Homogeneous complex hypersurfaces

By Brian SMYTH*)

(Received Jan. 16, 1968)

In this paper we classify those complex hypersurfaces of a complex space form which are homogeneous spaces with respect to the induced Kähler structure. This is achieved in Theorem 2 and we may observe that the local classification is the same as that obtained for complex hypersurfaces with parallel Ricci tensor (see Theorem 4 [4]). In fact, Theorem 1 is a local result from which both classifications follow immediately. In proving Theorem 1 we need only draw on some of the basic properties of complex hypersurfaces, as developed in [5], and the results on the holonomy of complex hypersurfaces of § 2 [4].

While Theorem 1 contains the classification theorems of Chern [1], Nomizu and Smyth [4], and a result of Takahashi [6], it should be noted that Kobayashi [3] recently obtained a stronger result in the case where the ambient space is complex projective space, to wit: any complete complex hypersurface of constant scalar curvature in $P^{n+1}(C)$ is a projective hyperplane or a quadric.

The questions examined here arose from discussions with Professor K. Nomizu, for whose suggestions I am very grateful.

Let M be a complex n-dimensional manifold and let ϕ be a complex immersion of M in a Kähler manifold \widetilde{M} of complex dimension n+1 and constant holomorphic sectional curvature \widetilde{c} . The Riemannian metric g induced on M by ϕ is a Kähler metric and all metric properties of M refer to this metric. M will be called homogeneous (Riemannian) if the group of isometries of M acts transitively on M; we remark that it will not be necessary to assume that M is homogeneous Kählerian to obtain Theorem 2. To each field ξ of unit vectors normal to M (with respect to the immersion ϕ) on a neighborhood $U(x_0)$ of a point $x_0 \in M$ there is associated a symmetric tensor field A of type (1,1) on $U(x_0)$; A^2 is independent of the choice of ξ [5]. We shall use the same notation as in $\lceil 5 \rceil$.

Lemma 1. The characteristic roots of A^2 are constant in value and multiplicity on M if either

- a) M is homogeneous
- or b) the Ricci tensor of M is parallel.

PROOF. a) The Ricci tensor S of M is given by

^{*)} Research supported by National Science Foundation Grant GP 7403.

644 B. Smyth

$$S(X, Y) = -2g(A^2X, Y) + (n+1)\frac{\tilde{c}}{2}g(X, Y)$$

(see Corollary 3 [5]) and since $S(f_*X, f_*Y) = S(X, Y)$ for every isometry f of M it follows that $f_*^{-1}A^2f_* = A^2$ on M. Since M is homogeneous this proves the first part of the lemma.

b) In this case A^2 must also be parallel, in view of the above expression for the Ricci tensor, and the result is immediate.

In the sequel, M will be any complex hypersurface of \tilde{M} on which the characteristic roots of A^2 are constant in value and multiplicity. A will be the second fundamental form of M corresponding to the unit normal field ξ on $U(x_0)$ and λ , ν will denote non-negative characteristic roots of A. For each $x \in U(x_0)$ we set

$$\begin{split} T_{\lambda}^{+}(x) &= \{X \in T_x(M) \,|\, AX = \lambda X\} \;, \\ T_{\lambda}^{-}(x) &= \{X \in T_x(M) \,|\, AX = -\lambda X\} \;, \\ T_{\lambda}(x) &= T_{\lambda}^{+}(x) \oplus T_{\lambda}^{-}(x) \;, \qquad \qquad \text{where } \lambda > 0 \end{split}$$

and

$$T_0(x) = \{X \in T_x(M) \mid AX = 0\}$$
.

In the lemmas that follow we will examine these distributions. X, Y and Z will denote vector fields on $U(x_0)$. The components of a vector field X in the distribution T_{λ}^+ , T_{λ}^- ($\lambda \neq 0$) and T_{λ} are denoted by X_{λ}^+ , X_{λ}^- and X_{λ} respectively.

LEMMA 2. If $X \in T_{\lambda}$ and $Y \in T_{\nu}$ then $\nabla_X Y$ is orthogonal to T_{λ} , provided $\lambda \neq \nu$.

PROOF. We first suppose $\lambda > 0$ and $\nu > 0$. If $X \in T^+_{\lambda}$ and $Y \in T^+_{\nu}$, Codazzi's equation

$$\nabla_X(AY) - \nabla_Y(AX) - A(\Gamma X, Y \rceil) - s(X)JAY + s(Y)JAX = 0$$

(see Corollary 3 [5]) becomes

$$\nu \nabla_{\mathbf{x}} Y - \lambda \nabla_{\mathbf{y}} X - A(\nabla_{\mathbf{x}} Y - \nabla_{\mathbf{y}} X) - \nu s(X) IY + \lambda s(Y) IX = 0$$
.

Considering the T_{λ}^+ -component of this equation we find $(\nabla_X Y)_{\lambda}^+ = 0$. Similarly we obtain $(\nabla_X Y)_{\lambda}^+ = 0$ if $X \in T_{\lambda}^+$ and $Y \in T_{\nu}^-$. It follows that $(\nabla_X Y)_{\lambda}^+ = 0$ when $X \in T_{\lambda}^+$ and $Y \in T_{\nu}$ and consequently that $(\nabla_X Y)_{\lambda}^- = -J(\nabla_X (JY))_{\lambda}^+ = 0$ also. Thus $(\nabla_X Y)_{\lambda} = 0$ when $X \in T_{\lambda}^+$ and $Y \in T_{\nu}$. The same reasoning shows that $(\nabla_X Y)_{\lambda} = 0$ when $X \in T_{\lambda}^-$ and $Y \in T_{\nu}$ and the lemma is proved when $\lambda, \nu > 0$. If either λ or ν is zero the same argument works with minor modifications.

LEMMA 3. If X, $Y \in T_{\lambda}$ then $\nabla_X Y \in T_{\lambda}$. In particular T_{λ} is involutive.

PROOF. It suffices to show that $g(\overline{V}_XY,Z)=0$ when $Z \in T_{\nu}$ and $\nu \neq \lambda$. But then g(Y,Z)=0 and this implies that

$$g(\nabla_{\mathbf{Y}}Y, Z) + g(Y, \nabla_{\mathbf{Y}}Z) = 0$$
.

Now $g(Y, \nabla_X Z) = 0$ in view of Lemma 2, and so Lemma 3 is proved.

LEMMA 4. If
$$X \in T_{\lambda}$$
, $Y \in T_{\lambda}^{+}$ and $\lambda \neq 0$ then $(\nabla_{X}Y)_{\lambda}^{-} = \frac{1}{2}s(X)JY$.

PROOF. Suppose $X \in T_{\lambda}$, then Codazzi's equation becomes

$$\lambda \nabla_X Y + \lambda \nabla_Y X - A[X, Y] - \lambda s(X)JY - \lambda s(Y)JX = 0$$
.

It follows that $(\nabla_X Y)_{\bar{\lambda}}^- = \frac{1}{2} s(X) J Y$ and $(\nabla_Y X)_{\bar{\lambda}}^+ = \frac{1}{2} s(Y) J X$ when $X \in T_{\bar{\lambda}}^-$ and $Y \in T_{\bar{\lambda}}^+$. Using the fact that J is parallel we can easily infer from the latter equation that $(\nabla_X Y)_{\bar{\lambda}}^- = \frac{1}{2} s(X) J Y$ when $X \in T_{\bar{\lambda}}^+$ and $Y \in T_{\bar{\lambda}}^+$, and the lemma is proved.

LEMMA 5. If $Z \in T_{\lambda}^+$ is a unit vector field and $\lambda \neq 0$ then K(Z) = ds(JZ, Z), where K(Z) is the sectional curvature in M of the holomorphic plane generated by Z.

PROOF. If X, $Y \in T_{\lambda}$ then, using Lemmas 3 and 4 repeatedly, we obtain

$$\begin{split} \overline{V}_{X}\overline{V}_{Y}Z &= \overline{V}_{X} \left(\frac{1}{2} s(Y) JZ + (\overline{V}_{Y}Z)_{\lambda}^{\dagger} \right) \\ &= \frac{1}{2} X(s(Y)) JZ + \frac{1}{2} s(Y) J \overline{V}_{X} Z + \overline{V}_{X} ((\overline{V}_{Y}Z)_{\lambda}^{\dagger}) \\ &= \frac{1}{2} X(s(Y)) JZ - \frac{1}{4} s(X) s(Y) Z + \frac{1}{2} - s(Y) J (\overline{V}_{X}Z)_{\lambda}^{\dagger} \\ &+ \frac{1}{2} s(X) J (\overline{V}_{Y}Z)_{\lambda}^{\dagger} + (\overline{V}_{X}(\overline{V}_{Y}Z)_{\lambda}^{\dagger})_{\lambda}^{\dagger} . \end{split}$$

Since Z is a unit vector in T_{λ}^{+} this equation yields

$$g(\nabla_X \nabla_Y Z, JZ) = \frac{1}{2} X(s(Y)).$$

By virtue of Lemma 3 the distribution T_{λ} is involutive, so that $[X, Y] \in T_{\lambda}$ and from Lemma 4 we obtain

$$g(V_{[X,Y]}Z,JZ) = \frac{1}{2}s([X,Y]).$$

Thus

$$R(X, Y, JZ, Z) = \frac{1}{2} (X(s(Y)) - Y(s(X)) - s([X, Y])) = ds(X, Y).$$

In particular, K(Z) = ds(JZ, Z).

THEOREM 1. Let M be a complex hypersurface of complex dimension n in a space \widetilde{M} of constant holomorphic curvature \widetilde{c} and let the characteristic roots of A^2 be constant in value and multiplicity on M. Then either M is of constant holomorphic curvature \widetilde{c} and totally geodesic in \widetilde{M} , or M is locally holomorphically isometric to the complex quadric Q^n in $P^{n+1}(C)$, the latter case arising

646 B. Smyth

only when $\tilde{c} > 0$.

PROOF. If $A^2=0$ then M is totally geodesic in \widetilde{M} and of constant holomorphic curvature \widetilde{c} by virtue of Corollary 2 [5]. We may therefore assume that the second fundamental form A on $U(x_0)$ has at least one positive characteristic root λ , say. Let Z be a unit vector field in T_{λ}^+ . In view of Lemma 5 and Corollary 2 [5] we have

(1)
$$ds(IZ, Z) = K(Z) = -2\lambda^2 + \tilde{c}.$$

However Corollary 3 [5] and Proposition 4 [5] yield

$$S(Z,Z) = -2\lambda^2 + (n+1)\frac{\tilde{c}}{2}$$
,

and

$$S(Z, Z) = (n+2)\frac{\tilde{c}}{2} - 2ds(JZ, Z)$$
,

so that

(2)
$$ds(JZ, Z) = \lambda^2 + \frac{\tilde{c}}{4}.$$

It follows from (1) and (2) that $\lambda^2 = \frac{\tilde{c}}{4}$, which is impossible if $\tilde{c} < 0$ and gives a contradiction when $\tilde{c} = 0$.

If $\tilde{c}>0$ then all nonzero characteristic roots of A^2 must equal $\frac{\tilde{c}}{4}$. Assuming A^2 is nonsingular we have $A^2=\frac{\tilde{c}}{4}I$ on M and so M is Einstein (see Corollary 3 [5]). However the complex quadric Q^n in $P^{n+1}(C)$ (with the Fubini-Study metric of constant holomorphic curvature \tilde{c}) is Einstein but not totally geodesic and therefore $A^2=kI$ on Q^n for some positive constant k; from the previous remark we see that $k=\frac{\tilde{c}}{4}$. The argument used in Proposition 11 [5] may now be applied locally to show that M is locally holomorphically isometric to Q^n . We now assume that A^2 is singular. A^2 has then precisely two characteristic roots, 0 and $\frac{\tilde{c}}{4}$. In view of Lemmas 2 and 3 the distributions T_0 and T_0 are parallel, so that M is locally reducible. It follows from Theorem 2 [4] that n must equal 2 and that M is locally holomorphically isometric to Q^2 . But then $A^2=\frac{\tilde{c}}{4}I$ on M, which contradicts the assumption that A^2 is singular.

If M is complete and locally holomorphically isometric to Q^n , its Ricci tensor is positive definite so that M is compact. By Kobayashi's Theorem [2] M is also simply connected and is therefore holomorphically isometric to Q^n . Combining Lemma 1 with Theorem 1 we obtain

Theorem 2. Let M be a complex hypersurface in a space \widetilde{M} of constant

holomorphic sectional curvature \tilde{c} . If M is homogeneous (resp. if M has parallel Ricci tensor) then either M is of constant holomorphic sectional curvature \tilde{c} and totally geodesic in \tilde{M} , or M is globally (resp. locally) holomorphically isometric to the complex quadric Q^n in $P^{n+1}(C)$, the latter case arising only when $\tilde{c} > 0$.

Since M is complete if it is homogeneous we have the following analogue of Theorem 5 [4].

THEOREM 3. i) $P^n(C)$ and the complex quadric Q^n are the only homogeneous complex hypersurfaces in $P^{n+1}(C)$.

ii) D^n (resp. C^n) is the only homogeneous complex hypersurface in D^{n+1} (resp. C^{n+1}).

University of Notre Dame

Bibliography

- [1] S.S. Chern, On Einstein hypersurfaces in a Kählerian manifold of constant holomorphic curvature, J. Diff. Geometry, 1 (1967), 21-31.
- [2] S. Kobayashi, On compact Kähler manifolds with positive definite Ricci tensor, Ann. of Math., 74 (1961), 570-574.
- [3] S. Kobayashi, Hypersurfaces of complex projective space with constant scalar curvature, J. Diff. Geometry, 1 (1967), 369-370.
- [4] K. Nomizu and B. Smyth, Differential geometry of complex hypersurfaces. II, J. Math. Soc. Japan, 20 (1968), 498-521.
- [5] B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math., 85 (1967), 246-266.
- [6] T. Takahashi, Hypersurface with parallel Ricci tensor in a space of constant holomorphic sectional curvature, J. Math. Soc. Japan, 19 (1967), 199-204.