a,nf¥ = =,7,n{ which is impossible by
(4). Put ©,=<xf, n{>. As is well known [2; Chap. 9, p. 3017, D, is a dihedral
group with the non trivial center of order 2. Denote by z, the nonidentity
element of Z(®,). Then we have nf~ziz, or n{~=rz, in D, S Cyla,).

Case (i). Suppose that #f~=ziz, in ©,. Then we have nf~ rir,7,2, in
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Cs(a,) by multiplying both sides of nf ~ =iz, by a,. Since z, € Ce(m) N Colay),
we can find an element u,< X, such that z% <<=, n{>X W, by (6.2; (ii)).
Further we have nf~nrjz% and nf~ma,z% because [U, mi]="[u, a,]=1.
Then (4.2) yields that z%¥ = njx, or n)m, for some y € U,, and so z,=m|r, or
mim, by [u,y, win,]=[u,y, #iz;,]=1. In any cases, we get n{ & Co(nir,) N Colas)
={x,, m{y X (something) by (6.2; (1)) and then [z%, z{]=1. This implies that
¥f=m, or w,. Thus we get nf e E,.

Case (ii). Suppose that n{~nrjz,. Then we have nja,~mia,z, in Celay).
Since z, € Ce(r) N\Cqla,), we can find an element u, < X, such that zir e
{rmy, 7YX W, by (6.2). Then we have n|~riz¥ and nja, ~miaz%s. (4.3) yields
that, if z,# r,, we have z,~a, in G but z, # a,. On the other hand, we have
af¥r =qntz, for some y,=D, < Cyla,). Since [#f¥z, nf]=[={s, ;7 }=1 and
[7,7,, x]=1, we have 7%z < Cyxnf) N\ Co(ng) and so nf¥s7"' & Cylrm,) N Cylry).
From (6.3) we get E, > n{¥=* ' =r,z5"". Since af¥=® ' =mx,, 1y, Ay, 4125 22,7,
or A,m,A,m, (which are the totality of elements of E, conjugate to «, in G) and
Z,~a, but z, #+ a,, we must have z,~z, which is a contradiction. Therefore
we get z,=m, which yields z{ € Cslr) N Celmmy) = Colm,) N\ Co(m,). Then it
follows from (6.3) that nf € E,. The proof is complete.

(6.5) LEMMA. Cgla,)= Ng(E,).

ProOOF. From (A) it follows that «, is the only one involution of E, con-
jugate in G to a,. This yields Cgla,) 2 Ng(E,). On the other hand, (1.2) and
(6.4) implies E, <{ Cgla,). The proof is complete.

(6.5) We introduce some notations:

By={ms ZA 1|1 ==k, 1St <u=sk, x4 <{m, T2},
Bk:{n—s’ Zt/zuxm‘zésék: 2§t<u§k’ XWE<TC’£, 77-'u>} .

Then B, is the orbit of 7, under the action on E, of U, as easily seen from
the structure of U,. Further from (4) we see that B, is the set of elements
of E, which are conjugate in G to «,.

(6.7 LEMMA. We have Z(Cs(mix) N\ Celay) =} for any x < {x,} U B,.

Proor. If x=mr,, our assertions follow from (6.2). By (5.18) and (6.5) we
know that Cgla,) = (T, X X,){A,A,>. From this we easily see that Cyla,)NCq(miay)
= gy T X (g, T X Copy(y - T Adyy.  Since abl=mlmy, (tja)ft = a;, and B,
normalizes {m,, n{», we get Cqlmimy) N Colay) = (m,, 7> X (something). This im-
plies 7} € Z(Cy(mimy) N Celery)). Further for each x  B,, we can find an element
o of U, S Cylery) such that z§ = x (cf. (6.6)). This yields n{ & Z(Cg(mix) N Celarr)).

(6.8) LEMMA. Cglay) = Ng(E.

PrROOF. We have Cglay) 2 Ng(E;) because «, is the only one element of
E; conjugate in G to a; by (4). So we shall show Cgla;) € Ng(E). By (1.2)
and the fact that T, S Cglay), it is sufficient to see that =? € E, for any
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x € Cylay). We have nf # r} in Cqla,) for any x € Colary). In fact, if zf¥ ==
for y € Co(ar), we have (a7 )* = an} which contradicts (4). So ®, = {#f{, =)
has the non trivial center <z,>, and nf ~ =iz, or n{~mxiz, in D, S Celay).

Case (i). Suppose that zf~7iz, in ®,. Since z, € Cq(n) N\ Celay), We can
find u, € X, such that z%» & {n,, 7> X W, by (6.1). Then we have n{~r{z¥s and
(apm)* ~arizd=. By (4.2) we get z¢® =r{r, or nir, for some ye<=U,. From
(6.6) it follows that z, = xjv where v € {z,}\U B,. Then (6.7) yields that [z, =]
=1 and then z,==¥z{. Hence we get =¥ & E,.

Case (ii). Suppose that =mi~miz, in ®,. Since z, e Cqm) N Celay), there
is u, € X, such that zuz =<z, z{>X W, by (6.1). From (4.3) we get z%¥=m,,
7wy, wiARA, O wikd, for some y € W,. We shall show z,=mx,. Assume by way
of contradiction that z,+# z,. Then we have z%¥ = rx}, n{A, A, or =iA, and SO
aZz~ay, in G since agrnimh~ aimidy~ ayw i~ a; in G by (4). On the other
hand, we have rnf¥s+=nznfz, for some y, =D, and so zn¥=s < Cu(z) N Colay).
Since nf¥ss™' € Ce(m) N Celar) and xy,x' e Cylay), (4.4) implies #fv+*"' < E,.
Then (6.6) yields nfvs =v® where v € B, and so z, = (7, v)*. If v=2424;x,; (x;; &
{my, m;»), we have z,=(7,4,4;%,;)° ~a, in G by (4) which yields z,=m=;, a con-
tradiction. If v=m, or A;d;x;; CQ=<s=<k, 2=Z51<j<k), we get apz,~ay_, Or
a;-, in G which contradicts the fact that a,z,~a, in G. Thus we have
proved that z,==m,. Hence we get nfe Cysln,)N\Celar). Then (6.3) yields
nf € E,. This completes the proof of our lemma.

§7. The final step of the proof of Theorems I, II.

(7.1) The following lemma is almost obvious.

LEMMA. For k=1 or 2, let H® (1=1,2, ---,n) be subgroups of a group
G® with a set MP of generators which have the following properties:

Q) MPNMP is a set of generators of HP NHP for 1<1, j<n,

(2) there exists a one-to-one mapping ¢ from the subset \njﬁﬂé‘) of G onto

i=1

\J MP such that for each i, H(HMP)=MUP and ¢, =P| MP can be extended to
=1

an isomorphism from H® onto HP. (Of course, the extension is unique.)

L
Then there exists a one to one mapping ¢ from the subset \JH® of G®
i=1

[
onto \JH® of G® such that the restrictions of ¢ to H{® induces an isomor-
=1

phism from H onto H®.

Proor. Let ¢; (i=1,2,---, n) be an isomorphism from H{ onto H® ob-
tained by the condition (2). Then (1) yields that ¢;|HP N"HP=¢;|H® N HP.
This implies the existence of ¢ with the required property.

(7.2) Define the subset H of G=G(n, r) as follows:
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{71'3, ﬂ.',rt zﬂ’zt+1r ﬁu! 52()1)7 0-.” l é ) é n, 1 § té n*l) 2§ u é n, 2 é Ué n'—l}
if r=0,

M= {7y, Ty Ahpsrs P 0P, 01|11 =s<m, 1<t <n—1,25u,v=n} if r=1,

{7s, @y Ay Bu 0P, 07|15, t=n, 2= u, v=n} if r=2,
{ms, 7ly A4y Bur OF, 0, v|1=s, 1<, 2= u, v n} if r=3.

Let M be the subset of 9, consisting of the corresponding elements with the
tilde sign (cf. (2.1) and (5.14)). Further put

My =M—A{o1}, Mp=M—{B, Q=u=k), 6’} C=k=n).
Again let %, (1<k<n) be the set of the corresponding elements of ,. Then
we have = )%, and = U H, From (2.1), (5.14), (5.18) and (6.8) we see
i=1 =1

that %, (resp. M) is a set of generators of Cy(a,) (resp. Caup(@). Clearly
the present situation is sufficient to apply the above lemma (7.1), which yields

that there is a one-to-one mapping ¢ from CL) Cy,(@,) onto \nj Ceslap) such that
k=1 k=1

¢ induces an isomorphism from Cy,(d;) onto Cgla;) for each k. Then a
theorem of [87] implies that G is isomorphic to 9, (m =4n-+7). This completes
the proof of our Theorems I, II.

Appendix. Abelian 2-subgroups of the symmetric groups.

Let m be a positive and even integer. Put m=4n-+r. So we have r=0
or 2. Let &, be the symmetric group on the set {1, 2, ---, m}. Each abelian
2-subgroup of &,, is at most of order 2% (cf. the proof of [8; (1.4)]). Denote

by 4 the set of abelian 2-subgroups of &, of order 2%,
LEMMA 1. Let L be an abelian group contained in A. Then L has a basis

{ul, uzy ey Ugy Uy, 'l}{, sy Up,y vé) Wiy Wy, w2y wc}

with the following properties :

Q) the u;, v; and v} are involutions and the w, are of order 4,

(2) the u; are transpositions, the v; and v} are products of two transposi-
tions, and the w, are cycles of length 4,

(3) any two of the u;, v; and w; do not displace a common letter, and

4 for every j, the letters which v; and v} displace are the same.

Proor. This proceeds by induction on m. If m <4, our assertion can be
checked easily. So we assume that m=6. If every involution of L has no
fixed points, I is semi-regular and so |L]§m<212¢", which is impossible.
Therefore we can find an involution x of &, which has a fixed point. Then
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we have Ce,(*¥)=UXV, where, by taking a suitable conjugate in &, of x, U
is a subgroup of the symmetric group on the set {1, 2, ---, 2k} and V is the
symmetric group on the set {2k+1, 2k+2, ---, m}.

We note that UU contains a 2-Sylow subgroup of the symmetric group on
the set {1,2,...,2k}. Put L,=UNL and L,=V L. Then from the maxi-
mality of L we easily see that L=L,xL,. The inductive hypothesis yields
our lemma, q.e.d.

We call a canonical basis of L a basis as in Lemma 1. Define elements
of &, as follows:

7wy = (4i—3, 4i—2)@i—1, 4i),
wj=(4i—3, 4i—1)4i—2, 4), (=<i<n)
g =(4—3, 4—2),
1 if r=0
(An+1, 4n+2)  if r=2,
0;=4—3, 4+D)E—2, 4+2)&—1, 4+, 4+4) (A=j=n-1).

Ho+1 =

Put
Loy =<ty Ty s tar MaTar Tarss Tastr s Tagts Tt
Marvi1Tarortr s UnTns Mn1) O<a+b=n,
Ppn=X0y, 05 -+, 01y,
Uy =TTy =~ Ty,
H,=Cs,(m7, - 7,) ,
Jn=Lmy, w1l =1=n,1=7=n+15.

We note that L,, < A.

LEMMA 2. If Le 4, L is conjugate in A, to one of the L.

Proor. This is obvious from Lemma 1, q.e.d.

REMARK. It is easy to see that we can choose an element x of %, such
that L”= L,

LEMMA 3. Put Ly=1L,, Then we have Ny, (Ly)=Jn - Py

Proor. Put II,={4k—3, 4k—2,4k—1,4k} (1 <k<n). Ng,(L, operates
transitively on the set {//,, I,, ---, Il,,} of n elements and J,, is the kernel of
this permutation representation of Ny (L,). From the fact that J,N\P,=1
and P,=&,, our lemma follows.

LEMMA 4. If Led and L € Ny, (L), L is contained in J,.

Proor. Take a canonical basis of L. Let x be a member of such basis
of L. Since x satisfies the conditions of Lemma 1, we see that [7¢=1I, for
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each k. From the proof of Lemma 3, we get x = J,. This proves our lemma.

PROPOSITION 5. Let H(n,1) and H(n,2) be as in §2. (i) H(n,1) has a
unique abelian group of order 2°* up to conjugacy in H(n, 1), which is normal
in a 2-Sylow subgroup of H(n,1l) contaiming it. (ii) if S and M are subgroups
of H(n,2) defined in (2.2), [=S-M is the Thompson subgroup of a 2-Sylow
subgroup of H(n,2) containing it.

PROOF. (i) Cy,,(@,) is isomorphic to H(n, 1). Since [, N\ Wyn = Lottty Motss
‘' Mn-1ftay. Our assertion follows from Lemma 4. (Note that N, (L, contains
a 2-Sylow subgroup of A,.) (@) Cy,,,(ay) is isomorphic to H(n,2) and J,
corresponds to J. Then our lemma follows from Lemma 4.
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Added in Proof. Recently the author has also proved Theorem I for the case r=1.
Namely, if n=4 and G(n, 1) is a finite group satisfying the conditions of Theorem I for
r=1, G(n, 1) is isomorphic to A, or Wyns1. This will be published elsewhere.
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