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Homogeneous complex hypersurfaces
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In this paper we classify those complex hypersurfaces of a complex space
form which are homogeneous spaces with respect to the induced K\"ahler struc-
ture. This is achieved in Theorem 2 and we may observe that the local
classification is the same as that obtained for complex hypersurfaces with
parallel Ricci tensor (see Theorem 4 [4]). In fact, Theorem 1 is a local result
from which both classifications follow immediately. In proving Theorem 1 we
need only draw on some of the basic properties of complex hypersurfaces, as
developed in [5], and the results on the holonomy of complex hypersurfaces
of \S 2 [4].

While Theorem 1 contains the classification theorems of Chern [1], Nomizu
and Smyth [4], and a result of Takahashi [6], it should be noted that Koba-
yashi [3] recently obtained a stronger result in the case where the ambient
space is complex projective space, to wit: any complete complex hypersurface
of constant scalar curvature in $P^{n+1}(C)$ is a projective hyperplane or a quadric.

The questions examined here arose from discussions with Professor K.
Nomizu, for whose suggestions I am very grateful.

Let $M$ be a complex n-dimensional manifold and let $\phi$ be a complex im-
mersion of $M$ in a K\"ahler manifold $\tilde{M}$ of complex dimension $n+1$ and constant
holomorphic sectional curvature $ c\sim$ . The Riemannian metric $g$ induced on $M$

by $\phi$ is a K\"ahler metric and all metric properties of $M$ refer to this metric.
$M$ will be called homogeneous (Riemannian) if the group of isometries of $M$

acts transitively on $M$ ; we remark that it will not be necessary to assume
that $M$ is homogeneous K\"ahlerian to obtain Theorem 2. To each field $\xi$ of
unit vectors normal to $M$ (with respect to the immersion $\phi$) on a neighborhood
$U(x_{0})$ of a point $x_{0}\in M$ there is associated a symmetric tensor field $A$ of type
$(1, 1)$ on $U(x_{0});A^{2}$ is independent of the choice of $\xi[5]$ . We shall use the
same notation as in [5].

LEMMA 1. The characteristic roots of $A^{2}$ are constant in value and multi-
plicity on $M$ if either

a) $M$ is homogeneous
$or$ b) the Ricci tensor of $M$ is parallel.

PROOF. a) The Ricci tensor $S$ of $M$ is given by
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$S(X, Y)=-2g(A^{2}X, Y)+(n+1)\frac{c\sim}{2}g(X, Y)$

(see Corollary 3 [5]) and since $S(f_{*}X, f_{*}Y)=S(X, Y)$ for every isometry $f$ of
$M$ it follows that $f_{*}^{-1}A^{2}f_{*}=A^{2}$ on $M$. Since $M$ is homogeneous this proves the
first part of the lemma.

b) In this case $A^{2}$ must also be parallel, in view of the above expression
for the Ricci tensor, and the result is immediate.

In the sequel, $M$ will be any complex hypersurface of $\tilde{M}$ on which the
characteristic roots of $A^{2}$ are constant in value and multiplicity. $A$ will be
the second fundamental form of $M$ corresponding to the unit normal field $\xi$

on $U(x_{0})$ and $\lambda,$ $\nu$ will denote non-negative characteristic roots of $A$ . For each
$x\in U(x_{0})$ we set

$T_{\lambda}^{+}(x)=\{X\in T_{x}(M)|AX=\lambda X\}$ ,

$T_{\lambda}^{-}(x)=\{X\in T_{x}(M)|AX=-\lambda X\}$ ,

$T_{\lambda}(x)=T_{\lambda}^{+}(x)\oplus T_{\lambda}^{-}(x)$ , where $\lambda>0$

and
$T_{0}(x)=\{X\in T_{x}(M)|AX=0\}$ .

In the lemmas that follow we will examine these distributions. $X,$ $Y$ and
$Z$ will denote vector fields on $U(x_{0})$ . The components of a vector field $X$ in
the distribution $T_{\lambda}^{+},$ $T_{\lambda}^{-}(\lambda\neq 0)$ and $T_{\lambda}$ are denoted by $X_{\lambda}^{+},$ $X_{\lambda}^{-}$ and $X$, respec-
tively.

LEMMA 2. If $X\in T_{\lambda}$ and $Y\in T_{\nu}$ then $\nabla_{X}Y$ is orthogonal to $T\wedge,$ , provided
$\lambda\neq\iota)$ .

PROOF. We first suppose $\lambda>0$ and $v>0$ . If $X\in T_{\lambda}^{+}$ and $Y\in T_{\nu}^{\perp}$ , Codazzi $s$

equation
$\nabla_{X}(AY)-\nabla_{Y}(AX)-A([X, Y])-s(X)JAY+s(Y)JAX=0$

(see Corollary 3 [5]) becomes

$\iota)\nabla_{X}Y-\lambda\nabla_{Y}X-A(\nabla_{X}Y-\nabla_{Y}X)-1)s(X)JY+\lambda s(Y)JX=0$ .
Considering the $T_{\lambda}^{+}\cdot component$ of this equation we find $(\nabla_{X}Y)_{\lambda}^{+}=0$ . Similarly
we obtain $(\nabla_{X}Y)_{\lambda}^{+}=0$ if $X\in T_{\lambda}^{+}$ and $Y\in T_{\nu}^{-}$ . It follows that $(\nabla_{X}Y)_{\lambda^{\vdash}}=0$ when
$X\in T_{\lambda}^{+}$ and $Y\in T_{\nu}$ and consequently that $(\nabla_{X}Y)_{\lambda}^{-}=-J(\nabla_{X}(JY))_{\lambda^{\vdash}}^{-}=0$ also.
Thus $(\nabla_{X}Y)_{\lambda}=0$ when $X\in T_{\lambda}^{+}$ and $Y\in T_{\nu}$ . The same reasoning shows that
$(\nabla_{X}Y)_{\lambda}=0$ when $X\in T_{\lambda}^{-}$ and $Y\in T_{\nu}$ and the lemma is proved when $\lambda,$ )) $>0$ .
If either $\lambda$ or $\nu$ is zero the same argument works with minor modifications.

LEMMA 3. If $X,$ $Y\in T_{\lambda}$ then $\nabla_{X}Y\in T_{\lambda}$ . In particular $T_{\lambda}$ is involutive.
PROOF. It suffices to show that $g(\nabla_{X}Y, Z)=0$ when $Z\in T_{\nu}$ and $1$) $\neq\lambda$ .

But then $g(Y, Z)=0$ and this implies that

$g(\nabla_{X}Y, Z)+g(Y, \nabla_{X}Z)=0$ .
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Now $g(Y, \nabla_{X}Z)=0$ in view of Lemma 2, and so Lemma 3 is proved.

LEMMA 4. If $X\in T_{\text{{\it \‘{A}}}},$ $Y\in T_{\lambda}^{+}$ and $\lambda\neq 0$ then $(\nabla_{X}Y)_{\lambda}^{-}=\frac{1}{2}s(X)JY$ .

PROOF. Suppose $X\in T_{\lambda}^{-}$ , then Codazzi’s equation becomes

$\lambda\nabla_{X}Y+\lambda\nabla_{Y}X-A[X, Y]-\lambda s(X)JY-\lambda s(Y)JX=0$ .

It follows that $(\nabla_{X}Y)_{\lambda}^{-}=\frac{1}{2}s(X)JY$ and $(\nabla_{Y}X)_{\lambda}^{+}=\frac{1}{2}s(Y)JX$ when $X\in T_{\lambda}^{-}$ and
$Y\in T_{\lambda}^{+}$ . Using the fact that $J$ is parallel we can easily infer from the latter

equation that $(\nabla_{X}Y)_{\lambda}^{-}=-\frac{1}{2}s(X)JY$ when $X\in T_{\lambda}^{+}$ and $Y\in T_{\lambda}^{+}$ , and the lemma
is proved.

LEMMA 5. If $Z\in T_{\lambda}^{+}$ is a unit vector field and $\lambda\neq 0$ then $K(Z)=ds(JZ, Z)$ ,

where $K(Z)$ is the sectional curvature in $M$ of the holomorphic plane generated
by $Z$.

PROOF. If $X,$ $Y\in T_{\lambda}$ then, using Lemmas 3 and 4 repeatedly, we obtain

$\nabla_{X}\nabla_{Y}Z=\nabla_{X}(\frac{1}{2}s(Y)JZ+(\nabla_{Y}Z)_{\lambda}^{+})$

$=\frac{1}{2}X(s(Y))JZ+\frac{1}{2}s(Y)J\nabla_{X}Z+\nabla_{X}((\nabla_{Y}Z)_{\lambda}^{+})$

$=\frac{1}{2}X(s(Y))JZ-\frac{1}{4}s(X)s(Y)Z+^{1}-2-s(Y)J(\nabla_{X}Z)_{\lambda}^{+}$

$+\frac{1}{2}s(X)J(\nabla_{Y}Z)_{\lambda}^{+}+(\nabla_{X}(\nabla_{Y}Z)_{\lambda}^{+})_{\lambda}^{+}$ .

Since $Z$ is a unit vector in $T_{\lambda}^{+}$ this equation yields

$g(\nabla_{X}\nabla_{Y}Z,JZ)=_{2}^{1}--X(s(Y))$ .

By virtue of Lemma 3 the distribution $T_{\lambda}$ is involutive, so that [X, $Y$ ] $\in T_{\lambda}$

and from Lemma 4 we obtain

$g(\nabla_{[X.Y]}Z, JZ)=\frac{1}{2}s([X, Y])$ .
Thus

$R(X, Y, JZ, Z)=_{2}^{1}--(X(s(Y))-Y(s(X))-s([X, Y]))=ds(X, Y)$ .

In particular, $K(Z)=ds(JZ, Z)$ .
THEOREM 1. Let $M$ be a complex hypersurface of complex dimension $n$ in

a space $\tilde{M}$ of constant holomorphic curvature $\tilde{c}$ and let the characteristic roots
of $A^{2}$ be constant in value and multiplicity on M. Then either $M$ is of constant
holomorphic curvature $\tilde{c}$ and totally geodesic in $\tilde{M}$, or $M$ is locally holomor-
phically isometric to the complex quadric $Q^{n}$ in $P^{n+1}(C)$ , the latter case arising
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only when $\tilde{c}>0$ .
PROOF. If $A^{2}=0$ then $M$ is totally geodesic in $\tilde{M}$ and of constant holo-

morphic curvature $\tilde{c}$ by virtue of Corollary 2 [5]. We may therefore assume
that the second fundamental form $A$ on $U(x_{0})$ has at least one positive charac-
teristic root $\lambda$ , say. Let $Z$ be a unit vector field in $T_{\lambda}^{+}$ . In view of Lemma 5
and Corollary 2 [5] we have

(1) $ds(JZ, Z)=K(Z)=-2\lambda^{2}+C$ .
However Corollary 3 [5] and Proposition 4 [5] yield

$S(Z, Z)=-2\lambda^{2}+(n+1)\frac{\tilde{c}}{2}$ ,

and

$S(Z, Z)=(n+2)\frac{\tilde{c}}{2}-2ds(JZ, Z)$ ,

so that

(2) $ds(JZ, Z)=\lambda^{2}+\frac{\tilde{c}}{4}$ .

I $t$ follows from (1) and (2) that $\lambda=_{4^{-}’}^{{}_{2}C}-\sim$ which is impossible if $c\sim<0$ and gives
a contradiction when $c\sim=0$ .

If $\tilde{c}>0$ then all nonzero characteristic roots of $A^{2}$ must equal $\frac{c\sim}{4}$ Assum-

ing $A^{z}$ is nonsingular we have $A^{2}=\frac{c\sim}{4}I$ on $M$ and so $M$ is Einstein (see

Corollary 3 [5]). However the complex quadric $Q^{n}$ in $P^{n+1}(C)$ (with the Fubini-
Study metric of constant holomorphic curvature c) is Einstein but not totally
geodesic and therefore $A^{2}=kI$ on $Q^{n}$ for some positive constant $k$ ; from the

previous remark we see that $k=\frac{c\sim}{4}$ . The argument used in Proposition 11
[5] may now be applied locally to show that $M$ is locally holomorphically iso-
metric to $Q^{n}$ . We now assume that $A^{2}$ is singular. $A^{2}$ has then precisely two

characteristic roots, $0$ and $\frac{\tilde{c}}{4}$ In view of Lemmas 2 and 3 the distributions
$T_{0}$ and

$\tau_{\sqrt{\frac{c\sim}{4}}}$
are parallel, so that $M$ is locally reducible. It follows from

Theorem 2 [4] that $n$ must equal 2 and that $M$ is locally holomorphically

isometric to $Q^{2}$ . But then $A^{2}=\frac{c\sim}{4}$ $I$ on $M$, which contradicts the assumption

that $A^{2}$ is singular.
If $M$ is complete and locally holomorphically isometric to $Q^{n}$, its Ricci

tensor is positive definite so that $M$ is compact. By Kobayashi’s Theorem [2]
$M$ is also simply connected and is therefore holomorphically isometric to $Q^{n}$ .
Combining Lemma 1 with Theorem 1 we obtain

THEOREM 2. Let $M$ be a complex hypersurface in a space $\tilde{M}$ of constant
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holomorphic sectional curvature $\tilde{c}$ . If $M$ is homogeneous (resp. if $M$ has parallel
Ricci tensor) then either $M$ is of constant holomorphic sectional curvature $\tilde{c}$ and
totally geodesic in $\tilde{M}$ , or $M$ is globally (resp. locally) holomorphically isometric
to the complex quadric $Q^{n}$ in $P^{n+1}(C)$ , the latter case arising only when $c\sim>0$ .

Since $M$ is complete if it is homogeneous we have the following analogue
of Theorem 5 [4].

THEOREM 3. i) $P^{n}(C)$ and the complex quadric $Q^{n}$ are the only homo-
geneous complex hypersurfaces in $P^{n+1}(C)$ .

ii) $D^{n}$ (resp. $C^{n}$) is the only homogeneous complex hypersurface in $D^{n+1}$

(resp. $C^{n+1}$).
University of Notre Dame
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