A remark on the cohomology group and the dimension of product spaces

By Yukihiro KODAMA

(Received Dec. 8, 1967)

1. In §4 of the paper [4] several theorems concerning the dimension of product spaces were given. Proofs of all theorems except Theorem 5 depend heavily on Künneth formula which was proved by R.C. O'Neil [7]. However this formula is false. It is known by a counter example given by G. Bredon (see 2). The purpose of this paper is devoted to correct some of theorems in §4 of [4] and to prove the related results. However it is not known whether Theorems 6-9 hold or not though they are proved partly in this paper.

Throughout this paper all spaces are Hausdorff and have finite covering dimension and we mean by H^* the unrestricted Čech cohomology group.

- 2. R.C. O'Neil [7] gave the following theorems.
- A. Let G be an abelian group. If $X \times Y$ is paracompact, then

$$H^n(X \times Y : G) \cong \sum_{q=0}^n H^q(X : H^{n-q}(Y : G)).$$

B. Let L be a principal ideal domain. If X is compact and Y is paracompact, then there is an exact sequence

$$0 \to \sum_{q=0}^{n} H^{q}(X:L) \bigotimes_{L} H^{n-q}(Y:L) \to H^{n}(X \times Y:L)$$
$$\to \sum_{q=0}^{n} H^{q+1}(X:L) *_{L} H^{n-q}(Y:L) \to 0.$$

The following example was given by G. Bredon. Let X be a solenoid, so X is a 1-dimensional compact metric space and $H^1(X) \cong R$ (=the group of all rational numbers). For $n = 2, 3, \cdots$, let Y_n be a 2-dimensional finite simplicial polytope such that $H^2(Y_n) \cong Z_n$ (=the cyclic group of order n). Let Y be a disjoint union of Y_n , $n = 2, 3, \cdots$. Then Y is a 2-dimensional locally finite polytope and $H^2(Y) \cong \prod_{n=2}^{\infty} Z_n$. Since X is compact, by Peterson [8: Appendix], we have $H^3(X \times Y) \cong \prod_{n=2}^{\infty} H^3(X \times Y_n) \cong \prod_{n=2}^{\infty} H^1(X) \otimes H^2(Y_n) = 0$ and $H^1(X: H^2(Y)) \cong H^1(X) \otimes H^2(Y) \neq 0$. Thus, both theorems A and B are false.

The following theorem is easily proved by using sheaf theory.

THEOREM 1. Let X and Y be paracompact spaces such that dim X = p and dim Y = q. Suppose that either (1) X is compact, or (2) $X \times Y$ is hereditarily paracompact and Y is locally contractible. Then, for any abelian group G, $H^{p+q}(X \times Y : G) \cong H^q(Y : H^p(X : G)).$

PROOF. Let f be the projection of $X \times Y$ onto Y. Let $\mathcal{H}^m(X:G)$ be the sheaf over Y generated by the presheaf

$$U \to H^m(f^{-1}(U):G)$$

where U is an open set of Y. Then, by [3: Théorème 4.17.1], there is a spectral sequence such that $E_2^{nm} = H^n(Y : \mathcal{H}^m(X : G))$ and the term E_∞ is bigraded associated with filtrations on $H^{m+n}(X \times Y : G)$. Under the hypothesis of the theorem it is known that $\mathcal{H}^m(X : G)$ is a constant sheaf $H^m(X : G)$ over Y. In the case (1) it follows from [3: Théorème 4.11.1] and in the case (2) it follows from the paracompactness of $f^{-1}(U)$ and the local contractibity of Y. Thus we have $E_2^{nm} = H^n(Y : H^m(X : G))$. Since dim X = p and dim Y = q, $E_2^{nm} = 0$ if m > p or n > q. Thus $E_2^{qp} \cong H^{p+q}(X \times Y : G)$. This completes the proof.

REMARK 1. By Bredon's example mentioned above, we can not exchange X and Y in the conclusion of Theorem 1, that is, $H^{p+q}(X \times Y:G) \cong H^p(X:H^q(Y:G))$ does not generally hold.

REMARK 2. The following generalization to Theorem 1 is true.

(1) Theorem 1 holds if we replace "dim X = p" by "Max $\{m : H^m(X : G) \neq 0\} = p$ ".

(2) In the case (1) of Theorem 1, if q > 1, then, for each closed set B of Y, we have $H^{p+q}(X \times Y, X \times B: G) \cong H^q(Y, B: H^p(X:G))$.

3. Let G be an abelian group. The cohomological dimension D(X:G) of a space X with respect to G is the largest integer n such that $H^n(X, A:G) \neq 0$ for some closed set A of X.

LEMMA 1. Let X be paracompact. Let G and H be abelian groups. If there is an epimorphism $\alpha: G \to H$ and $D(X:H) = \dim X$, then $D(X:G) = \dim X$.

PROOF. Take a closed subset A of X such that $H^n(X, A: H) \neq 0$, where $n = \dim X$. Since $0 \to \operatorname{Ker} \alpha \to G \to H \to 0$ is exact, the sequence $\cdots \to H^n(X, A: G) \to H^n(X, A: H) \to H^{n+1}(X, A: \operatorname{Ker} \alpha) = 0$ is exact. Thus $H^n(X, A: G) \neq 0$.

LEMMA 2. Let X be a compact space with D(X:G) = m and let Y be a paracompact space. Suppose that, for some closed G_{δ} set A of X, either (1) there is an epimorphism: $H^m(X, A:G) \to G$ and $D(Y:G) = \dim Y$ or (2) $D(Y:H^m(X, A:G)) = \dim Y$. Then $D(X \times Y:G) \ge D(X:G) + \dim Y$.

PROOF. There is a closed G_{δ} set B of Y such that either (1) $H^n(Y, B:G) \neq 0$ or (2) $H^n(Y, B: H^m(X, A:G)) \neq 0$, where $n = \dim Y$. Let $X_0 = X/A$ and $Y_0 = Y/B$, and let x_0 and y_0 be the points corresponding to A and B. Since

 $D(X_0:G) = m$ and dim $Y_0 = n$, $H^{m+n}(X_0 \times Y_0:G) \cong H^n(Y_0:H^m(X_0:G))$ by Theorem 1. Thus, in both cases (1) and (2), we can conclude $H^{m+n}(X_0 \times Y_0:G) \neq 0$. Hence $D(X_0 \times Y_0:G) \ge m+n$. Since $X_0 \times Y_0 - \{x_0\} \times Y_0 \cup X_0 \times \{y_0\}$ is a union of a countable number of closed sets of $X \times Y$, sum theorem [4, p. 348] means $D(X \times Y:G) \ge m+n$.

A compact space X is clc^{∞} if, for each point x of X and a closed neighborhood U of x, there is a closed neighborhood V of x such that $V \subset U$ and the induced homomorphism: $\tilde{H}^i(U) \to \tilde{H}^i(V)$ is trivial for $i = 0, 1, 2, \dots$, where \tilde{H}^i is the reduced group.

The following is a generalization to Morita [6: Theorem 6] and Dyer [1: Corollary 7].

THEOREM 2. Let X be a compact clc^{∞} space and let Y be a paracompact space with $D(Y:G) = \dim Y$. If $D(X:R) = \dim X$, then $D(X \times Y:G) = \dim (X \times Y)$ $= \dim X + \dim Y$.

PROOF. Since X is a compact clc^{∞} space and $D(X:R) = \dim X$, there are closed sets A, B and N of X such that (1) A is G_{δ} and $A \supset B$, (2) N is a neighborhood of B, (3) $H^m(N, B)$ contains an element γ of infinite order, where $m = \dim X$, and (4) the image of the induced homomorphism: $H^m(X, A)$ $\rightarrow H^m(N, B)$ is finitely generated and contains the element γ . The proof is found in Dyer [2: p. 157]. This shows that there is an epimorphism of $H^m(X, A)$ onto Z. Hence there is an epimorphism of $H^m(X, A:G) = H^m(X, A) \otimes G$ onto G. By Lemma 2 we can conclude that $D(X \times Y:G) = \dim (X \times Y)$ $= \dim X + \dim Y$.

COROLLARY 1. Let X be a compact clc^{∞} space. In order that $\dim (X \times Y) = \dim X + \dim Y$ for every paracompact space Y, it is necessary and sufficient that $D(X: R) = \dim X$.

LEMMA 3. Let X be a paracompact space with finite large inductive dimension and let G be an abelian group. Then, for each k, $0 \le k \le D(X:G)$, there is a closed subset X_k of X such that $D(X_k:G) = k$. If G is finitely generated, then the lemma holds for a normal space X with finite large inductive dimension. Consequently, if X is normal and Ind $X < \infty$, then, for each k, $0 \le k \le \dim X$, there is a closed set X_k such that dim $X_k = k$.

PROOF. If Ind X = 0, then it is obvious that the lemma is true. Suppose that the lemma holds in case Ind $X \leq n-1$. Let Ind X = n and D(X:G) = m. For each pair (F, U), F closed, U open and $F \subset U$, choose an open set $V_{(F,U)}$ such that $F \subset V_{(F,U)} \subset \overline{V}_{(F,U)} \subset U$ and $\operatorname{Ind}(\overline{V}_{(F,U)} - V_{(F,U)}) \leq n-1$. If $D(\overline{V}_{(F,U)} - V_{(F,U)}:G) \leq m-2$ for each pair (F, U), then $D(X:G) \leq m-1$ by [5: Theorem 5]. Thus, there is some pair (F, U) such that $D(\overline{V}-V:G) = m-1$ or = m, where $V = V_{(F,U)}$. Since $\operatorname{Ind}(\overline{V}-V) \leq n-1$, there is a closed subset X_k of $\overline{V}-V$ for each $k, 0 \leq k \leq m-1$, such that $D(X_k:G) = k$. Then the closed sets $X_k, k = 0$, 1, ..., m-1, and $X_m = X$ satisfy the conclusion of the lemma.

THEOREM 3. Let X be a compact space and let Y be a paracompact space with finite large inductive dimension. If dim Y > 0, then $D(X \times Y : G) \ge D(X : G)$ +1 for any abelian group G.

PROOF. Since Y has finite large inductive dimension and dim Y > 0, by the previous lemma, there is a closed set Y' of Y such that dim Y' = 1. Take a closed G_{δ} set A of X such that $H^n(X, A:G) \neq 0$, where n = D(X:G). Since dim Y' = 1, it follows from [4: Corollary 1] that $D(Y': H^n(X, A:G)) = \dim Y'$. Hence, by Lemma 2, $D(X \times Y:G) \ge D(X \times Y':G) \ge D(X:G) + 1$.

THEOREM 4. Let G be one of the groups R, Q_p (=the p-primary part of the group of rationals modulo one) and Z_p , where p is prime. Let X be compact and let Y be paracompact. If $D(X:G) = \dim X$ and $D(Y:G) = \dim Y$, then $D(X \times Y:G) = \dim (X \times Y) = \dim X + \dim Y$.

PROOF. Take a closed G_{δ} set A of X such that $H^m(X, A:G) \neq 0$, where $m = \dim X$. Since X is compact, $H^m(X, A:G) \cong H^m(X, A) \otimes G$. Thus, if G is one of the groups R, Q_p and Z_p , then G is a direct summand of $H^m(X, A:G)$. Hence, there is an epimorphism from $H^m(X, A:G)$ onto G. The theorem follows from Lemma 2.

Department of Mathematics Tokyo University of Education University of Pittsburgh

References

- [1] E. Dyer, Regular mappings and dimension, Ann. of Math., 74 (1958), 555-577.
- [2] E. Dyer, On the dimension of products, Fund. Math., 47 (1959), 141-160.
- [3] R. Godement, Topologie algébrique et théorie des faisceaux, Herman, Paris, 1958.
- [4] Y. Kodama, Note on cohomological dimension for non-compact spaces, J. Math. Soc. Japan, 18 (1966), 343-359.
- [5] Y. Kodama, Note on cohomological dimension for non-compact spaces II, J. Math. Soc. Japan, 20 (1968), 490-497.
- [6] K. Morita, On the dimension of product spaces, Amer. J. Math., 75 (1953), 205-223.
- [7] R.C. O'Neil, The Čech cohomology of paracompact product spaces, Amer. J. Math., 87 (1965), 71-78.
- [8] F.P. Peterson, Some results on cohomotopy groups, Amer. J. Math., 78 (1956), 243-259.