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\S 0. Introduction and notation.

In this paper, we are interested in re-examining, under more general
assumptions, some of the recent work of Satake, Tits and Borel concerning
restricted roots of semi-simple algebraic groups, and the Weyl group associated
to these roots ([1], [4]). Their work concentrates on the study of the system
of k-roots of a connected semi-simple (or reductive) algebraic group $G$ defined
over a ground field $k$ , and hence the Galois group $G(K/k)$ , where $K$ is a split-
ting field for a maximal torus of $G$ defined over $k$ , plays an important role.
The initial question which led to this paper was “ what is the importance of
the maximal k-trivial torus and the Galois group in this $study^{p}$ ’ That is, are
there more general assumptions on a subtorus of $G$ under which much of the
theory holds true, and can the Galois group be replaced by a more general
automorphism group of the root system of $G$ ?

We will show that both of these questions have affirmative answers, and
obtain necessary and sufficient conditions for a large class of tori (called ad-
missible tori) to induce sets of restricted roots which possess many of the
properties of k-roots. Since maximal k-trivial tori are a special case of all
the admissible tori we consider, many of our theorems yield properties of
maximal k-trivial tori. Only a few of these properties are not proved in [1],
[4]; however, it is hoped that our method of proof indicates that many of
these properties are equivalent, and depend on a minimum set of assumptions.

Throughout the paper, we will use the following standard notation (pat-

terned after that in [4]).
$G$ : a connected reductive algebraic group, (assumed semi-simple in \S 2-\S 5)
$T$ : a fixed maximal torus of $G$

$X=X(T)$ : the group of rational characters of $T$

$\mathfrak{r}$ : the root system of $G$ with respect to $T$

$W$ : the Weyl group of $\mathfrak{r}$

$w_{\alpha}$ : the element of $W$ which is the reflection with respect to $\alpha\in \mathfrak{r}$ .
We will denote by $G_{a}$ and $G_{m}$ the one-dimensional additive and multiplicative
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algebraic groups, respectively, of the universal domain, and denote by Z. $Z_{+}$ ,
$Q$ , the integers, non-negative integers, and rationals, respectively. Finally, for
subsets $M$ and $N$ of $\mathfrak{r}$ , we denote by $M-N$ the set-theoretic complement of
$N$ in $M$.

In the first section, we restate, in more general terms, the definitions and
some of the results on the set of restricted roots $\tau$ and group $\overline{W}$ which are
given in [4]. In \S 2, we define an admissible torus of $G$ , and for such a torus,

obtain necessary and sufficient conditions for the group $\overline{W}$ to be generated by
a set of reflections $\{r_{\gamma}, \gamma\in\tau\}$ . These conditions are equivalent to the fact
that the set of ‘ reduced ” restricted roots is a root system, having Weyl
group $\overline{W}$. They also imply a structure theorem for $\overline{W}$. The ” opposition
automorphism ’ of segments of the Dynkin diagram of $G$ is of key importance.
In \S 3, a special class of admissible tori which are an obvious generalization
of maximal k-trivial tori is studied. These are the maximal subtori of $T$

which are pointwise fixed under the action of a subgroup $\Gamma$ of Aut $(G, T)$

(the group of rational automorphisms of $G$ leaving $T$ invariant). In \S 4, two
actions of $\Gamma$ on $W$ are defined, and we show that $\overline{W}$ is isomorphic to a sub-
group of $W$ which is pointwise fixed by $\Gamma$ . Finally, in \S 5, we mention some
applications of our results to the special case of a maximal k-trivial torus of
$G$ , where $G$ is defined over a field $k$ .

\S 1. Restricted roots and the group $\overline{W}$.
Most proofs are omitted in this section since Satake’s arguments in [4]

.can be used in the more general setting, almost without change. For complete
proofs and a more detailed discussion of the objects defined in this section,
see [6], [5].

Throughout the section, $S$ is a fixed subtorus of $T$ , and we denote by $X_{0}$

the annihilator of $S$ in $X$. It is well-known that $X_{0}$ is a co-torsion free sub-
module of $X$, and that $X/X_{0}$ is isomorphic to the group of rational characters
of $S$ , which we denote by $Y$ . We will identify $X/X_{0}$ and $Y$, and denote by
$\pi$ the canonical homomorphism of $X$ onto $Y$ ; that is, for each $\chi\in X,$ $\pi(\chi)$ is
the restriction of $\chi$ to $S$ . Let $\mathfrak{r}_{0}=\mathfrak{r}\cap X_{0}$ , and put $\tau=\pi(\mathfrak{r}-\mathfrak{r}_{0})$ . The subset $\tau$

of $Y$ will be called the set of restricted roots of $\mathfrak{r}$ relative to $X_{0}$ (or relative
to S).

In order to talk of fundamental roots of $\overline{\mathfrak{r}}$ , we need to define a linear order
on $X$ which is compatible with $\pi$ . Thus we say that a linear order $>$ on $X$

(which is compatible with addition) is an $X_{0}$ -linear order if and only if the
following condition is satisfied:

(1) if $\chi,$
$\chi^{\prime}\in X,$ $\chi\not\in X_{0},$ $\chi>0$ , and $\chi\equiv\chi^{\prime}(mod X_{0})$ , then $\chi^{\prime}>0$ .
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From the definition, it is clear that an $X_{0}$-linear order on $X$ induces linear
orders on $X_{0}$ and $Y$, and conversely, it is easily shown that given linear orders
on $X_{0}$ and $Y$, there is a unique $X_{0}$-linear order on $X$ which induces these
given orders (the order on $Y$ satisfies the condition: for $\chi\not\in X_{0},$ $\pi(\chi)>0$ if and
only if $\chi>0$). An alternate characterization of an $X_{0}$-linear order is given
in the following lemma.

LEMMA 1.1. A linear order $>$ (compatible with addition) on $X$ is an $X_{0^{-}}$

linear order if and only if the following condition is satisfied:
(2) if $\chi_{1},$

$\chi_{2}\not\in X_{0}$ and $\chi_{1},$ $\chi_{2}>0$, then $\chi_{1}+\chi_{2}\not\in X_{0}$ .
PROOF. Suppose a linear order $>$ on $X$ satisfies (1), and suppose $\chi_{1},$

$\chi_{2}\not\in X_{0}$ ,

and $\chi_{1},$ $\chi_{2}>0$ . If $\chi_{1}+\chi_{2}\in X_{0}$ , then $\chi_{1}\equiv-\chi_{2}(mod X_{0})$ , which contradicts (1);
thus(l) $=\gg(2)$ . Conversely, suppose $>satisfies(2),$ $andsuppose\chi_{1},$ $\chi_{2}\in X,$ $\chi_{1}\not\in X_{0}$ ,
$\chi_{1}>0$ , and $\chi_{1}\equiv\chi_{2}(mod X_{0})$ . Clearly $\chi_{2}\not\in X_{0}$ and $\chi_{2}\neq 0$ ; if $\chi_{2}<0$ , then $-\chi_{2}>0$

and $-\chi_{2}\in\in X_{0}$ , and $\chi_{1}-\chi_{2}\in X_{0}$ , which contradicts (2). Thus $\chi_{2}>0$ , and (2) $\Rightarrow(1)$ .
We will call the set of simple roots of $\mathfrak{r}$ with respect to an $X_{0}$-linear order

on $X$ an $X_{0}$-fundamental system of $\mathfrak{r}$ . If $\Delta$ is any $X_{0}$-fundamental system of
$\mathfrak{r}$ , and we put $\Delta_{0}=\Delta\cap X_{0}$ , then we call the set $\overline{\Delta}=\pi(\Delta-\Delta_{0})$ a $res$ tricted funda-
mental system of $\mathfrak{r}$ (corresponding to $\Delta$). The next proposition follows easily
from Lemma 1.1 and the definitions of $\mathfrak{r}_{0},$

$\Delta_{0},$ $\tau$ and $\overline{\Delta}$ .
PROPOSITION 1.2. Let $\Delta$ be an $X_{0}$-fundamental system of $\mathfrak{r}$ .
(a) $\mathfrak{r}_{0}$ is a root system with fundamental system $\Delta_{0}$ .
(b) If $\overline{\Delta}=\{\gamma_{1}$ , $\cdot$ .. , $\gamma_{\nu}\}$ , the $\gamma_{i}$ assumed mutually distinct, then every $\gamma\in\overline{\mathfrak{r}}$

can be written in the form

$\gamma=\pm\sum_{i=1}^{\nu}m_{i}\gamma_{i}$ , $m_{i}\in Z_{+}$ .

(c) If $\Delta^{\prime}$ is another $X_{0}$-fundamental system of $\mathfrak{r}$ , and $\Delta_{0}^{\prime}=\Delta^{\prime}\cap X_{0},\overline{\Delta}^{\prime}=$

$\pi(\Delta^{\prime}-\Delta_{0}^{\prime})$ , then $\Delta=\Delta^{\prime}$ if and only if $\Delta_{0}=\Delta_{0}^{\prime}$ and $\overline{\Delta}=\overline{\Delta}^{\prime}$ .
Let $W_{0}$ denote the subgroup of $W$ generated by { $w_{\alpha}$ , a $\in \mathfrak{r}_{0}$ }; then $W_{0}$ can

be identified with the Weyl group of $\mathfrak{r}_{0}$ . Define

(3) $W_{0}^{\prime}=\{w\in W|w(X_{0})=X_{0}\}$ .
Clearly $W_{0}^{\prime}$ is a subgroup of $W$ ; in addition, $W_{0}$ is a normal subgroup of $W_{0}^{\prime}$ ,

for if $\alpha\in \mathfrak{r}_{0}$ , and $w\in W_{0}^{\prime}$ , then $ww_{\alpha}w^{-1}=w_{w\alpha}$ , with $w\alpha\in \mathfrak{r}_{0}$ . Each $w\in W_{0}^{f}$

induces an automorphism $\overline{w}$ of $Y$ which is defined by the following equation:

(4) $\pi(w\chi)=\overline{w}(\pi(\chi))$ , for all $\chi\in X$ .
We denote by $\overline{W}$ the group $\{\overline{w}|w\in W_{0}^{\prime}\}$ ; it is clear from (4) that $\overline{W}$ leaves $\overline{\mathfrak{r}}$

invariant. Also, if $w\in W_{0}$ , then $w\chi-\chi\in(\mathfrak{r}_{0})_{Z}$ , for all $\chi\in X$, so (4) implies
$\overline{w}=1$ .
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PROPOSITION 1.3. Let $\Delta$ be an $X_{0}$-fundamental system of $\mathfrak{r}$ . For any $w\in W_{0}^{\prime}$ ,
$w(\Delta)$ is an $X_{0}$-fundamental system of $\mathfrak{r}$ , and $\overline{w}(\overline{\Delta})$ is the corresponding restricted
fundamental system. One has $\overline{w}(\overline{\Delta})=\overline{\Delta}$ if and only if $w\in W_{0}$ .

COROLLARY 1.4. $\overline{W}\cong W_{0}^{\prime}/W_{0}$ . (Specifically, the homomorphism of $W_{0}^{\prime}$ onto
$\overline{W}$ given by $w\rightarrow\overline{w}$ has kernel $W_{0}.$)

For any subset $M$ of $G$ , we denote by $N(M)$ and $Z(M)$ the normalizer and
centralizer, respectively, of $M$ in $G$ .

PROPOSITION 1.5.
(a) $N(S)=(N(S)\cap N(T))\cdot Z(S)$

(b) If $w_{s}$ is the element of $W$ determined by $s\in N(T)$ , then
(i) $w_{s}\in W_{0}^{\prime}$ if and only if $s\in N(S)$

(ii) $w_{s}\in W_{0}$ if and only if $s\in Z(S)$ .
Using the second isomorphism theorem, Corollary 1.4, and Proposition 1.5,

one obtains
COROLLARY 1.6. $\overline{W}\cong N(S)/Z(S)$ .
The canonical homomorphism of $N(S)$ into Aut $(Y)$ having kernel $Z(S)$ is

$\varphi:s\rightarrow{}^{t}(I_{s}|S)^{-1}$ , where $s\in N(S)$ and $I_{s}$ is the inner automorphism of $G$ defined
by $s$ . Thus it follows from (4) that for $s\in N(S)\cap N(T)$ , one has $\overline{w}_{s}=\varphi(s)$ .
By $Prop^{1}osition1.5(a)$ , for each $s\in N(S)$ , there is an element $s^{\prime}\in N(S)\cap\Lambda^{\gamma}(T)$

such that $\varphi(s)=\varphi(s^{\prime})=\overline{w}_{s},$ . To simplify our notation, we make the following
convention: for any $s\in N(S)$ (not necessarily belonging to $N(S)\cap N(T)$ , we
put $\overline{w}_{s}=\varphi(s)$ .

Let $Y_{Q}^{*}$ denote the dual space of $Y_{Q}$ , and for each $\eta\in Y$, define

(5) $H_{\eta}=\{\omega^{*}\in Y^{*}|\omega^{*}(\eta)=0\}$ .
Thus $H_{\eta}$ is the hyperplane in Y $Q*defined$ by $\eta$ . The elements $\overline{w}\in\overline{W}$ are ex-
tended to linear transformations of $Y_{Q}$ in a natural manner, and then $\overline{W}$ be-
comes a group of linear transformations in $Y_{Q}^{*}$ in defining $\overline{w}\omega^{*}$ for $\overline{w}\in\overline{W}$,
$\omega^{*}\in Y_{Q}^{*}$ by the following equation:

(6) $\overline{w}\omega^{*}(\overline{w}\eta)=\omega^{*}(\eta)$ for all $\eta\in Y_{Q}$ .

PROPOSITION 1.7. Let $\gamma\in\tau$ , and let $S_{\gamma}$ be the identity component of the
annihilator of $\gamma$ in S. For each $s\in N(S)$ , one has $s\in Z(S_{\gamma})$ if and only if $\overline{w}_{s}$

leaves $H_{\gamma}$ elementwise fixed.
For each $\eta\in Y$, we will denote by $r_{\eta}$ the refiection in $Y_{Q}^{*}$ with respect to

$\eta$ . Thus $r_{\eta}$ is a linear transformation in $Y_{Q}^{*}$ which is characterized by the
properties: $r_{\eta}\neq 1,$ $r_{\eta}^{2}=1$ , and $r_{\eta}$ leaves pointwise fixed the hyperplane $H_{\eta}$ .

PROPOSITION 1.8. Let $s\in N(S)$ . The element $\overline{w}_{s}\in\overline{W}$ is the reflection in
$Y_{Q}^{*}$ with respect to $\gamma\in\tau$ if and only if $s\in Z(S_{\gamma}),$ $s\not\in Z(S)$ .

PROOF. By Propositions 1.5 and 1.7, we see that $\overline{w}_{s}\neq 1$ and $\overline{w}_{s}$ leaves $H_{\gamma}$

elementwise fixed if and only if $sGZ(S)$ and $s\in Z(S_{\gamma})$ . Moreover, if that is
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so, one has clearly $\overline{w}_{s}^{2}=1$ , since $\overline{w}_{s}$ is of finite order.
REMARK. Although at the beginning of this paper we fixed $T$ (and hence

$X$ and r), the definition of restricted roots $\tau$ with respect to $S$ depends only
on $S$ . That is, if $T^{\prime}$ is another maximal torus of $G$ containing $S$ , and we
define the corresponding objects $X^{\prime},$ $X_{0}^{\prime},$ $\mathfrak{r}^{\prime},$ $\mathfrak{r}_{0}^{\prime},$ $Y^{\prime},$ $\tau^{\prime}$ , then the fact that $T$ and
$T^{\prime}$ are conjugate by an element of $Z(S)$ implies that $\tau=\tau^{\prime}$ in the identification
of $X/X_{0}$ and $X^{\prime}/X_{0}^{\prime}$ induced by this conjugation.

\S 2. Admissible tori.

We now assume that $G$ is a connected semi-simple algebraic group; all
other notations remain the same.

Under the assumptions in \S 1, if $\Delta$ is an $X_{0}$-fundamental system of $\mathfrak{r}$, the
distinct elements of $\overline{\Delta}$ are not always linearly independent over $Q$ . In fact,

an easy example shows that for one $X_{0}$-fundamental system $\Delta$ of $\mathfrak{r}$, a can be
a linearly independent set, while for another $X_{0}$-fundamental system $\Delta^{\prime}$ of $\mathfrak{r}$ ,
$\overline{\Delta}^{\prime}$ can be a linearly dependent set. Take $G$ a simple group of type $A_{3}$ ,

with fundamental system of roots $\Delta=\{\alpha_{1}, \alpha_{2}, \alpha_{3}\}$ , and let $S$ be the subtorus
of $T$ whose annihilator $X_{0}$ is generated by $\alpha_{2}-\alpha_{S}$ . Clearly $\Delta$ is an $X_{0}$-funda-
mental system of $\mathfrak{r}$ , and if we let $\pi(\alpha_{1})=\gamma_{1},$ $\pi(\alpha_{2})=\pi(\alpha_{3})=\gamma_{2}$ , then $\overline{\Delta}=\{\gamma_{1}, \gamma_{2}\}$

is a linearly independent set over $Q$ . However, $\Delta^{\prime}=\{-\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{8}\}$ is also
an $X_{0}$-fundamental system of $\mathfrak{r}$, and $\overline{\Delta}^{\prime}=\{-\gamma_{1}, \gamma_{1}+\gamma_{2}, \gamma_{2}\}$ is a linearly depend-
ent set over Q. (One can verify directly that $\Delta^{\prime}$ is an $X_{0}$-fundamental system,
or see the remark after Lemma 2.2, later in this section.)

We are only interested in studying the case where $S$ is a subtorus of $T$

such that every restricted fundamental system of $\mathfrak{r}$ with respect to $S$ consists
of linearly independent elements.

DEFINITION. A subtorus $S$ of $T$ whose annihilator in $X$ is $X_{0}$ is called
admissible if, for each $X_{0}$-fundamental system $\Delta$ of $\mathfrak{r}$ , the distinct elements of
a are linearly independent over $Q$ .

If $S$ is an admissible subtorus of $T$, then part (b) of Proposition 1.2 can
be strengthened:

PROPOSITION 1.2 $(b^{\prime})$ . If $\overline{\Delta}=\{\gamma_{1}, \cdots , \gamma_{\nu}\}$ , the $\gamma_{i}$ assumed mutually distinct,
then each $\gamma\in\tau$ can be written uniquely in the form

$\gamma=\pm\sum_{i=1}^{\nu}m_{i}\gamma_{i},$ $m_{i}\in Z_{+}$ .

An alternate criterion for a subtorus of $T$ to be admissible is given in the
next proposition.

PROPOSITION 2.1. A subtorus $S$ of $T$ is admissible if and only if for each
$X_{0}$-fundamental system $\Delta$ of $\mathfrak{r}$ , the module $X_{0}$ is generated over $Q$ by $\Delta_{0}$ and
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elements of the form $\alpha-\alpha^{\prime}$ , where $\alpha,$
$\alpha^{\prime}\in\Delta-\Delta_{0}$ , and $\alpha\equiv\alpha^{\prime}(mod X_{0})$ .

PROOF. Let $G$ have rank 1 $(i. e., \dim X_{Q}=l)$ , and let $\overline{\Delta}=\{\gamma_{1}$ , $\cdot$ .. , $\gamma_{\nu}\}$ , the
elements assumed mutually distinct. Clearly $\dim Y_{Q}\leqq\nu$ . By reordering sub-
scripts if necessary, we may assume that $\alpha_{1},$ $\cdots$ , $\alpha_{\nu}\in\Delta-\Delta_{0}$ satisfy $\pi(\alpha_{i})=\gamma_{i}$ ,
$ 1\leqq i\leqq\nu$ . Then the elements of $\Delta_{0}$ , together with the non-zero elements of
the form $\alpha_{i}-\alpha$ , where $\alpha\in\Delta$ and $\alpha\equiv\alpha_{i}(mod X_{0})$ are all in $X_{0}$ , and are
linearly independent over $Q$ . Thus $\dim X_{oQ}\geqq l_{0}+(l-l_{0}-\nu)=l-\nu$ , where $l_{0}=|\Delta_{0}|$ ,

and $ l-l_{0}-\nu$ is the number of differences $\alpha-\alpha_{i}$ . Since $l=\dim X_{Q}=\dim Y_{Q}+$

$\dim X_{oQ}$ , we see that $\dim Y_{Q}=\nu$ ( $i$ . $e.,$ $\gamma_{1},$
$\cdots$ , $\gamma_{\nu}$ are linearly independent) if

and only if $\dim X_{oQ}=l-\nu(i$ . $e.,$ $X_{0}$ is generated over $Q$ by $\Delta_{0}$ and the differ-
rences $\alpha-$ ai with $\alpha\equiv\alpha^{\prime}(mod X_{0}))$ .

For the rest of this section, we will assume that $S$ is an admissible sub-
torus of $T$.

Fix $\Delta=\{\alpha_{1}, \cdots , \alpha_{\iota}\}$ , an $X_{0}$-fundamental system of $\mathfrak{r}$ with corresponding
restricted fundamental system $\overline{\Delta}=t\gamma_{1},$ $\cdots$ , $\gamma_{\overline{l}}$ } (the $\gamma_{i}$ assumed mutually dis-
tinct). For each $i,$ $1\leqq i\leqq\overline{l}$ , denote $\Delta^{i}=\Delta\cap\pi^{-1}(\gamma_{i})$ ; then $\Delta=\Delta^{1}\cup\cdots U\Delta^{\overline{\iota}}U\Delta_{0}$ ,

a disjoint union. Denote $\Delta_{i}=\Delta^{i}U\Delta_{0}$ ; then the set $\mathfrak{r}_{i}=\mathfrak{r}\cap(\Delta_{i})_{Z}$ is a closed
subsystem of $\mathfrak{r}$ , having $\Delta_{i}$ as fundamental system. In fact, $\mathfrak{r}_{i}$ is the root
system of the connected reductive group $Z(S_{\gamma_{i}})$ . For, $Z(S_{\gamma_{i}})$ is generated by
$T$ and the one-dimensional unipotent subgroups $P_{a}(\alpha\in \mathfrak{r})$ which are contained
in it, and $P_{\alpha}\subset Z(S_{\gamma_{i}})$ if and only if $\pi(\alpha)=c\gamma_{i}$ for some $c\in Q.$ (This last asser-
tion follows from the well-known condition on roots: $tx_{\alpha}(\xi)t^{-1}=x_{\alpha}(\alpha(t)\xi)$ for
all $t\in T,$ $\xi\in G_{a}$ , where $x_{\alpha}$ is the isomorphism of $G_{a}$ onto $P_{\alpha}.$) Now the root
system of $Z(S_{\gamma_{i}})$ is, by definition, the set $\{\alpha\in \mathfrak{r}|P_{\alpha}\subset Z(S_{\gamma_{i}})\}$ , which we have
just shown coincides with the set $\{\alpha\in \mathfrak{r}|\pi(\alpha)=c\gamma_{i}, c\in Q\}$ . But by Proposi-
tion $1.2(b^{\prime})$ , this last set coincides with $\mathfrak{r}_{i}$ .

For each $i,$ $1\leqq i\leqq\overline{l}$, let $W_{i}$ be the subgroup of $W$ generated by $\{w_{\alpha}, \alpha\in \mathfrak{r}_{i}\}$ ;
$W_{i}$ can be identified with the Weyl group of $\mathfrak{r}_{i}$ . Since $\mathfrak{r}_{0}\subset \mathfrak{r}_{i},$ $W_{0}$ is a sub-
group of W.. It is clear from our definitions and discussion above that all
of the results in \S 1 hold when $G$ is replaced by $Z(S_{\gamma_{i}}),$ $\mathfrak{r}$ by $\mathfrak{r}_{i},$

$\Delta$ by $\Delta_{i},$ $W$

by $W_{i}$ , etc., since $Z(S_{\gamma_{i}})$ is a connected reductive algebraic group containing
$T$ and $S$ , and $\Delta_{i}$ is an $X_{0}$-fundamental system of $\mathfrak{r}_{i}$ .

For each $i,$ $1\leqq i\leqq\overline{l}$, there is a unique involution $w_{i}\in W_{t}$ which satisfies

(7) $w_{i}(\Delta_{i})=-\Delta_{i}$ .

The involution $w_{i}$ induces a natural automorphism $f_{i}$ of $\Delta_{i}$ , where $\zeta_{i}$ is defined
by the following equation:

88) $(c_{i^{\circ}}w_{i})(\alpha)=-\alpha$ for all $\alpha\in\Delta_{i}$ .
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The automorphism $C_{i}$ of $\Delta_{i}$ will be called the opposition automorphism1) of $\Delta_{i}$ .
Equation (8) is equivalent to $w_{i}\alpha=-f_{i}(\alpha)$ for all $\alpha\in\Delta_{i}$ , thus $w_{i}(\Delta_{0})=-\Delta_{0}$ if
and only if the opposition automorphism of $\Delta_{i}$ leaves $\Delta_{0}$ invariant.

LEMMA 2.2. Let $S$ be an admissible subtorus of $T$, and $\Delta$ an $X_{0}$-fundamental
system of 1. If the opposition automorphism of $\Delta_{i}$ leaves $\Delta_{0}$ invariant, then
$w_{i}(\Delta)$ is an $X_{0}$-fundamental system of $\mathfrak{r}$ .

PROOF. Since $w_{i}\in W_{i}$ , it follows that $w_{i}\chi-\chi\in(\mathfrak{r}_{i})_{Z}$ for all $\chi\in X$ ([2]-
expos\’e 16), and in particular, if $\alpha\in\Delta-\Delta_{i}$ , then

(9)
$w_{i}\alpha=\alpha+\sum_{\alpha_{j}\in\Delta_{i}}m_{j}\alpha_{j},$

$m_{j}\in Z$ .

Since $w_{i}\alpha\in \mathfrak{r}$ , equation (9) implies $m_{j}\geqq 0$ for all $\alpha_{j}\in\Delta_{i}$ . Thus if $\alpha\in\Delta^{k},$ $k\neq i$ ,

we have
(10) $\pi(w_{i}\alpha)=\gamma_{k}+m\gamma_{i},$ $m\in Z_{+}$ .
For each $k\neq i,$ $1\leqq k\leqq\overline{l}$, let $m_{k}=\max_{\alpha\in\Delta^{k}}\{m|\pi(w_{i}\alpha)=\gamma_{k}+m\gamma_{i}\}$ , and let $\beta_{k}$ be an
element of $\Delta^{k}$ such that $\pi(w_{i}\beta_{k})=\gamma_{k}+m_{k}\gamma_{i}$ . Let $\beta_{i}$ be any element of $\Delta^{i}$ ;
then $\pi(w_{i}\beta_{i})=-\gamma_{i}$ . Since $S$ is admissible, the set $(\gamma_{1}, \cdots , \gamma_{\overline{l}})$ is a basis for
$Y_{Q}$ over $Q$ , and hence the set $(\pi(w_{i}\beta_{k}), 1\leqq k\leqq\overline{l})$ is also a basis for $Y_{Q}$ over
$Q$ . Let $Y$ be ordered lexicographically with respect to this latter basis, and
let $X_{0}$ be given a linear order such that the elements of $-\Delta_{0}$ are positive.
Finally, denote by $>$ the unique $X_{0}$-linear order on $X$ inducing these orders
on $Y$ and $X_{0}$ , respectively, and denote by $\mathfrak{r}_{+}$ the positive elements of $\mathfrak{r}$ with
respect to $>$ . It is clear that $w_{i}(\Delta_{0})=-\Delta_{0}\subset \mathfrak{r}_{+}$ , and $w_{i}(\Delta^{i})=-\Delta^{i}\subset \mathfrak{r}_{+}$ (since
$\pi(w_{i}(\Delta^{i}))=-\gamma_{i})$ . If $k\neq i$ , and $\alpha\in\Delta^{k}$ , then (10) implies $\pi(w_{i}\alpha)=\gamma_{k}+m\gamma_{i}=$

$(\gamma_{k}+m_{k}\gamma_{i})+(m_{k}-m)(-\gamma_{i})$ and $m_{k}-m\in Z_{+};$ hence $w_{i}\alpha>0$ . Thus $w_{i}(\Delta)\subset \mathfrak{r}_{+}$ , so
$w_{i}(\Delta)$ is an $X_{0}$-fundamental system of $\mathfrak{r}$ .

REMARK. Only the fact that the distinct elements of $\overline{\Delta}$ are linearly inde-
pendent over $Q$ was used in the proof, hence the argument applies to the
example at the beginning of this section.

The following theorem indicates the importance of the opposition auto-
morphism of $\Delta_{i}$ .

THEOREM 2.3. Let $G$ be a connected semi-simple algebraic group, $S$ an ad-
missible subtorus of $T$ , and $\gamma_{i}\in\overline{\Delta}$ , a restricted fundamental system of $\mathfrak{r}$ corre-
sponding to the $X_{0}$-fundamental system $\Delta$ . The following conditions are equi-
valent:

1) The definition is due to J. Tits, who saw the importance of this involution in
connection with the classification of connected semi-simple algebraic groups over $k$ .
Condition (i) of our Theorem 2.6 was shown to be necessary in the case of $k$-roots, as
well as other conditions on the opposition automorphism. See [1] and [8], and also
items 38, 40, 42 in the bibliography of [S]. I am indebted to Professor Tits for sug-
gesting this involution should be looked at in the general case studied here.
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(i) $\overline{W}$ contains the reflection $r_{\gamma_{i}}$ .
(ii) $Z(S)$ is a proper subgroup of $N(S)\cap Z(S_{\gamma_{i}})$ .
(iii) $w_{i}\in W_{0}^{\prime}$ , (and $\overline{w}_{i}=r_{\gamma_{i}}$).

(iv) the opposition automorphism of $\Delta_{i}$ leaves $\Delta_{0}$ invariant.
PROOF. We have shown $(i)\Leftrightarrow(ii)$ in Proposition 1.8. Clearly (iii) $\Rightarrow(i)$ .

Suppose (i) holds; then there is an element $s_{i}\in N(T)\cap N(S)$ such that $\overline{w}_{s_{i}}=r_{\gamma_{i}}$ .
Since $w_{s_{i}}(\Delta_{0})$ and $-\Delta_{0}$ are both fundamental systems of $\mathfrak{r}_{0}$ (Proposition 1.3, 1.2),
there exists $w\in W_{0}$ such that $ww_{s_{i}}(\Delta_{0})=-\Delta_{0}$ . Since $s_{i}\in N(T)\cap N(S)\cap Z(S_{\gamma_{i}})$

(Proposition 1.8), it follows that $ww_{s_{i}}\in W_{i}\cap W_{0}^{\prime}$ , and hence $ww_{s_{i}}(\Delta_{i})$ is an $X_{0^{-}}$

fundamental system of $\mathfrak{r}_{i}$ (Proposition 1.3). Since $ww_{s_{i}}(\Delta_{0})=-\Delta_{0}$ and $\overline{ww_{s_{i}}(\Delta_{i}}$)
$=\{-\gamma_{i}\}$ , and $-\Delta_{i}$ is also an $X_{0}$-fundamental system of $\mathfrak{r}_{i}$ satisfying $(-\Delta_{i})_{0}$

$=-\Delta_{0}$ and $-J_{i}=\{-\gamma_{i}\}$ , Proposition 1.2(c) implies that $ww_{s_{i}}(\Delta_{i})=-\Delta_{i}$ . Thus
$ww_{s_{i}}=w_{i}$ , and $w_{i}\in W_{0}^{\prime}$ and $\overline{w}_{i}=\overline{ww_{s_{i}}}=r_{\gamma_{i}}$ , which proves (iii). If (iii) holds,
then $w_{i}(\Delta_{0})\subset X_{0}\cap(-\Delta_{i})=-\Delta_{0}$ , so $w_{i}(\Delta_{0})=-\Delta_{0}$ which implies (iv). Finally,
we show (iv) $\Rightarrow$ (iii). Condition (iv) implies $w_{i}(\Delta_{0})=-\Delta_{0}$ , so that to show
$w_{i}(X_{0})=X_{0}$ , it suffices to show that if $\alpha,$

$\alpha^{\prime}\in\Delta^{k}$ , then $w_{i}\alpha-w_{i}\alpha^{\prime}\in X_{0}$ (Proposi-
tion 2.1). By equation (10), we have $\pi(w_{i}\alpha)=\gamma_{k}+m\gamma_{i},$ $\pi(w_{i}\alpha^{\prime})=\gamma_{k}+n\gamma_{i}$ , with
$m,$ $n\in Z_{+}$ . Since $\iota\tau(w_{i}(\Delta^{i}))=t-\gamma_{i}$ }, we see that $\{-\gamma_{i}, \gamma_{k}+m\gamma_{i}, \gamma_{k}+n\gamma_{i}\}\subset\overline{w_{i}(\Delta)}$.
$lfw_{i}\alpha-w_{i}\alpha^{\prime}\not\in X_{0}$ , then $m\neq n$ , and this implies $\overline{w_{i}(\Delta)}$ contains a linearly de-
pendent set. But since $S$ is admissible, and $w_{i}(\Delta)$ is an $X_{0}$-fundamental system
of $\mathfrak{r}$ (Lemma 2.2), this cannot occur. Thus $w_{i}\alpha-w_{i}\alpha^{\prime}\in X_{0}$ , which completes
the proof.

As a result of Theorem 2.3, we can determine necessary and sufficient
conditions for the group $\overline{W}$ to be the Weyl group of an (abstract) root system.
We recall the definition in [4].

Given a vector space $M$ over $Q$ with a non-degenerate symmetric bilinear
form $(, )$ , a finite subset $\Phi\subset M$ which generates $M$ over $Q$ is called a root
system in $M$ if the following four conditions hold:

$R(1)$ $ 0\not\in\Phi$ , and $ x\in\Phi$ implies $-x\in\Phi$ .
$R(2)$ $ x-\frac{2(x,y)}{(y,y)}y\in\Phi$ for all $x,$ $ y\in\Phi$ .

$R(3)$ $\frac{2(x,y)}{(y,y)}\in Z$ for all $x,$ $ y\in\Phi$ .
$R(4)$ If $ x\in\Phi$ and $ cx\in\Phi$ with $c\in Q$ , then $c=\pm 1$ .

If only conditions $R(1),$ $R(2),$ $R(3)$ are satisfied, then $\Phi$ is called a root system
in a wider sense. The elements of $\Phi$ are called roots, and the set of positive
simple roots of $\Phi$ with respect to a linear order on $M$ is called a fundamental
system of $\Phi$ (a positive root is simple if it is not the sum of two positive
roots). The group generated by the automorphisms of $M$ of the form
$x\rightarrow x-\frac{2(x,y)}{(y,y)}y$ for $x\in M,$ $ y\in\Phi$ is called the Weyl group of $\Phi$ . It is easily
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shown that condition $R(3)$ implies that if $ x\in\Phi$ and $ cx\in\Phi$ for $c\in Q$ , then
$|c|=\frac{1}{2},1,2$ .

Now denote by $\check{\mathfrak{r}}$ the set of “ reduced ” restricted roots, that is, the subset
of elements of $\tau$ which cannot be written in the form $ c\gamma$ with $\gamma\in\overline{\mathfrak{r}},$ $c\in Q,$ $c>1$ .
In Theorem 2.6, we will give necessary and sufficient conditions for $\check{\mathfrak{r}}$ to be a
root system in $Y_{Q}$ with Weyl group $\overline{W}$. It is clear from our definitions that
both $\tau$ and $\check{\mathfrak{r}}$ satisfy condition $R(1)$ , and $\check{\mathfrak{r}}$ satisfies condition $R(4)$ ; thus condi-
tions which guarantee conditions $R(2)$ and $R(3)$ are needed.

Some properties of $\check{\mathfrak{r}}$ and the reflections $r_{\gamma_{i}}(\gamma_{i}\in\overline{\Delta})$ which are needed in
the proof of Theorem 2.6 are collected in the next lemma.

LEMMA 2.4. Let $S$ be an admissible subtorus of $T,\overline{\Delta}=\{\gamma_{1}$ , $\cdot$ .. , $\gamma_{\overline{l}}\}$ a re-
stricted fundamental system of $\prime r$ , and $\check{\mathfrak{r}}_{+}$ the set of positive roots in ti with
respect to A. If $w_{i}\in W_{0}^{\prime}$ for all $i,$ $1\leqq i\leqq\overline{l}$, then

(a) If $\langle, \rangle$ is any W-invariant non-degenerate symmetric bilinear form on
$Y_{Q}$ , then

$\overline{w}_{i}\eta=\eta-\frac{2\langle\eta,\gamma_{i}\rangle}{\langle\gamma_{i},\gamma_{i}\rangle}\gamma_{i}$ for all $\eta\in Y_{Q},$ $1\leqq i\leqq\overline{l}$ .

(b) If $\gamma\in\check{\mathfrak{r}}_{+}$ , and $\gamma\neq\gamma_{i}$ , then $\overline{w}_{i}\gamma\in\check{\mathfrak{r}}_{+}$ .
(c) For each $\gamma\in\check{\mathfrak{r}}$ , there exists an index $j(1\leqq 1\leqq\overline{l})$ and a subset $\{i(1)$ ,

... , $i(\nu)$ } $\subset\{1,2, \cdots , \overline{l}\}$ such that $\gamma=\overline{w}_{i(1)}\cdots\overline{w}_{i(\nu)}\gamma_{j}$ .
(d) If $\gamma\in\tau$ , lhen $\gamma=m\gamma^{\prime}$ for some $\gamma^{\prime}\in\check{\mathfrak{r}},$ $m\in Z$.
We omit the proof of the lemma since the arguments are standard ones.

We note that (a) follows since Theorem 2.3 implies that $\overline{w}_{i}$ is the reflection in
$Y_{Q}$ with respect to the hyperplane $H_{\gamma_{i}}=\{\eta\in Y_{Q}|\langle\gamma_{i}, \eta\rangle=0\}$ ; that (b) follows
from (a) and proposition $1.2(b^{\prime})$ , and the fact that $\overline{W}$ leaves $\check{\mathfrak{r}}$ invariant, that
(c) follows from (b), and (d) follows from (c) and Proposition 1.2 (see, $e$ . $g$ . $[2]_{r}$

expos\’e 14, or [6]).

In the course of the proof of Theorem 2.6, we use some standard argu-
ments and hence need the following notion of ” Weyl chamber.” For each
restricted fundamental system $\overline{\Delta}=t\gamma_{1},$ $\cdots$ , $\gamma_{\overline{l}}$ } of $\mathfrak{r}$ , define

(11) $C_{\overline{\Delta}}=\{\omega^{*}\in Y_{Q}^{*}|\omega^{*}(\gamma_{i})>0,1\leqq i\leqq\overline{l}\}$ .

Since $S$ is admissible, $\overline{\Delta}$ is a basis for $Y_{Q}$ over $Q$ , and so $ C_{\overline{\Delta}}\neq\phi$ . It is easily
seen from Proposition $1.2(b^{\prime})$ that $C_{\overline{\Delta}}$ is a Weyl chamber of $Y_{Q}^{*}$ in the usual
sense, that is, if we choose $\omega_{0}^{*}\in C_{\overline{\Delta}}$ and define $\tau_{+}=\{\gamma\in\tau|\omega_{0}^{*}(\gamma)>0\}$ , then
$C_{\overline{\Delta}}=\bigcap_{\gamma^{--}+}H_{\gamma}^{+}$

, where $H_{\gamma}^{+}=\{\omega^{*}\in Y_{Q}^{*}|\omega^{*}(\gamma)>0\}$ . From (11) and (6) we see that

for each $\overline{w}\in\overline{W}$ and restricted fundamental system $\overline{\Delta}$ of $\mathfrak{r}$ , one has

(12) $\overline{w}(C_{\overline{\Delta}})=C_{\overline{w}(\overline{\Delta})}$ ,

thus $\overline{W}$ acts on the set of all $C_{\overline{\Delta}}$ .
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The following lemma is easily proved (see [4]) and states that the usual
“ useful ” properties of Weyl chambers hold for the $C_{\overline{\Delta}}$ .

LEMMA 2.5. Let $S$ be an admissible torus of $G$ .
(a) There is $a$ one-to-one correspondence between restricted fundamental

systems $\overline{\Delta}$ of $\mathfrak{r}$ and Weyl chambers $C_{\overline{\Delta}}$ .
(b) V $C_{\overline{\Delta}}=Y_{Q}^{*}-\cup H_{\gamma}$ (the union on the left is taken over all restricted

$\overline{\Delta}:r.f.s$ . $\gamma\in\overline{\mathfrak{r}}$

fundamental systems of r).

THEOREM 2.6. Let $G$ be a connected semi-simple algebraic group, $S$ an ad-
missible subtorus of $T$, and $\overline{\Delta}=t\gamma_{1},$ $\cdots$ , $\gamma_{\overline{l}}$ } a restricted fundamental system of
$\mathfrak{r}$ . The following conditions are equivalent:

(i) The opposition automorphism of $\Delta_{i}$ leaves $\Delta_{0}$ invariant for all $i,$ $1\leqq i\leqq\overline{l}$ .
(ii) $\overline{W}$ contains $r_{\gamma}$ for all $\gamma\in\tau$

(iii) $\overline{W}$ is generated by $\{r_{\gamma_{i}}, 1\leqq i\leqq\overline{l}\}$

(iv) $\check{\mathfrak{r}}$ is a root system in $Y_{Q}$ (with respect to a W-invariant metric), with
fundamental system $\overline{\Delta}$ , and Weyl group $\overline{W}$.

PROOF. Suppose (i) holds; then by Theorem 2.3, $w_{i}\in W_{0}^{\prime}$ and $r_{\gamma_{i}}=\overline{w}_{i}\in\overline{W}$

for all $i,$ $1\leqq i\leqq\overline{l}$ . If $\gamma\in F$ , then Lemma 2.4(c) implies there is an index $j$ and
an element $\overline{w}\in\overline{W}$ satisfying $\gamma=\overline{w}\gamma_{j}$ If we define $\overline{w}_{\gamma}=\overline{w}\overline{w}_{j}\overline{w}^{-1}$ , then $\overline{w}_{\gamma}\neq 1$ ,
$\overline{w}_{r}^{2}=1$ , and $\overline{w}_{\gamma}$ leaves $H_{\gamma}$ pointwise fixed, so $\overline{w}_{\gamma}=r_{\gamma}$ , and $r_{\gamma}\in\overline{W}$. If $\gamma\in\tau$ is of
the form $m\gamma^{\prime}$ for some $\gamma^{\prime}\in\check{\mathfrak{r}},$ $m\in Z$, (Lemma $2.4(d)$) then $r_{\gamma}=r_{\gamma\prime}$ , so that the
subgroup $\overline{W}^{\prime}$ of $\overline{W}$ generated by $\{r_{\gamma_{i}}, 1\leqq i\leqq\overline{l}\}$ contains $r_{\gamma}$ for all $\gamma\in\overline{x}$ . Now
Lemma 2.5(b) implies that

$Y_{Q}^{*}=\bigcup_{:r.f.s}\frac{(}{\Delta}$

.
$C_{\overline{\Delta}}$ ) $U(UH_{\gamma})$ , hence given any two Weyl

chambers $C_{\overline{\Delta}}$ and $C_{\overline{\Delta}},$ , there is an element
$\overline{w}^{\prime}\in/such\gamma_{\frac{\in\overline{\tau}}{W}}$

that $\overline{w}^{\prime}(C_{\overline{\Delta}})=C_{\overline{w}’(\overline{\Delta})}=C_{\overline{\Delta}’}$ .
By Lemma 2.5(a), $\overline{w}^{\prime}(\overline{\Delta})=\overline{\Delta}^{\prime}$ , so $\overline{W}^{\prime}$ is transitive on the set { $\overline{\Delta}$ : r.f.s.}. But
the action of $\overline{W}$ is simple on this set (Proposition 1.3), so $\overline{W}^{\prime}=\overline{W}$. Thus
$(i):2$ (iii), and in the course of the argument, $we’ ve$ shown (iii) $\Rightarrow(ii)$ . Since
$(ii)\Rightarrow(i)$ (Theorem 2.3), and (iv) clearly implies (ii), we only need to show
(ii) 3 (iv). From the construction of $\overline{w}_{\gamma}=r_{\gamma}$ above, and from Lemma 2.4(a), it

follows that $\overline{w}_{\gamma}\eta=\eta-\frac{2\langle\eta}{\langle\gamma,\gamma}\frac{\gamma\rangle}{\rangle}\gamma$ for all $\eta\in Y_{Q},$ $\gamma\in\tau$ . Since $\overline{W}$ leaves $\check{\mathfrak{r}}$ invari-

ant, condition $R(2)$ holds for $\check{\mathfrak{r}}$ . For each $\gamma\in\check{\mathfrak{r}}$ , define $\mathfrak{r}_{\gamma}=\{\alpha\in \mathfrak{r}|\pi(\alpha)=c\gamma, c\in Q\}$ .
Condition (ii) implies that $\gamma=\overline{w}\gamma_{j}$ for some $\overline{w}\in\overline{W}$ and some $j$ (Theorem 2.3,
Lemma $2.4(c))$ , so that $\gamma\in\overline{w}(\overline{\Delta})$ , which is a restricted fundamental system of $\mathfrak{r}$

(Proposition 1.3). Thus by the argument following Proposition 2.1, we see
that $\mathfrak{r}_{\gamma}$ is the root system of the connected reductive group $Z(S_{\gamma})$ , and by
Lemma 2.4(d), $\mathfrak{r}_{\gamma}=\{\alpha\in \mathfrak{r}|\pi(\alpha)=m\gamma, m\in Z\}$ . Condition (ii) also implies that
there is an element $s\in N(T)\cap N(S)\cap Z(S_{\gamma}),$ $s\not\in Z(S)$ such that $\overline{w}_{s}=r_{\gamma}$ (Pro-

position 1.8). Since $w_{s}$ is in the Weyl group of $Z(S_{\gamma})$ , we have $w_{s}\chi-\chi\in(\mathfrak{r}_{\gamma})_{Z}$

for all $\chi\in X$, hence $\overline{w}_{s}\eta-\eta\in(\tau_{\gamma})_{Z}$ for all $\eta\in Y$ . In particular, $\overline{w}_{s}\gamma^{\prime}-\gamma^{\prime}$
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$=\frac{2\langle}{\langle}\frac{\gamma}{\gamma’}\frac{\gamma^{\prime}\rangle}{\gamma\rangle}\gamma\in(\tau_{\gamma})_{Z}$ for all $\gamma^{\prime}\in\overline{\mathfrak{r}}$ , and since $(e_{\gamma})_{Z}=(\gamma)_{Z}$ , it follows $that_{\gamma^{-}\gamma^{\prime}}^{\gamma,\gamma_{\overline{\rangle}}\rangle_{-}}\frac{2\langle}{\langle}$

$\in Z$. Thus $R(3)$ holds for $\check{\mathfrak{r}}$ ; since $R(1)$ and $R(4)$ also hold and $\overline{\Delta}\subset f$ generates
$Y_{Q}$ over $Q,\check{\mathfrak{r}}$ is a root system in $Y_{Q}$ . Proposition $1.2(b^{\prime})$ shows a is a funda-
mental system of $\check{\mathfrak{r}}$ , and (iii) shows $\overline{W}$ is the Weyl group of $f$ .

DEFINITION. A subtorus $S$ of $T$ will be said to be “ of root system type
if $S$ is admissible and one of the equivalent conditions $(i)-(iv)$ of Theorem 2.6
is satisfied.

COROLLARY 2.7. Let $S$ be of root system type.
(a) $\overline{W}$ acts simply transitively on the set { $\overline{\Delta}$ : r.f.s.}, and $W_{0}^{\prime}$ acts simply

transitively on the set { $\Delta:X_{0}$-fundamental system}.

(b) $N(S)=Z(S)$ if and only if $S\subset centerG$ .
(c) Let $\Delta$ be any $X_{0}$-fundamental system of $\mathfrak{r}$ , and $r_{+}$ the positive roots of

$\mathfrak{r}$ with respect to $\Delta$ . If $U_{\overline{\Delta}}$ is the group generated by $\{P_{\alpha}, \alpha\in \mathfrak{r}_{+}-\mathfrak{r}_{0}\}$ ,

then $G$ is generated by $U_{\overline{\Delta}}$ and $N(S)\cap N(T)$ .
PROOF. (a) The first part of this statement was proved in showing

$(i)\Rightarrow$ (iii) in Theorem 2.6; the second part then follows easily using Proposition
1.2(c).

(b) If $S(\ddagger$ center $G$ , then $\tau\neq\phi$ (if $\overline{\mathfrak{r}}=\phi$ , then $\mathfrak{r}_{0}=\mathfrak{r}$ implies $Z(S)=G$), so
that there are at least two restricted fundamental systems, $\overline{\Delta}$ , -a of $\mathfrak{r}$ . By
(a), there is an element $\overline{w}_{s}\in\overline{W},$ $s\in N(S)$ such that $\overline{w}_{s}(\overline{\Delta})=-\overline{\Delta}$ ; since $\overline{w}_{s}\neq 1$ ,
we see $s\not\in Z(S)$ (Proposition 1.5).

(c) $G$ is generated by $T$ and $\{P_{\alpha}, \alpha\in \mathfrak{r}\}$ ([2], expos\’e 13), and $N(S)\supset T$,
$N(S)\supset P_{a}$ for all $\alpha\in \mathfrak{r}_{0}$ . By definition, $U_{\overline{\Delta}}\supset P_{\alpha}$ for all $\alpha\in \mathfrak{r}_{+}-\mathfrak{r}_{0}$ . By (a),

there is an element $s\in N(T)\cap N(S)$ such that $ w_{s}(\Delta)=-\Delta$ ; then $w_{s}P_{\alpha}=s^{-1}P_{\alpha}s$

$=P_{w_{S}\alpha}$ , so $sU_{\overline{\Delta}}s^{-1}\supset P_{-\alpha}$ for all $\alpha\in \mathfrak{r}_{+}-\mathfrak{r}_{0}$ .
COROLLARY 2.8. Let the assumptions be as in Theorem 2.6. The set $\tau$ is a

root system in a wider sense in $Y_{Q}$ with fundamental system A and Weyl group
$\overline{W}$ if and only if if is also, and $\frac{2\langle\gamma,\gamma^{\prime}\rangle}{\langle\gamma,\gamma\rangle}\in Z$ for all $\gamma\in\tau-\check{\mathfrak{r}},$ $\gamma^{\prime}\in\tau$ .

Corollary 2.8 follows immediately from our proof of $(ii)=\gg(iv)$ in Theorem 2.6.
REMARK. There are numerous examples to illustrate that $\check{\mathfrak{r}}$ can be a root

system and $\tau$ not a root system in a wider sense. A simple case is: let $G$ be
a simple group of type $A_{3}$ , with fundamental system $\Delta=\{\alpha_{1}, \alpha_{2}, \alpha_{s}\}$ , and let
$S$ be the admissible torus whose annihilator is generated by $\alpha_{2}-\alpha_{1},$ $\alpha_{3}-\alpha_{2}$ .
Since $\Delta_{0}=\phi$ , condition (i) of Theorem 2.6 is trivially satisfied, so $t$ is a root
system. However, $\tau=\{\pm\gamma, \pm 2\gamma, \pm 3\gamma\}$ where $\gamma=\pi(\alpha_{i}),$ $i=1,2,3$ , so that $\overline{\mathfrak{r}}$

cannot satisfy condition $R(3)$ of root system.
The condition on the opposition automorphisms in (i) of Theorem 2.6 also

guarantees that $W_{0}^{\prime}$ has a nice structure, and that $\overline{W}$ is isomorphic to the
subgroup of $W$ generated by the $w_{i},$

$1\leqq i\leqq\overline{l}$ .
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THEOREM 2.9. Let the assumptions be as in Theorem 2.6, and let $V$ be the
subgroup of $W$ generated by the set $\{w_{i}, 1\leqq i\leqq\overline{l}\}$ . Then $S$ is of root system
type if and only if $W_{0}^{\prime}=V\cdot W_{0}$ , a semidirect product. (Hence if $S$ is of root
system fype, then $V$ is isomorphic to $\overline{W}$ under the restriction to $V$ of the can-
onical homomorphism $W_{0}^{\prime}\rightarrow\overline{W}$, defined by (4).)

PROOF. If $W_{0}^{\prime}=V\cdot W_{0}$ , then $V\subset W_{0}^{\prime}$ , so $w_{i}\in W_{0}^{\prime}$ for all $i,$ $1\leqq i\leqq\overline{l}$ . Thus
by Theorem 2.3, $S$ is of root system type. Conversely, if $S$ is of root system
type, then $w_{i}\in W_{0}^{\prime}$ for all $i,$ $1\leqq i\leqq\overline{l}$ (Theorem 2.3), and $\overline{w}_{i}=r_{\gamma_{i}}$ . Since $\overline{W}$ is
generated by $\{\overline{w}_{i}, 1\leqq i\leqq\overline{l}\}$ (Theorem 2.6, (iii)), it follows that $\overline{V}=\overline{W}$, where

$\overline{V}$ is the canonical image of $V$ in $\overline{W}$. This implies, by Corollary 1.4, that
$W_{0}^{\prime}=V\cdot W_{0}$ . Thus we only need to show $V\cap W_{0}=\{1\}$ . If we put $w_{0}=1$ , then
any element $w\in V\cap W_{0}$ can be written $w=w_{i(1)}\cdots w_{i(p)}$ , where $\{i(1), \cdot.. , i(p)\}$

$\subset\{0,1, \cdots , \overline{l}\}$ . We use induction on $p$ ; clearly if $p=1$ , we must have $w=w_{0}=1$ .
Assume for all $k<p$ that if $w=w_{i(1)}\cdots w_{i(k)}\in W_{0}$ , then $w=1$ . Suppose $w=w_{i(1)}$

$w_{i(p)}\in W_{0}$ ; clearly we may assume $w_{i(p)}\neq 1$ . Now $\overline{w}\gamma_{i(p)}=\overline{w}_{i(1)}\cdots\overline{w}_{i(p)}\gamma_{i(p)}$

$=\gamma_{t(p)}>0$ , and since $\overline{w}_{i(p)}\gamma_{i(p)}=-\gamma_{i(p)}$ , there exists an index $k$ such that $\overline{w}_{i(m)}$

$\overline{w}_{i(p)}\gamma_{i(p)}<0$ for all $m$ satisfying $k<m\leqq p$ , and $\overline{w}_{i(k)}\cdots\overline{w}_{i(p)}\gamma_{i(p)}>0$ (note
$w_{i(k)}\neq 1)$ . If we put $\overline{w}^{\prime}=\overline{w}_{i(k+1)}\cdots\overline{w}_{i(p-1)}$ , then $\overline{w}^{\prime}\gamma_{i(p)}\in\check{\mathfrak{r}}$, and $\overline{w}^{\prime}\gamma_{i(p)}>0$ , and
$\overline{w}_{i(k)}\overline{w}^{\prime}\gamma_{i(p)}<0$ hence $\overline{w}^{\prime}\gamma_{i(p)}=\gamma_{i(k)}$ (Lemma $2.4(b)$). This implies $\overline{w}^{\prime}\overline{w}_{i(p)}\overline{w}^{\prime}-1$

$=\overline{w}_{i(k)}$ , so $\overline{w}^{\prime}\overline{w}_{i(p)}=\overline{w}_{i(k)}\overline{w}^{\prime}$ . Multiplying this equation by $\overline{w}_{i(1)}\cdots\overline{w}_{i(k)}$ , we have
$1=\overline{w}=\overline{w}_{i(1)}\cdots\overline{w}_{i(k-1)}\overline{w}_{i(k+1)}\cdots\overline{w}_{i(p-1)}$ , so by Proposition 1.3 and the induction
hypothesis, $w_{i(1)}\cdots w_{i(k-1)}w_{i(k+1)}\cdots w_{i(p-1)}=1$ . Thus we can write $ w=(w_{i(1)}\cdots$

$w_{i(k-1)})w_{i(k)}(w_{i(1)}\cdots w_{i(k-1)})^{-1}w_{i(p)}$ . Since $w_{i}(\Delta_{0})=-\Delta_{0}$ for all $i\neq 0$ (Theorem 2.6
$(i)),$ $w_{0}(\Delta_{0})=\Delta_{0}$ , and $i(k),$ $i(p)\neq 0$, it follows that $w(\Delta_{0})=\Delta_{0}$ . But since $w\in W_{0}$ ,
this implies $w=1$ . Corollary 1.4 implies the second assertion in the theorem.

Given any abstract group $H$ which is generated by a set of involutions
$R=\{r_{i}\},$ $i\in I$ (I an index set), the length of any element $h\in H$ is denoted
$1(h)$ , and defined as the least positive integer $m$ such that $h$ can be written
as a product of $m$ of the $r_{i}$ . A product $r_{i(1)}\cdots r_{i(k)}$ is called reduced if $l(r_{i(1)}$

... $r_{i(k)}$) $=k$ . The set $R$ is called a “ good system of involutive generators 2)

of $H$ if the following condition is satisfied for any choice of indices $i(O),$ $i(1)$ ,
... , $i(m)$ , and any positive integer $m:(c)$ If $r_{i(1)}\cdots r_{i(m)}$ is reduced, and $r_{i(0)}r_{i(1)}$

... $r_{t(m)}$ is not reduced, then there exists an integer $j(1\leqq j\leqq m)$ such that
$r_{i(0)}r_{i(1)}\cdots r_{i(j-1)}=r_{i(1)}\cdots r_{i(j)}$ .

A classic example of such a group and set of generators is the Weyl
group of a semi-simple algebraic group, and the set of fundamental reflections.
It is also known that the Weyl group of an abstract root system $\Phi$ has a good
system of involutive generators, namely, the reflections corresponding to a

2) The definition is due to H. Matsumoto, C. R. Acad. Sci. Paris, 258, p. 3419. Such
systems have also been studied by J. Tits, N. Iwahori, and H. Hijikata.
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fundamental system of $\Phi$ . (See, $e$ . $g$ . N. Iwahori,. “ Discrete Reflection Groups
in Euclidean Spaces, Berkeley, 1965.) Thus, when $S$ is of root system type,

$\overline{W}$ has a good system of involutive generators, $\{r_{\gamma i}, \gamma_{i}\in\overline{\Delta}\}$ . Theorem 2.9 then
implies:

COROLLARY 2.10. Let the assumptions be as in Theorem 2.6. If $S$ is of
root system type, then the set $\{w_{i}, 1\leqq i\leqq\overline{l}\}$ is a good system of involutive gen-
erators for $V$ .

\S 3. The admissible torus $T^{\Gamma}$ .
In this section, we examine a class of admissible tori which are a natural

generalization of maximal k-trivial tori. We continue to assume $G$ is a con-
nected, semi-simple algebraic group.

Denote by Aut $(G, T)$ the group of rational automorphisms of $G$ which
leave $T$ invariant, and flx $\Gamma$ , a non-trivial subgroup of Aut $(G, T)$ . We denote
by $T^{\Gamma}$ the identity component of the closed subgroup of $T$ left pointwise fixed
by $\Gamma$ . We are going to show that $T^{\Gamma}$ is an admissible subtorus of $T$ .

Each element of $\Gamma$ can be considered as an element of Aut (X, r) (the

Cartan group of $T$ ) in a natural manner, namely, for each $\chi\in X,$ $\sigma\in\Gamma,$
$\chi^{\sigma}$ is

defined by the equation:

(13) $\chi^{\sigma}(t)=\chi(t^{\sigma^{-1}})$ for all $t\in T$ .
We will also use the symbol $\Gamma$ to denote the subgroup of Aut (X, r) formed
by the automorphisms $\chi\rightarrow\chi^{\sigma}$ , for $\sigma\in\Gamma$ . Since Aut (X, r) is finite, the subgroup
$\Gamma$ of Aut(X, r) is also: let $d=[\Gamma:1]$ . We define submodules $X_{0}$ and $X^{\Gamma}$ of
$X$ as follows:

(14) $X_{0}=\{\chi\in X|\sum_{\sigma\subset\Gamma}\chi^{\sigma}=0\}$

$X^{\Gamma}=$ { $\chi\in X|\chi^{\sigma}=\chi$ for all $\sigma\in\Gamma$ }.

Since $X_{oQ}$ and $X_{Q}^{\Gamma}$ are the kernel and image, respectively, of the homomor-
phism of $X_{Q}\rightarrow X_{Q}$ given by $\chi\rightarrow\sum_{\sigma\subset\Gamma}\chi^{\sigma}$

, it follows that $X_{Q}=X_{oQ}+X_{Q}^{\Gamma}$, a direct

sum. If $\chi\in X$ and $\sigma\in\Gamma$ , then $\chi-\chi^{\sigma}\in X_{0}$ , and $\chi$ is written with respect to
this direct sum as follows:

(15) $\chi=d^{-1}\sum_{\sigma-\Gamma}(\chi-\chi^{\sigma})+d^{-1}\sum_{\sigma-\Gamma}\chi^{\sigma}$ .

In particular, (15) shows that elements of the form $\chi-\chi^{\sigma}$ where $\chi\in X$ and
$\sigma\in\Gamma$ generate $X_{0}$ over $Q$ . In fact, since any fundamental system $\Delta$ of $\mathfrak{r}$

generates $X$ over $Q$ , the set $\{\alpha-\alpha^{\sigma} : \alpha\in\Delta, \sigma\in\Gamma\}$ generates $X_{0}$ over $Q$ .
It is clear from (14) that $X_{0}$ and $X^{\Gamma}$ are both $\Gamma$ -invariant co-torsion free
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submodules of $X$, hence the annihilators of $X_{0}$ and $X^{\Gamma}$ in $T$ are $\Gamma$ -invariant
subtori of $T$ . We show that the annihilator of $X_{0}$ in $T$ is just $T^{\Gamma}$ . If $\chi\in X_{0}$ ,

then $\sum_{\sigma\Leftarrow\Gamma}\chi^{\sigma}=0$
, so for each $t\in T^{\Gamma}$ , we have $1=\sigma\subset\Gamma II\chi^{\sigma}(t)=\prod_{\sigma=\Gamma}\chi(t)=(\chi(t))^{a}$ .

Since $\chi(T^{\Gamma})$ is a connected subgroup of $G_{m}$ , it follows that $\chi(t)=1$ for all
$t\in T^{\Gamma}$ . Conversely, if $t\in T$ annihilates $X_{0}$ , then $(\chi-\chi^{\sigma-1})(t)=1$ for all $\chi\in X$,
$\sigma\in\Gamma$ , so $\chi(t)=\chi(t^{\sigma})$ for $\chi\in X,$ $\sigma\in\Gamma$ , which implies $t=t^{\sigma}$ for all $\sigma\in\Gamma$ , so
$t\in T^{\Gamma}$ .

Since $\chi^{\sigma}\equiv\chi(mod X_{0})$ for all $\chi\in X,$ $\sigma\in\Gamma$ , it follows that a linear order
$>$ on $X$ is an $X_{0}$-linear order if and only if the following condition holds:

(16) If $\chi\not\in X_{0}$ , then $\chi>0$ implies $\chi^{\sigma}>0$ for all $\sigma\in\Gamma$ .

A linear order on $X$ satisfying (16) will be called a $\Gamma$ -linear order on $X$, and
a fundamental system of $\mathfrak{r}$ with respect to such an order will be called a $\Gamma-$

fundamental system of $\mathfrak{r}$ .
Since the action of $\Gamma$ on $X$ leaves $\mathfrak{r}$ and $X_{0}$ invariant, it follows that if A

is a $\Gamma$ -fundamental system of $\mathfrak{r}$ , and $\sigma\in\Gamma$ , then $\Delta^{\sigma}$ is another $\Gamma$ -fundamental
system of $\mathfrak{r}$ (of course, $\overline{\Delta^{\sigma}}=\overline{\Delta}$). The following lemma makes explicit how an
element $\alpha\in\Delta-\Delta_{0}$ is related to $\alpha^{\sigma}\in\Delta^{\sigma}-\Delta_{0}^{\sigma}$ .

LEMMA 3.1. Let $\Delta=\{\alpha_{1}$ , $\cdot$ .. , $\alpha_{\iota}\}$ be a $\Gamma$ -fundamental system of $\mathfrak{r}$ . Each
$\sigma\in\Gamma$ defines a permutation of $\Delta-\Delta_{0}$ (we write $\alpha_{i}\rightarrow\alpha_{i(\mathcal{O})}$) which satisfies: if
$\alpha_{i}\in\Delta-\Delta_{0}$ , then

$\alpha_{i}^{\sigma}=\alpha_{i(\sigma)}+\sum_{\alpha_{j}\in\Delta 0}m_{j}\alpha_{j}$
, where $m_{j}\in Z_{+}$ , and $\alpha_{i}\equiv\alpha_{i(\sigma)}(mod X_{0})$ .

PROOF. For any $\alpha_{i}\in\Delta$ and $\sigma\in\Gamma$ , (16) implies that we may write
$\alpha_{i}^{0}=\sum_{j=1}^{\iota}c_{ij}(\sigma)\alpha_{j}$ , where $c_{ij}(\sigma)\in Z_{+}$ if $\alpha_{i}G\Delta_{0}$ , and $c_{ij}(\sigma)=0$ if $\alpha_{i}\in\Delta_{0}$ and $\alpha_{j}\not\in\Delta_{\mathfrak{a}}$

(Proposition 1.2). We may assume (by reordering if necessary) that $\Delta-\Delta_{0}=$

$\{\alpha_{1}$ , $\cdot$ .. , $\alpha_{m}\},$ $\Delta_{0}=\{\alpha_{m+1}$ , $\cdot$ .. , $\alpha_{\iota}\}$ . Then the integral matrices $(c_{ij}(\sigma)),$ $(c_{ij}(\sigma^{-1}))$

are both of the form $(\frac{\geqq 0|\geqq 0}{01*})$ , and their product is the identity matrix.

Thus the upper left submatrix is an $m\times m$ permutation matrix. For each $i$,
$1\leqq i\leqq m$ , denote $i(\sigma)=k$ if the $i,$ $k^{th}$ entry is 1. Then if $\alpha\in\Delta-\Delta_{0}$ , we have
$\alpha_{i}^{\sigma}=\alpha_{i(\sigma)}+\sum_{\alpha_{j\overline{\sim}}\Delta 0}c_{ij}(\sigma)\alpha_{j}$

, and since $\alpha_{t}^{\sigma}\equiv\alpha_{i}(mod X_{0})$ , it follows that $\alpha_{i}\equiv\alpha_{i(\sigma\rangle}$

$(mod X_{0})$ .
Using this lemma, it is now easy to show that $T^{\Gamma}$ is an admissible sub-

torus of $T^{3)}$ .
PROPOSITION 3.2. $T^{\Gamma}$ is an admissible subtorus of $T$ .
PROOF. Let $\Delta$ be a $\Gamma$ -fundamental system of $\mathfrak{r}$ ; then the set $\{\alpha_{i}^{\sigma}-\alpha_{i}i$

$\alpha_{i}\in\Delta,$ $\sigma\in\Gamma$ } generates $X_{0}$ over $Q$ . If $\alpha_{i}\in\Delta_{0}$ , then $\alpha_{i}^{\sigma}\in \mathfrak{r}_{0}$ , so $\alpha_{i}^{\sigma}\in(\Delta_{0})_{Z}$

(Proposition 1.2). If $\alpha_{i}\not\in\Delta_{0}$ , then
$\alpha_{i}^{\sigma}-\alpha_{i}=(\alpha_{i(\sigma)}-\alpha_{i})+\sum_{\alpha_{j}=\Delta_{0}}m_{j}\alpha_{j},$

$m_{j}\in Z$, and

3) (An alternate proof which can be used without change is given in [4], Pro-
position 5(b). The proof using Lemma 3.1 is also due to Satake.)
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$\alpha_{i(\sigma)}\equiv\alpha_{i}(mod X_{0})$ (Lemma 3.1). Thus $X_{0}$ is generated over $Q$ by $\Delta_{0}$ and ele-
ments of the form $\alpha_{k}-\alpha_{i}$ , where $\alpha_{i}\equiv\alpha_{k}(mod X_{0})$ , so $T^{\Gamma}$ is admissible (Pro-

position 2.1).
REMARK. Although every subtorus of $T$ of the form $T^{\Gamma}$ for some

$\Gamma\subset$ Aut $(G, T)$ is admissible, the strong condition (i) of Theorem 2.6 shows
that many (in fact, most) of these are not of root system type. For instance,
if $\Gamma$ is a subgroup of $W$ generated by a subset $\{w_{a_{i(1)}}, \cdots , w_{\alpha_{i(k)}}\}$ of reflections,

where $\alpha_{i(1)},$
$\cdots$ , $\alpha_{i(k)}$ belong to a fundamental system $\Delta$ of $\mathfrak{r}$ , then it is easily

shown that $X_{0}$ is generated over $Q$ by $\alpha_{i(1)},$
$\cdots$ , $\alpha_{i(k)}$ , and hence $\Delta$ is an $X_{0^{-}}$

fundamental system, and $\Delta_{0}=\{\alpha_{i(1)}, \alpha_{i(k)}\}$ . In this case, for each $\gamma_{j}\in\overline{\Delta}$ ,
$\Delta\cap\pi^{-1}(\gamma_{j})=\Delta^{j}$ consists of just one root, and so unless the set $\Delta_{0}$ is ” well
chosen “, the opposition automorphism of $\Delta_{j}=\{\alpha\}U\Delta_{0}$ will not leave $\Delta_{0}$ invariant.

For the remainder of this section, we fix a $\Gamma$ -fundamental system $\Delta$ of $\mathfrak{r}$ .
LEMMA 3.3. For each $\sigma\in\Gamma$ , there exists a unique element $w_{\sigma}\in W_{0}$ sa tisfy-

ing $w_{\sigma}\Delta=\Delta^{\sigma}$ .
PROOF. Since $\Delta^{\sigma}$ is a $\Gamma$ -fundamental system of $\mathfrak{r},$

$\Delta_{0}^{\sigma}=\Delta^{\sigma}\cap \mathfrak{r}_{0}$ is a funda-
mental system of $\iota_{0}$ (Proposition 1.2), hence there is a unique element $w_{\sigma}\in W_{0}$

satisfying $w_{\sigma}\Delta_{0}=\Delta_{0}^{\sigma}$ . Since $\overline{w_{\sigma}\Delta}=\overline{\Delta}=\overline{\Delta^{\sigma}}$, it follows that $w_{\sigma}\Delta=\Delta^{\sigma}$ (Proposition
1.2).

This lemma enables us to define another action of $\Gamma$ on $X$ as follows:

(17) $\chi^{[\sigma]}=w_{\sigma}^{-1}\chi^{\sigma}$ for each $\chi\in X,$ $\sigma\in\Gamma$ .
Since $\sigma\in\Gamma$ and $w_{\sigma}\in W_{0}$ are automorphisms of $X$ which leave $\mathfrak{r}$ and $X_{0}$ in-
variant, $[\sigma]$ is also such an automorphism. But the definition of $w_{\sigma}$ in Lemma
3.3 implies that $[\sigma]$ also leaves $\Delta$ invariant, thus $[\sigma]\in$ Aut (X, $\mathfrak{r},$

$\Delta,$ $\Delta_{0}$). We
will denote by $[\Gamma]$ the subgroup of Aut (X, $\mathfrak{r},$

$\Delta,$ $\Delta_{0}$) defined by the set $\{[\sigma]$ ,
$\sigma\in\Gamma\}$ .

It is clear from (17) that $\chi^{[d]}\equiv\chi(mod X_{0})$ for all $\chi\in X,$ $\sigma\in\Gamma$ , and hence
the restriction of each $[\sigma]\in[\Gamma]$ to $\Delta-\Delta_{0}$ is a permutation satisfying $\alpha^{[\sigma]}\equiv\alpha$

$(mod X_{0})$ for all $a\in\Delta-\Delta_{0}$ . In fact, this permutation coincides with the one
defined in Lemma 3.1.

LEMMA 3.4. For each $\alpha_{i}\in\Delta-\Delta_{0}$ , and $\sigma\in\Gamma$ , one has $a_{i}^{[\sigma]}=\alpha_{i(\sigma)}$ .
PROOF. Since $w_{\sigma}^{-1}\in W_{0}$ , we have $w_{\sigma}^{-1}\alpha_{i}^{\sigma}=\alpha_{i}^{\sigma}+\chi_{0}$ , where $\chi_{0}\in(\Delta_{0})_{Z}$ . Thus

$\alpha_{i}^{[\sigma]}=w_{\sigma}^{-1}\alpha_{i}^{\sigma}=\alpha_{i}^{\sigma}+\chi_{0}=\alpha_{i(\sigma)}+\chi_{0}^{\prime}$ , where $\chi_{0}^{\prime}\in(\Delta_{0})_{Z}$ (Lemma 3.1). Since $\alpha_{i}^{[\sigma]}\in\Delta-\Delta_{0}$ ,
it follows that $\alpha_{i}^{[\sigma]}=\alpha_{i(\sigma)}$ .

We can reformulate the condition $\alpha^{[\sigma]}\equiv\alpha(mod X_{0})$ for $a\in\Delta-\Delta_{0}$ in the
following manner: if $\alpha\in\Delta-\Delta_{0}$ , and $\pi(a)=\gamma$ , then $\alpha^{[\sigma]}\in\Delta\cap\pi^{-1}(\gamma)$ for all
$\sigma\in\Gamma$ . The following proposition states that, in fact, every element of $\Delta\cap\pi^{-1}(\gamma)$

is of the form $\alpha^{[\sigma]}$ for some $\sigma\in\Gamma$ . For each $\chi\in X$, we call the set { $\chi^{[\sigma]}$ : $[\sigma]$

$\in[\Gamma]\}$ the $[\Gamma]$ -orbit of $\chi$ .
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PROPOSITION 3.5. For $\gamma\in\overline{\Delta},$ $\Delta\cap\pi^{-1}(\gamma)$ is a $[\Gamma]$ -orbit.
PROOF. Let $\alpha_{i},$

$\alpha_{j}\in\Delta\cap\pi^{-1}(\gamma)$ . By Lemma 3.4, it suffices to show that
there exists a $\sigma\in\Gamma$ such that $\alpha_{i(\sigma)}=\alpha_{j}$ . Since $\alpha_{i}-\alpha_{j}\in X_{0}$ , we have by (14),

$\sum_{\sigma\subset\Gamma}(\alpha_{i}-\alpha_{j})^{\sigma}=0$ , which implies

$\sum_{\sigma-\Gamma}\alpha_{i(\mathcal{O})}+\chi_{0}=\sum_{\sigma--\Gamma}\alpha_{j(\mathcal{O})}+\chi_{\acute{0}}$
,

where $\chi_{0},$
$\chi_{0}^{\prime}\in(\Delta_{0})_{z_{+}}$ (Lemma 3.1). Since these are equal linear combinations

of fundamental roots (with non-negative coefficients), every term on the right
also appears on the left. But $\alpha_{j}$ is a term on the right (note: $j(id)=j$), and
$\alpha_{j}\not\in\Delta_{0}$ , hence $\alpha_{j}=\alpha_{i(\sigma)}$ for some $\sigma\in\Gamma$ .

Using our notation in \S 2, Proposition 3.5 shows that when $S=T^{\Gamma}$ , the
disjoint union $\Delta-\Delta_{0}=\Delta^{1}\cup\cdots\cup\Delta^{\overline{\iota}}$ (where $\Delta^{i}=\Delta\cap\pi^{-1}(\gamma_{i})$) is just the decom-
position of $\Delta-\Delta_{0}$ into orbits under the action of $[\Gamma]$ .

COROLLARY 3.6. $X_{0}$ (defined in (14)) is generated over $Q$ by $\Delta_{0}$ and the set
$\{\alpha^{[\sigma]}-\alpha:\alpha\in\Delta-\Delta_{0}, \sigma\in\Gamma\}$ .

PROOF. This is an immediate consequence of Proposition 2.1, Proposition
3.2, and Proposition 3.5.

REMARK. The group Aut (X, $\mathfrak{r},$

$\Delta$) is well known for $G$ a simple group, so
the fact that $\Delta^{i}$ is a $[\Gamma]$ -orbit, where $[\Gamma]\subset$ Aut (X, $\mathfrak{r},$

$\Delta$) means that we can
determine for this case the maximum number of elements in $\Delta-\Delta_{0}$ which
have the same restriction $\gamma_{i}\in\overline{\Delta}$ . Except for $D_{4},$ $\Delta^{i}$ can have at most two
elements, and for $G=D_{4},$ $\Delta^{i}$ can have at most three elements. This observa-
tion shows that there are admissible tori (even of root system type) which are
not of the form $T^{\Gamma}$ . The subtorus of $G$ , where $G$ is of type $A_{s}$ , noted in the
remark after Corollary 2.8 provides a simple example. (The example is easily
generalized to $G$ of type $A_{\iota},$ $\Delta=\{\alpha_{1}$ , $\cdot$ .. , $a_{\iota}\}$ , and $S$ the subtorus of $T$ whose
annihilator is generated by $(\alpha_{i}-\alpha_{j}, i\neq j).)$

\S 4. $\Gamma$ as an automorphism group of $W$ and subgroups of fixed points.

We continue to assume that $\Gamma$ is a fixed subgroup of Aut $(G, T)$ , and ex-
amine two distinct actions of $\Gamma$ on the Weyl group $W$ which correspond in
a natural manner to the actions of $\Gamma$ on (X, r) defined by (13) and (17). Our
notations and assumptions in \S 3 continue.

For each $w\in W$ and $\sigma\in\Gamma$ , the element $w^{\sigma}\in W$ is defined by the following
equation:

(18) $w^{\sigma}\chi^{\sigma}=(w\chi)^{\sigma}$ for all $\chi\in X$ .
Using (18), each element $\sigma\in\Gamma$ determines an element $(w\rightarrow w^{\sigma})$ in Aut $(W)$ ; we
will also denote by $\Gamma$ the subgroup of Aut $(W)$ formed by these elements.
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It is clear that $\Gamma$ leaves $W_{0}^{\prime}$ invariant. Let $s\in N(T)$ , and $\sigma\in\Gamma$ ; then for
any $\chi\in X$ and $t\in T$, we have $(w_{s}\chi)^{\sigma}(t)=w_{s}\chi(t^{\sigma^{-1}})=\chi(s^{-1}t^{\sigma^{-1}}s)$ , and also $ w_{s^{\sigma}}\chi^{\sigma}(t\rangle$

$=\chi^{\sigma}(s^{-\sigma}ts^{\sigma})=\chi(s^{-1}t^{\sigma^{-1}}s)$ . This proves

\langle 19) $w_{s}^{\sigma}=w_{s^{\sigma}}$ for all $s\in N(T),$ $\sigma\in\Gamma$ .
Since Aut (X, r) is finite there is a non-degenerate symmetric bilinear form $\langle,\rangle$

on $X_{Q}$ which is invariant under Aut (X, r). Thus for any $\alpha\in \mathfrak{r},$
$\sigma\in\Gamma$ , and

$\chi\in X$, we have $(w_{\alpha}\chi)^{\sigma}=(\chi-\frac{\langle\chi,a\rangle}{\langle\alpha,\alpha\rangle}\alpha)^{\sigma}=\chi^{\sigma}-\frac{\langle\chi^{\sigma},\alpha^{\sigma}\rangle}{\langle\alpha^{\sigma},\alpha^{\sigma}\rangle}\alpha^{\sigma}=w_{a^{\sigma}},\chi^{\sigma}$ . This im-
plies:

(20) $w_{\alpha}^{\sigma}=w_{\alpha^{\sigma}}$ for all $\alpha\in \mathfrak{r},$
$\sigma\in\Gamma$ .

Since $\Gamma$ leaves $\mathfrak{r}_{0}$ invariant, (20) implies that $\Gamma$ leaves $W_{0}$ invariant.
In the case $S=T^{\Gamma}$ which we are now considering, we will denote $W_{0}^{\prime}$ by

$W_{\Gamma}$ ; thus by definition, $W_{\Gamma}=\{w\in W|w(X_{0})=X_{0}\}$ , where $X_{0}$ is defined in (14).
Then $\Gamma$ leaves $W_{\Gamma}$ invariant.

If $\Delta$ is a $\Gamma$ -fundamental system of $\mathfrak{r}$ , then the set $\{w_{\sigma}, \sigma\in\Gamma\}$ defined in
Lemma 3.3 satisfies the relation:

(21) $w_{\sigma}^{\tau}w_{r}=w_{\sigma r}$ , for all $\sigma,$
$\tau\in\Gamma$ .

Using Lemma 3.3, one can also show:

(22) $w^{\sigma}\equiv w(mod W_{0})$ for all $w\in W_{\Gamma},$ $\sigma\in\Gamma$ .
More precisely, if $w\in W_{\Gamma}$ , and $\sigma\in\Gamma$ , then Lemma 3.3 implies that $w^{\sigma}=w_{\sigma}^{\prime}ww_{\sigma}^{-1}$ ,

where $w_{\sigma}\Delta=\Delta^{\sigma}$ , and $w_{\sigma}^{\prime}(w\Delta)=(w\Delta)^{\sigma}$ . Since $W_{0}$ is normal in $W_{\Gamma},$ (22) results.
Now denote by $W^{\Gamma}$ the subgroup of $W$ left pointwise fixed by $\Gamma$ . Equa-

tion (18) implies that $W^{\Gamma}$ is just the centralizer of $\Gamma$ in $W$ (where $\Gamma$ and $W$

are both considered as subgroups of Aut (X, $\mathfrak{r}$)). $W^{\Gamma}$ is a subgroup of $W_{\Gamma}$ ,

since if $w\in W^{\Gamma}$ and $\chi\in X_{0}$ , we have $\sum_{\sigma-\Gamma}(w\chi)^{\sigma}=\sum_{\sigma e\Gamma}w\chi^{\sigma}=w\sum_{\sigma\Gamma}\chi^{\sigma}=0$ . Equa-

tion (18) implies that $W^{\Gamma}$ also leaves $X^{\Gamma}$ invariant.
It would be interesting to know the structure of the group $W^{\Gamma}$ ; so far,

we have not been able to solve this in general. We can, however, observe
several facts. It is clear from (20) that $W^{\Gamma}$ contains the subgroup of $W$

generated by the reflections $w_{\alpha}$ , where $\alpha^{\sigma}=\pm\alpha$ for all $\sigma\in\Gamma$ , and these are
the only reflections in $W^{\Gamma}$ (with respect to roots $\alpha\in \mathfrak{r}$). If $W_{0}=\{1\}$ , then (22)
implies that $W_{\Gamma}=W^{\Gamma}$ ; however, $W_{0}=\{1\}$ is not a necessary condition for
$W_{\Gamma}=W^{\Gamma}$ to occur, as the example at the end of this section illustrates.

Questions of structure can be answered with respect to a different action
of $\Gamma$ on $W$, which corresponds to the action of $[\Gamma]$ on $X$ in (17). We fix a
$\Gamma$ -fundamental system $\Delta$ of $\mathfrak{r}$ for the remainder of this section. For each
$\sigma\in\Gamma$ and $w\in W$, the element $w^{[\sigma]}\in W$ is defined by the following equation:
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(23) $w^{[\sigma]}\chi^{[\sigma]}=(w\chi)^{[\sigma]}$ for all $\chi\in X$ .
The set $\{[\sigma]:\sigma\in\Gamma\}$ forms a subgroup of Aut $(W)$ which we denote by $[\Gamma]$ .
It is clear from (23) that $[\Gamma]$ leaves $W_{\Gamma}$ invariant. An alternate way of stating
\langle 23) is that the automorphism $w^{[\sigma]}$ of (X, r) is just a composition of automor-
phisms of (X, r), namely:

\langle 24) $w^{[\sigma]}=[\sigma]\circ w\circ[\sigma]^{-1}$ for all $w\in W,$ $\sigma\in\Gamma$ .
Since $w^{\zeta\sigma_{\overline{\lrcorner}}}\chi^{[\sigma]}=w^{[\sigma]}w_{\sigma}^{-1}\chi^{\sigma}$, and $(w\chi)^{[\sigma]}=w_{\sigma}^{-1}(w\chi)^{\sigma}=w_{\sigma}^{-1}w^{\sigma}\chi^{\sigma}$ for all $\chi\in X$, it follows
that $w^{[\sigma]}w_{\sigma}^{-1}=w_{\sigma}^{-1}w^{\sigma}$ , or

(25) $w^{[\sigma]}=w_{\sigma}^{-1}w^{\sigma}w_{\sigma}$ for all $w\in W,$ $\sigma\in\Gamma$ .
In particular, if we apply (25) to $w_{\alpha},$ $\alpha\in \mathfrak{r}$ , then (20) implies:

\langle 26) $w_{\alpha}^{[\sigma]}=w_{\alpha^{[\sigma]}}$ for all $\alpha\in \mathfrak{r},$
$\sigma\in\Gamma$ .

From (26), we see that not only does $[\Gamma]$ leave $W_{0}$ invariant, but also the sets
of reflections $\{w_{\alpha}, \alpha\in \mathfrak{r}\},$ $\{w_{\alpha}, a\in\Delta\},$ $\{w_{\alpha}, a\in\Delta_{0}\}$ . Since $W_{0}$ is normal in $W_{\Gamma}$ ,
\langle 22) and (25) imply

\langle 27) $w^{[\sigma]}\equiv w(mod W_{0})$ , for all $w\in W_{\Gamma},$ $\sigma\in\Gamma$ .
In addition, using (21) and (25), one can show:

((28) $w_{\sigma}^{[\tau]}=w_{\tau}^{-1}w_{\sigma\tau}$ for all $\sigma,$
$\tau\in\Gamma$ .

Now denote by $W^{[\Gamma]}$ the subgroup of $W$ left pointwise fixed by $[\Gamma]$ . In
general, $W^{\subset\Gamma 1}$ is not a subgroup of $W_{\Gamma}$, but when $T^{\Gamma}$ is of root system type,
$W^{[\Gamma]}$ contains the subgroup $V$ (Theorem 2.9), as we shall prove. We first
generalize some results of R. Steinberg [7].

If $\Delta^{\prime}$ is any subset of $\Delta$ , we call the subgroup of $W$ generated by the
reflections $w_{\alpha},$

$\alpha\in\Delta^{\prime}$ the Weyl group of $\Delta^{\prime}$ .
LEMMA 4.1. If $\Delta^{\prime}$ is a $[\Gamma]$ -invariant subset of $\Delta$ , and $W^{\prime}$ is the Weyl

group of $\Delta^{\prime}$ , then
(a) $W^{\prime}$ is invariant under $[\Gamma]$ and $W^{\prime}$ is a normal subgroup of the group

generated by $W^{\prime}$ and $[\Gamma]$ in Aut (X, r).
(b) If $w^{\gamma}$ is the unique element of $W^{\prime}$ satisfying $w^{\prime}(\Delta^{\prime})=-\Delta^{\prime}$ , then $w^{\prime}\in W^{[\Gamma]}$ .
PROOF. (a) The first statement follows from (26), and then the second

follows from (24).
(b) Since $\Delta^{\prime}$ is $[\Gamma]$ -invariant, we have $w^{\prime[\sigma]}(\Delta^{\prime})=(w^{\prime}(\Delta^{\gamma[\sigma]^{-1}}))^{[\sigma]}=-\Delta^{\prime}$ for

all $\sigma\in\Gamma$ . Since $w^{\gamma[\sigma]}\in W^{\prime}$ (by $(a)$), we must have $w^{\prime[\sigma]}=w^{\prime}$ for all $\sigma\in\Gamma$ .
We have shown (Proposition 3.5) that if $\overline{\Delta}=t\gamma_{1},$ $\cdots$ , $\gamma_{\overline{l}}$ }, then the subset

$\Delta^{v}=\Delta\cap\pi^{-1}(\gamma_{i})$ is a $[\Gamma]$ -orbit; since $\Delta_{0}$ is also left fixed by $[\Gamma],$ $\Delta_{i}=\Delta^{i}U\Delta_{0}$

is a $[\Gamma]$ -invariant subset of $\Delta$ . Since $w_{i}$ is the unique element of the Weyl
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group $W_{i}$ of $\Delta_{i}$ which satisfies $w_{i}(\Delta_{i})=-\Delta_{i}$ , we have:
COROLLARY 4.2. If $\overline{\Delta}=\{\gamma_{1}$ , $\cdot$ .., $\gamma_{\overline{l}}\}$ , then $w_{i}\in W^{[\Gamma]}$ for $1\leqq i\leqq\overline{l}$ .
If we combine Corollary 4.2 with Theorem 2.9, we obtain:
THEOREM 4.3. If $T^{\Gamma}$ is of root system type, then there exists a subgroup

$V\subset W^{[\Gamma]}$ having a “ good system of involutive generators ” such that $W_{\Gamma}=V\cdot W_{0}$

is a semi-direct product, and $\overline{W}$ is isomorphic to $V$ under the canonical homo-
morphism $W_{\Gamma}\rightarrow\overline{W}$.

When $T^{\Gamma}$ is of root system type, we can combine Corollary 1.4 with
Theorem 4.3 (and use the second isomorphism theorem), to obtain the following
lattice of subgroups of $W$, where each of the “ vertical ’ quotients is isomor-
phic to $\overline{W}$.

$\cong\overline{W}$

If we apply Lemma 4.1 to the set of $[\Gamma]$ -orbits $\Delta^{\prime}$ of $\Delta$ , part (b) yields a
corresponding set of elements $w^{\prime}\in W^{[\Gamma]}$ . This set is, in fact, a good system
of involutive generators for the group $W^{[\Gamma]}$ . This result is obtained by apply-
ing to our case Theorems 2 and 3 of [3] (and is true whether or not $T^{\Gamma}$ is
of root system type).

PROPOSITION 4.4 (Hijikata). Let $\Delta$ be a $\Gamma$ -fundamental system of $\mathfrak{r}$ , and let
$\Delta=\Delta_{(1)}\cup$ $\cup\Delta_{(k)}$ be the decomposition of $\Delta$ into $[\Gamma]$ -orbits. If $v_{j}$ is the in-
volution in the Weyl group of $\Delta_{(j)}$ satisfying $v_{j}(\Delta_{(f)})=-\Delta_{(j)}$ , then the set
$\{v_{j}, 1\leqq j\leqq k\}$ is a good system of involutive generators of $W^{[\Gamma]}$ .

Note that if $\overline{\Delta}=\{\gamma_{1}, \cdots , \gamma_{\overline{l}}\}$ , then $\acute{l}$ of the orbits $\Delta_{(j)}$ in Corollary 4.5 are
of the form $\Delta^{j}$ , and the rest are $[\Gamma]$ -orbits of elements in $\Delta_{0}$ . If $\Delta_{(j)}=\Delta^{j}$,

then the involution $w_{j}$ is a product of the involution $v_{j}$ with some of the in-
volutions $v_{n}$ , where $\Delta_{(n)}\subset\Delta_{0}$ . Thus Proposition 4.4 also implies Corollary 4.2.

We close this section with an example which illustrates some applications
of our theorems, and shows that even if $W_{0}$ is a non-trivial proper subgroup
of $W_{\Gamma}$ , that one can have $W_{\Gamma}=W^{\Gamma}$ .

EXAMPLE. We first remark that if $\sigma\in Aut(X, \mathfrak{r})$ , then there is an element
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$\varphi_{d}\in Aut(G, T)$ such that ${}^{t}\varphi_{\sigma}^{-1}=\sigma$ (and moreover, $\varphi_{\sigma}$ is unique up to inner auto-
morphism by an element of $T$ ), ([2], expos\’e 23). Thus by choosing such a
$\varphi_{\sigma}\in Aut(G, T)$ , we can identify the group generated by $\sigma$ in Aut (X, r) with
the group generated by $\varphi_{\sigma}$ in Aut $(G, T)$ , and this identification agrees with (13).

Now let $G$ be a simple group of type $A_{3}$ , with fundamental system
$\Delta=\{\alpha_{1}, \alpha_{2}, \alpha_{3}\}$ , and let $\Gamma=\{1, \sigma\}$ where $\sigma=Aut(X, \mathfrak{r})$ satisfies:

$\alpha_{1}^{\sigma}=\alpha_{3}+\alpha_{2},$ $\alpha_{2}^{\sigma}=-a_{2},$ $\alpha_{3}^{\sigma}=\alpha_{1}+\alpha_{2}$ .
(Since $\Delta^{\sigma}=w_{\sigma_{2}}(\Delta),$ $\sigma$ is an automorphism, and it is clear that $\sigma^{2}=1.$) Since $X_{0}$

is generated over $Q$ by $\{a_{i}^{\sigma}-\alpha_{i}, i=1,2,3\}$ , we see that $X_{0}$ is generated over $Q$

by $\{\alpha_{2}, \alpha_{3}-\alpha_{1}\}$ . By (16), we see that $\Delta$ is an $X_{0}$-fundamental system, and
$\Delta_{0}=\{\alpha_{2}\},\overline{\Delta}=\{\gamma_{1}\}$ . Lemma 3.3 implies $w_{\alpha_{2}}=w_{\sigma}$ , so by (17), we have $\alpha_{1}^{[\sigma]}=\alpha_{3}$ ,
$\alpha_{2}^{[\sigma]}=\alpha_{2},$ $\alpha_{3}^{[\sigma]}=\alpha_{1}$ , thus $[\sigma]$ is the opposition automorphism of $\Delta$ . Since
$\Delta^{1}=\{\alpha_{1}, \alpha_{3}\}$ , we have $\Delta_{1}=\Delta$ , and so Theorem 2.6 (i) implies $T^{\Gamma}$ is of root
system type. If $w\in W_{1}=W$ is the involution satisfying $ w(\Delta)=-\Delta$ , then
$V=\{1, w\}$ and since $W_{0}=\{1, w_{\alpha_{2}}\}$ , Theorem 2.9 implies that $W_{\Gamma}=V\cdot W_{0}$ con-
tains four elements. Clearly (20) implies $w_{\alpha_{2}}\in W^{\Gamma}$ , and it is easily verified
that $w\in W^{\Gamma}$ , and hence $ww_{\alpha_{2}}\in W^{\Gamma}$ . Since $W^{\Gamma}\subset W_{\Gamma}$ , we must have $W_{\Gamma}=$

$W^{\Gamma}=\{1, w_{\alpha_{2}}, ww_{\alpha_{2}}, w\}$ .

\S 5. k-roots and maximal k-trivial tori.

We wish to make a few comments about how our results relate to the
case where $G$ is a connected semi-simple (or reductive) algebraic group defined
over a field $k$ . In this case, we take $T$ a maximal torus defined over $k$ , and
splitting over $K$, where $K/k$ is finite Galois, and determine the group $\Gamma$ by
Gal $(K/k)$ as follows. Each $\sigma\in Ga1(K/k)$ determines an automorphism $\chi\rightarrow\chi^{\sigma}$

of (X, r) and the transposed inverse $\varphi_{\sigma}$ defined by $\chi^{\sigma}(t)=\chi(\varphi_{\sigma}^{-1}(t))$ , for $t\in T$,
$\chi\in X$, is a rational automorphism of $T$ . Thus $\Gamma$ is taken as the group
$\{\varphi_{\sigma} ; \sigma\in Ga1(K/k)\}$ . ($\Gamma$ is a subgroup of Aut $(T)$ rather than Aut $(G, T)$ , but
with the exception of (19), we have only used the fact that $\Gamma\subset$ Aut $(T)$ . Even
(19) holds true if $\varphi_{\sigma}$ is extended to a rational automorphism of $(G, T)$ since by
[2], expos\’e 23, an element $\Psi_{\sigma}\in Aut(G, T)$ satisfying $\Psi_{\sigma}|T=\varphi_{\sigma}$ is unique up
to inner automorphism by elements of $T$ ).

It is known ([4]) for an arbitrary field $k$ , that the module $X_{0}$ defined in
(14) is the annihilator of a maximal k-trivial torus of $T$ . If $T$ is chosen so as
to contain a maximal $k$ -trivial torus of $G$ , we see that a maximal k-trivial torus
of $G$ is just $T^{\Gamma}$ .

Corollary 2.8 shows that to prove that the set $\overline{\mathfrak{r}}$ (called k-roots) is a root
system in a wider sense with Weyl group $\overline{W}$, it suffices to verify one of the
conditions of Theorem 2.6 (or Theorem 2.3, for $1\leqq i\leqq\overline{l}$), since $R(3)$ can then
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be shown for $\tau$ using a reduction to the case of a simple reduced root (see
[4], p. 225-226). The important fact that can be used to prove any of these
conditions is the conjugacy (by k-rational elements of $G$) of maximal k-trivial
tori of $G$ , and (for $k$ perfect) k-Borel subgroups of $G$ .

The main interest, of course, in the study of k-roots of $G$ is a result of
the classification problem; that is, to describe (relative to k) the structure of
$G$ , and make a complete classification in terms of certain invariants, of all
possible $G$ defined over a given field le (up to k-isogeny). One of the invari-
ants that can be used to describe $G$ is the $[\Gamma]$ -diagram (or k-index) of $G$ ; that
is, the Dynkin diagram of a $\Gamma$ -fundamental system, indicating which vertices
are in $\Delta_{0}$ , and which are in the same $[\Gamma]$ -orbit.

Condition (i) of Theorem 2.6 makes it possible to list, for each simple
group, all possible $[\Gamma]$ -diagrams which can occur. Although this hardly solves
the classification problem (the existence of groups $G$ defined over $k$ that “ fit ’

the diagrams must be proved), it helps cut it down to size. By a reduction
to the case of a $[\Gamma]$ -diagram of a single restricted fundamental root ($i$ . $e.$ , the
$\Delta_{i}$ of \S 2), the problem can be attacked in its simplest form.

For an excellent overall view of the classification problem and techniques
used in its solution, see [8]. A general exposition of the problem for $k$ a
perfect field, and the solution to the problem for $k$ a p-adic field appears in
[5]. (M. Kneser’s work is of key importance in the p-adic case; see “ Galois-
Kohomologie halbeinfacher algebraisher Gruppen \"uber p-adischen Korpern, ” I,
II, Math. Zeit., 88 (1965), 40-47, 89 (1965) 250-272). For details of the solution
when $k$ is the field of real numbers, see S. Araki, ‘ On root systems and an
infinitesimal classification of irreducible symmetric spaces ’ J. Math. Osaka
City U., Vol. 13, 1-34.

Finally, a special case should be mentioned. When $\Delta_{0}=\phi$ , the group $G$ is
said to be of “ Steinberg type “, that is, $G$ contains a Borel group defined over
$k$ . (If $k$ is a finite field, for instance, this is the case.) In this case, since
$W_{0}=\{1\}$ , the automorphisms $\sigma\in\Gamma$ and $[\sigma]\in[\Gamma]$ in Aut (X, r) (and in Aut $(W)$)
coincide, and $W_{\Gamma}=W^{\Gamma}=W^{[\Gamma]}$ (by (22)). The set $\{w_{i}, 1\leqq i\leqq\overline{l}\}$ is just a set
of fundamental reflections relative to the k-roots, and is a good system of
involutive generators for the Weyl group $\overline{W}=W_{\Gamma}$ of $\tau$ (Theorem 4.3). (Also,
see [7].)

University of Illinois, Chicago
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