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Introduction.

This paper is the continuation of the previous one [8], in which we have
investigated the (co)homology structure of an $n(\geqq 2)$-dimensional complete and
connected Riemannian manifold $M$ of class $C^{\infty}$ satisfying the conditions:

(d) there exists a point $p$ such that all geodesics starting from $p$ are geo-
desic loops,

(e) these geodesic loops are all of the same length 21.
The point $p$ in the condition (d) is called the basic point and the constant 21
in the condition (e) is called the loop length. We may normalize suitably the
Riemannian metric tensor in such a way that the maximum of the sectional
curvature of $M$ is equal to 1, since $M$ is necessarily compact in our case.
Then the loop length 21 is greater than or equal to $\pi$ . The purpose of the
present paper is to investigate the isometric structure of $M$ under the most
standard restrictions, that is, to prove the following

THEOREM. Let $M$ be an $n(\geqq 2)$-dimensional complete and connected Rie-
mannian manifold satisfying the conditions (d) and (e), and suppose that the
maximum of the sectional curvature is equal to 1.

(1) If $l=\pi/2$ , then $M$ is isometric to an n-dimensional real projective space
$PR^{n}(1)$ with constant curvature 1.

(2) If $\pi/2<1<\pi$ , then $M$ has the same homology group as that of $PR^{n}$

and the universal covering manifold of $M$ is homeomorphic to a sphere.
(3) If $ l=\pi$ in an odd dimensional simply connected $M$, then $M$ is isometric

to an n-dimensional sphere $S^{n}(1)$ with constant curvature 1.
In \S 1, we recall the fundamental theorem obtained in the previous paper

[8] and prepare some results and notations for the later use. In \S 2, we shall
obtain a sufficient condition under which $M$ is isometric to a sphere, and in
the last section we shall prove the main theorem stated above.

\S 1. Preliminaries.

Throughout the paper, we assume that an $n(\geqq 2)$-dimensional complete and
connected Riemannian manifold $M$ satisfies the conditions (d) and (e) mentioned
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in the introduction. We refer to [8] for properties of $M$ summarized in this
section. Let $\gamma$ be a geodesic loop at $p$ parametrized by arc length in such a
way that $\gamma(0)=p$ . We denote by $\rho(X, Y)$ the plane section spanned by two
vectors $X$ and $Y$ belonging to the tangent space $T(M)_{x}$ and $G_{H}$ the union of
all sets $G_{x},$ $x$ being an arbitrary point of $M$. For a geodesic loop $\gamma$ , we denote
by $G_{\gamma(S)}$ the set of all plane sections $\rho(\gamma^{\prime}(s), Y(s))$ at $\gamma(s),$ $Y(s)$ being an arbi-
trary vector field along $\gamma$ , where $\gamma^{\prime}(s)$ is the tangent vector of $\gamma$ at $\gamma(s)$ . We
denote by $K(\rho)=K(X, Y)$ the sectional curvature corresponding to a plane
section $\rho=\rho(X, Y)$ , which is given by $K(X, Y)=-g(R(X, Y)X,$ $Y$ )$/\{g(X, X)$

$g(Y, Y)-g(X, Y)^{2}\}$ , where $g$ and $R$ denote the Riemannian metric tensor and
the Riemannian curvature tensor on $M$, respectively. Let $K(M)$ be the set of
all sectional curvatures $K(\rho),$

$\rho$ being an arbitrary plane section. In the sequel,
we normalize the Riemannian metric tensor in such a way that the relation
$K(\rho)\leqq 1$ for $\rho\in G_{M}$ holds. Then we see easily that the conjugate distance
from a point to its first conjugate point is greater than or equal to $\pi$ . We
denote by $Q(p)$ the locus of the first conjugate points of $p$ and by $C(p)$ the
cut locus, $i$ . $e.$ , the locus of the minimal points of $p$ along all geodesic loops

emanating from $p$ , respectively.
It has been proved in [8] that $M$ is simply connected or the fundamental

group $\pi_{1}(M)$ is of order 2. Concerning the relation between the fundamental
group and the index of geodesic loops at $p$ , we proved in [8]

THEOREM A. Let $M$ be an $n(\geqq 2)$ -dimensional complete and connected Rie-
mannian manifold satisfying the conditions (d) and (e).

(1) All geodesic loops at $p$ are of the same index, which is equal to or less
than $n-1$ .

(2) There exists a geodesic loop at $p$ of index zero if and only if the
fundamental group of $M$ is of order 2.

(3) There exists a geodesic loop at $p$ of positive index if and only if $M$ is
simply connected.

Concerning the (co)homology structure of $M$ determined in the previous
paper [8], we can state the following

THEOREM B. Let $M$ be an $n(\geqq 2)$ -dimensional complete and connected Rie-
mannian manifold satisfying the conditions (d) and (e).

(1) If $M$ is simply connected, then the integral cohomology ring $H^{*}(M, Z)$

is a truncated polynomial ring generated by a unique element.
(2) If $M$ is not simply connected, then $M$ has the same $(co)homology$ group

as that of $PR^{n}$ and the universal covering manifold of $M$ is homeo-
morphic to a sphere.

According to the cohomology theory (Adams [1] and Adem [2]), if the
integral cohomology ring is a truncated polynomial ring generated by a unique



650 H. $NAKAGA1\lambda A$

element of dimension $/^{\backslash _{t}}+1$ , then $\lambda$ is necessarily equal to 1, 3, 7 or $7l-1$ , where
$n$ should be equal to 16 in the case $\lambda=7$ . In particular, when $n$ is odd, $\lambda$

must be equal to $n-1$ .

\S 2. The isometric structure.

In this section we shall consider a complete Riemannian manifold $M$, in
which there exists a point $p$ such that the cut locus $C(p)$ consists of a single
point $q$ . It is easily verified that $M$ is compact and $C(q)$ consists also of a single
point $p$ . Thus, for the manifold $M$, the conditions (d) and (e) are satisfied and
the index of each geodesic loop at $p$ is equal to $n-1$ . Therefore $M$ is homeo-
morphic to a sphere. To determine the isometric structure of the manifold
$M$, we shall prove the following

LEMMA. If, in an $n(\geqq 2)$-dimensional complete and connected Riemannian
manifold $M$, there exists a point $p$ such that $C(p)$ consists of only one point $q$

and $d(p, q)$ , the distance between $p$ and $q$ , is equal to $\pi$ , then we get $K(\rho)=1$

for any geodesic loop $\gamma$ at $p$ and any plane section $\rho$ in $G_{\gamma}$ .
PROOF. We denote by $\overline{M}$ an n-dimensional sphere with constant curvature

1. Let $\overline{p}$ be an arbitrary but fixed point in $\overline{M}$ and $c_{p}$ an isometric isomorphism
of $T(M)_{p}$ onto $T(\overline{M})_{\overline{p}}$ . We define a mapping $f$ of $M$ onto $\overline{M}$ as follows: along
a geodesic loop $\gamma$ at $p$ , the mapping $f$ assigns to any point $\gamma(s)(0\leqq s<\pi)$ in
$M-\{q\}$ a point $\exp_{\overline{p}}(s\iota_{p}(\gamma^{\prime}(0)))$ in $\overline{M}-\{\overline{q}\}$ and to the point $q$ the fixed point $\overline{q}$ ,
which is an antipodal point of $\overline{p}$ . It is obvious that $f$ is bijective, and $f$

restricted to the domain $M-\{q\}$ is diffeomorphic. Hereafter any quantity in
$\overline{M}$ corresponding to a quantity $\beta$ in $M$ under the mapping $f$ is expressed by
the corresponding symbol $\overline{\beta}$ with “

–
’ We assume now that there exists a

point $y=\gamma(s_{1})(0\leqq s_{1}<\pi)$ on a geodesic loop $\gamma$ at $p$ and a plane section $\rho$ in
$G_{\gamma_{(s_{1})}}$ such that $K(\rho)<1$ . Then we define a mapping $\phi_{s}$ of $T(M)_{\gamma(S)}$ into $T(\overline{M})_{\overline{\gamma}(s)}$

as follows: for the geodesic $\overline{\gamma}(s)=f(\gamma(s))(0\leqq s<\pi),$ $\phi_{s}$ assigns to any tangent

vector $X$ in $T(M)_{\gamma(S)}$ a tangent vector $\overline{\tau}_{s}^{0}(c_{p}(\tau_{0}^{s}X))$ in $T(\overline{M})_{\overline{\uparrow}(s)}$ , where $\tau_{0}^{s}$ denotes
the parallel translation along $\gamma$ from $\gamma(s)$ to $\gamma(0)$ . Thus, the mapping $\phi_{s}$ is
given by $\phi_{s}=\overline{\tau}_{s}^{0}\circ t_{p}\circ\tau_{0}^{s}$ , which is necessarily an isometric isomorphism of
$T(M)_{\gamma(S)}$ onto $T(\overline{M})_{\overline{\gamma}(S)}$ . A mapping $\phi$ of $\mathfrak{X}(M)_{\gamma}$ into $\mathfrak{X}(\overline{M})_{\overline{\gamma}}$ is defined by $\phi X(s)$

$=\phi_{s}(X(s))$ for each vector field $X(s)$ along $\gamma$ , where $\mathfrak{X}(M)_{\gamma}$ is the vector space
consisting of all vector fields along $\gamma$ over the real number field. Calculating
the index form $I(X(s), X(s))$ for a vector field $X(s)$ orthogonal to $\gamma^{\prime}(s)$ , we get
easily $I(X(s), X(s))>I(\phi X(s), \phi X(s))$ along $\gamma([0, \pi])$ . Since there are no con-
jugate points of $p$ on $\gamma((0, \pi))$ and the multiplicity of $p$ and $q$ as conjugate
points is equal to $n-1$ , there is a non-zero Jacobi field $Y(s)$ along $\gamma$ such that
$Y(O)=Y(\pi)=0$ and $ Y(s_{1})\in\rho$ . Then, taking account of the fact that the Jacobi
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field $Y(s)$ along $\gamma$ is orthogonal to $\gamma^{\prime}(s)$ , we get $I(Y(s), Y(s))=0$ along $\gamma([0, \pi])$ ,

and combining together two results obtalned above, we get $I(\phi Y(s), \phi Y(s))<0$ .
By means of the isometric property of $\phi_{s}$ , we have $\phi Y(O)=\phi Y(\pi)=0$ . Con-
sequently, for a l-parameter variation $\alpha(t, s)=\exp_{\overline{\gamma}(\delta)}(t\phi Y(s))(-\epsilon<t<\epsilon,$ $0\leqq s$

$\leqq\pi)$ of $\overline{\gamma}$ with variation vector field $\phi Y(s)$ , there is a variation curve whose
length is less than that of $\overline{\gamma}([0, \pi])$ . This contradicts the choice of the seg-
ment $\gamma$ . Consequently we get $K(\rho)=1$ for each $\rho$ in $G_{r_{(s_{1})}}(0\leqq s_{1}<\pi)$ . By
means of the continuity of the Riemannian curvature, Lemma is proved com-
pletely.

Taking account of the lemma mentioned above, we shall prove the fol-
lowing

THEOREM. If, in an $n(\geqq 2)$ -dimensional complete and connected Riemannian
manifold $M$, there exists a point such that $C(p)$ consists of only one point $q$ and
$ d(p, q)=\pi$ , then $M$ is isometric to an n-dimensional sphere $S^{n}(1)$ with constant
curvature 1.

PROOF. In order to prove the theorem, it is sufficient to show that $f$ is
distance-preserving, that is, it satisfies $d(x, y)=d(f(x), f(y))$ for arbitrary two
points $x$ and $y$ in $M[7]$ . For any point $x$ in $M-\{q\}$ , let $\gamma$ be a geodesic loop
at $p$ passing through $x$ such that $x=\gamma(s)$ . Let $U(p, \pi)$ be an open ball in
$T(M)_{p}$ with center at the origin and with radius $\pi$ . Since the exponential
mapping $\exp_{p}$ has the maximal rank in $U(p, \pi)$ , there is a vector $A$ in
$T(T(M)_{p})_{s\gamma’(0)}$ such that $A=(d\exp_{p})^{-1}X$ for each vector $X$ in $T(M)_{x}$ . From
$f\circ\exp_{p}=\exp_{\overline{p}}\circ c_{p}$ , we get $\overline{g}(dfX, dfX)=\overline{g}(d\exp_{\overline{p}}(d\prime_{p}A), d\exp_{\overline{p}}(dc_{p}A))$ . Taking
account of the fact that $\exp_{\overline{p}}$ has the maximal rank in $C_{p}U(p, \pi)$ , and by vir-
tue of the lemma stated above, we can apply the Rauch’s comparison theorem
[10] for $M$ and $S^{n}(1)$ , and hence we get $\overline{g}(dfX, dfX)=g(X, X)$ . Thus $f$ re-
stricted to $M-\{q\}$ is an isometry. By means of the continuity of the distance
function this shows that $f$ is distance-preserving everywhere. This completes
the proof of the theorem.

REMARK 2.1. We see that if the first conjugate locus $Q(p)$ consists of a
single point $q$ which is different from $p$ , then conjugate distances at $p$ are
constant [9]. This implies that $C(p)$ consists also of only one point $q$ . Thus
the condition stated in the theorem is equivalent, for a simply connected $M$,

to the property that there is a point $p$ such that $Q(p)$ consists of a single
point.

REMARK 2.2. For a 2-dimensional ovaloid, we know the following Klingen-
berg’s theorem [6]: if, in a 2-dimensional compact and simply connected Rie-
mannian manifold $N$ with $0<K(N)\leqq 1$ , there exists a closed geodesic of length
$ 2\pi$ , then $N$ is isometric to a 2-dimensional sphere $S^{2}(1)$ with constant curvature
1. According to his proof, the theorem stated in this section is proved also
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in the case $n=2$ .
REMARK 2.3. We note here that $M$ is not necessarily assumed to be of

positive curvature. We know [3] that adding the suitable pinching condition,
a generalization of the Klingenberg’s theorem for the ovaloid is proved. Then
there is no need for the assumption of the structure concerning the cut locus
for the manifold.

REMARK 2.4. When in a 2-dimensional $M$ each point has its cut locus
consisting of a single point, $M$ is simply connected Wiedersehensfl\"ache [4] and
hence is isometric to $S^{2}(1)$ .

\S 3. The loop length.

In this section we shall prove the theorem stated in the introduction.
First of al!, we shall prove the following

THEOREM 3.1. If, in an $n(\geqq 2)$ -dimensional complete and connected Rieman-
nian manifold $M$ satisfying the conditions (d) and (e), the inequality $\pi/2\leqq 1<\pi$

holds, then $M$ has the same $(co)homology$ group as that of $PR^{n}$ and the uni-
versal covering manifold of $M$ is homeomorphic to a sphere $S^{n}$ .

PROOF. In order to prove this theorem, it is sufficient by virtue of the
second assertion of the fundamental theorem $B$ to show that $M$ is not simply
connected. We assume now that there is a geodesic loop $\gamma$ at $p$ such that
$\gamma(s^{\prime})(0<s^{\prime}<21)$ is a conjugate point of $p$ along $\gamma$ Then, in the inverse geo-
desic loop $\gamma^{-1}$ at $p$ defined by $\gamma^{-1}(s)=\gamma(2l-s)$ , the point $\gamma^{-1}(2l-s^{\prime})=\gamma(s^{\prime})$ is
also conjugate to $p=\gamma^{-1}(0)$ along $\gamma^{-1}$ , because of the condition (e). Accordingly
we have $ s^{f}\geqq\pi$ and $ 2l-s^{\prime}\geqq\pi$ and consequently $1\geqq\pi$ . This contradicts the
assumption $of_{i}the$ theorem. Thus all geodesic loops at $p$ are of index $0$ . By
means of the second assertion of Theorem $A$ , this means that $M$ is not simply
connected.

Taking account of the proof stated above and of the well known properties
of the cut $locus_{\overline{\&}’ 1}^{\tau}[5]$ , we find easily

LEMMA 3.2. If $1=\pi$ , then the distance from $p$ to each point in $C(p)$ is
equal to $\pi$ .

It played an essential role in the proof of Lemma in the section 2 that
$C(p)$ coincides with $Q(p)$ and the multiplicity is equal to $n-1$ . Taking account
of this fact and Lemma 3.2 and repeating the similar discussion to that de-
veloped in the proof of Lemma given in \S 2, we have

LEMMA 3.3. If $ l=\pi$ and there exisfs a geodesic loop at $p$ of index $n-1$ ,

then we get $K(\rho)=1$ for any geodesic loop $\gamma$ at $p$ and any plane section $\rho$ in G-,,.
Making use of Lemmas 3.2 and 3.3, we shall prove
THEOREM 3.4. If, an $n(\geqq 2)$ -dimensional complete and connected Riemannian
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manifold $M$ satisfying the conditions (d) and (e), there exists a geodesic loop at
$p$ of index $n-1$ and the equality $ l=\pi$ holds, then $M$ is isometric to an n-dimen-
sional sphere $S^{n}(1)$ with constant curvature 1.

PROOF. The theorem stated in \S 2 shows that in order to prove Theorem
3.4 it is sufficient to show that $C(p)$ consists of only one point. Because of
the condition (d), $c(p)$ contains at least one point, say $q$ . We assume now
that $C(p)$ does not coincide with $\{q\}$ . Then, taking account of the properties
of the cut locus, we see that for a sufficiently small number $\delta$ there is a
spherical neighbourhood $U$ with center at $q$ and with radius $\delta$ such that the
intersection of $U-\{q\}$ and $c(p)-\{q\}$ is not empty. For any point $x$ in
$U\cap C(p)-\{q\}$ , let $\sigma$ be a minimal geodesic segment joining $q$ and $x$ in such a
way that $\sigma(0)=q$ and $\sigma(t_{0})=x$ , and let $y$ be the point on $\sigma$ which is the closest
to $p$ . Taking a geodesic loop $\gamma$ at $p$ passing through $y$ , we put $y=\sigma(t_{1})=\gamma(s_{1})$

$(0\leqq t_{1}\leqq t_{0}, \pi-\delta<s_{1}\leqq\pi)$ . Then, by means of the property of Lemma 3.2 and
the Gauss’ lemma, we see that $\gamma$ is orthogonal to $\sigma$ at $y$ . We consider now a
l-parameter variation $\alpha$ of $\gamma$ defined by $\alpha(t, s)=\exp_{\gamma_{(S)}}(tX(s))$ , where $X(s)$

$=\sin(s/2)\tau_{s}^{\theta\rceil}\sigma^{\prime}(tl)$ . If we calculate the first variation $L^{\prime}(O)$ and the second
variation $L^{\prime\prime}(O)$ with respect to the variation $\alpha$ , and take account of the fact
that $X(s)$ is orthogonal to $\gamma$ , we get $L^{\prime}(O)=0$ and $L^{\prime\prime}(O)=(5\sin s_{1}-3s_{1})/8$ . $\delta$

being sufficiently small, we get the inequality $L^{\prime\prime}(O)<0$ .
On the other hand, the locus of final points of the variation $\alpha$ lies in the

segment $\sigma$ . This implies that $\exp_{p}U(p, s_{1})\cap\sigma=\{\phi\}$ , which means that $L(t)$

$\geqq L(O)$ for a sufficiently small $t$ . This contradicts $L^{\prime\prime}(0)<0$ . Thus $C(p)$ consists
of a single point $q$ . This completes the proof.

As a direct consequence of Theorem 3.4, we have
COROLLARY 3.5. If $1=\pi$ in a 2-dimensional simply connected $M$, then $M$ is

isometric to a 2-dimensional sphere $S^{2}(1)$ with constant curvature 1.
REMARK 3.1. Corollary 3.5 is closely related to Klingenberg’s theorem for

a 2-dimensional ovaloid mentioned in Remark 2.2.
In a simply connected $M$, the first assertion of Theorem $B$ shows that the

integral cohomology ring $H^{*}(M, Z)$ is a truncated polynomial ring generated
by a unique element of dimension $\lambda+1$ . In the case $n$ is odd, as remarked in
the section 1, $\lambda$ must be equal to $n-1$ . This implies that all geodesic loops
at $p$ are of index $n-l$ . Thus, as a direct consequence of Theorem 3.4, we have

COROLLARY 3.6. If $ l=\pi$ in an odd dimensional simply connected $M$, then
$M$ is isometric to an n-dimensional sphere $S^{n}(1)$ with constant curvature 1.

REMARK 3.2. It is well known that a complex (quaternion or Cayley) pro-
jective space with canonical Riemannian metric such that the maximum of
the sectional curvature is equal to 1 is an even dimensional simply connected
and complete Riemannian manifold satisfying the property that all geodesics
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are closed and of the same length $ 2\pi$ .
Therefore we can not remove from Corollary 3.6 the assumption that $M$

is of odd dimension. By means of the structure of these examples it seems
to the author that if, in an even dimensional complete, simply connected and
connected Riemannian manifold $M$ satisfying the conditions (d) and (e), the
equality $1=\pi$ holds, then $M$ might be isometric to one of the simply con-
nected symmetric spaces of rank 1 with canonical Riemannian metric such
that $1/4\leqq K(\rho)\leqq 1$ for any plane section $\rho$ .

Combining Theorems 3.1 and 3.4 together, we can prove
COROLLARY 3.7. If $1=\pi/2$ , then $M$ is isometric to an n-dimensional real

projective space $PR^{n}$ with constant curvature 1.
PROOF. Since Theorem 3.1 shows that $M$ is not simply connected, the

fundamental group of $M$ is of order 2. In order to prove the corollary, it is
sufficient to show that the universal covering manifold $\tilde{M}$ of $M$ is isometric
to $S^{n}(1)$ . We denote by $\{\tilde{p}_{1},\tilde{p}_{2}\}$ the inverse image of $p$ under the covering
mapping. Making use of the properties of covering spaces and of the given
assumptions, we see that $\tilde{M}$ satisfies the conditions (d) and (e) and that the
points $\tilde{p}_{1}$ and $\tilde{p}_{2}$ are basic and the loop length of $\tilde{p}_{i}$ is equal to $ 4l=2\pi$ .
Summing up, we know that $\tilde{M}$ satisfies the assumptions of Theorem 3.4.
Therefore $\tilde{M}$ is isometric to $S^{n}(1)$ . Thus Corollary 3.7 is proved.

Taking account of Theorem 3.1 and Corollaries 3.6 and 3.7 we complete
the proof of the theorem mentioned in the introduction.

Tokyo University of Agriculture and Technology
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