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1. Introduction. Let $\mathfrak{B}$ be a Banach lattice. That is, $\mathfrak{B}$ is a Banach
space with the real scalar field $R$ and a lattice at the same time and the both
structures are related by the axioms: (i) If $f\geqq g$, then $f+h\geqq g+h$ ; (ii) If
$f\geqq g$ and $a\in R^{+}$ (the set of non-negative real numbers), then $af\geqq ag$ ; (iii) If
$f\geqq g$, then $-f\leqq-g$ ; (iv) If $|f|\geqq|g|$ , then $\Vert f\Vert\geqq\Vert g\Vert$ . We use the notations

$f\vee g=\sup\{f, g\}$ , $f\wedge g=\inf\{f, g\}$ ,

$|f|=f\vee(-f)$ , $f^{+}=f\vee 0$ , $f^{-}=-$( $f$ A $0$).

An element $f\geqq 0$ is called non-negative and the cone of non-negative elements
is denoted by $\mathfrak{B}^{+}$ . We call a family of linear operators $\{T_{t} ; t\geqq 0\}$ from $\mathfrak{B}$ into
$\mathfrak{B}$ an s-continuous non-negative contraction semi-group if they satisfy (i) $T_{t}T_{s}$

$=T_{t+s}$ and $T_{0}=I$ (identity); (ii) $T_{t}$ is strongly continuous, $i$ . $e.,$ $s-\lim_{t\rightarrow 0+}T_{t}f=f^{1)}$

for each $f\in \mathfrak{B}$ ; (iii) $T_{t}$ is a contraction, $i$ . $e.,$ $\Vert T_{t}\Vert\leqq 1$ ; (iv) $T_{t}$ is non-negative
in the sense that $T_{t}$ maps $\mathfrak{B}^{+}$ into itself. R. S. Phillips [7] characterized the
generators of such semi-groups, introducing the notion of dispersiveness. He
used a special type of Lumer’s semi-inner product, that is, a mapping $s(f, g)^{2)}$

from $\mathfrak{B}\times \mathfrak{B}$ into $R$ which satisfies $s(f, g+h)=s(f, g)+s(f, h),$ $s(f, ag)=as(f, g)$ ,
$|s(f, g)|\leqq\Vert f\Vert\Vert g\Vert,$ $s(f, f)=\Vert f\Vert^{2},$ $s(f^{+}, f)=\Vert f^{+}\Vert^{2}$ and carries $\mathfrak{B}^{+}\times \mathfrak{B}^{+}$ into $R^{+}$ .
He called an operator $A$ dispersive if $s(f^{+}, Af)\leqq 0$ for each $f\in \mathfrak{D}(A)^{8)}$ and
proved the following theorem: $A$ is the generator of an s-continuous semi-
group if and only if $A$ is linear dispersive, $\mathfrak{D}(A)$ is dense and $\mathfrak{R}(\lambda-A)=\mathfrak{B}$ for
some $\lambda>0$ . M. Hasegawa [3] noticed that the functional $\tau(f, g)$ defined by

(1.1) $\tau(f, g)=\lim_{e\rightarrow 0+}\epsilon^{-1}(\Vert f+\epsilon g\Vert-\Vert f\Vert)$

is useful for the characterization of the same generators. $\Vert f\Vert\tau(f, g)$ shares
some properties with $s(f, g)$ . Making use of $\tau^{\prime}(f, g)$ defined by

* The partial support of the Sakkokai Foundation is gratefully acknowledged.
1) s-lim denotes limit in the strong convergence.
2) The notation of Lumer and Phillips is $[g, f]=s(f, g)$ .
3) The domain of $A$ is denoted by $\mathfrak{D}(A)$ and the range by $\Re(A)$ .
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$\tau^{\prime}(f, g)=2^{-1}(\tau(f, g)-\tau(f, -g))$ ,

he called $A$ to satisfy (d2) if $\tau^{\prime}(f^{+}, Af)\leqq 0$ for each $f\in \mathfrak{D}(A)$ and proved that
dispersiveness in Phillips’ theorem can be replaced by (d2). Hasegawa’s $(d2)-$

condition has an advantage in that one can give concrete express the condi-
tion in many Banach lattices, as we see in examples in \S 6 of this paper.
But his $\tau^{\prime}(f, g)$ does not possess subadditivity with respect to $g$, which causes
inconvenience for us to deal with, for instance, sums of generators.

In this paper we introduce a new functional

\langle 1.2) $\sigma(f, g)=\inf\tau(f, (g+k)\vee(-bf))$ for $f\in \mathfrak{B}^{+}$

where the infimum is taken for all $b\in R^{+}$ and all $k$ satisfying $f\wedge|k|=0$ .
DEFINITION. We call an operator $A$ with domain $\mathfrak{D}(A)$ dispersive in the

strict sense or dispersive $(s)$ if $\sigma(f^{+}, Af)\leqq 0$ for each $f\in \mathfrak{D}(A)$ , and dispersive
in the wide sense or dispersive $(w)$ if $\sigma(f^{+}, -Af)\geqq 0$ for each $f\in \mathfrak{D}(A)$ .

The functional $\sigma$ has some important properties which $\tau$ and $\tau^{\prime}$ do not
have. Dispersiveness (s) implies dispersiveness (w) and we prove that Phil-
$2ips$ ’ theorem is valid if we replace his dispersiveness by either of our dis-
persiveness (w) and (s) (Theorems 1 and 2). Further we prove the existence
of a closed extension of a linear dispersive (w) operator with dense domain
(Theorem 3), and obtain a necessary and sufficient condition in order that its
smallest closed extension generates an s-continuous non-negative contraction
semi-group (Theorem 4).

In \S 5, we apply these results and give some sufficient condition for the
sum of a generator and a dispersive (w) operator to be again the generator
of an s-continuous non-negative contraction semi-group (Theorem 6). This is
a generalization of a result of K. Yosida [12]. We use the fact that the sum
of a dispersive (s) operator and a dispersive (w) operator is dispersive (w).

We investigate, in \S 6, concrete expressions of dispersivities (w) and (s) in
various Banach lattices. Results in the case of $\mathfrak{B}=C(X)$ , the space of con-
tinuous functions on a compact space $X$ are as follows: Dispersiveness (s) of
$A$ is equivalent to that

(1.3) if $f$ in $\mathfrak{D}(A)$ attains a positive maximum at $x_{0}$ , then $Af(x_{0})\leqq 0$ .
Dispersiveness $(w)$ of $A$ is equivalent to that

(1.4) if $f$ in $\mathfrak{D}(A)$ attains a positive maximum at $x_{0}$ , then there exists
a point $x_{1}$ where $f(x_{1})=f(x_{0})$ and $Af(x_{1})\leqq 0$ .

The both properties are familiar in the theory of Markov processes and in-
vestigated, $e$ . $g.$ , in [8] and [10].

I would like to express my hearty thanks to Takesi Watanabe for his
valuable advice. He called my attention to the fact of Lemma 4.1, and this
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made Theorem 4 attain the present generality. The original version of
Theorem 4 was restricted to a class of Banach lattices including $C$ and $L_{p}$

$(1<p\leqq\infty)$ .

2. Functional $\tau$ . The limit in the right hand side of (1.1) exists for each
pair $(f, g)\in \mathfrak{B}\times \mathfrak{B}$ and we can define $\tau(f, g)$ . This functional satisfies

PROPOSITION 2.1.

(i) $|\tau(f, g)|\leqq\Vert g\Vert$ ,

(ii) $\tau(f, ag)=a\tau(f, g)$ for $a\geqq 0$ ,

(iii) $\tau(f, af+g)=a\Vert f\Vert+\tau(f, g)$ for all $a$ ,

(iv) $\tau(f, g+h)\leqq\tau(f, g)+\tau(f, h)$ ,

(v) if $f\geqq 0$ and $af\leqq g\leqq h$ for some $a\in R$ , then $\tau(f, g)\leqq\tau(f, h)$ .
All of these are easy consequences of the definition. $(i)-(iv)$ are found in

Dunford-Schwartz [2] Chapter V, 9, and (v) is clear since we have, for every
sufficiently small $\epsilon>0,$ $\Vert f+\epsilon h\Vert\geqq\Vert f+\epsilon g||$ by $f+\epsilon h\geqq f+\epsilon g\geqq f+\epsilon af\geqq 0$ .

Proposition 2.1 contains all the properties that we need in the following
argument. In other words, any functional satisfying $(i)-(v)$ can serve to make
all the theorems hold, if we deflne $\sigma$ and dispersiveness similarly.

REMARK. If $|f|$ A $|g|=0$, then $\tau(f, g)=\tau(|f|, |g|)$ . This is a remarkable
fact, though we do not need it below. The proof is based on the fact that
$|f|\Lambda|g|=0$ implies $|f+g|=|f|+|g|$ . For, if $|f|\wedge|g|=0$ , then we have
$|f|$ A $|\epsilon g|=0,$ $|f+\epsilon g|=|f|+|\epsilon g|=|f|+\epsilon|g|$ and $\Vert f+\epsilon g\Vert-\Vert f\Vert=\Vert|f|+\epsilon|g|\Vert$

$-\Vert|f|\Vert$ .

3. Functional $\sigma$ . Let us examine properties of the functional $\sigma$ from
$\mathfrak{B}^{+}\times \mathfrak{B}$ into $R$ defined by (1.2).

PROPOSITION 3.1. Let $f\geqq 0$ . Then,

(i) $-\Vert g^{-}\Vert\leqq\sigma(f, g)\leqq\Vert g^{+}\Vert$ ,

(ii) $\sigma(f, ag)=a\sigma(f, g)$ for $a\geqq 0$ ,

(iii) $\sigma(f, af+g)=a\Vert f\Vert+\sigma(f, g)$ for all $a$ ,

(iv) $\sigma(f, g+h)\leqq\sigma(f, g)+\sigma(f, h)$ ,

(v) if $g\leqq h$ , then $\sigma(f, g)\leqq\sigma(f, h)$ ,
(vi) if $f\wedge|h|=0$ , then $\sigma(f, g)=\sigma(f, g+h)$ .
Among direct consequences of (i), (iv) and (vi), we have

(3.1) $\sigma(f, 0)=0$ ,
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(3.2) $-\sigma(f, -g)\leqq\sigma(f, g)$ ,

(3.3) $|\sigma(f, g)-\sigma(f, h)|\leqq\Vert g-h\Vert$ ,

(3.4) $\sigma(0, g)=0$ .
There are many Banach lattices in which $\sigma(f, g)=\tau(f, g)$ holds if $f\in \mathfrak{B}^{+}$ and
$f\neq 0$ . However, it is not true in some Banach lattices, as is seen from the
example $\mathfrak{B}=L_{1}$ or $A(9)$ in \S 6. The properties of $\sigma$ are really stronger than
those of $\tau$ .

PROOF OF PROPOSITION 3.1. Throughout the proof, we suppose $f\geqq 0$,
$f\wedge|k|=0$ and $b\in R^{+}$ . We first note that, if $0\leqq b<b^{\prime}$ , then $\tau(f, g\vee(-bf))$

$\geqq\tau(f, g\vee(-b^{\gamma}f))$ by (v) of Proposition 2.1. It follows that

(3.5) $\sigma(f, g)=\inf_{k}\lim_{b\rightarrow\infty}\tau(f, (g+k)\vee(-bf))$

$=\lim_{b\rightarrow\infty}\inf_{k}\tau(f, (g+k)\vee(-bf))$ .

Note that we have not yet proved $\sigma(f, g)>-\infty$ . The proof of (iii) is obtained
from (3.5) and Proposition 2.1 (iii):

$\tau(f, (af+g+k)\vee(-bf))=\tau(f, af+(g+k)\vee(-(a+b)f))$

$=a\Vert f\Vert+\tau(f, (g+k)\vee(-(a+b)f))$ .
(vi) is also clear from the definition of $\sigma$ , since $f\wedge|h|=f\wedge|k|=0$ implies
$f\wedge|h+k|=0$ . In order to prove (iv), let us prove, for each $g^{\prime},$ $h‘\in \mathfrak{B}$ and
$b\in R^{+}$ ,

(3.6) $\tau(f, (g^{l}+h^{\prime})\vee(-bf))\leqq\tau(f, g^{\prime}\vee(-b/2)f)+\tau(f, h^{\prime}\vee(-b/2)f)$ .
Let $u_{1}=(g^{\prime}+h^{\prime})\vee(-bf)$ and $u_{2}=g^{\prime}\vee(-b/2)f+h^{\prime}\vee(-b/2)f$. We have $u_{2}\geqq-bf$,
and hence $u_{2}=u_{2}\vee(-bf)\geqq u_{1}\geqq-bf$. Therefore we have (3.6) by virtue of
(iv) and (v) of Proposition 2.1. If we set $g^{\prime}=g+k_{1}$ and $h^{\prime}=h+k_{2}$ in (3.6),
supposing $f\wedge|k_{1}|=f\wedge|k_{2}|=0$ , then we get to (iv) by using (3.5). If $a>0$,

then (ii) is seen from Proposition 2.1 (ii):

$\tau(f, (ag+k)\vee(-bf))=a\tau(f, (g+a^{-1}k)\vee(-a^{-1}bf))$ .

In case $a=0$ , (ii) is contained in the assertion (i).

Now it remains to prove (i) and (v). Among these, the second inequality
in (i) is obtained from the definition of $\sigma$ and Proposition 2.1 (i): $\sigma(f, g)$

$\leqq\tau(f, g\vee 0)\leqq\Vert g^{+}\Vert$ . It follows from this that $g\leqq 0$ implies $\sigma(f, g)\leqq 0$ . From
this and (iv) we can see (v): $\sigma(f, g)\leqq\sigma(f, g-h)+\sigma(f, h)\leqq\sigma(f, h)$ if $g\leqq h$ . Let
us see that

(3.7) $g\geqq 0$ implies $\sigma(f, g)\geqq 0$ .
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(This does not follow from (v), since we did not yet prove $\sigma(f,$ $0)=0.$) $g\geqq 0$

implies $(g+k)(-bf)\geqq k\vee(-bf)=-((-k)\wedge(bf))\geqq-$ ( $|k|$ A $(bf)$) $=0$, and hence,
$\tau(f, (g+k)\vee(-bf))\geqq\tau(f, 0)=0$ by Proposition 2.1 (i) and (v), which proves
(3.7). Now we can $verify-\Vert g^{-}\Vert\leqq\sigma(f, g)$ , because $\sigma(f, g)+\Vert g^{-}\Vert\geqq\sigma(f, g)+\sigma(f, g^{-})$

$\geqq\sigma(f, g^{+})\geqq 0$ . The proof of Proposition 3.1 is complete.

4. Characterization of generators. The generator $A$ of an s-continuous
non-negative contraction semi-group $\{T_{t} ; t\geqq 0\}$ is defined by

$Af=s-\lim_{t\rightarrow 0+}t^{-1}(T_{t}f-f)$ ,

the domain $\mathfrak{D}(A)$ being the set of $f$ for which the right side exists. The fol-
lowing two theorems combined with the well-known Hille-Yosida theorem form
the counter-part of Phillips’ theorem mentioned in \S 1.

THEOREM 1. If $A$ is the generator of an s-continuous non-negative contrac-
tion semi-group, then $A$ is dispersive $(s)$ .

Note that any dispersive (s) operator is dispersive (w) by the property
(3.2) of $\sigma$ .

PROOF. Let $f\in \mathfrak{D}(A)$ . Keeping in mind $f^{+}\wedge f^{-}=0,$ $T_{t}f^{-}\geqq 0$ and $\Vert T_{t}\Vert\leqq 1$

and using the properties (vi), (iii), (v) and (i) of $\sigma$ in turn, we have $\sigma(f^{+}, T_{t}f-f)$

$=\sigma(f^{+}, T_{t}f-f^{+}+f^{-})=\sigma(f^{+}, T_{t}f-f^{+})=-\Vert f^{+}\Vert+\sigma(f^{+}, T_{t}f)$ and $\sigma(f^{+}, T_{t}f)$

$=\sigma(f^{+}, T_{r}f^{+}-T_{t}f^{-})\leqq\sigma(f^{+}, T_{t}f^{+})\leqq\Vert T_{t}f^{+}\Vert\leqq\Vert f^{+}\Vert$ , and hence,

$\sigma(f^{+}, T_{t}f-f)\leqq 0$ .
Multiply this by $t^{-1}$ , use (ii) of Proposition 3.1, and make $t$ tend to zero.
Then we get $\sigma(f^{+}, Af)\leqq 0$ , since (3.3) asserts that $\sigma(f, g)$ varies continuously
as $g$ varies in the strong topology. Consequently, $A$ is dispersive in the strict
sense.

THEOREM 2. If $A$ is a linear dispersive $(w)$ operator with dense domain
and if $\mathfrak{R}(\lambda-A)=\mathfrak{B}$ for some $\lambda>0$ , then $A$ is the generator of an s-continuous
non-negative contraction semi-group.

LEMMA 4.1. Let $A$ be dispersive $(w)$ . If $(\mu-A)f=g$ and $\mu>0$ , then $\Vert f^{+}||$

$\leqq\Vert g^{+}\Vert/\mu$ and $\Vert f^{-}\Vert\leqq\Vert g^{-}\Vert/\mu$ .
PROOF. Using (i), (iii) and (vi) of the properties of $\sigma_{;}$ we get the first

inequality: $\Vert g^{+}\Vert\geqq\sigma(f^{+}, g)=\sigma(f^{+}, \mu f-Af)=\sigma(f^{+}, \mu f^{+}-Af)=\mu\Vert f^{+}\Vert+\sigma(f^{+}, -Af)$

$\geqq\mu\Vert f^{+}\Vert$ . The second inequality is a consequence of the first, since $f^{-}=(-f)^{+}$

and $g^{-}=(-g)^{+}$ .
PROOF OF THEOREM 2. By the above lemma, $(\mu-A)^{-1}$ exists for all $\mu>0$,

and it is non-negative since $g^{-}=0$ implies $f^{-}=0$ . We write $G_{1}=(\mu-A)^{-1}$ . In
order to prove the theorem, it is sufficient to show
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(4.1) $\mathfrak{D}(G_{\mu})=\mathfrak{B}$ ,

(4.2) $\Vert G_{\beta}\Vert\leqq 1/\mu$ ,

by virtue of the Hille-Yosida theorem and, as for the non-negativity of the
semi-group, by Yosida’s or Hille’s representation formula of semi-group opera-
tors by resolvents. (4.2) is a consequence of (4.1) if we use Lemma 4.1 and
the relation: $|G_{\mu}g|\leqq|G_{\mu}g^{+}|+|G_{\mu}g^{-}|=G_{1}g^{+}+G_{\mu}g^{-}=G,,|g|$ . Let us prove (4.1).

It is assumed to hold for $\mu=\lambda$ . Suppose $ 0<\mu<2\lambda$ . Then $f=(1-(\lambda-\mu)G_{\lambda})^{-1}G_{\lambda}g$

exists for every $g\in \mathfrak{B}$, since $\Vert(\lambda-\mu)G_{\lambda}\Vert<1$ . We have $(1-(\lambda-\mu)G_{\lambda})f=G_{\lambda}g$, and
hence, $f\in \mathfrak{D}(A)$ and $(\mu-A)f=g$ . Repeating this procedure, we get to (4.1) for
arbitrary $\mu>0$ . The proof is complete.

The next two theorems are concerned with closed extensions of dispersive
(w) operators.

THEOREM 3. Every linear dispersive (w) operator with dense domain has a
closed extension.

PROOF. Let $A$ be linear dispersive $(w)$ with dense domain. It suffices to
prove that if $\{f_{n}\}$ is a sequence in $\mathfrak{D}(A)$ strongly converging to $0$ and if $Af_{n}$

tends strongly to some $g$, then $g=0$ . Suppose $g\neq 0$ . We may and do suppose
$g^{+}\neq 0$ and $\Vert g^{+}\Vert=1$ . $\mathfrak{D}(A)$ being dense, there is an element $h\in \mathfrak{D}(A)$ such that
$\Vert g-h\Vert<1/3$ . Since $(h_{1}+h_{2})^{+}\leqq h_{1}^{+}+h_{2}^{+}$ holds in general, we have $ 1=\Vert g^{+}\Vert$

$\leqq\Vert h^{+}+(g-h)^{+}\Vert\leqq\Vert h^{+}\Vert+\Vert(g-h)^{+}\Vert<\Vert h^{+}\Vert+1/3$ and so $\Vert h^{+}\Vert>2/3$ . We have, for
arbitrary $\epsilon>0$,

$\sigma((f_{n}+\epsilon h)^{+}, -g-\epsilon Ah)$

$\leqq\sigma((f_{n}+\epsilon h)^{+}, -\epsilon^{-1}f_{n}-h)+\epsilon^{-1}\Vert f_{n}^{+}\Vert+\Vert(h-g)^{+}\Vert+\epsilon\Vert(Ah)^{-}\Vert$

by repeated use of (i) and (iv) of Proposition 3.1, and

$\sigma((f_{n}+\epsilon h)^{+}, -\epsilon^{-1}f_{n}-h)=-\epsilon^{-1}\Vert(f_{n}+\epsilon h)^{+}\Vert\rightarrow-\Vert h^{+}\Vert$ , $ n\rightarrow\infty$

by (iii), (vi) and a general inequality $|(h_{1}+h_{2})^{+}-h_{1}^{+}|\leqq|h_{2}|$ . Hence,

$\lim_{n\rightarrow}\sup_{\infty}\sigma((f_{n}+\epsilon h)^{+}, -g-\epsilon Ah)\leqq-\Vert h^{+}\Vert+\Vert(h-g)^{+}\Vert+\epsilon\Vert(Ah)^{-}\Vert$

$<-1/3+\epsilon\Vert(Ah)^{-}\Vert<0$

if we choose $\epsilon>0$ appropriately small. On the other hand,

$\lim_{n\rightarrow}\inf_{\infty}\sigma((f_{n}+\epsilon h)^{+}, -g-\epsilon Ah)=\lim_{n\rightarrow}\inf_{\infty}\sigma((f_{n}+\epsilon h)^{+}, -(Af_{n}+\epsilon Ah))\geqq 0$

by (3.3) and dispersiveness $(w)$ . This is a contradiction, and the theorem is
proved.

REMARK. We do not know whether the smallest closed extention of linear
dispersive (w) operator with dense domain is necessarily dispersive (w). But
the answer is given affirmatively, in case $\mathfrak{B}$ has the property
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(4.3) If $f_{n}\in \mathfrak{B}^{+}$ and $s-\lim_{n\rightarrow\infty}f_{n}=f\neq 0$, then $\lim_{n\rightarrow}\sup_{\infty}\sigma(f_{n}, g)\leqq\sigma(f, g)$

for all $g\in \mathfrak{B}$ .
The condition (4.3) is satisfied for $B(X),$ $C(X),$ $C_{0}(X)$ and $L_{p}(X, B, m),$ $ 1<p\leqq\infty$ ,

but is not satisfied for $L_{1}(X, \mathscr{D}, m)$ and $A(\mathscr{D})$ except trivial cases (see \S 6 as for
notations).

THEOREM 4. If $A$ is a linear dispersive $(w)$ operator with dense domain and
if $\mathfrak{R}(\lambda-A)$ is dense for some $\lambda>0$ , then the smallest closed extention $\overline{A}$ of $A$

is the generator of an s-continuous non-negative contraction semi-group.
PROOF. The existence of $\overline{A}$ is proved by Theorem 3. If $(\mu-\overline{A})f=g$

and $\mu>0$, then $\Vert f^{+}\Vert\leqq\Vert g^{+}\Vert/\mu$ and $\Vert f^{-}\Vert\leqq\Vert g^{-}\Vert/\mu$ For, there is a sequence
$\{f_{n}\}$ in $\mathfrak{D}(A)$ such that $f_{n}$ tends to $f$ strongly, and $Af$. to $\overline{A}f$ and we have
the corresponding inequalities for $f_{n}$ by Lemma 4.1. The proof of Theorem
4 is, therefore, carried out in the same way as that of Theorem 2. Note
that $(\mu-A)^{-1}$ is bounded by $ 2/\mu$ , and hence, denseness of $\mathfrak{R}(\mu-A)$ implies
$\mathfrak{R}(\mu-\overline{A})=\mathfrak{B}$ .

REMARK. In case $A$ is one-to-one, the assumption of denseness of $\mathfrak{R}(\lambda-A)$

in Theorem 4 can be replaced by denseness of $\mathfrak{R}(\lambda V+I)$ , where $V=-A^{-1}$ .
For, we have $\mathfrak{R}(\lambda V+I)=\mathfrak{R}((\lambda-A)V)=\mathfrak{R}(\lambda-A)$ . Denseness of R(\‘AV+I) was
employed in Yosida [13].

5. Sums of generators and dispersive $(w)$ operators. Concerning sums
of dispersive ($w$ or s) operators we have

THEOREM 5. If $A$ and $B$ are both dispersive (s) operators, then $A+B$ (de-

fined on $\mathfrak{D}(A)\cap \mathfrak{D}(B))$ is dispers$ive(s)$ . If $A$ is dispersive $(s)$ and $B$ is disper-
sive $(w)$ , then $A+B$ is dispersive $(w)$ .

PROOF. The both assertions are consequences of the subadditivity of $\sigma$ .
That is, $\sigma(f^{+}, (A+B)f)\leqq\sigma(f^{+}, Af)+\sigma(f^{+}, Bf)\leqq 0$ under the first assumption,
and $\sigma(f^{+}, -(A+B)f)\geqq\sigma(f^{+}, -Bf)-\sigma(f^{+}, Af)\geqq 0$ under the second assumption.

Before proceeding to Theorem 6, we prepare some facts about Bochner’s
subordination of semi-groups [1]. Let $(\Omega, \mathscr{D}, P)$ be a probability space, and
$\{x_{t}(\omega);t\geqq 0\}$ be a stochastic process with stationary independent increments
starting at $0$ and having right-continuous non-decreasing paths. It is known
that the law $F_{t}$ of $x_{t}$ is uniquely expressed by a constant $c\geqq 0$ and a measure
$n$ on $(0, \infty)$ satisfying $\int_{0^{\infty}}\frac{r}{1+r}n(dr)<\infty$ in such a way that

$E(e^{-\lambda x_{t}})=\int_{0^{\infty_{-}}}e^{-\lambda s}F_{t}(ds)=\exp[-t(c\lambda+\int_{0^{\infty}}(1-e^{-\lambda r})n(dr))]$ , $\lambda>0$ .

Given an s-continuous non-negative contraction semi-group $\{T_{t} ; t\geqq 0\}$ in $\mathfrak{B}$ ,

define
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$T_{t}^{\prime}f=\int_{0-}^{\infty}T_{s}fF_{\iota}(ds)$ , $f\in \mathfrak{B}$ .

Then, $\{T_{t}^{\prime} ; t\geqq 0\}$ is again an s-continuous non-negative contraction semi-group.
This operation to obtain a new semi-group $\{T_{t}^{\prime}\}$ from $\{T_{t}\}$ is called subordina-
tion, and the process $\{x_{t}\}$ is called a subordinator. The relation of the genera-
tors $A$ and $A^{\prime}$ of $\{T_{t}\}$ and $\{T_{t}^{\prime}\}$ is that $\mathfrak{D}(A)\subset \mathfrak{D}(A^{\prime})$ and

(5.1) $A^{\prime}f=cAf+\int_{0^{\infty}}(T_{s}f-f)n(ds)$ , $f\in \mathfrak{D}(A)$ .

A proof is found in [6]. If $c=0$ , we call subordination of the first kind, and,
if $c>0$ , subordination of the second kind. Subordination by a one-sided stable
process with exponent a $(0<\alpha<1)$ , that is,

$E(e^{-\lambda x_{t}})=e^{-t\lambda^{\alpha}}=\exp[-\frac{\alpha t}{\Gamma(1-\alpha)}\int_{0^{\infty}}(1-e^{-\lambda r})\frac{dr}{r^{1+a}}]$ ,

is an example of the first kind, and, in this case, $A^{\prime}$ is the so-called fractional
power of $A$ : $A^{\prime}=-(-A)^{\alpha}$ .

THEOREM 6. Let $A$ be the generator of an s-continuous non-negative con-
traction semi-group and $B$ be a linear dispersive $(w)$ operator. If $\mathfrak{D}(A^{\prime})\subset \mathfrak{D}(B)$

holds for some $A^{\prime}$ obtained from $A$ by subordination of the first kind, then
$A+B$ (with domain equal to $\mathfrak{D}(A)$) is the generator of an s-continuous non-
negative contraction semi-group.

The proof consists of the following two lemmas.
LEMMA 5.1. Let $a>0$ be given. Under the assumption of the above theorem,

we can find a constant $b\geqq 0$ such that

(5.2) $\Vert Bf\Vert\leqq a\Vert Af\Vert+b\Vert f\Vert$ , $f\in \mathfrak{D}(A)$ .

PROOF. Let $f\in \mathfrak{D}(A)$ . Then, $T_{s}f-f=\int_{0^{s}}T_{t}Afdt$ , and hence, $\Vert T_{s}f-f\Vert$

$\leqq s\Vert Af\Vert$ . By (5.1) with $c=0$ and $\int_{0^{\infty}}\frac{s}{1+s}n(ds)<\infty$ , we have

$\Vert A^{\prime}f\Vert\leqq\int_{0^{\infty}}\Vert T_{s}f-f\Vert n(ds)\leqq a^{\prime}\Vert$ A $ f\Vert+b^{\prime}\Vert f\Vert$ ,

where $a^{\prime}$ can be chosen arbitrarily small. On the other hand, since $A^{\prime}$ is
closed and $B$ is closable (Theorem 3), there is a constant $d$ such that

$\Vert Bf\Vert\leqq d(\Vert A^{\prime}f\Vert+\Vert f\Vert)$ , $f\in \mathfrak{D}(A^{\prime})$

by an application of the closed graph theorem ([11], Chapter II, 6), and we
have (5.2).

The next lemma is essentially found in Trotter [9] (cf. Nelson [5], Theo-
rem 7).
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LEMMA 5.2. Let $A$ be the generator of an s-continuous non-negative con-
traction semi-group, and $B$ be a linear dispersive $(w)$ operator with $\mathfrak{D}(B)\supset \mathfrak{D}(A)$ .
If there are constants $1/2\geqq a\geqq 0$ and $b>0$ such that (5.2) holds, then $A+B$ is
the generator of an s-continuous non-negative contraction semi-group1).

PROOF. By Theorems 1 and 5, $A+B$ is dispersive (w). Hence, by Theorem
2, it suffices to see $\mathfrak{R}(\lambda-A-B)=\mathfrak{B}$ for some $\lambda>0$ . We have $\mathfrak{R}(\lambda-A-B)$

$=\mathfrak{R}((\lambda-A-B)(\lambda-A)^{-1})=\mathfrak{R}(1-B(\lambda-A)^{-1})$ , and

$\Vert B(\lambda-A)^{-1}f||\leqq a\Vert A(\lambda-A)^{-1}f\Vert+b\Vert(\lambda-A)^{-1}f\Vert\leqq(2a+b/\lambda)\Vert f\Vert$

by (5.2) and by $\Vert A(\lambda-A)^{-1}\Vert=\Vert\lambda(\lambda-A)^{-1}-I\Vert\leqq 2$ . If we choose $\lambda$ large enough,
then $\Vert B(\lambda-A)^{-1}\Vert<1$ and the lemma is obtained.

REMARK. Let $\mathfrak{B}$ be a Banach space with the real scalar field not assumed
to have the lattice structure and let us call A dissipative $(s)$ if $\tau(f, Af)\leqq 0$ ,
$f\in \mathfrak{D}(A)$ , and dissipative $(w)$ if $\tau(f, -Af)\geqq 0,$ $f\in \mathfrak{D}(A)$ . Then, all of our results
remain valid if we replace $t$ dispersive ‘ $by$ ‘ dissipative ‘ and remove ‘ non-nega-
tive ’ from ‘ s-continuous non-negative contraction semi-group’. (Theorems 1 and
3 changed in this way are due to Hasegawa [3], Remark 3 and Proposition
7.) As a corollary to the analogue to Theorem 6, we have the following
result: Let $A^{\prime}$ be the generator of an s-continuous contraction semi-group
obtained by subordination from an s-continuous contraction semi-group with
generator A. If the subordination is of the second kind, then $\mathfrak{D}(A^{\prime})=\mathfrak{D}(A)$ .
On the other hand, Daisuke Fujiwara (private communication) proved that if
the subordination is of the first kind and $A$ is unbounded, then $\mathfrak{D}(A^{\prime})\supsetneqq \mathfrak{D}(A)$ .

6. Examples. In the sequel the word function means a real-valued func-
tion.

6.1. Let $\mathfrak{B}$ be the Banach lattice $C(X)$ of continuous functions $f$ on a
compact space $X$ with norm $\Vert f\Vert=\max_{x\in X}|f(x)|$ . Then

(6.1) $\tau(f, g)=\max_{x\in X(f)}$ (sgn $f(x)$)$g(x)$ , $f\neq 0$

where $X(f)=\{x;|f(x)|=\Vert f\Vert\}$ , and

(6.2) $\sigma(f, g)=\tau(f, g)$ , $f\neq 0,$ $f\geqq 0$ .

Hence, remembering (3.4), we see that dispersiveness (s) and (w) are equivalent
to (1.3) and (1.4), respectively.

1) (Added in proof.) This lemma can be extended to the case $a<1$ . The proof will
be published in

Karl Gustaffon and Ken-iti Sato, Some perturbation theorems for non-negative con-
traction semi-groups, to appear.
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PROOF. Let $f\neq 0$ . If $x\in X(f)$ , then $\epsilon^{-1}(\Vert f+\epsilon g\Vert-\Vert f\Vert)\geqq\epsilon^{-1}((sgnf(x))$

$(f+\epsilon g)(x)-|f(x)|)=(sgnf(x))g(x)$ . Hence, $\tau(f, g)$ is not smaller than the right
side of (6.1). Let $\epsilon_{n}>0$ be a sequence decreasing to zero, and let $x_{n}\in X(f+\epsilon_{n}g)$ .
Choosing a subsequence if necessary, we may suppose either $(f+\epsilon_{n}g)(x_{n})\geqq 0$

for all $n$ or $(f+\epsilon_{n}g)(x_{n})\leqq 0$ for all $n$ . We do suppose the former. Then,
$\epsilon_{n}^{-1}(\Vert f+\epsilon_{n}g\Vert-\Vert f\Vert)\leqq\epsilon_{n}^{-1}((f+\epsilon_{n}g)(x)-f(x_{n}))=g(x_{n})$ . Since $X$ is compact, there is
a point $x_{\infty}$ such that every neighborhood of $x_{\infty}$ contains $x_{n}$ infinitely often.
Thus we can choose a subsequence $\{x_{n(k)}\}$ such that $f(x_{n(k)})$ tends to $f(x_{\infty})$ and
$g(x_{n(k)})$ tends to $g(x_{\infty})$ . Using this subsequence, we see that $f(x_{\infty})>0,$ $x_{\infty}\in X(f)$ ,
and $\tau(f, g)\leqq g(x_{\infty})\leqq\max_{x\in X(f)}(sgnf(x))g(x)$ . The case $(f+\epsilon_{n}g)(x_{n})\leqq 0$ for all $n$ is

similar, and we have proved (6.1). (6.2) is an easy consequence of (6.1) and
(3.5).

6.2. Let $X$ be a locally compact space which is not compact, and $\mathfrak{B}=C_{0}(X)$

be the Banach lattice of continuous functions $f$ on $X$ such that, for each $\epsilon>0$ ,
$|f(x)|<\epsilon$ holds outside of a compact closed set. Then we have the same
results as above. Note that $X(f)$ is compact, and $\{x_{n}\}$ in the proof is con-
tained in a compact set.

In the following two remarks we suppose that $\mathfrak{B}=C(X)$ in 6.1 or $\mathfrak{B}=C_{0}(X)$

in 6.2, and, in addition, that $X$ is Hausdorff.
REMARK. If $A$ is linear dispersive (w) with dense domain, then $A$ is dis-

persive (s). For the proof, assume that the conclusion does not hold: there
is an $f\in \mathfrak{D}(A)$ such that $\sigma(f^{+}, Af)>0$ . Then, $f^{+}\neq 0$ by (3.4), and we have,
by (6.1) and (6.2), $ f(x_{0})=\Vert f^{+}\Vert$ and $Af(x_{0})=a_{0}>0$ at some $x_{0}$ . There is an
open neighborhood $U$ of $x_{0}$ on which $Af(x)>a_{0}/2$ . Since $X$ is completely
regular, there is a continuous function $g$ such that $g(x_{0})=1$ and $g(x)=0$ ,
$\chi\in X-U$ . It follows from denseness of $\mathfrak{D}(A)$ that we can choose $h\in \mathfrak{D}(A)$

such that $h(x)>1/2$ and $h(x)<1/2,$ $x\in X-U$ . We have

$\sigma((f+\epsilon h)^{+}, -Af-\epsilon Ah)\leqq\sup_{x\in U}(-Af-\epsilon Ah)(x)\leqq-a_{0}/2+\epsilon\Vert Ah\Vert$

for each $\epsilon>0$ . The last member is negative for small $\epsilon$ , which contradicts to
dispersiveness (w) of $A$ , and the proof is complete.

In a similar way, we can prove dispersiveness (s) of $\overline{A}$ . This is obtained
also as a consequence of the present remark, if we use the remark immediately
after Theorem 3.

REMARK. Let $A$ be one-to-one and write $V=-A^{-1}$ . (It can be proved that
if $A$ is linear dispersive (w) and has dense range, then $A$ is one-to-one.) Dis-
persiveness of $A$ has a close connection with the maximum principles for $V$

considered, $e$ . $g.$ , in [4]. Especially, if $A$ is linear and if both $\mathfrak{D}(A)$ and $\mathfrak{R}(A)$

are dense, the following four conditions are equivalent to each other: (i) $A$

is dispersive (s). (ii) $A$ is dispersive (w). (iii) Let $f\in \mathfrak{D}(V)$ . Then $f(x)$ is non-
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negative at every point where $Vf(x)$ achieves its maximum, provided the
maximum is non-negative. (iv) Let $f\in \mathfrak{D}(V)$ . If the supremum $a$ of $Vf(x)$ is
positive, then the supremum of $Vf(x)$ on the set $\{x;f(x)>0\}$ is equal to $a$ .

6.3. Let $X$ be an arbitrary set and $\mathfrak{B}$ be the Banach lattice $B(X)$ of
bounded functions on $X$ normed with the supremum of the absolute value.
Then we have

(6.3)
$\tau(f, g)=\lim_{\epsilon\rightarrow 0+}\sup_{x\in X(fe)}$

,
(sgn $f(x)$)$g(x)$ , $f\neq 0$

where $X(f, \epsilon)=\{x;|f(x)|>\Vert f\Vert-e\}$ , and (6.2) holds true. The space of bounded
measurable functions on a measurable space, the space of bounded continuous
functions on a topological space and the space of bounded uniformly continuous
functions on a uniform space are subspaces of the respective $B(X)$ , and hence,

have the same expression of $\tau$ and $\sigma$ .
PROOF. As $\epsilon$ decreases to $0,\sup_{x\in X(fe)},(sgnf(x))g(x)$ is non-increasing to a

limit. Fix a decreasing sequence $\epsilon_{n}\downarrow 0$ , such that $\Vert f\Vert>\epsilon_{n}^{\prime}$ where $\epsilon_{n}^{\prime}=2\epsilon_{n}\Vert g\Vert+\epsilon_{n}^{2}$ .
If $x\in X(f, \epsilon_{n}^{2})$ , then

$\epsilon_{n}^{-1}(\Vert f+\epsilon_{n}g\Vert-\Vert f\Vert)\geqq\epsilon_{n}^{-1}((ggnf(x))(f+\epsilon_{n}g)(x)-|f(x)|-\epsilon_{n}^{2})$

$=(sgnf(x))g(x)-\epsilon_{n}$ .
Hence, $\tau(f, g)$ is not smaller than the right side of (6.3). To prove the reverse
inequality, take $x_{n}\in X(f+\epsilon_{n}g, \epsilon_{n}^{2})$ . If $(f+\epsilon_{n}g)(x_{n})\geqq 0$ , then

$\epsilon_{n}^{-1}(\Vert f+\epsilon_{n}g\Vert-\Vert f\Vert)\leqq\epsilon_{n}^{-1}((f+\epsilon_{n}g)(x_{n})+\epsilon_{n}^{2}-f(x_{n}))=g(x_{n})+\epsilon_{n}$

and $f(x_{n})>\Vert f+\epsilon_{n}g\Vert-\epsilon_{n}^{2}-\epsilon_{n}g(x_{n})\geqq\Vert f\Vert-\epsilon_{n}^{t}>0$ . Similarly, if $(f+\epsilon_{n}g)(x_{n})\leqq 0$ ,

then $\epsilon_{n}^{-1}(\Vert f+\epsilon_{n}g\Vert-\Vert f\Vert)\leqq-g(x_{n})+\epsilon_{n}$ and $-f(x_{n})>\Vert f\Vert-\epsilon_{n}^{f}>0$ . In both cases
we have $\epsilon_{n}^{-1}(\Vert f+\epsilon_{n}g\Vert-\Vert f\Vert)\leqq(sgnf(x_{n}))g(x_{n})+\epsilon_{n}$ and $x_{n}\in X$( $f$, e\’{n}), and hence,
$\tau(f, g)$ does not exceed the right side of (6.3). (6.2) is a consequence of the
expression (6.3).

6.4. If (X, $\mathscr{D},$ $m$) is a measure space and $\mathfrak{B}$ is the real $L_{\infty}$ space on it,
then we have

(6.4)
$\tau(f, g)=\lim_{\epsilon\rightarrow 0+}ess\sup_{x\in X(f,\epsilon)}$ (sgn $f(x)$)$g(x)$ , $f\neq 0$ ,

and (6.2). Proof is essentially the same as in 6.3.
6.5. Let $\mathfrak{B}$ be the real $L_{1}$ space on a measure space (X, 9, $m$). Write

$X_{0}(f)=\{x;f(x)=0\}$ and $X_{1}(f)=\{x;f(x)\neq 0\}$ . Then,

(6.5) $\tau(f, g)=\int_{X_{1}(.\Gamma)}$ (sgn $f(x)$)$g(x)m(dx)+\int_{X_{0}(f)}|g(x)|m(dx)$

for all $f$ and $g$ , and

(6.6) $\sigma(f, g)=\int_{X_{1}(f)}g(x)m(dx)$



434 K. SATO

for all $f\geqq 0$ and $g$.
PROOF. Integration below is relative to the measure $m$ . We have

$e^{-1}(\Vert f+\epsilon g\Vert-\Vert f\Vert)=\int_{X_{0}(f)}|g|+e^{-1}(\int_{X_{1}(f)}|f+\epsilon g|-\int_{X_{1}(f)}|f|)$ ,

and this equality becomes (6.5) as $\epsilon$ decreases to zero, since $\epsilon^{-1}(|f(x)+\epsilon g(x)|$

$-|f(x)|)$ tends to (sgn $f(x)$)$g(x)$ on $X_{1}(f)$ , being dominated by $|g(x)|$ in the
absolute value. Thus we get (6.5). Let $f\geqq 0$ . If $f\wedge|h|=0$ , then $h(x)=0$

almost everywhere on $X_{1}(f)$ and hence

$\tau(f, (g+h)\vee(-bf))\geqq\int_{X_{1}(f)}\max\{g(x), -bf(x)\}\geqq\int_{X_{1}(f)}g$ .
On the other hand, if $h_{0}(x)=-g(x)$ on $X_{0}(f)$ and $0$ on $X_{1}(f)$ , then $f\wedge|h_{0}|=0$ ,

and

$\tau(f, (g+h_{0})\vee(-bf))=\int_{X_{1}(f)}\max\{g(x), -bf(x)\}\rightarrow\int_{X_{1}(f)}g$ , $ b\rightarrow\infty$ .
Hence, (6.6) holds.

6.6. Let $\mathfrak{B}$ be the real $L_{p}$ space, $ 1<p<\infty$ , on a measure space (X, $\mathscr{D},$ $m$).

Then we have the expression

(6.7) $\tau(f, g)=\int_{X}(sgnf(x))|f(x)|^{p- 1}g(x)m(dx)/\Vert f\Vert^{p- 1}$ , $f\neq 0$

and (6.2). Especially in the case of the Hilbert space $L_{2},$ $\tau(f, g)$ is the inner
product of $f$ and $g$ divided by $\Vert f\Vert$ , if $f\neq 0$ .

PROOF. The right side of (6.7) is linear in $g$ and, by H\"older’s inequality,
majorized by $\Vert g\Vert$ in the absolute value. Since $\tau(f, g)$ is also continuous in $g$,
it suffices to prove (6.7) for dense $g’ s$ . Hence we suppose that there are posi-
tive constants $c$ and $\delta$ such that $|g(x)|\leqq c$ on $X$ and $g(x)=0$ on the set $X_{1}$ of
points $x$ where $ 0<|f(x)|<\partial$ . Let $X_{0}$ be the set of points where $f(x)$ vanishes
and $X_{2}$ be the set of points where $|f(x)|\geqq\delta$ . We have

$\int_{X}|f+\epsilon g|^{p}=\epsilon^{p}\int_{x_{0}}|g|^{p}+\int_{x_{1}}|f|^{p}+\int_{X_{2}}|f+\epsilon g|^{p}$ ,

$\int_{X_{2}}|f+\epsilon g|^{p}=\int_{X_{2}}|f|^{p}(1+\epsilon\frac{g}{f})^{p}=\int_{X_{2}}|f|^{p}+\epsilon p\int_{X_{2}}|f|^{p}\frac{g}{f}+O(\epsilon^{2}),$ $\epsilon\rightarrow 0+$ ,

since $|\epsilon g/f|$ is bounded by $\epsilon c/\delta$ on $X_{2}$ . It follows that

$\int_{X}|f+\epsilon g|^{p}=\int_{X}|f|^{p}+\epsilon p\int_{X}(sgnf)|f|^{p- 1}g+o(\epsilon)$ ,

$\epsilon^{-1}(\Vert f+\epsilon g\Vert-\Vert f\Vert)=\epsilon^{-1}||f\Vert[(1+\epsilon p\int_{X}(sgnf)|f|^{p- 1}g/\Vert f\Vert^{p}+o(\epsilon))^{1/p}-1]$

$=\int_{X}(sgnf)|f|^{p- 1}g/\Vert f\Vert^{p- 1}+0(1)$ ,
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and the proof of (6.7) is complete. Let $f\geqq 0$ . It follows from (6.7) that $\tau(f$,
$g\vee(-bf))$ tends to $\tau(f, g)$ as $ b\rightarrow\infty$ and that $\tau(f, g+h)=\tau(f, g)$ if $f\wedge|h|=0$ .
Hence we have (6.2).

6.7. Let $\mathfrak{B}$ be the Banach lattice $A(\mathscr{D})$ of bounded signed measures on
a measurable space (X, $\mathscr{D}$) with the norm of total variation. Let $f$ and
$g\in A(\mathscr{D})$ and let $g_{f}^{c}$ and $g_{f}^{s}$ be, respectively, the absolutely continuous part
and the singular part of $g$ with respect to $|f|$ . Then, we have

(6.8) $\tau(f, g)=g_{f}^{c}(X_{f}^{+})-g_{f}^{c}(X_{f}^{-})+\Vert g_{f}^{s}\Vert$ ,

where $X_{f}^{+}$ and $X_{f}^{-}$ are the positivity set and the negativity set in the Hahn
decomposition of $X$ relative to $f$, and

(6.9) $\sigma(f, g)=g_{f}^{c}(X)$ , $f\geqq 0$ .
PROOF. Let $\psi(x)$ be the Radon-Nikodym derivative of $g_{f}^{c}$ with respect to

$|f|$ and $\varphi(x)$ be the function which is 1 on $X_{f}^{+}$ and $-1$ on $X_{f}^{-}$ . We have

$|If+\epsilon g\Vert=\Vert f+\epsilon g_{f}^{c}\Vert+\Vert\epsilon g_{f}^{s}\Vert=\int_{X}|\varphi(x)+\epsilon\psi(x)$ I $|f|(dx)+\epsilon\Vert g_{f}^{s}\Vert$ , $\epsilon>0$ ,

$|If\Vert=\int_{X}|\varphi(x)||f|(dx)$ ,

and hence, the proof of (6.8) and (6.9) is similar to 6.5.

Tokyo University of Education
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