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\S 1. Introduction.

Let $G$ be a finite group. Let $G=G_{0}>G_{1}>\cdots>G_{n}=1$ be a chain of sub-
groups of $G$ , where $G_{i}$ is a proper subgroup of $G_{i- 1}(1\leqq i\leqq n)$ . Then we say
that the chain has length $n$ . For a fixed group $G$ we denote by $1(G)$ the
maximal number of $n$ , where the chain ranges all possible ones. We call 1 $(G)$

the length of $G$ .
In his papers [16], [17] Z. Janko has proved that if $G$ is a finite non-

abelian simple group whose length $1(G)$ is at most four, then $G$ is isomorphic
to $PSL(2, p)$ for some prime $p$ . Moreover, he has proved that if $l(G)$ is at
most five, then $G$ is isomorphic to $PSL(2, q)$ for some prime power $q$ .

In this note we shall prove the following extention of the above theorem
of Z. Janko.

THEOREM 1. Let $G$ be a finite non-abelian simple group $u$) $hose$ length 1 $(G)$

is at most seven. Then $G$ is isomorphic to one of the following gronps .

(1) $PSL(2, q)$ , for a suitable prime power $q$ ,
(2) $PSU(3,3^{2})=U_{3}(3),$ $PSU(3,5^{2})=U_{3}(5)$ ,

(3) $A_{7}$ the alternating group of degree seven,
(4) $M_{11}$ the Mathieu group of degree 11,
(5) $J$ the Janko group of order 175560 [18].

The proof of the theorem proceeds by considering the structure of cen-
tralizers of involutions and the Sylow 2-subgroups of $G$ . Assuming that there
exists a simple group $G$ which is not isomorphic to any one of the groups
mentioned above, we are able to prove that the order of the Sylow 2-subgroups
of $G$ has to be at least $2^{7}$ , which is clearly contrary to our hypothesis $1(G)\leqq 7$ .

J. G. Thompson has conjectured in [23] that if the Sylow 2-subgroup $S$ of
a finite simple group $G$ is maximal in $G$ , then $S$ should be dihedral. We shall
prove that this conjecture is true if the order of $S$ is less than or equal to
64 (Lemma 7).

In the last section of this note, we shall prove some elementary lemmas
on the Sylow 2-subgroups of finite groups. For instance we shall show the
following lemma.

LEMMA. If a Sylow 2-subgroup $S$ of a finite group $G$ is generalized
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dihedral, then $G$ has a normal subgroup of index 2 or $S$ is the direct product of
a dihedral group with an elementary abelian group.

Our notation is fairly standard.
$G^{\prime}$ . . . . the commutator subgroup of a group $G$ .
$K(G)$ . . . . . the maximal normal subgroup of odd order of $G$ .
$Z(G)$ . . . . . . . the center of $G$ .
$ Z^{*}(G)\cdots\cdots\cdot$ . the preimage of $Z(G/K(G))$ in $G$ .
$D(G)$ . . . . the Frattini subgroup of $G$ .
$G^{\#}$ . . . . the set of non-identity elements of $G$ .
$\langle a, b, \rangle$ . . . . the group generated by the elements $a,$

$b$ , $\cdot$ .
$ Z_{n}\cdots\cdots\cdots\cdot$ . a cyclic group of order $n$ .
$D_{n}$ . . . . . . . . . . a dihedral group of order $n$ .
$H<G\cdots\cdots\cdot\cdot H$ is a proper subgroup of $G$ .
$H\triangleleft G\cdots\cdots\cdot\cdot H$ is a normal subgroup of $G$ .
$x\sim yG$ . . . . . . . . an element $x$ is conjugate with $y$ in $G$ .
Let $H$ be a subgroup of a finite group $G$ . If two elements $x,$ $y$ of $H$ are

conjugate to one another in $G$ , then we often say that $x$ is fused with $y$ in $G$ .
A central involution is an element of order 2 which is contained in the center
of a Sylow 2-subgroup of $G$ . If an element $x$ of a subgroup $H$ of $G$ is not fused
with any element $(\neq x)$ of $H$ in $G$ , then we call $x$ an isolated element in $H$.
The abbreviation $S_{p}$-subgroup stands for Sylow $p$ -subgroup. All groups con-
sidered will be finite.

We shall use frequently the following recent result of P. Fong [7].

THEOREM 2. Let $S$ be a 2-group of order 64. If $S$ appears as an $S_{2}$ -subgroup

of a simple group, then $S$ is isomorphic to one of the following groups:
1. a dihedral group,
2. a semi-dihedral group,
3. an $S_{2}$-subgroup of the Mathieu group $M_{12}$ of degree 12,
4. a group of exponent 4 or
5. a direct product of a four-group $Z_{2}\times Z_{2}$ with a semi-dihedral group of

order 16.
Moreover if $|S|\leqq 32$ , then only the following four groups can appear as

$S_{2}$ -subgroups of simple groups.
1. an elementary abelian group,
2. a dihedral group,
3. a semi-dihedral group or
4. a wreath product $Z_{4}\int Z_{2}$ .
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\S 2. Proof of Theorem.

Let $G$ be a finite non-abelian simple group all of whose chains of sub-
groups have length at most seven, $i$ . $e$ . $l(G)\leqq 7$ . We shall then prove that $G$

is isomorphic to one of the groups: PS$L(2, q),$ $U_{3}(3),$ $U_{3}(5),$ $A_{7},$ $M_{11}$ or $J$. First
we note that the groups mentioned above satisfy the condition $l(G)\leqq 7$ if we
choose a suitable prime power $q$ . This is checked by direct computation. The
proof of our theorem proceeds by induction.

By way of contradiction we assume that
(A) $G$ is not isomorphic to any one of the simple groups mentioned above.

In particular we may assume that an $S_{2}$ -subgroup of $G$ is not dihedral by a
theorem of D. Gorenstein and J. Walter [11]. We consider the order of an $S_{2}-$

subgroup $S$ of $G$ . We claim;
LEMMA 1. $|S|>4$ .
PROOF. By a theorem of W. Feit and J. G. Thompson [5], it follows that

$|S|>1$ . Burnside’s splitting theorem shows that $|S|>2$ . $|S|>4$ follows from
the assumption that $S$ is not dihedra\’i.

LEMMA 2. $|S|>8$ .
PROOF. Suppose $|S|=8$ . Then, since a quaternion group can not be an

$S_{2}$ -subgroup of a simple group (R. Brauer and M. Suzuki [4]), $S$ has to be an
elementary abelian 2-group. By a theorem of D. Gorenstein [10], the centralizer
$C(\tau)$ is non-solvable for some involution $\tau$ of $G$ . Since $S$ is elementary, $C(\tau)$

is a splitting extention of $\langle\tau\rangle$ (W. Gasch\"utz [8]). We can write as $ C(\tau)=\langle\tau\rangle$

$\times H$ . Since 1 $(H)\leqq 5$ , by a theorem of Janko [17] $H$ contains a composition
factor $F$ which is isomorphic to $PSL(2, q),$ $q\geqq 5$ . Put $F=I/J$ where $H\triangleright I\triangleright J$.
Since 1 $(F)\geqq 4,$ $J$ is a cyclic group of odd prime order or $J=\{1\}$ . If $q=s^{2}$ ,

then $1(PSL(2,3^{2}))=5$ . Therefore $C(\tau)\cong Z_{2}\times PSL(2,3^{2})$ . Now suppose $q\neq 3^{2}$ .
Then, since the Schur multiplier of $PSL(2, q)$ is at most 2, $I$ is written in the
form $I\cong J\times F_{1}$ , where $F_{1}\cong F$. Since $I^{\prime}=F_{1}$ , $F_{1}$ is a normal subgroup of $H$.
By a theorem of J. Walter ([25], Corollary to Theorem), we conclude that
$C(\tau)=\langle\tau\rangle\times F_{1}$ . If $q>5$ , then $q=3^{2n\vdash 1}(n\geqq 1)$ by a theorem of Z. Janko and
J. Thompson [19]. And by a theorem of H. Ward [24], $G$ is divisible by
$q^{3}\geqq 3^{9}$ , contrary to our hypothesis [ $(G)\leqq 7$ . Hence we have $q=5$ . We now
conclude that $G\cong J$ by a theorem of Z. Janko [18], contrary to our hypothesis
(A).

LEMMA 3. $|S|>16$ .
PROOF. Assume $|S|=16$ . Then by a theorem of P. Fong [7], $S$ is an

elementary abelian group or a semi-dihedral group.
Case (i). $S$ is elementary.
By a theorem of [10], $S$ has to contain an involution $\tau$ whose centralizer

$C(\tau)$ is non-solvable. Since $S$ is elementary, we can set $C(\tau)=\langle\tau\rangle\times H$ by a
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theorem of Gasch\"utz [8]. Next we shall show that

$(*)$ $C(\tau)=\langle\tau, \sigma\rangle\times F$ ,

where $\langle\tau, \sigma\rangle$ is a four-group and $F\cong PSL(2, p),$ $p\geqq 5$ a prime. Since $H$ is
non-solvable with $1(H)\leqq 5,$ $H$ has a composition factor $F_{1}$ which is isomorphic
to $PSL(2, q)$ . If an $S_{2}$ -subgroup of $F_{1}$ is of order 8, then $H\cong F_{1}\cong PSL(2,8)$ ,

for $l(PSL(2,8))=5$ . This is impossible by [19]. Therefore $F_{1}$ is a proper
composition factor of $H$. And we can easily see that $|Z(H)|=2$ or $F_{1}$ can be
regarded as a normal sJbgroup of index 2 of $H$. If $|Z(H)|=2$ , since $S$ is
elementary our statement $(*)$ is true, for $H$ is a splitting central extention of
$PSL(2, p)$ by $Z(H)$ . If $F_{1}$ is a normal subgroup of index 2 of $H$, then an in-
volution $\tau_{1}$ of $H-F_{1}$ induces an automorphism of $F_{1}$ of order 2. Since a Sylow
2-subgroup of $H$ is elementary, $\tau_{1}$ induces an inner automorphism of $F_{1}$ .
Therefore there exists an involution $\tau_{2}$ of $F_{1}$ such that $\tau_{1}\tau_{2}$ commutes with
every element of $F_{1}$ . If we set $\sigma=\tau_{1}\tau_{2}$ and $F_{1}=F$ then our statement $(*)$ is
true. It can now be shown easily that the normalizer $N(S)$ of $S$ has order
divisible by 3. Since $lV(S)$ is solvable with 1 $(N(S))\leqq 6$ , we have $|_{A}\backslash -(S)|=2^{4}\cdot 3\cdot r$ ,

where $r=1$ or a prime. Since the fusion of $S$ is determined in $\perp V(S)$ , we can
conclude $r>1$ and $C(S)=S$ by a theorem of G. Glauberman. Since $N(S)/C(S)$

is a subgroup of $GL(4,2)\cong A_{8}$ , we have $r=3,5$ or 7. Let $K$ be a complement
of $S$ in $N(S)$ . Then $K$ acts on $S$ by conjugation. If $|K|=15$ or 21, $K$ fixes
at least one involution in $S$ . This confiicts with $Z(N(S))\cap S=1$ . Hence $r$ must
be 3. Since $\langle\tau, \sigma\rangle$ is invariant under the action of $K$ the order of $1V(\langle\tau, \sigma\rangle)$

$/C(\langle\tau, \sigma\rangle)$ is divisible by 3. On the other hand we have shown that $C(\langle\tau, \sigma\rangle)$

$=\langle\tau, \sigma\rangle\times F$ by $(*)$ . Hence we have $l(N(\langle\tau, \sigma\rangle))=7$ . This contradicts our
hypothesis. Thus the case (i) is eliminated.

Case (ii). $S$ is semi-dihedral.
Since $G$ is a simple group, involutions of $G$ are contained in a single con-

jugate class and the centralizer $C(\tau)$ of any involution of $G$ has a normal
subgroup of index 2 and $C(\tau)$ has no normal subgroup of index 4 (see W. Wong
[26]). Put $ H=C(\tau)/\langle\tau\rangle$ . Then $H$ has dihedral $S_{2}$ -subgroups. By a theorem
of D. Gorenstein and J. Walter [11], we shall easily see that $H/K(H)=PGL(2, q)$ .
Since $l(H)\leqq 5$ , we have $K(H)=\{1\}$ and $q$ is a prime $p$ , or $q=3$ .

Suppose $q=3$ . In order to lead a contradiction, it suffices to prove that
$C(\tau)$ has an abelian 2-complement (W. Wong [26]). If $K(H)=\{1\}$ . This is
trivial. If $K(H)>\{1\}$ . Then $K(H)$ is a cyclic group of odd prime order $r$ .
Therefore $H/C_{H}(K(H))$ is a cyclic group, hence of order 1 or 2. Hence $H$ has
an abelian 2-complement, and since $PGL(2,3)$ is solvable, the same is true for
$C(\tau)$ .

Next suppose $q\geqq 5$ . Then $K(H)=\{1\}$ and $q$ is a prime $p$ . It is now easy
to see that $C(\tau)$ is a non splitting central extention of $PGL(2, p)$ by $\langle\tau\rangle$ .
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Therefore $C(\tau)$ is isomorphic to one of the groups $K_{p}$ or $K_{p}^{\prime}$ . Here according
to Schur ([20], p. 122) $K_{q}$ and $K_{q}^{\prime}$ ($q$ : a prime power) are defined as follows.

Let $w$ be a primitive root in the Galois field $GF(q^{2})$ with $q^{2}$ elements. Put
$u=w^{\frac{q+1}{2}\cdot s}$, where $q-1=2^{r}\cdot s,$ $s$ : odd. We introduce two elements $U,$ $U^{\prime}$ as
follows;

$U=\left(\begin{array}{ll}u & 0\\0 & u^{-1}\end{array}\right)$ , $U^{\prime}=\left(\begin{array}{lll}u^{2} & +1 & 0\\0 & & u^{2^{7- 1}- 1}\end{array}\right)$ .

Now $K_{q},$ $K_{q^{\prime}}$ are the following groups:

$K_{q}=SL(2, q)+U\cdot SL(2, q)$ , $K_{q^{\prime}}=SL(2, q)+U^{\prime}\cdot SL(2, q)$ .

Since $K_{p}$ has an $S_{2}$ -subgroup of generalized quaternion type, we can exclude
the possibility that $C(\tau)\cong K_{p}$ . Therefore $C(\tau)\cong K_{p^{\prime}}$ . If $p\equiv-1(mod 4)$ , we can
easily see that $K_{p^{\prime}}$ is isomorphic to $GL(2, p)/L$ where $L$ is a subgroup of

$Z(GL(2, p))$ and of order $\underline{p}-\underline{1}2$ Therefore by a theorem of R. Brauer [1], we

have $G\cong PSL(3, p)$ or $M_{11}$ . It is checked directly that $M_{11}$ is the only group
with our property 1 $(G)\leqq 7$ . This is a contradiction.

Therefore we may assume $p\equiv 1(mod 4)$ . If $p=5$ , then $K_{5}^{\prime}$ has order
$2^{4}\cdot 3\cdot 5$ and is isomorphic to the centralizer of an involution of the simple group
$U_{3}(5)$ . In \S 3, we shall characterize $U_{3}(5)$ by this property. Therefore in order
to prove our lemma it suffices to prove that $p=5$ .

Now suppose $p>5$ . We shall apply the theory of modular characters on
groups with $S_{2}$ -subgroups of semi-dihedral type. We summarize the results of
R. Brauer [2], III, \S 8.

Let $G_{1}$ be a finite group with semi-dihedral Sylow 2-subgroup of order $2^{n}$ .
Then the principal 2-block $B_{0}(2)$ of $G_{1}$ consists of $4+2^{n- 2}$ irreducible characters.
Four of these, denoted by $X_{0}=1,$ $X_{1},$ $X_{2},$ $X_{3}$ have odd degrees $x_{i}=X_{i}(1)$ . The
remaining characters, denoted by $X_{4},$ $X^{(j)}$ ; $j=\pm 1,$ $\pm 3,$ $\cdots$ , $\pm(2^{n-3}-1)$ or 2, 4, $\cdot$ ..
, $2^{n-2}-2$ have even degrees $x_{4}=X_{4}(1),$ $\chi=X^{(j)}(1)$ for all $j$ . Furthermore the
following relations hold;

(1) $1+\delta_{1}x_{1}=-\delta_{2}x_{2}-\delta_{3}x_{8}$ , $1+\delta_{2}x_{2}=\delta_{2}x_{4}$ .

Here two of $\delta_{i}$ are $-1$ , and one is $+1$ .
There exists an irreducible character $\varphi$ in the principal 2-block of the

centralizer $C(\tau_{1})$ of a central involution $\tau_{1}$ of $G_{1}$ and a sign $\epsilon$ , an integer $m$

with

(2) $\varphi(1)=\epsilon(m+1)$ , $m\equiv 1+2^{n- 2}(mod 2^{n- 1})$ , sign $ m=\epsilon$ ,

where $\varphi=\vee c\varphi_{\grave{1}^{\prime}}$ in the notation of [2], III.
If $G_{1}$ has no normal subgroup of index 2 then the order of $G_{1}$ is given by
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(3) $|G_{1}|=\frac{C(\tau_{1})|^{3}}{(\tau_{1},\tau’)|^{2}}$ $\frac{x_{1}(x_{1}+\delta}{(x_{1}-\delta_{1}m}1$

)
$-\cdot\frac{m+1}{m}\overline{|}C^{1}$

)

where $\tau^{\prime}$ is a involution of $C(\tau_{1})$ different from $\tau_{1}$ . We have the additiona}
relations

(4) $x_{1}x_{2}=m^{2}x_{3}$ ,

(5) $x_{1}\equiv\delta_{1}(2-m)(mod 2^{n})$ .

We note that (1) and (4) imply that

(6) $-m^{2}(1+\delta_{1}x_{1})=\delta_{2}(m^{2}+\delta_{1}x_{1})x_{2}$ .

Now we shall apply these results to our group $G$ . Since $C(\tau)\cong K_{p^{\prime}}$

$(p\equiv 1(mod 4))$ , the first 2-block of $K_{p^{\prime}}$ consists of the characters whose degrees
are 1, $p,$ $p-1,$ $p+1$ . (Since both of $K_{p}$ and $K_{p^{\prime}}$ are the representation group of
$PGL(2, p)$ , the degrees of irreducible characters of $K_{p}$ and those of $K_{p^{\prime}}$ have
one to one correspondence. The table of characters of $K_{p}$ is found in [20],

p. 136.) Therefore comparing (2) we have $\epsilon(m+1)=p+1$ . It follows that $m=p$

and $\epsilon=1$ .
Since $|C(\tau)|=2p(p^{2}-1)$ and $|C(\tau, \tau^{\prime})|=2(p+1),$ (3) is replaced by

(7) $|G|=2p^{2}(p-1)^{3}(p+1)^{2}\frac{x_{1}(x_{1}}{(x_{1}-}\frac{\delta}{1p}+1)$

We have to distinguish two subcases.
Subcase (1). $p^{2}||G|$ .
In this case we do not use the theory of modular characters. Let $P_{0}$ be

an $S_{p}$-subgroup of $C(\tau)$ . Then by considering the structure of $C(\tau)\cong K_{p^{\prime}}$ we
conclude that the order of $N(P_{0})$ is divisible by $2p^{2}(p-1)$ . If $N(P_{0})$ is solvable
then $|N(P_{0})|=2p^{2}(p-1)=2^{3}p^{2}r(r=p-1/4)$ , for 1 $((N(P_{0})))\leqq 6$ . And by Sylow’s
theorem it is easy to prove that $S_{p}$-subgroup $P_{1}$ of $N(P_{0})$ is normal in $N(P_{0})$ .
Denote a complement of $P_{1}$ in $N(P_{0})$ by $K$. We may assume that $ K\ni\tau$ . $K$

acts on the chain
$P_{1}>P_{0}>\{1\}$

by conjugation. Since $p-1$ is not divisible by 8, it follows directly that $\tau$

stabilizes the above chain. Hence $[\tau, P_{1}]=1$ , which is not true. Next suppose
$N(P_{0})$ is non solvable. Then the group $N(P_{0})/P_{0}$ has a composition factor $F$

which is isomorphic to $PSL(2, q)$ . Since $N(P_{0})/P_{0}$ contains an element of order
8 and an $S_{2}$ -subgroup of $F$ is dihedral, $N(P_{0})$ must be divisible by 16. Therefore
an element of order 4 centralizes $P_{0}$ which is impossible by the structure of
$C(\tau)$ . Thus we have led a contradiction in this case.

Subcase (2). $p^{2}\mathcal{X}|G|$ .
Since $1(PSL(2, p))\leqq 4$ for our prime $p$ , we can set $p-1=4r,$ $p+1=2st$
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where $r,$ $s,$
$t$ are prime numbers or 1 ($r>1$ , since $p>5$). We shall prove the

following statement.
$(*)$ $r^{3}\mathcal{X}|G|$ .
By way of contradiction, suppose $r^{3}||G|$ . Let $R_{0}$ be an $S_{r}$ -subgroup of

$C(\tau)$ . Then $N(R_{0})$ is divisible by $r\cdot 4(p-1)=16r^{2}$ . If $N(R_{0})$ is solvable, then
$|N(R_{0})|=16r^{2}$ , for $l(N(R_{0}))\leqq 6$ . Therefore $|C(R_{0})|=8r^{2}$ and an $S_{2}$ -subgroup of
$C(R_{0})$ is cyclic. Hence $N(R_{0})$ is r-closed. Let $R_{1}$ be $S_{r}$-subgroup of $N(R_{0})$ .
Then $N(R_{1})$ is divisible by $r^{3}$ and $l(N(R_{1}))$ is at least seven, contrary to our
hypothesis. If $N(R_{0})$ is non-solvable, $N(R_{0})/R_{0}$ has a composition factor $F$

which is isomorphic to $PSL(2, q)$ . $S_{2}$-subgroup of $F$ must be of order 8 and
maximal in $F$, which is clearly impossible. For $F$ contains a subgroup which
is isomorphic to the symmetric group of degree 4. Hence the statement $(*)$ is
proved.

By (5) $x_{1}-\delta_{1}p\equiv 2\delta_{1}(1-p)(mod 16)$ . Therefore $x_{1}-\delta_{1}p$ is divisible by 8.
On account of (7), since $r^{s}$ does not divide $G,$ $r$ has to divide $x_{1}-\delta_{1}p$ . Hence
we can set $x_{1}-\delta_{1}p=8rpa=2a(p-1)p$ , where $a$ is an integer.

By (6) we have

$p^{2}(\delta_{1}+x_{1})\equiv 0(mod x_{1}+\delta_{1}p^{2})$ .
Hence

$p^{4}-p^{2}\equiv 0(mod x_{1}+\delta_{1}p^{2})$ .

Since $x_{1}$ is not divisible by $p^{2},$ $x_{1}+\delta_{1}p^{2}$ is not divisible by $p^{2}$ , and

$p^{2}-1\equiv 0(mod 2a(p-1)+\delta_{1}+\delta_{1}p)$ .
Put

(8) $p^{2}-1=b(2a(p-1)+\delta_{1}(p+1))$ .
Then

$b\equiv 0(mod \frac{p-1}{2})$ .

If we set

$b=\frac{p-1}{2}b^{\prime}$

then (8) is replaced by

(9) $p+1=b^{\prime}(a(p-1)+\frac{\delta_{1}}{2}(p+1))$ .
Therefore

$p+1\geqq a(p-1)+\frac{\delta_{1}}{2}(p+1)\geqq a(p-1)-\frac{1}{2}(p+1)$ .

This implies (note that $p\geqq 13$)

$a\leqq\frac{3}{2}$ . $\frac{p+}{p-}1-<21$ .
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Hence we have $a=1$ . If $\delta_{1}=1$ in (9), then we have
$b^{\prime}=1$ , $p=3$

contrary to our assumption $p>5$ . Therefore $\delta_{1}=-1$ and we get

$b^{\prime}=2+\frac{8}{p-}3-$

Hence $p=5,7$ or 11 which again contradicts our assumption that $p>5$ and
$p\equiv 1(mod 4)$ . Thus we have get a contradiction, and have proved Lemma 3.

LEMMA 4. $|S|>32$ .
PROOF. Suppose $|S|=32$ . Then by a theorem of P. Fong, $S$ is isomorphic

to one of the following groups:
(1) an elementary abelian group,
(2) a semi-dihedral group or
(3) a wreath product $Z_{4}\int Z_{2}$ .
Case (1). $S$ is elementary.
Since $S$ has to be contained in $N(S)$ properly, the order of $N(S)$ is $2^{5}\cdot p$

where $p$ is an odd prime number. And $N(S)$ is a Frobenius group with its
kernel $S$ . Therefore the centralizer $C(\tau)$ of an involution $\tau$ of $G$ has a normal
2-complement, hence solvable. Therefore $G$ is isomorphic to one of the groups
$PSL(2, q)$ by a theorem of D. Gorenstein [10], contrary to our assumption (A).

Case (2). $S$ is semi-dihedral.
Let $\tau$ be an involution of $G$ . Then by the same argument as in the proof

of Lemma 3, $C(\tau)/\langle\tau\rangle\cdot K(C(\tau))$ is isomorphic to $PGL(2, p)$ . For this prime
$p,$ $PSL(2, p)$ has an $S_{2}$-subgroup $T$ of order 8. Since the length $l(PSL(2, p))$

must be less than 5, $T$ is a maximal subgroup of $PSL(2, p)$ which is clearly
impossible by considering the structure of $PSL(2, p)$ .

Case (3). $S$ is isomorphic to $Z_{4}\int Z_{2}$ .
P. Fong [6] has studied the simple groups with $S_{2}$-subgroups which is

isomorphic to $Z_{4}\int Z_{2}$ . He has proved if the centralizer of an involution $\tau$ of
$G$ is solvable, then $G$ is isomorphic to $U_{3}(3)$ . In our case, since $1(C(\tau))\leqq 6$, it
is easy to prove that $C(\tau)$ is solvable (for the detail, see P. Fong [6], pp.
$70\sim 71)$ . Hence $G\cong U_{3}(3)$ which contradicts our assumption (A).

LEMMA 5. $|S|>64$ .
PROOF. Suppose $|S|=64$ . Then $S$ is a maximal subgroup of $G$ . Therefore

in order to prove Lemma 5, it suffices to show the following lemma.
LEMMA 6. If the $S_{2}$-subgroup $S$ of a simple group $G$ has order 64, then

$S$ can not be maximal in G. (In this lemma we do not assume that $l(G)\leqq 7$).

PROOF. By way of contradiction, assume that there exists a simple group
$G$ whose $S_{2}$-subgroup $S$ has order 64 and is maximal in $G$ . Since $N(S)=S$ ,

Burnside’s splitting theorem shows that $S$ can not be abelian. If $G$ has only
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one conjugate class of involutions, then $G$ is a $(CIT)$ group in the sense of
M. Suzuki [21] and so $G$ is isomorphic to $PSL(2,2^{n}),$ $Sz(2^{n}),$ $PSL(2,9),$ $PSL(3,4)$

or $PSL(2, p)$ where $p$ is a Fermat prime or a Mersenne prime. In the groups
mentioned above, there exist no group with maximal $S_{2}$ -subgroups of order 64.
Therefore $G$ has at least two conjugate classes of involutions. We now soon
see that $S$ can not be dihedral or semi-dihedral. Moreover $S$ can not be iso-
morphic to an $S_{2}$-subgroup of the Mathieu group $M_{12}$ by a theorem of R. Brauer
and P. Fong [3].

Since $N(S)=S$, any two central involutions of $S$ are not conjugate with
each other in $G$ . Let $\tau$ be a central involution of $S$ . Then by a theorem of
G. Glauberman [9], $\tau$ must be fused with a certain non-central involution $\sigma$

of S. $S_{1}=C(\sigma)$ is an $S_{2}$-subgroup of $G$ which is different from $S$ . Since
$ S\cap S_{1}\supset Z(S)\ni\tau$ and $C(\tau)=S$, we have $ S\cap S_{1}\supset\langle Z(S), Z(S_{1})\rangle$ . If the group
$Z(S)\cap Z(S_{1})$ is non trivial, there exists an involution $\rho$ whose centralizer in $G$

contains two $S_{2}$-subgroups of order 64. This contradicts the maximality of $S$ .
Hence $S_{1}\cap S\supset Z(S)\times Z(S_{1})$ . In particular $|Z(S)|\leqq 4$ . Moreover, if $|Z(S)|=4$ ,
$Z(S)\times Z(S_{1})$ can be normal in neither $S$ nor $S_{1}$ . For if $T=Z(S)\times Z(S_{1})$ is
normal, say, in $S$ , then $N(T)=S$ by the maximality of $S$ . Hence $U=S\cap S_{1}$

is of order at least 32. Therefore $ N(U)\supset\langle S, S_{1}\rangle$ which is a contradiction.
Next we shall prove the following two statements.
[I] A central involution $\tau$ of $S$ is not fused with any involution a $(\neq\tau)$

of $Z_{2}(S)$ , where $Z_{2}(S)$ is the second term of the upper central series of $S$ .
[II] The nilpotent class of $S$ is at least three.
PROOF. [I] Suppose $\tau_{\sim}^{G}a\in Z_{2}(S)$ and put $S_{1}=C(a)$ . Then $S_{1}$ is an $S_{2}-$

subgroup of $G$ . Since $C_{s}(a)\supset S^{\prime}([S^{\prime}, Z_{2}(S)]=\{1\}),$ $S\cap S_{1}$ contains $S^{\prime}$ and is
normal in $S$ . Therefore we have $N(S\cap S_{1})=S$ so that $S=S_{1}$ . Since any two
central involutions are not conjugate with one another, we conclude $\tau=a$ .
[II] follows directly from [I] and a theorem of G. Glauberman [9].

Now we refer the list of 2-group of order 64 due to M. Hall and K. Senior
[14]. By a theorem of P. Fong [7] and by the above argument, $S$ must be a
2-group of exponent 4 and the nilpotent class of $S$ must be at least three.
$|Z(S)|$ must be less than 8 and $S$ must contain a subgroup isomorphic to $Z\times Z$

where $Z\cong Z(S)$ . Of 2672-groups of order 64, there are six groups which can
not be eliminated trivially from the knowledge of M. Hall and K. Senior’s list.
Those are $S_{12S},$ $S_{128},$ $S_{252},$ $S_{253},$ $S_{259},$ $S_{260}$ . Here $S_{i}$ is a 2-group of number $i$ in
the list of M. Hall and K. Senior.

We shall eliminate these six groups separately. In the following proof,
$\alpha_{1},$ $\alpha_{2}$ , , $\alpha_{6},$

$\beta_{1},$ $\beta_{2}$ are the same group elements as that of M. Hall and K.
Senior’s list.

We introduce new notation.
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$\Omega_{1}(X)\cdots\cdots$ a subgroup generated by all the elements of order $p$ in a
p-group $X$.

$ U^{1}(X)\cdots\cdots$ a subgroup generated by $x^{p}’ s$ where $x$ ranges over all the
elements in a $p$-group $X$.

(a) $S\cong S_{123}$ . $S$ has a maximal subgroup $ T=\langle\beta_{2}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\rangle$ which is
isomorphic to $Z_{2}\times Z_{2}\times D_{8}$ . All involutions of $S$ are contained in $T$. By Lemma
16 which will be stated in \S 4, any element $\rho_{1}\in S-T$ has to be fused with an
element $\rho_{2}\in T$. If so, $\rho_{1}^{2}$ is fused with $\rho_{2}^{2}$ In particular $\alpha_{5}^{2}=\alpha_{8}^{\theta}\sim\alpha_{1}$ , for
$ O^{1}(T)=\langle\alpha_{1}\rangle$ . Since $\alpha_{3}\in Z_{2}(S)$ , this is impossible by [I].

(b) $S\cong S_{128}$ . $Z(S)$ is a four-group and $S$ has only one elementary abelian
group of order 16. That is $ T=\langle\beta_{2}, \alpha_{1}, \alpha_{2}, \alpha_{3}\rangle$ . Hence $T\triangleleft S$ . As remarked
earlier this is impossible.

(c) $S\cong S_{252}$ . $S$ contains a maximal subgroup $ T=\langle\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{6}\rangle$ which
contains all the involutions of $S$ . As in the case of $S=S_{128}$ we have $\alpha_{6}^{2}=\alpha_{5}$

$\sim a_{\alpha}\in U^{1}(T)=\langle\alpha_{1}, \alpha_{2}\rangle$ . Since $\alpha_{2}^{s}\sim\alpha_{1}\cdot\alpha_{2}$ , we may assume that $\alpha_{6}^{G}\sim\alpha_{1}$ , or
$\alpha_{5}^{\theta}\sim\alpha_{2}$ . Suppose $\alpha_{5}^{G}\sim\alpha_{1}$ and take an element $x$ of $G$ such that $\alpha_{6}^{x}=\alpha_{1}$ and
$C_{S}(\alpha_{5})^{x}\subset S$ (Lemma 14, \S 4). Then $(C_{S}(\alpha_{5})^{\prime})^{x}=(\langle\alpha_{1}, \alpha_{2}, \alpha_{5}, \alpha_{6}\rangle^{\prime})^{x}=\langle\alpha_{1}\rangle^{x}\subset\Omega_{1}(S$

‘
$)$

$=\langle\alpha_{1}, \alpha_{2}\rangle$ . Therefore $\alpha_{1}^{x}=\alpha_{2}$ or $\alpha_{1}\cdot\alpha_{2}$ . Since $\langle\alpha_{1}, \alpha_{2}\rangle\subset Z_{2}(S)$ , this is impos-
sible by [I]. Next suppose $\alpha_{5}^{G}\sim\alpha_{2}$ and take an element $y$ such that $\alpha_{6}^{y}=\alpha_{2}$

and $C_{s}(\alpha_{5})^{y}\subset S$ . Then, since $\alpha^{y_{1}}\in\langle\alpha_{1}, \alpha_{2}\rangle$ , we have $\alpha^{y_{1}}=\alpha_{1}$ . Hence $y\in C(\alpha_{1})$

$=S$ which is clearly impossible.
(d) $S\cong S_{253},$ $S_{260}$ . Let $a$ be any involution of $S-Z_{2}(S)$ . Then we have

$ C_{S}(a)^{\prime}=\langle\alpha_{1}\rangle$ . Therefore if $\alpha_{1}$ is conjugate with $a$ in $G$ , then $\alpha_{1}$ is fused into
$\Omega_{1}(S^{\prime})-\{\alpha_{1}\}$ . This is not true, since $\Omega_{1}(S^{\prime})\subset Z_{2}(S)$ for both of $S_{253},$ $S_{260}$ .

(e) $S\cong S_{259}$ . There exist two types of involutions in $S-Z_{2}(S)$ . One is an
involution whose centralizer is isomorphic to $Z_{2}\times D_{8}$ . The other is one whose
centralizer is a unique elementary abelian 2-group of order 16. If a central
involution $\alpha_{1}$ .is fused with an involution $a$ of the former type, then there exists
an element $x\in G$ such that $C_{s}(a)^{x}\subset S$ and $a^{x}=\alpha_{1}$ . Since $ C_{s}(\sigma)^{\prime}=\langle\alpha_{1}\rangle$ and
$\Omega_{1}(S^{\prime})\subset Z_{2}$ , we have $\alpha_{1}^{x}\in Z_{2}(S)-\{\alpha_{1}\}$ , which is impossible by [I]. If $\alpha_{1}$ is
fused with the latter type of involution $\sigma$ , then $S_{1}=C(\sigma)$ is an $S_{2}$-subgroup of
$G$ and $S\cap S_{1}=C_{S}(a)$ is normal in $S$ . As remarked above, this is again
impossible.

Thus we have proved Lemma 6.
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Now we are able to give a final contradiction. By Lemma 5, we conclude
$|S|\geqq 128$ . Therefore 1 $(S)\geqq 7$ , contrary to our hypothesis on $G$ . Thus we have
proved our main theorem.

Next lemma which was stated in Introduction will be proved easily, if we
use the argument in the proof of our theorem especially of Lemma 6. We
omit the detail.

LEMMA 7. Let $S$ be an $S_{2}$-subgroup of a simple group G. If $S$ is not dihedral
and $|S|\leqq 64$, then $S$ cannot be maximal in $G$ .

\S 3. A characterization of $U_{3}(5)$ .
In this section we shall prove the following theorem.
THEOREM. Let $G$ be a finite group with the conditions;

(i) $G$ contains an involution $\tau$ whose centralizer $C(\tau)$ is isomorphic to $K_{5}^{\prime}$

(p. 659),
(ii) $G$ does not contain a normal subgroup of index 2.
Then $G$ is isomorphic to the simple group $U_{3}(5)$ .

Let $G$ be a finite group satisfying the conditions (i) and (ii). We first
prove several lemmas.

LEMMA 8. A Sylow 2-subgroup of $C(\tau)$ is also a Sylow 2-subgroup of $G$ .
All the involutions of $G$ are contained in a single conjugate class.

PROOF. Since the Sylow 2-subgroups of $C(\tau)$ are semi-dihedral, our asser-
tion is clear.

LEMMA 9. $G$ is simple.
PROOF. First we shall show that $G=[G, G]$ . By way of contradiction,

assume that $N$ is a normal subgroup of $G$ of prime index $p$ . By the condition
(ii), we have $p\neq 2$ . Let $S$ be a Sylow 2-subgroup of $N$, then $G=N(S)\cdot N$.
On the other hand, considering the structure of $C(\tau)$ , we easily see that $N(S)=S$ .
Therefore $G=N$. This is a contradiction.

Next assume that $N$ is a non trivial normal subgroup of $G$ . Then by the
previous argument the factor group $G/N$ must be non solvable. If a Sylow
2-subgroup $\overline{S}$ of $G/N$ has order 4, then there exists an element $\overline{x}$ of order 3
in $G/N$ such that $\overline{S}^{\overline{x}}=\overline{S}$ . Therefore $N(S)>S$ for a Sylow 2-subgroup $S$ of $G$ .
This is impossible. Hence $N$ is a solvable group (note that $|S|=16$). Therefore
we may assume that $N$ is an elementary abelian p-group $P(p\neq 2)$ . We easily
see that there exists an involution $\tau_{1}$ such that $C(\tau_{1})\cap P>1$ . We may assume
$\tau_{1}=\tau$ . Considering the structure of $C(\tau)$ , we see that $C(\tau)\cap P$ is a cyclic
subgroup of order 3 or 5. Since $C(\tau)\cap P$ is invariant by $C(\tau)$ , there exists an
element of order 4 in $C(\tau)$ which centralizes $C(\tau)\cap P$. This again contradicts
with the structure of $C(\tau)$ . Thus we have proved our lemma.
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Since the Sylow 2-subgroup of $G$ is semi-dihedral, we can apply a theorem
of R. Brauer which is previously stated in \S 2, pp. 659\sim 660. We use the same
notation as there.

LEMMA 10. For our group $G$ we have $m=5$ and $|G|=2^{9}\cdot 3^{2}\cdot 5^{2}\cdot\frac{x_{1}(x_{1}+\delta_{1})}{(x_{1}-5\delta_{1})^{2}}$ .
PROOF. Since $m=p=5$ , our assertion is clear from \S 2, (7).
LEMMA 11. Denote by $v_{p}(a)$ the exact exponent with which $p$ divides $a$ .

Then
(i) if $v_{5}(|G|)=1$ , then $|G|=2^{4}\cdot 3^{2}\cdot 5\cdot 7\cdot 17=85,680$,

(ii) if $v_{5}(|G|)=2$ , then $|G|=2^{4}\cdot 3^{2}\cdot 5^{2}\cdot 19=68,400$ ,

(iii) if $v_{5}(|G|)\geqq 3$ , then $|G|=2^{4}\cdot 3^{2}\cdot 5^{3}\cdot 7=126,000$ .
PROOF.
(i) As $x_{1}(x_{1}+\delta_{1})$ divides $|G|$ (\S 2, (1)), $(x_{1}-5\delta_{1})^{2}$ is a factor of $2^{9}\cdot 3^{2}\cdot 5^{2}$ .

As $v_{2}(x_{1}+\delta_{1})=1$ by \S 2, (5), we have $x_{1}-5\delta_{1}=2^{a}$ 5 $\cdot$ $a$ where $a=1$ or 3. Hence
$\chi_{1}=40a+5\delta_{1}$ . On account of \S 2, (6) we have

$-5^{z}(\delta_{1}+x_{1})\equiv 0mod (x_{1}+5^{2}\delta_{1})$ .
Since

$-5^{2}(\delta_{1}+x_{1})=-5^{2}(x_{1}+5^{2}\delta_{1})+5^{2}(5^{2}-1)\delta_{1}$ ,

we have
$24\equiv 0mod (8a+6\delta_{1})$ .

Hence $a=1,$ $\delta_{1}=-1$ . Hence $|G|=2^{4}\cdot 3^{2}\cdot 5\cdot 7\cdot 17$.
(ii) By Lemma 10, we have $v_{5}(x_{1})=2$ or $0$ . If $v_{6}(x_{1})=2$, then $x_{1}=2^{3}\cdot 5a$

$+5\delta_{1}\equiv 0(mod 25)$ , where $a=1$ or 3. Hence $a=3,$ $\delta_{1}=1$ . This forces $v_{5}(x_{1})=3$

which contradicts with $v_{5}(|G|)=2$ . Therefore $v_{5}(x_{1})=0$ . Hence $x_{1}=2^{s}\cdot a+5\delta_{1}$ ,

where $a=1$ or 3. On account of \S 2, (6) we have $24\equiv 0(mod 2^{3}\cdot a+30\delta_{1})$ .
Therefore $a=3,$ $\delta_{1}=-1$ and $|G|=2^{4}\cdot 3^{2}\cdot 5^{2}\cdot 19$ .

(iii) On account of the formula

$|G|=2^{9}\cdot 3^{2}\cdot 5^{2}\cdot\frac{x_{1}(x_{1}+\delta_{1}}{(x_{1}-5\delta_{1})}2)_{-}$

we have $v_{5}(x_{1})\geqq 3$ .
On the other hand $x_{1}-5\delta_{1}\leqq 2^{3}\cdot 3\cdot 5=120$ . This forces $x_{1}=125$ and $\delta_{1}=1$ .

Hence $|G|=2^{4}\cdot 3^{2}\cdot 5^{3}\cdot 7$ .
LEMMA 12. The cases (i) and (ii) of Lemma 11 can not occur.
PROOF. Using the Sylow’s theorem and comparing the structure of $C(\tau)$ ,

we can prove that $G$ is not simple. The details of the computation are omitted.
(Remark. In his paper [13] M. Hall has announced that there exist no simple
groups of orders $2^{4}\cdot 3^{2}\cdot 5\cdot 7\cdot 17$ and $2^{4}\cdot 3^{2}\cdot 5^{2}\cdot 19$).

LEMMA 13. $G$ is a group satisfying the following properties;
(i) $G$ is a doubly transitive permutation group on $\Omega$ of 126 letters,

(ii) $lhe$ subgroup $H$ consisting of all the elements leaving a fixed letter $\alpha$

invariant contains a normal subgroup $Q$ which is regular on $\Omega-\{\alpha\}$ ,
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(iii) $H/Q$ is a cyclic group of order 8.
PROOF. First we consider the order of the normalizer of a Sylow 5-sub-

group $Q$ of $G$ . Since $|G|=2^{4}\cdot 3^{z}\cdot 5^{3}\cdot 7$ , we have $|Q|=5^{3}$ . As $G$ has an ir-
reducible character $X_{1}$ of 5-defect $0$ , there exists another Sylow 5-subgroup $Q_{1}$

such that $Q\cap Q_{1}=\{1\}$ (J. A. Green [12]). Therefore $n_{5}=|G|/|N(Q)|\geqq 125+1$ .
By Sylow’s theorem we have two possibilities $n_{5}=2^{4}\cdot 3\cdot 7$ or 2. $3^{2}\cdot 7$ . Assume
$n_{5}=2^{4}\cdot 3\cdot 7(i. e. |N(Q)|=3\cdot 5^{3})$ . Then since $n_{5}\neq^{-}1(mod 25)$ , there exist two
Sylow 5-group $Q_{1}$ and $Q_{2}$ such that $|Q_{1}\cap Q_{2}|=25$ . Put $L=Q_{1}\cap Q_{2}$ and $M=N(L)$ .
Then $M/L$ contains at least two Sylow 5-subgroups. Let $\overline{Q}$ be a Sylow 5-group
of $M/L$ . Then $compar1-.\backslash _{\rightarrow g}$ the structure of $N(Q),$ $M/L$ has a normal 5-com-
plement. We easily $se\vee\neg$ that $\overline{Q}$ centralizes every Sylow $p$-subgroup of $M/L$

for $p=2,3$ and 7. This is clearly impossible. We have thus shown $n_{5}=126$ .
Therefore $G$ can be regarded as a permutation group on 126 Sylow 5-subgroups
under conjugation. Since there exist two Sylow 5-subgroups $Q,$ $Q_{1}$ such that
$Q\cap Q_{1}=\{1\},$ $G$ is doubly transitive. Therefore (i) and (ii) of Lemma 13 are
proved. Put $N(Q)=K\cdot Q,$ $K\cap Q=\{1\}$ . Then $K$ is a stabilizer of two letters
(two Sylow 5-groups). By the double transitivity of $G$ , there exists an involu-
tion $w$ normalizing $K$. Therefore $K$ is a cyclic group or a quaternion group
(note that $\langle w,$ $K\rangle=S$ ). As 8 X 124, the unique involution $\tau$ of $K$ commutes
with a certain element $\pi\neq 1$ of $Q$ . Let $Q_{0}=C(\tau)\cap Q$ , then $|Q_{0}|=5$ and $K$

normalizes $Q_{0}$ . Since every element of order 4 does not commute with a
2-regular element of $G,$ $K$ must be cyclic. Thus all the assertions are proved.

In [15], we have shown that a finite group satisfying the condition (i), (ii),

(iii) of Lemma 13 is isomorphic to $U_{8}(5)$ . Thus we have proved our theorem.

\S 4. Lemmas on $S_{2}$-subgroups of finite groups.

Let $G$ be a finite group of even order and $S$ be one of the Sylow 2-sub-
groups of $G$ . We fix $S$ once for all. Let $x$ be an element of $S$ and $K$ be the
conjugate class of $G$ which contains $\chi$ . Put $K_{1}=S\cap K$.

DEFINITION. An element $y$ of $K_{1}$ is called an extreme element if $|C_{s}(y)|$

$\geqq|C_{s}(z)|$ for every $z\in K_{1}$ . (R. Brauer [2].)

LEMMA 14. If $y$ is an extreme element of $S$ , then $C_{s}(y)$ is a Sylow 2-sub-
group of $C(y)$ . Furthermore, for every element $x\in K_{1}$ there exists an isomor-
phism $\theta$ of $C_{s}(x)$ into $C_{s}(y)$ such that $x^{\theta}=y$ .

PROOF. Using Sylow’s fundamental theorem, we easily get our lemma.
LEMMA 15. If a 2-element $x$ of $G$ normalizes the center $Z(S)$ of $S$, then $\chi$

centralizes $Z(S)$ .
PROOF. Since $N(Z(S))/C(Z(S))$ is a group of odd order, we have our lemma.
LEMMA 16. If an element $x$ of $S$ is not fused with any element of a

maximal subgroup $M$ of $S$ and $X^{2}n$ is not fused with any element of $S-M$ for
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every $n\geqq 1$ then the index $[G;G^{\prime}]$ is even.
PROOF. Consider the transfer mapping $T$ from $G$ into $S/M$. Then the

image $xT$ of $x$ is
$xT\equiv\prod_{i=1}^{r}x_{i}x^{n_{i}}x_{i}^{-1}(mod M)$ ,

where $\sum_{i=1}^{r}n_{i}=[G:S],$ $n_{i}(1\leqq i\leqq r)$ is the least integer such that $x_{\iota^{\chi^{n}\iota_{X_{i}^{-1}}}}$ is
contained in $S$ and $\{x_{i}(1\leqq i\leqq r)\}$ is a subset of one of the representatives of
the coset space $G/S$ . Since $x$ is a 2-element, $n_{i}$ is a power of 2 $(1\leqq i\leqq r)$ .
By the condition on $x$ , if $n_{i}\geqq 2$ then $x_{i}x^{n_{i}}x_{i}^{-1}\in M$. Hence

$xT\equiv\Pi^{\prime}x_{i}xx_{i}^{-1}(mod M)$ ,

where the product ranges on all $i$ such that $n_{i}=1$ . Since $x_{i}xx_{i}^{-1}\in S-M$, we
can put $x_{i}x\chi_{t}^{-1}=xm_{i}$ where $m_{i}\in M$. Hence

$xT\equiv x^{s}(mod M)$ ,

where $s=\sum_{?.=I}^{f}n_{i}-\sum_{??_{i}\geqq 2}\prime n_{i}$ . Since $\sum_{i=1}^{r}n_{i}$ is odd, $s$ is odd. Therefore the homo-

morphism $T$ of $G$ into $S/M$ is non-trivial. This follows our lemma.
COROLLARY 1 (Thompson). If an involution $x$ of $S$ is not fused with any

involution of a maximal subgroup $M$ of $S$ , then the index $[G:G^{\prime}]$ is even.
COROLLARY 2. Let $M$ be a maximal subgroup Of S. If the order of every

element of $M$ is less than the order of every element of $S-M$, the index
$[G:G^{\prime}]$ is even.

DEFINITION. A non-abelian 2-group $T$ is called a generalized dihedral
group if $T$ contains an abelian subgroup $A$ of index 2 such that the order of
every element of $T-A$ is 2.

DEFINITION. A 2-group $T$ is called a DE-group if $T$ is a direct product
of a dihedral group with an elementary abelian group.

LEMMA 17. If $S$ is a generalized dihedral group, then the index $[G:G^{\prime}]$

is even or $S$ is a DE-group.
PROOF. Let $M$ be a maximal abelian subgroup of $S$ . Then $[S:M]=2$

and every element of $S-M$ is of order 2. If $a\in S-M$, then $a$ induces an
automorphism of $M$ which inverts every element of $M$. Suppose that $S$ is not
a DE-group. Then $M$ is an abelian group of type $(n_{1}, n_{2}, \cdots , n_{s})$ where $n_{1},$ $n_{2}>2$ .
Furthermore assume that the index $[G:G^{\prime}]$ is odd. Then $a$ is fused with an
involution of $M$ by Corollary 1. Since every involution of $M$ is a central
involution of $S$ , the centralizer $C(a)$ of $a$ in $G$ contains a Sylow 2-subgroup of
$G$ . Let $T$ be a Sylow 2-subgroup of $C(a)$ such that $T\supset C_{S}(a)$ . Since $Z(T)$ is
an clementary abelian group of order $2^{s}$ and $C_{s}(a)$ is an elementary abelian
group of order $2^{s\cdot\vdash 1}$ , we can conclude $Z(T)\subset C_{S}(a)$ by the structure of $T$. Let
$Z$ be a subset of $Z(,S)$ defined as follows;
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$Z=$ {$z\in Z(S)|$ there exists an element $y$ of $M$ such that $y^{2}=z$ }.

Then $Z$ is a subgroup of $Z(S)$ and $|Z|\geqq 2^{2}$ . Hence $Z\cap Z(T)>1$ . Let $z\in Z$

$\cap Z(T)$ and $y^{2}=z$ . Then $y$ normalizes $Z(T)$ but does not centralize $Z(T)$ , for
$a^{y}=y^{-1}ay=ay^{2}=az\in Z(T)$ . By Lemma 15 this is impossible.

LEMMA 18. If $S$ contains a maximal subgroup $M$ which is elementary
abelian then the index $[G:G^{\prime}]$ is even or $S$ is a DE-group.

PROOF. Suppose $S$ is not a DE-group and the index $[G:G^{\prime}]$ is odd. Then
$S-M$ contains at least one involution by Corollary 2. Let $a$ be an involution
of $S-M$. Then $a$ induces an automorphism of $M$ of order 2. If $z^{a}\neq z$ for
some element $z$ of $M$ then $\langle z, a\rangle$ is a dihedral group of order 8, and $\langle z^{a}, z\rangle$

is an a-invariant four-group. Next we shall prove that $M$ has the form;

$M=\langle z_{1}^{a}, z_{1}\rangle\times\langle z_{2}^{a}, z_{2}\rangle\times\cdots\times\langle z_{s}^{a}, z_{s}\rangle\times W$

where $W$ is a subgroup of $Z(S)$ . Indeed, since every involution of $GL(r\iota, 2)$

$(|M|=2^{r\iota})$ is conjugate with
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our assertion is clear. If $[M:Z(S)]=2$, then $M=\langle z_{1}^{a}, z_{1}\rangle\times W$. Therefore,
since $S$ is not a DE-group, $[M:Z(S)]\geqq 2^{2}$ . If an element $az,$ $z\in M$, is of order
4, then $(az)^{2}=z^{a}z\in Z(S)$ . Since the index $[G:G^{\prime}]$ is odd, $(az)^{2}$ is fused with
a certain involution $b$ of $S-M$ by Lemma 16. We may take $a=b$ . Let $S_{1}$ be
a Sylow 2-subgroup of $C(a)$ such that $ S_{1}\supset C_{S}(a)=\langle a, Z(S)\rangle$ . If $C_{S}(a)\supset Z(S_{1})$ ,
then $ Z(S_{1})=\langle a, T_{1}\rangle$ where $T_{1}\subset Z(S)$ and $[Z(S):T_{1}]=2$ . Put $ M_{1}=\langle z_{1}^{a}, z_{1}\rangle$

$\times\langle z_{2}^{a}, z_{2}\rangle\times\cdots\times\langle z_{s}^{a}, z_{s}\rangle$ . Then $|Z(S)\cap M_{1}|\geqq 2^{2}$ , because $s\geqq 2$ . Hence $Z(S)$

$\cap M_{1}\cap T_{1}>1$ . Take $z\in Z(S)\cap M_{1}\cap T_{1}$ and write $z=yy^{a}$ . Then $y$ normalizes
$\langle a, T_{1}\rangle=Z(S_{1})$ but does not centralize $Z(S_{1})$ , this is impossible by Lemma 15.
Therefore $\langle a, Z(S)\rangle\cdot Z(S_{1})$ is an elementary abelian 2-group which contains
$\langle a, Z(S)\rangle$ properly. Put $ T_{2}=\langle a, Z(S)\rangle$ . Consider the groups $N(T_{2})/C(T_{2})$ and
$C(T_{2})$ . We have proved that $|C(T_{2})|_{2}\geqq 2^{2}\cdot|Z(S)|$ . Since $ Z=\langle z_{1}, z_{2}, \cdot.. , z_{r}\rangle$

$\subset N(T_{2})$ and $Z\cap C(T_{2})=1$ , we get $|N(T_{2})/C(T_{2})|_{2}\geqq 2^{r}=[M:Z(S)]$ . Hence
$|G|_{2}\geqq 2^{2}\cdot|M|>|S|$ . This is impossible. ( $|C(T_{2})|_{2}\cdots$ denotes the exact ex-
ponent with which 2 divides $|C(T_{2})|\cdots.)$

LEMMA 19. Suppose that the Frattini subgroup of $S$ is cyclic. If for every
elemenl $a$ of $S,$ $C_{S}(a)$ is not elementary then $Z^{*}(G)\supset\Omega_{1}(D(S))$ .
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PROOF. Leta be an element of order4. $Thena^{2}\in D(S)$ . $SinceD(S)iscyclic$,
$a^{2}$ is the unique generator $z$ of $\Omega_{1}(D(S))$ . If $Z^{*}(G)$ ]$\supset\Omega_{1}(D(S))$ then $z$ is con-
$jugatewithsomeelementb\neq zofS$ . By Lemma14, there exists an isomorphism
$\theta$ from $C_{S}(b)$ into $S$ such that $b^{\theta}=z$ . Since $C_{S}(b)$ is not elementary $C_{s}(b)$ contains
an element $a$ of order 4. If $a^{\theta}=y$ then $(a^{2})^{\theta}=z^{\theta}=y^{2}=z$ . This is a contra-
diction.

DEFINITION. An extra-special 2-group $S$ is defined as follows: $S$ is a
2-group such that $[S, S]=D(S)=Z(S)$ and all are of order 2.

COROLLARY 4. If $S$ is an extra special 2-group, then $S$ is a dihedral group
of order 8, or $Z^{*}(G)\supset Z(S)$ .

PROOF. If $Z^{*}(G)$ ]$\supset Z(S)$ , then for some element $a,$ $C_{S}(a)$ is elementary by
Lemma 19. Since $S$ is an extra-special 2-group we have $[S:C_{S}(a)]=2$ .
Therefore $|Z(S)|\geqq\sqrt{}|C_{S}\neg(a)$ (refer the proof of Lemma 18). Hence $|C_{s}(a)|=4$

and $S$ is a dihedral group of order 8.
Nagoya University
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Added in proof. The statement [II] on page 663 is a special case of a theorem of
Deskins. Our proof, however, depends upon a theorem of Glauberman.

Errata. After galley proof was ready, Professor D. Gorenstein pointed out a gap
in my paper [15]. Therefore ‘ $U_{3}(5)$ ’ of Theorem 1 should be chainged into ‘ a simple
group of order 126,000 satisfying the condition of Lemma 13 .
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