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§0. Introduction.

By degree, we mean the degree of recursive unsolvability as defined by
S.C. Kleene and E.L. Post in [2] For notations not explained here, see [1],
and [5]

For each degree d, let R4y denote the set of all degrees greater than for
equal to d, recursively enumerable in d and less than or equal te d’ (the com-
pletion of d).

R. M. Friedberg has shown that degree d’ does not have a unique pre-
image in R;. G.E. Sacks proved that if @ € R, , then there exists a degree
¢ such that ¢e= Ry and ¢’ =a.

The main result of the present paper is that if ¢ € K, , then for any posi-
tive integer n, there exist independent degrees ¢,, ¢,, ---, ¢, such that ¢; € R,
and ¢,=a« for i=1, 2, -.-,n. Thus the degress which lie between b’ and b”
and are recursively enumerable in &’ can be viewed as the completions of the
independent degrees which lie between b and b’ and are recursively enumer-
able in b. This shall be proved as a corollary of the following ‘ main theorem .
The methods used here are those developed in [2], and [4]

We shall denote by a b the relation between degrees @ and b:a is recur-
sively enumerable in b.

MAIN THEOREM. Let a, b and ¢ be degrees such that:

D afb
) asb =c
¢11)) c Nb/
Then for any positive integer n, there exist degrees d,, d,, -+, d,-, such that:
i) b=sd;, fori=0,1,--,n—1,

(ii) d; b for 1=0,1, ..., n-1,
(iii) dyd, - ,d,., are independent,
@iv) afd;, fori=0,1,.-,n—1,
) di=¢ fori=0,1,..,n-1
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§1. Definitions.

Let A, B, C and B’ be the sets of degrees a, b, ¢ and &’ satisfying the
assumptions (I), (II) and (III) of the above.

Let ay(x), B(x), y(x) and p’(x) be the representing function of A, B, C and
B’, respectively.

We put

a(x)=a(x)+1.

Let ¢(x) be a function recursive in §/(x) which enumerates C, and ¢(x) be
a function recursive in (x) which enumerates B’.

In the following lines, we shall define the functions B#(x,s), ¢*#(x,s) and

a'(x,s). First we set
0 if (ER(PR)= 1),
1 otherwise .

13#(]6, s)=

It is clear that S#(x, s) is a function recursive in S(x), and that for each
x, lim B#(x, s) exists and
lim B#(x, s)= B/(x).
By the definition of ¢(x) and a(x), there exist Godel numbers e, and e, of
¢ and «a from p’ respectively :
P(x)={e;} g'(x),
a()= {e,}p'().

By using e, and ¢,, we set

[ UQuyTHF*(y 5 9), e X, 3)

OF(x, $) =4 if (EV)y<(THE*( 5 ), 1, X, 9)),
| s+1 otherwise.

U(pyTi(F#( ;5 5), s X, 1))

a_h.-(x: S) :{ if (Ey)y<8(T%(1§#(.y: S): €y X, y)) ’

2 otherwise .

L

Clearly, ¢#(x, s) and a'(x, s) are recursive in B(x), and lim ¢#(x, s) and
lim «' (x, s) exist and equal to ¢(x) and a(x), respectively.

By induction on s, we shall define the functions z(x, s), £(x, s), 7(x, e, i, s),
v(x, e, 1, 8), &(e, 1, s), 0(z, e, m, 1,s) and d(x, 1, s), and furthermore the predicate
I'(z, e, m, i, s) simultaneously for all 1 <n, z, x,e and m. By the definitions, it
is clear that these are all recursive in S(x).
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Stage s=0. We set as follows:
(x, 0)=n(x, ¢,1, 0)=v(x,¢,7,0)=0.
e(x, H=1.
&e, 1, 0)=e+1.
0(z,e,m,1,0)=2°.5.
5 i, 0) B(m) if x=2.3.5m%,
1 otherwise .
I'(z,e,m,1,0)=0=1.
Stage s >0. We set as follows:
pyTHo(y; i, s—1) e, 7, 9)
n(x, e, 1, )= if x=e & (Ey)y«TI6(y; 1, s—1), e, %, %),

0 otherwise.

We define &(e, 1, s) by three mutually exclusive cases.

Case 1:
n(e, e, 1, 5)=0.
We set
&, 1, s)=e+1.
Case 2:

nie, e, 1,)>0 & (Exle<x<éle, i, s—1)

& n(x,e i, 8)xn(x,e,1,s—1) & a'(x, s)xU(x e, 8)].
We set

&le, 1, 8) = UXecuciee,is-vln(X, €, 1, S)xn(x, €,1, s—1) &
a'(x, ) x U(n(x, e, 1, s))] .
Case 3: Otherwise. We set
Ele, 1, )=px[&le, 1, s—1) S x<2-&e, 1, s—D)+s &
EDle<t=x & &', s)xU, e 1, s)]].
We now define z(x, s).

T(X, S) - /'”"r<s(¢#(r! S) — X) .
We set

£(%, ) = &(x, s—D+sg(|z(x, $)—z(x, s—D).
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[ 0 if (BRc(ED o E) (B[R <est=xVEk<u)
v(x, e,1, 8) = & (Ou, k,r, 1, s—=1) <9t e 1,s))],
1 1 otherwise .
We shall abbreviate Ti1 (8(y;0, s—1), 6(», 1, s—1), -+, 6(y;i—1, s—1),
g(yl l—}—ly 5—1)7 "ty g(y; n——ls S—l)y e, X, y) as T}I (<g(y; ;, S'—].)>, e, X, y)'
(In the following, we shall use the notation ( A(7))> instead of the sequence
AW), AQ), -, A(G—1), A(j+1), -, A(n—1), as the above, where A(x) is an
expression containing the letter x.)
Iz e m, i, )= (EN,[T1(8(y; i, s—1), 2, 0z, ¢, m, i, s—1), 9)
& Uy)=0] & 6(6(z, ¢, m, 1, s—1),1,s—1)=1
& m<kle, s) & (e[ [(e*<e & z=<e¢e
& e* < r < E&(et, 1, s)—0(z, e, m, 1, s—1)=n(r, e*,1, 5)]
& (Es)y=[(e¥*<e & z>e & e* < v < &(e*, 1, s)—
W(r, e*, 1, s)=0V 0(z, e, m, 1, s"— 1) =n(r, e*, 1, s)]].

We define 6(z, e, m,1,s) and d(x,i,s) by n cases, corresponding to the
values of remainder rm(s, n).
Case [: rm(s, n)=1
22.32.5m.7 if [z2=1h(s) & e<s & m<s
& i1>1 & (Ee")pe EM )y LI (IN(S), €/, m7, 1, $)T]
Viz>hG) &e<s &Em<s & 1<
& (Ee) ol EM )< LT'(UA(S), €/, m/, 1, $)]],

0(z, e, m, 1, s—1) otherwise .

0(z, e, m, 1, s)=

0 if x=6(h(s),e,m, [, s—1) & 1=1
& I'(Ih(s), e, m, L, s),

o(x, 1, s)=
B@m) if x=2.3.5m,

o(x, 1, s—1) otherwise .

This completes the definitions of all auxiliary functions and predicate.
By the definition of d(x, 1, s), lim d(x, 1, s) exists and is less than 2 for each

1< n and each x. For each 1 < n, and each x, let d(x, ©) be lim d(x, 7, s) and D,

be the sets whose representing functions are d(x, 7). Let d,, d;, ---, d,-, be the

degrees of D,, D, ---, D,_, respectively.
We shall show that the degrees d,, d,, ---
clusions (i), (i), (iii), (iv) and (v) of the main theorem.

,d,_, and d,_, satisfy the con-
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§2. Plan of the proof.

By the definition of d(x, i, s), 6(2-3-5™*, i, s)= f(m) for each m, 7, s. Thus
we have the conclusion (i) of the main theorem:

b=<d; for 1=0,1, ---, n—1.
It follows from the definition of d(x,1) that d(x,7)=0 or 1 according as

(Es) [0(x,1,s)=0] or not. And 6&(x,1,s) is recursive in B(x) for each i < n.
Thus d(x, 1) is recursively enumerable in B(x), that is

d; b for 1=0,1, ---, n—1.

This is the conclusion (ii). In order to prove the conclusion (iii), we shall
show [Lemma I, Lemma 2 and [Lemma 3.

LEMMA 1. For any given z, the set {0(z,e, m,1,5)]e=0 & m=0 & i< n
& s=0} is finite.

ProorF. We use the induction on z.

Suppose that the lemma holds for z <z and fails for 7. That is, {0(Z, e,
m,i,8)]e=20& m=0 & i<n & s=0} is infinite. We set

i=pi [{0(z,e,m,i,5)]e=0 & m=0 & s=0} is infinite].

From the definition of 0(z, ¢, m, i, s), there exists [, such that 6(z, e, m, 1, )
changes its value infinitely many times in case [,, i.e.

@ 0@z, e,m,i,8)=2.36.5".7  for [Z=Ih(s) & e<s
& m<s & i>1, & (Eepei EM) e[ I'UR(S), e/, m/, 1, $)1]
VIZ>I() & e<s & m<s
& 1<y & (Ee")pe EM )i [ T'(IN(S), e, m/, I, $)]]

occurs for infinitely many s.
Thus we have
I'(n(s), e/, m’, 1, s) & Ih(s)<z

for infinitely many s. Then,
o(0(In(s), e/, m/, 1, s—1), 15, s)=0

for s satisfying (1). And this requires infinitely many changes of 6(lh(s), ¢/,

m/: lO’ S_Ml)'
By the hypothesis of our induction, it is not the case Ih(s) <3 But, [h(s)

=7z is contrary to the definition of i, since 7> [,

We set
x(z, e, m, 1)=max {0(z, ¢, m, 1, s)|s =0} .
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LEMMA 2.
@)(1)i<al0(x(2, 0, 0,7), 1) =0
—(ENTI 3y D), 2 (2 0,0, 1), ) & U®) =01
PrROOF. Fix z,7<n. From the assumption of the lemma, we have
(Es) [0(0(z, 0,0, 7, s—1),17,s)=0

& z=Ih(s) & 06(z,0,0,7,s—1)=x(z,0,0,0)].
Let
So=ps[0(0(z, 0,0, 7, s—1),1, s)=0
& z=Ih(s) & 620,017, s—1)=x(z0,0,17)].

By the definition of d(x,1,s), I'(z, 0, 0, ¢, s,) holds, where z=1[h(s,). Thus we
have a y <s, such that

[TH'(8(y; 55— 2 2 0,0,0),3) & U(y)=0].

Then, the proof will be complete, if we can show

@ (Docy(Dis & <n(Ss>s0-1L0(%, 7, )= (%, j, so—1)] .

From I'(lh(s,), 0,0, 1, s,), we know that

@ (er<s oMV <5o@ Do zincs (i L0, €/, M, R, 59) =27.3%. 5™ . 7%0]
and

©) (€er<so(M N <5o(Z Darsincso(B)eciL 0’5 €y M/, Ry 50) = 27-37.5™ -]

We shall prove (1) by means of a reductio ad absurdum argument. That
is, we shall start from the hypothesis, there exist x*, j* and s* such that

*) <y & j*xi & j*<n & s¥>s5,—1 &
o(x*, j*, s*—1=1 & od(x* j*, s*)=0.
By the definition of d(x, i, s) and by (*), we obtain for some z”, ¢/ and m”,
J¥=rm(s*, n),
x*=0(z", e”, m”, j*, s¥*—1),

LY L5y < s¥D,
and then by (*),

I'(Ih(s%), e”, m”, 7%, s*¥) and [h(s*)=2z".
Thus we have

1) By the definitions of the number s, and of the function 4, we have rm(s,, n)=i.
This implies s, < s*, since i 3 * and s, < s*.
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@ @ Narrizar (€ Nerrrag! Voor <o (R s p LOGR, €7, M, R, 5%)
=271 .3 . 5L T
® @ prresr (€ Nernr<st (M Yoo (R D<o 0@ €77, " R, 5%)
=203 B LT
Since s* >s,, by the definitions of § and x, we have
0(lh(sy), 0, 0, 1, s*) = x({h(s,), 0, 0, ) = x(z, 0, 0, 7).
By (4) and (5), this means that

1> ¥ —z=1h(s,) < 2” = lh(s*)
and
1< ¥ o z=1h(s,) £ 2" =lh(s¥).

Then, we obtain by (3)

i >]* ——>0(lh(s*), e//’ m//, j*’ so) — Zlh(s*) . 3e'l A 5m" . 780
and by (2)
1 < ¥ = 0h(s*), e”, m”, j*, s,) = 26D . Ze.5m .70

Consequently A(Ih(s*), e”, m”, j*, s,) > s,. But this is absurd, since
So > x* = O(Lh(s*), e”, m”, j*, s*—1) = O(Ih(s*), e”, m”, j*, $5) > S«

Thus, we have shown that (1) holds.
LEMMmA 3.

@@icnl ENTHCE 5 1D, 2, 2, 0,0, 1), 9)
& U(y) x 0)—o(x(z, 0, 0, 3), 1)=07.
Proor. Fix z, i. By the assumption of this lemma, we have
T{K3(y; ), 2, %2, 0,0,1),9) & U0
for some y. We set

So= ﬂs(j>j5€i & j<n(x)x<y[5(xl j’ S) = 5(76, ])] .
Let
s;=pus[0(z, 0,0, 1, s)=1x(z0,0, )],
and
st=us[s=s, & s=s, & [h(s)=2z].
Then we have

ey TS s 1, s*—1)y, 1h(s*), OUR(s¥), 0, 0,1, s*—1),5) & U(»)=0.
Since £(0, s)=1 for all s,

¢) 0 < £(0, s*).



616 K. HirosE

If ¢ is not the Gédel number of a system of equations, then %(x, e, i, s)=0
for all x and s. And 0 should not be any Goédel number of a system of equa-
tions. Then

7(x, 0,1, s)=0 for all x and s.
Thus

3) 0(h(s*), 0,0, s—1)=n(x, 0,1, 5) for all x and s.
If 0(6(h(s*), 0,0, 7, s*—1), 7, s*—1)=0, then by the definition, evidently
o(0(h(s*), 0, 0, 7, s*—1),1, s¥)=0.
Now suppose that
0(0(h(s*), 0,0, 1, s*—1),1, s*—1)=1,

then it follows from (1), (2) and (3) that I'(lh(s*), 0,0, 7, s¥) holds. Hence, we
have
o(0h(s%), 0, 0, 7, s*—1), 1, s¥)=0.

Thus, by the definition of s*, we obtain
0(x(z,0,0,7),0)=0.
From and we have

@@ in [ENTIKEW; s 7, £(2, 0,0, 1), 9)
& UW)x=0]1=0d(x(,0,0,1),7)=0].

Hence d(x, 1) can not be recursive in d(x, 0), d(x, 1), --+, d(x, i—1), o(x, t+1), ---,
o(x, n—1) for all i< n. Thus the independency of degrees d, d,, ---,d,_; is
proved.

Following G.E. Sacks for each ¢=0, we say e¢ is stable if for all
x=e, limn(x, e, 1, s) exists and is positive.
s

We introduce two predicates:
d(e, 1): if e is stable, then the set {&(e, 1, s)|s=0} is finite.
A(e,1): there are numbers z, m and ¢ such that
0(f(z, e, m, 1, ), 1) is equal to 1—y(e)?.
PROPOSITION 1. (@)(1)i<cnd(e, 1).
PROPOSITION 2. (&)(@);cnd(e, 1) .
The proof of and 2 will be given in the next section. First,

2) These are found by procedure recursive in d;’.
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we will prove the conclusion (iv) from [Proposition I That is, we shall show
that a(x) is not recursive in d(x, 1) for all i < n.

We suppose that a(x) is recursive in d(x, 1) for some i. That is, we sup-
pose there exists a Godel number ¢ such that

a(x)=UpyTi6(y; D, e, 1, )
for all x and some i, and then show 4(e, 1) is false.
First, we must show ¢ is stable. Fix x=e¢e; let
y =y Ti0(y; D, e 1, 9).
Let s’ be so large that s’ >3’ and
o(m, 1, s)=d(m, 1)

whenever s=s’ and m <jy’. Then

n(x, e 1, 8)=y & UW)=ax)

for all s=s’ and y’ >0, since U(0)=0 and a(x)> 0.
Thus, lim 5(x, e, 7, s) exists and is positive for all x=>e. That is, ¢ is stable.

Then, if we show the set {&(e, i, s)|s =0} is infinite, the proof is complete.
We fix e/’ > ¢ and look for an s” such that

Ele, i, s") > e’
Let s be so large that s> ¢’ and

a'(t, s)=a(®)=U(uyTHo(y; D), e, t, y))

=U((, e 1, 5))

for all ¢ such that et < e,
If &Ce, 1, s—1)>e’, then s—1 is the desired s”. Now suppose &(e, 7, s—1)<e’.
This means
a’(t, s)=U(, e, 1, s))
for all ¢ such that e<t=<é&(e, 1, s—1); in addition, (e, ¢, 7, s) >0, since a'(e, s)
=1 and UW0)=0. Then Case 3 of the definition of &(e, i, s) holds, and
Ele,1,8)=2.&(e, 1, s—1)+s.

It follows that

&le, 1, s) >e’
since s >¢’. That is, s is the desired s”. Thus the set {£(e, i, s)|s=0} is
infinte. Hence a(x) is not recursive in d(x, 7) for all i <n. That is,

axd; for 1=0,1, .-, n—1.
Now, we will show from c<dj for all i < n, that is, the half
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of one conclusion (V).

For each ¢ and i, we have z, ¢, m and ¢ by procedure recursive in d; such
that y(e)=1-—0(0(z, e, m, 1, ¢), 1) as an immediate consequence of (e)(1);«,A(e, 1).
Then,

c=d;
for all i< n,

Thus, our proof is complete, if we can show [Proposition 1, [Proposition 2|
and ¢=d] for all i< n,

In §3, and 2 will be proved. In §4, ¢=d; will be proved

and the proof of the conclusion (v) will be complete.

§3. The proof of Proposition 1 and 2.

We will prove (e)(1);<,4d(e, 1) and (e)(1);<,/4(e, 1) by means of a simultaneous
induction on e.

Fix e* =0 and suppose (e)(i);le < e*— d(e, 1) & Ale, 1)].

LEMMA 4. For any i<mn, let n(x, e*, i,s)>0 and &(e*, i, s)>x=e*. Let
oldu, k, v, 1, s—1),1, s) = (0(u, k, v, 1, s—1), 1, s—1) for all u, t, k and r such that
(k<e*st<xVk<u) & 6, k, 7, i, s—D)<y, e* 1, s). Then 5(x, e*, 1, s)
=n(x, e*, i, s+1).

ProOF. Since 7(x, e*, 7, s) >0, we have

n(x, e*, i, )= py,«;TH0(y; 1, s—1), e*, x, ¥) .

Suppose that 9(x, e*, i, s) = p(x, e*, i, s+1). From the definition of 7(x, e, 1,
s), we have

(Ej)j<v(.1:,e*,i,s)[5(j’ i: S) ES 5(]! i’ S’—l)] .
This means

(Ez)(Ee)(Er) [z=1h(s) & 0(0(z, e, 1,1, s—1),1,5)
x000(z, e, 1,1,5s—1),1,s—1) & O0(z, ¢, 7,1, s—1)
<n(x, e*, 1, s)].

Thence using the assumption of the lemma, ¢ =e¢* and z<e¢. Thus we have

)} et<e &z=<e & e*x<Zx<&et,1,s) & 0@z, e, 7,1, s—1) < n(x, e*, 1, ).
And
2 z=1Ih(s) & 0(0(z, e, 7, 1, s—1), 1, s) > 6(0(z, e, 7, 1, s—1), i, s—1).

It follows from the definition of d(x, ¢, s) and (2) that I'(z, e, 7, 7, s) holds. But
this is contrary to (1).
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LEMMA 5.
(x)(e>(l)z<n(5) [(7](76’ e, i: S) = 0 & X > e)"_’s(es i: S) é x] .

PrROOF. We use the induction on s.

If s=0, then the lemma is clear.

Let s be such that s >0 and

(x)(e)(l)l<n[(7](x’ e, i’ 8_1): O & X > e)‘—f(e: i! 5_1) é .X_—_l .
Let x and ¢ be such that
n(x,e1,8)=0 & x>e.
Then we have
U(x, e, s)=U0)=0 & a"(x,s)=1.

Hence
) a'(x, s)x U(n(x, e, 1, 5)).

First we suppose x < &(e, i, s—1). Then it follows, as a consequence of the
induction hypothesis that
@ n(x, e, 1, s—1)>0.
From (1), (2) and the assumption of the lemma at the induction step s, either
Case 1 or Case 2 of the definition of &(e, i, s) holds. If Case 1 holds, then

&le, 1, s)=et+1<x.
If Case 2 holds, then
&(e, 1, $) = pt,uln(t, e, 1, s) =9, ¢, 1, s—1)
& a'(t, XU e i, HIZx.

Next we suppose x=£&(e, i, s—1). From the definition of £(e, 1, s), if Case

1 holds, then
Ele,1,s)=e+1<x.
If Case 2 holds, then
S(e, i: S) é G(e: i: S_l)é X.
If Case 3 holds and x<2-&(e, 1, s—1)+s, then by (1)
e, i,5)<x.
If Case 3 holds and x=2- &(e, 1, s—1)+s, then
E(e, i: S) = 2. E(e’ i; 3_1)+s =x.

LEMMA 6. For any i<mn, let n(x,e*1,5)>0 and &(e*, 1, s)>x>e*. Let
o0u, k, r,1, s—1),1, ) =0(0(u, k, 7,1, s—1),1, s—1) for all u, t, k, and r such that
k<ex<t<x and O0(u, k, 7,1, s—1) <y, e*, 1, s). Then &(e*, i, s+1) > x.

Proor. It follows from &(e*, 1, s) > x>e*, Lemma 5 and Case 1 of the
definition of &(e, i, s) that
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@ 7(t, e*, i, §) >0
for all ¢ such that e* <1< x.
By we have
@) y(t, e, 1, s)=n(t, e*, 1, s+1)
for all ¢ such that e*<{<x. Suppose
E(e*, 1, s < x.

From the assumption of the lemma,

S(e*r ia S"I_l) < E(e*, i, S) .
Consequently, Case 2 of the definition of &(e, 1, s) holds, since (1) holds. This
means there is a ¢ such that
e¥* <t=E&(e* 1, s+ =x & 7, e*, 1, 8) (@, et 1, s+1)

But this last is absurd, since (2) holds.

LEMMA 7. A(e*, 1) for all i< n.

Proor. By the assumption of main theorem, a(x) is not recursive in B(x).
We suppose 4(e*, i) is false for some i <7 and show a(x) is recursive in ().
Thus, for each x=e*, 1i£n n(x, e*, 1, s) exists and is positive and the set
{&(e*, 1, s)|s = 0} is infinite.

Let [I(x, 1, s) denote the predicate

&t i, 9> x & WOWI(x(u, ¢, i) <n(, e*, i, 5)

& e<u<le*st=x & y=x(u e )=, s—D=0dy, )],
where
x(u, e, 1)=max {0(u, e, m, 3, )| m=0 & s=0}.

We define a function w(y, u, ¢, 1) recursive in B as follows :
. oy, 1) ify<x(u,et) &e<u<er & 1<n,
(¥, U, e, 1) =
1 otherwise .
The predicate I/(x, i, s) can be now rewritten as
&(e*, 1, $) > x & (W(e)OWMI(x(y, e, 1) < (L, e*, 1, s)
& e<ule*<t=x & ygx(”) e, 1))_’5(3)) i, S—].)Za)(y, u, e, l)] .

It is clear that the predicate /I(x, 1, s) is recursive in B(x).
We claim (x)(0);<(Es) [I(x,4,s). Fix x and i<n. Since limp(x, e*, 1, s)
exists for all x=e*, there is a y such that ’

O =t = x—y Z (0 e, i, )]
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Let s’ be a number such that
WOENw<y & s=s)—ow, i, s—1)=0ow, 1)].
Since the set {&(e*, 1, s)|s =0} is infinite, we have
CNES)zo[E(e*, 1, 8)> 2] -
But then (X)(0);<.(ES)II(x, 1, s) holds. We define
w(x, )= psll(x,1,s);
the function w(x, i) is recursive in B(x). We now show
n(x, e*, 1, w(x, 1)) =lim n(x, e*, i, s)
for all x>e* and i < n. s
Fix x>e* and i <n. We prove by induction on s that y(x, e*, i, w(x, 1))
=n(x, e*, 1, s) for all s=w(x,1).
Let s be such that s=w(x, 1) and
n(x, e*, 1, wx, D)) =n(x, e*,1,5) & [I(x,1,5s).

Since II(x,1, s) holds, we have

@) Ele*, 1, 8) > x> o*;
it follows from and Case 1 of the definition of £(e, i, s) that
2) Mle* <t x—nt, e*, 1,5)>0].

Since [I(x,1, s) holds, we have
) W(E@QML(x(u, e, ) <7(t, e, 1, 5) &
e<u<er=t=x & y=x(u, e 1)—o(y, 1, s—1)=0d(y,1)].
From (1), (2), (3) and we have
n(t, e*, 1, s)=n(, e*, 1, s+1)
for all ¢ such that e*<¢<x.
It follows from that

Ele*, 1, s+1) > x.

Then,

7(x, e*, 1, w(x, 1)) =n(x, e*, 1, s+1) & [(x, 1, s+1).
Thus

n(x, e*, 1, w(x, 1)) =n(x, e*, 1, 5) for all s=w(x,1).
Finally, we show by means of a reductio ad absurdum argument that

a(x) = U(y(x, e, i, w(x, i)))
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for all x>e*. Fix x> e¢* and suppose

OC(X) S U(U(x, e, 1, U)(X, l))) .

Since p(x, e*, i, w(x, 1)) =lim y(x, e*, 1, s) and a(x)=lim a"(x, s), there exists s*
such that ’
GNs= st —=(a(x) =a"(x, s) & Uy, e, 1, s))

= U(x, e*, 1, w(x, 1))))] .
That is,

@ a'(x, 8) x U(n(x, e*, 1, s)) for all s = s*.
We show that
()szs[£(e*, 1, 5) < &(e*, 1, s*)+x+e*+-1].
We use the induction on s=s*. Let s> s* and suppose
E(e*, 1, s—1) < &(e*, 1, s*)Fxte* 1.
If either Case 1 or Case 2 of the definition of &(e, 1, s) holds, then
&(e*, 1, s) < max {e*+1, &(e*, 1, s—1)}
< &(e*, 1, s¥)+x+te*4-1.
If Case 3 holds and x < 2. &(e*, 1, s—1)-+s, then
Ele*, 1, S) = x < &(e*, 1, s*)+x+e*+1,
since (4) holds. If Case 3 holds and x=2. &(e*, 1, s—1)+s, then
E(e*, 1, s)=2-&(e*, 1, s—1)+s < x < &(e*, 1, s¥)+xte*+1.
Thus we have
()szel £(e*, 1, 5) = §(€*, 1, $%)+x4e*4-1].

But this last is absurd, since the set {&(e*, 1, s)|s=0} is infinite.
Then, we obtain

a(x)=U(x, e*, 1, w(x, 1))) for all x> e*.

That is, a(x) is recursive in S(x).

We define

e, =pele is not stable].
ej. = pe[e>e; and e is not stable].

Let x4 be the least x=e; such that limn(x, ¢; ¢, s) does not exist or is
S
equal to O.
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LEMMA 8.
W<l R)WNES)szo(Dj<il (e 1, 5) = X
Vv ou(xh, e 1, s)=0V n(x%, e; 1, s)=0].
Proor. Fix 7, k and v. We suppose there does not exist s with the pro-
perties required by the lemma, and then show it is possible to define an in-

finite, descending sequence of natural numbers.
We shall define two functions, y(¢) and A(f), simultaneously by induction.

20)=ps(szv).
) =pilj<k & x4 <&, i, 1) &

w(x}, et y (N =1 & 7(x}, e; 1, x() > 0]
(D) = ps(Em)[s = 3@ & m < (X ray xE)

& o(m, 1, 8) x o(m, 1, x(H)—1)].
We shall show that y(¢) is well-defined and y(f)=v. Clearly x(0) is well-
defined and y(0)=v. Suppose =0 and () is well-defined and () =v.
We have supposed the lemma to be false, so A(¥) is well-defined and A({)
< k. Thus

(X €aan B () > 0.
Since ¢, is not stable, there must be an s> x(f) such that
(X s Loy 1 S) ¥ DXy Loy 1 YD) -
It follows there is an s > y(f) and an m such that
m < (X ran 1 x(B) & d(m, i, s—1) % d(m, i, x(H)—1).

Then y(t+1) is well-defined.
For each 1 =0, let

x*(t) = pm{o(m, i, y(t+1)) % d(m, i, y(O—1)].

Now we show x*(#) < x*(t—1) for all t>0. Fix t>0. By the definitions of
x(® and x*(¢), we have

0y (1) < (X €aay B xM) -
Then it is sufficient to show that

@ (X 3w Caer b A = xFE—1).
Since

B(x*(t—1), 1, (D) % 0+t —1), i, 1x(H—1)

as a consequence of the definitions of y(¢) and x*(f), we have
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(EeXENLO(x*(t—1), i, (@) = o(x*(t—1), 4, x(D—1)
& x*({t—1)=0(h(x®), e/, v, 1, x(O—1)].
First we suppose ¢’ < e;q, V ¢/ <Ih(y(t). Then we have
(¢! < ez, Vo' <Ih(x(®)) & v(Xia, a1, () =1.
But then it follows from the definition of v(x, e, i, s) that
¥t —1) = 0(h(x (), €', 7, 1, y(O—1) = (X% Cagays b x (D) -
Now we suppose e’ = e,y & e’ =[h(x(t)). Then we have
ap=<e & (N =e & e, = xhe <&y 1 x(D)
& o(OURG @D, ¢, 7,1, xD—1), 1, (D)
2 0(0URGD), €' 1,1, x(O—D), 4, x(O—D).
Since I'(lh(z(®), ¢/, r, 1, () holds, it follows that

x*(’f"_l) - 0(lh(X(t))! e, 7, ir X(t)”'l) = n(xil(t)’ €acy i: X(D) .

Thus we have shown that (2) holds.
LEMMA 9. If y(e*)=0, then

Dical EM )Mz m (EN)L0(0(z, €*, m, 1, 5), 1) =17 .
Proor. We shall define
He)=prlo(r)=el,
* s'(e) = ps(Nr=ua $*(r, ) = (1) & s> He)].

Then t(e*)(=1) and s'(e*)(=s’) are defined, because y(e*)=0. By the de-
finition of z(x, s), we have

(e*, s)=t for each s=>s’.
Then
k(e*, s) = k(e*, s) for each s=s’.

It follows from the definition of x(x, s) that x(x, s) = «(x, s,) for all s, and s,
such that s; >s,. Thus we obtain from the definition of I'(z, ¢, m, i, s) that

@M Di<al)ssolm = £(e*, ) —

0(0(z, e*, m, i, s—1), i, s) = 0(f(z, e*, m, 1, s—1), 1, s—1)].
Then

Wil EM )Mz (2)(S)L0(0 2, €*, m, 3, ), 1) =1].
LEMmmAa 10.

(@ cn()S)(2, e, 1, $)=0—v(x+1, e, 1, s)=0].
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Proor. This lemma is easily deduced from the definition.
LemMma 11, If y(e*)=1, then
Dicn(mM)ES)LIOUR(S), e*, m, i, s—1), ) =0].
Proor. Fix i< n. First we show that the set {z(e*, s)|s =0} is infinite.
Suppose z(e*, s)<t for all s. Let s’ be so large that s/ >t and ¢#(r, s)=¢(r)
for all s and » such that s=s’ and r<¢. Then we have
P*(z(e*, ), ) = P(z(e*, s))=e*,

since t(e*, s/) <t <s’.
This is impossible because y(e*)=1. Thus

{z(e*, s)|s = 0} is infinite.
Then
)] {k(e*, )]s =0} is infinite.

By Lemma 7, we know A4(e, 1) holds for all e<e*. This means that if
e<e* and e is stable, then the set {&(e, 1, s)|s =0} is finite.

We define &*(e, 1) for all e <e* by two cases.

Case 1: e¢=<e* and e is stable. We set

&*(e, 1) = max {&(e, i, s)|s =0} .
Case 2: e=<e* and ¢ is not stable. We set
&*(e, 1)=x%, where j is such that e=¢;.
If e<e* and e< g < &*(e, 1), then 1ism 7(q, e, i, s) exists. Then there exists a y,,
such that
2 () @exer(@e=qzre,uL Yo Z (G5 €5 1, 8)]

We fix an m for the rest of discussion. The proof will complete, if we
can show

3) (ES)LoOUN(S), e*, m, 1, s—1),1, s)=0].
By (1), there exists an s; such that
(4) (5)3231[5(6*’ S) > Wl] ’

since k(e*, s) is a nondecreasing function of s.

Let k be such that if ¢ <e* and e is not stable, then ¢=¢; for some j < k.
By there is an s,>=s, such that
5) (Nialé(ejy 1, s) = x5V w(xh, 5,1, ) =0V 9(x3, ¢, 1, s,) =0].

Let s* be such that [A(s*¥) > max {e*, y,}, s*=s, and
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(6) (EW)yr[TEEW ;5 1, s¥—1)), Lh(s®),
G(Ih(s¥), e*, m, 1, s*—1), y) & U(3) = 0].
We shall show 6(8(lh(s*), e*, m, i, s*—1), 1, s¥)=0. If o(8(h(s¥), e*, m, i, s*—1),
i, s*—1)=0, then by the definition evidently d(6((h(s*), e*, m, 1, s¥—1), 7, s¥)=0.

Now we suppose 6(6(lh(s*), e*, m, i, s*—1), 1, sk—1)=1. Then it will suffice
to show

® (EN)yer [ T1HE 5 1, s*—=1)), Lh(s¥), OR(s¥), &%, m, i, s*—1), 3)
& U(y)=0],

(ii) m < k(e*, s¥),

and

(iii) @@Le=e* & Ih(s¥)=Ze* & e=q<Ele, 1, %))

— O(h(s*), e*, m, 1, s*—1) = 75(q, e, 1, s*)]
& (Es)g=plle < e* & [h(s*) > e*

& e=q<éle1, )~ e 1,5)=0

V O(Lh(s¥), e*, m, 1, s'—1) = 7(q, e, 1, s"))1] .

Since s*=s,, from (6) and (4), (i) and (ii) evidently hold. Since [A(s¥) > e* and
s, < s*, we have only to show that

(ee* & Ih(s*)>e* & e<q<&(e, 1, 5,)— (g, e, 1, 5,)=0
V O(Lh(s*), e*, m, 1, s,—1)=7(q, ¢, 1, S,)) .
Fix ¢ and ¢ so that e<e* and e<¢g<&(e, i, s,). Suppose e is stable, then
e, )= &(e, 1, ) >qg=e.
Consequently, by using (2),

yO .—_>—. 77(4, e: i; Sz) .
Since [h(s*) > y,, we obtain

O(h(s*), e*, m, i, s,—1) = 2" > y, > 9(q, ¢, 1, S,) .

Now suppose e is not stable, then by the definition of &*(e, 1), e =e¢;, where
J<k,and &*(e, 1)=x%. If g<x%,thene;=e=<qg<xt=¢*e, 7). Then we have

O(Ih(s*), eX, m, i, s,—1) = 2740 > y, = 9(q, e, 1, S5) .
If g=x%, then &(e;, 1, 5,) > qg= x5=_E%(e, 7). By (5), this means that either
v(xh, e; 1, 5,)=0 or xn(x}, e;t, s)=0.

Suppose v(x3%, ¢, 1, s,) =0, then by v(g, ¢, 1, $,)=0, since ¢=x} and
e=e; If n(xi,ej1, s,)=0, then by
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x%ée:ej,
since x5 <q<é&(e, 1, s,). By the definition of x4, we know
Xy=ze;j=e.
Thus we have
xh=e;=e.
Then we have
n(e, e, i, s,)=7(ej, e, 1, S,) =7(x%, ¢, 1, 5,) =0,

and it follows that &(e, 1, s,) =e-+1.
Hence we obtain

xi=e=q<é&(e i, s,)=e+1, that is,

g=ce.
Thus

7(q, e, 1, S;) =1(e, e, 1, ;) =7n(x%, e;, 1, 5,) =0.
Consequently

O(Ih(s*), e*, m, 1, s,—1)=1(g, e, 1, s) .

Then (iii) holds. That is, we have shown that (3) holds.
LEMMA 12. A(e*, 1) for all i < n.
PrOOF. We put § and ¢ as follows:

§ = ps(X)p=e[ fF(x, s)=B/(x) & e* <s].

px(£)o= 3 & (1) <() & G*((1),, (1)o) =€),
t= if (ES)szs(ENrs §*(r, 5) =e*],

§-4-1 otherwise.

Letting
§'= ﬂS(T),—gtEQﬁ#(T, $)= ¢(7’) & s>t],
mt = k(e*, s’)

and

psLo(0Un(s), e*, m", 1, s—1), 1) =0]

S — if (Es)[o(@Uhn(s), e*, m", 1, s—1),1)=0],

1 otherwise,

we obtain

r(e*) =1—0(0(lh(s"), e*, m", 1, s" —1), 1)

from the proof of Lemma 9 and Lemma 11. And m", s" are obtained by the
procedure recursive in d). This constitutes a proof of A(e*, 7).
Thus we have accomplished the proof of Proposition 1 and 2.



628 K. HIROSE

§4. The proof of c=d, :=0,1, ---, n—1).

In this section, we shall prove ¢=d} for all i <n.
We shall define a function o(x, e, i) which is recursive in y(x), and satisfies
the following (1).

@ (D@D icalo(x, 0, ) =0 (x=e & WYEs)(s>w & &, 1, $) > %)
& (m(x=m=e—ENTIGW; D), e, m, MN].

From the definition of £&(e, 1, s), we have (&)(1);<.(sS)[E(e, 1, s) > e]. It follows
immediately from (1) that

(@@icnloe, e, ) =0 (ENTIG(y; i), e, ¢, )]
Then, if o(x, e, i) is recursive in y(x), we have
c=dj} for all i< n.

Thus we have only to define o(x, ¢, i) recursively in 7(x), and satisfying
the property (1).
First, we define r(e, s) as follows:

(e, s’(e)) if y(e)=0,
n(e, s) =
s otherwise,
where s’(¢) is the function defined by (*) in the proof of Then we
easily see that this function satisfies the following:
&) @@ i<lm = nle, 8)—0(0(z, e, m, 1, $), 1)
=0(0(z, e, (e, 1, $), 1, S), 1)] -

In fact, if y(e)=0, the property (2) follows from the proof of Lemma 9; other-
wise by the definition of 6(z, e, m, 1, s), we have

@M Dicn(IIm = s — 0z, e, m, 1, §) =27 - 5],

from which (2) also follows.
By the definition, z(e, s) is recursive in y(e).
Now, we will define o(x, ¢, 1) by induction on e.
Let X(e) denote the following predicate:

3(&) = ()N <e@)i<al(0(x, j, ) has been defined)
& (0(x, 7, ) =00x=j & WENs>w & &G, i, )> 1)

& (M) (x=m=j—ENTIE(; D), j, m, Y] -
We suppose that Y(e*) holds. Let X(e*-+1, x) denote theZfollowing predicate:
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2(e*4-1, ) = Dyer(D)icnl (0(t, €%, 1) has been defined)
& (o(t, e*, D) =0 ((=e* & WYES)(s>w & &(e*, 1, )>1)
& (my(t=m=ex —ENTIG; D), e, m, ]

To verify X(e*+1), it suffices to prove X(e*+1, x) for all x.

We shall define o(x, e*, i) and prove X(e*+1, x) for all x by means of an
induction on x. We fix x* and suppose 3(e*+1, x*) holds. We define a(x*, e*, 1)
and then prove X(e*--1, x*-+1).

Case 1: x*<e*. We set

o(x*, e*, 1) =1 for all i< n.
Case 2: x*=e*.
Subcase 2.1: (ED(Ei),le* <t < x* & o(t, x*,1)#0]. We set
o(x*, e*, 1) =1 for all 1 < n such that
(EDlex<t<x* & o(t, e%,1)+0].
Subcase 2.2: Otherwise. It follows from 2'(e*+1, x*) that
(EDTHS(y; 1), %, m,y)  for all i <n, m such that x*>m=e*.
For each m and 7 such that x* >m>=e* and 1 <n, let
n(m, i) = pyTHS(y; i), e*, m, ).
Let
y*=max {{n(m, )|x* >m=e* & i <n}U{0}}
and
s* = pusL@ic(NU <¥* =00, 1, s—1)=08(J, 1)) & s>y*].

It follows from the definition of 7(m, i) and from the fact that 0 is not
the Godel number of any deduction that
(3) (m)(i)i<n(s)[(s >k & x*>m= e*)—ny(m, e, ir S) = 77(m’ 1) > O] .

We define

(0 if (Es)[p(x*, e*,1,5)>0 & &(e*, 1, s) > x* & s> s*

& (Z)z<77(x*,e*,i,s)(e)e<w(x*,e*,i,s)(m)m<n(x*,e*,i,s)

O, e, m, 1, s—1)=x(z, e, m, 1))

& (Z)z<77(x*;8*,73;8)(e>e*§e<v(x*,e,i,s)(m)m<v(w*,e*,i,s)

Oz, e, m, 1, s—1) < p(x*, e*, 1, s)—(0(z, r, m, 1, s—1),1,s—1)
o(xt, ex, )={ =00, e, m,1,s—1),1)

& (Z)z<77(x*,e*,i,s)(e)e<e'(<m)(m < 77(9: S) -

00z, e, m, 1, s—1), 1, s—1)=06(0(z, e, m, 1, s—1), 1))

& (m)(nle, s) = m < p(x*, e*, 1, s)—0(0(z, e, m, 1, s—1), 1, s—1)
=0(0(z, e, n(e, s), 1, s—1), )],

1 otherwise,
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for all i < n.
To verify Y(e*+1, x*-+1), it suffices to prove

o(x*, ¥, D=0 [x*=e* & WES)(s>w & &(e*, 1, s) > x¥)
& (m)(x*=m = e*—(ENTI6(y; 1), e*, m, y))].

Suppose o(x*, e*,1)=0. Then Subcase 2.2 of the definition of o(x, e, 1)
must hold. Let § be the nutural number whose existence is required by
o(x*, e*,1)=0. Thus, by the definition of o(x*, e*,i)=0, we have

xk=e* & px*, e, 1,8) >0 & &e*, 1, 8) > x* & §> s*.
We shall prove
n(x*, e*, 1, s)=n(x*, e*,1, §) & &(e*, 1, ) > x*

for all s such that s> § by the induction on s.
Fix s=% Suppose

p(x*, e*, 1, ) =n(x*, e*,1,§) & &(e*, 1, 8) > x*
& plx*, e*, 1, s) + p(x*, e*, 1, s+1).
From the definition of (x, ¢, i, s), we have
(Ew)[o(w, 1, s) # 6w, i, s—1) & w < p(x*, e*, 1, 5)].
Then, there exist 5z, ¢ and 7 such that
) 00, e, m, 1, s—1), 1, s) + 0(0(, ¢, m, 1, s—1), 1, s—1)
& m< 0@, e, m, 1, s—1) <nlx*, e*,1,s) & Z2=1h(s).

Suppose ¢ < e*. Then, by the definition of o(x*, e*, 1)=0, s=5 and the
second member of conjunction (4), § has the property that

o0, e, m, 1, s—1), 1) if m<n(,5%),
30, 2, 7, i, s—1), i, §—1) :{ | |
00, e, (2, 5), 1, s—1),1) otherwise.
It follows from (2) and 6(, ¢, m, i, s—1) = x(Z, ¢, i, i) that
06, e, m, 1, s—1),1) =000, e, n(e, §), 1, s—1), 1) for m==(,53).
Consequently
o6z, e, m, 1, s—1), 1, s) =00, e, m, i, s—1),1, s—1),

which contradicts the first member of conjunction (4). Thus we have shown
= e*.

Since 0(z, ¢, m, 1, s—1)=x(z, ¢, /i, 1) =03, &, i, 1, §—1) < p(x*, e*, 1, s) = n(x*,
e*, 1, ), it follows from the definition of a(x*, e*, i)=0 that
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oz, e, m, 1, 51,1, §—1)=0(0(, ¢, m, i, §—1), 1)
=000, e, m, i, s—1), 1, s—1)= (0, e, m, i, s—1), 1, 5),
which contradicts the first member of conjunction (4). Thus we have

(w)w<ﬂ(x*,e*,i,s)[5(w; 1, 3) = 5(71), i, S—l)] .
That is,

p(x*, e*, 1, §) = p(x*, e*, 1, ) = p(x*, e*, 1, s+1).
Since s=3§ > s*, we now obtain from (3) that
(M)l x* = m = e* —n(m, e*, 1, s) = n(m, e*, 1, s+1) > 0].

Then, either Case 2 or Case 3 of the definition of &(e*, 1, s--1) holds. If Case
2 holds, then

E(e*) i: S+1) - E(e*’ i’ S) > x* M
If Case 3 holds, then

&(e*, i, s++1) = £(e*, 1, 5) > x*.
Thus we have shown that
()z s [np(x*, e*, 1, s)=n(x*, e*, 1, ) >0 & &(e*, 1, ) > x*].
It follows immediately that
® (ENTI6( ;) e%, %, ) & WYES)[s>w & &(e*, 1, §)> x*].
Since a(x*, e*, 1)=0, 2(e*+1, x*) implies
©) (m)Lx* > m= e*—(ENTHG(y; 1), e¥, m, »)].
By (5) and (6), we obtain
) *=e* & WYESs>w & &(e*, 1, s) > x*]
& (m[x* = m = e*—(ENTIG(; D, e%, m, 3)].

Now we suppose (7), and then show o(x*, e*,1)=0. By 2(e*-+1, x*), we have
Subcase 2.2 of the definition of o(x, ¢, 7).
Let

ij(m, i) = pyT(o(y; ©), e*, m, ¥)
for all 1 <n and all m such that x*=m=>=e*. We put

7=max {f(m, )1 <n & x*=m=e*},
and

§=pwlw >max {7, s*} & (@),<5(@)eci (M) (0(z, €, m, 1, w) = x(z, €, m, 1))
& (2),<7(@)ey (D < x(2, e, 1) —0(t, 1, W) = 0(t, D) & &(e*, 1, w) > x*].

It follows from the definition of o(x*, ¢*, 1) that § has the properties required
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to conclude o(x*, e*,1)=0. Thus we have shown X(e*-+1, x*+1). That is, (1)
holds.

From the definition of a(x, ¢, 1), o(x, ¢,1) is recursive in y(x), 6(x,1) and
B'(x). Then o(x, e, i) is recursive in 7, since d; < ¢ and b’ < ¢. Hence we have

c=d] for all i<n

Thus the conclusion (v) of main theorem is complete, and the proof of
main theorem has been accomplished.

§5. Theorems.

THEOREM 1. If a and b are degrees, the following conditions (i), (ii), (iii),
@iv) and (v) are equivalent:

D) a=b=za” & bha';

(ii) there exists a ¢ such that a<c<a & ¢'=b;

(iii) for anmy positive integer n, there exist independent degrees ey, €y -+, €,
such that a<e;<a’ & ¢,=b for i=1,2, -, n;

@(iv) there exists a ¢ such that a<c<a’ & cha & ¢’ =b;

(V) for any positive integer n, there exist independent degrees ¢, €y, +++, €,
such that a<c¢;<a’ & ¢; ba & ¢,=b for i=1,2, -, n.

ProOOF. It is clear that (v)—(iv), (v)—(iil), (iv)—(i), (iii)— (i) and (1)—3).
(1)—(v) is easily deduced from Main Theorem.

G. E. Sacks proved the equivalency of (i), (ii) and (iv) in [4].

THEOREM 2. For any degree a and any positive integer n, there exist de-
grees ¢y, €y +++, €, SUCh that:

A ey ta for 1=1,2, -, n,

@) ey ¢y -+, ¢, are independent,

@) a<e;<a’'<a’"=c¢l fori=1,2, -, n.

PrOOF. Apply Theorem 1 ((i)—(v)) with b=a".

By Theorem 2, we can easily see that for any degree @ and any partially
ordered set T whose cardinarity is finite, there exists a set UU of degrees such
that T is imbeddable in U and U has the following properties: ues U—(u'Md
&d<u<d & u =d").

THEOREM 3. Let a and b be degrees and n be any positive integer such
that:

(1) a‘”’§b,

@) bha™.

Then, for any positive integer m, there exist degrees ¢y, ¢, +++ , €, Such that:

) a<e;<a’ fori=1,2,--,m,

() e¢; Ma fori=1,2, ..., m,

(i) ey, €y -+, ¢, are independent,
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iv) ¢e”=b fori=1,2, -, m.

ProOoOF. By Theorem 1, there exists a degree d, such that d; Ma” ™" &
a"P<d; <a™ & d/=0b.

By making n—1 further applications of Theorem 1, we obtain degrees
d, d, -, d,_, such that " <d; < a® " & d;'ta™? & dj=d;-, for j=1,2,
-, n—1 and obtain independent degrees ¢y, ¢, --+, €, Such that a<c¢;<a’ &
e; Ma & ¢i=d,., for 1=1,2, ..., m.

THEOREM 4. A degree a is the completion of a infinite recursively enumer-
able degrees if and only if a=0’ and a MNo'.

Proor. It is easily deduced from Theorem 1 ((i)«< (V)).

Department of the
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