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Homogeneous complex hypersurfaces
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In this paper we classify those complex hypersurfaces of a complex space
form which are homogeneous spaces with respect to the induced Kihler struc-
ture. This is achieved in and we may observe that the local
classification is the same as that obtained for complex hypersurfaces with
parallel Ricci tensor (see Theorem 4[4]). In fact, is a local result
from which both classifications follow immediately. In proving [Theorem 1 we
need only draw on some of the basic properties of complex hypersurfaces, as
developed in [5], and the results on the holonomy of complex hypersurfaces
of §2 [4]

While contains the classification theorems of Chern [T], Nomizu
and Smyth [4], and a result of Takahashi [6], it should be noted that Koba-
yashi recently obtained a stronger result in the case where the ambient
space is complex projective space, to wit: any complete complex hypersurface
of constant scalar curvature in P"*(C) is a projective hyperplane or a quadric.

The questions examined here arose from discussions with Professor K.
Nomizu, for whose suggestions I am very grateful.

Let M be a complex n-dimensional manifold and let ¢ be a complex im-
mersion of M in a Kédhler manifold M of complex dimension n+1 and constant
holomorphic sectional curvature ¢ The Riemannian metric g induced on M
by ¢ is a Kidhler metric and all metric properties of M refer to this metric.
M will be called homogeneous (Riemannian) if the group of isometries of M
acts transitively on M ; we remark that it will not be necessary to assume
that M is homogeneous Kihlerian to obtain To each field & of
unit vectors normal to M (with respect to the immersion ¢) on a neighborhood
U(x,) of a point x,= M there is associated a symmetric tensor field A of type
(1, 1) on U(x,); A* is independent of the choice of & [5]. We shall use the
same notation as in [5].

LEMMA 1. The characteristic roots of A% are constant in value and multi-
plicity on M if either

a) M is homogeneous
ov b) the Ricci tensor of M is parallel.

Proor. a) The Ricci tensor S of M is given by
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S(X, Y)=—2g(AX, Y )+ (n+ 158 (X, V)

(see Corollary 3 and since S(f+X, f+Y)=S(X, Y) for every isometry f of
M it follows that f3'A% = A? on M. Since M is homogeneous this proves the
first part of the lemma.

b) In this case A? must also be parallel, in view of the above expression
for the Ricci tensor, and the result is immediate.

In the sequel, M will be any complex hypersurface of M on which the
characteristic roots of A? are constant in value and multiplicity. A will be
the second fundamental form of M corresponding to the unit normal field &
on U(x,) and 4, v will denote non-negative characteristic roots of A. For each

xe U(x,) we set
Ti=1{X e T{M)|AX=2X},

T, x0)={XeT,M)|AX=—-2X},

T:(x)=T;x)®T;(x), where 2 >0
and
T(x)={XeT M)|AX=0}.

In the lemmas that follow we will examine these distributions. X, Y and
Z will denote vector fields on U(x,). The components of a vector field X in
the distribution T3, T; (A1#0) and T, are denoted by Xj, X; and X, respec-
tively.

LEMMA 2. If XeT, and Y& T, then VY is orthogonal to T, provided
AFv.

Proor. We first suppose A >0and vy >0. If Xe T} and Y T}, Codazzi’s
equation

Vy(AY)—FV y(AX)—A[CX, Y )—s(X)JAY +s(Y)JAX =0
(see Corollary 3 [5]) becomes
W3 V= X— AW x Y —V y X)—vs(X)JY +As(Y )] X =0.

Considering the T j-component of this equation we find (F yY)j =0. Similarly
we obtain FyY);=0if Xe T} and Y T;. It follows that (F yY); =0 when
XeT; and YeT, and consequently that (FY);=—JFx(JY); =0 also.
Thus (F,Y);=0 when X< T} and Y& T,. The same reasoning shows that
P Y);=0 when X=T; and YT, and the lemma is proved when 2, v >0.
If either A or v is zero the same argument works with minor modifications.

LEMMA 3. If X, Y&T, then VyY T, In particular T, is involutive.

Proor. It suffices to show that g(yY,Z)=0 when Z< T, and v+ A.
But then g(Y, Z)=0 and this implies that

g(VXYt Z)+§(Y, VXZ):O.
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Now g(Y,V3Z)=0 in view of and so is proved.
LEMMA 4. If XeT,, YeT; and 2+#0 then FxY); :vles(X)jY.
PrROOF. Suppose X T, then Codazzi’s equation becomes

AV Y42V X—ALX, Y ]—2s(X)JY —As(Y)JX =0.

It follows that (VXY);:—%—s(X) JY and (VYX)}”:%—S(Y) JX when X e T; and
Y &Tj;. Using the fact that J is parallel we can easily infer from the latter

equation that (FyY); :_%“S(X )JY when Xe T3 and Y T7, and the lemma

is proved.

LEMMA 5. If Ze T is a unit vector field and 2+ 0 then K(Z)=ds(JZ, Z),
where K(Z) is the sectional curvature in M of the holomorphic plane generated
by Z.

Proor. If X, Y & T, then, using Lemmas 3 and 4 repeatedly, we obtain

7 xPyZ=V x(5-S(JZ+Tr2))
— L XN 245V 247 Ty 23
= %*X(S(Y))]Z —71,;S(X »s(Y)Z+ ~%—s()/) JV xZ)}

gy SCOJT 2+ 17 23
Since Z is a unit vector in T this equation yields
g0V 42, JZ)= 5 X((VY).

By virtue of Lemma 3 the distribution T; is involutive, so that [ X, Y]eT;
and from Lemma 4 we obtain

802 JZ)= 55X, V.
Thus
R(X, Y, ]Z, 2)= 5 (X((¥ )= Y(s(X)—=s(CX, ¥ D)=ds(X, V).

In particular, K(Z)=ds(JZ, Z).

THEOREM 1. Let M be a complex hypersurface of complex dimension n in
a space M of constant holomorphic curvature & and let the characteristic roots
of A? be constant in value and multiplicity on M. Then either M is of constant
holomorphic curvature & and totally geodesic in M, or M is locally holomor-
Dhically isometric to the complex quadric Q™ in P™*(C), the latter case arising
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only when ¢ > 0.

PROOF. If A?2=0 then M is totally geodesic in M and of constant holo-
morphic curvature & by virtue of Corollary 2 [5]. We may therefore assume
that the second fundamental form A on U(x,) has at least one positive charac-

teristic root 2, say. Let Z be a unit vector field in T}. In view of Lemma 5
and Corollary 2 [5] we have

@ ds(JZ, Z2)=K(Z) = —22*+¢.
However Corollary 3 [57 and Proposition 4 [5] yield

Sz, 2)= —20+ (-5,

and

S(Z, 2)= (n+2)-5-—245(JZ, 2),
so that
) ds(JZ, Zy= 2+

4

It follows from (1) and (2) that 22:—2—, which is impossible if ¢ <0 and gives
a contradiction when &=0.

If #>0 then all nonzero characteristic roots of A®> must equal fff. Assum-
_ &
T4
Corollary 3 [5]). However the complex quadric Q" in P**(C) (with the Fubini-
Study metric of constant holomorphic curvature ¢) is Einstein but not totally

geodesic and therefore A*=~F%J] on Q" for some positive constant k; from the

previous remark we see that E=-C. The argument used in Proposition 11
4

ing A? is nonsingular we have A? I on M and so M is Einstein (see

[5] may now be applied locally to show that M is locally holomorphically iso-
metric to Q. We now assume that A% is singular. A? has then precisely two

characteristic roots, 0 and % In view of Lemmas 2 and 3 the distributions

T, and T T are parallel, so that M is locally reducible. It follows from
4

Theorem 2 [4] that n must equal 2 and that M is locally holomorphically
isometric to Q% But then AZ::-QC;—I on M, which contradicts the assumption
that A? is singular.

If M is complete and locally holomorphically isometric to Q@ its Ricci
tensor is positive definite so that M is compact. By Kobayashi’s Theorem [2]
M is also simply connected and is therefore holomorphically isometric to Q".
Combining Lemma 1 with Theorem 1 we obtain

THEOREM 2. Let M be a complex hypersurface in a space M of constant
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holomorphic sectional curvature &. If M 1is homogeneous (resp.if M has parallel

Ricci tensor) then either M is of constant holomorphic sectional curvature & and

totally geodesic in M, or M is globally (resp. locally) holomorphically isometric
to the complex quadric Q™ in P™(C), the latter case arising only when ¢ > 0.

Since M is complete if it is homogeneous we have the following analogue
of Theorem 5 [4]

THEOREM 3. i) P™C) and the complex quadric Q" are the only homo-
geneous complex hypersurfaces in P"*(C).

ity D" (resp. C™ is the only homogeneous complex hypersurface in D™¥
(resp. C™).
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