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1. Let $K$ be a Galois extension of odd degree $n$ over the rational number
field $Q$ . Then $K$ is totally real and the group of units of $K$ has $(n-1)$ genera-
tors $mod \pm 1$ . Let $H$ be the group of totally positive units of $K$. Then $H$ has
also $(n-1)$ generators, and it is known that in case $n=3$ these generators can
be taken to conjugate to each other (cf. Hasse [1]). We shall show in this
paper that the same is true for $n=5$ .

In the following let $K$ be a cyclic field of degree 5 over $Q,$ $\sigma$ a generator
of the Galois group $G(K/Q)$ and $H$ the group of totally positive units of $K$.
For $\xi\in K,$ $\xi^{(i)}$ means $\sigma^{r-1}(\xi)\in K(i=1,2,3,4,5)$ . Then the points

$P(\xi)=(\log\xi^{(1)}, \log\xi^{(2)}, \log\xi^{(S)}, \log\xi^{(4)}, \log\xi^{(5)})\in R^{5}$

for $\xi\in H$ form a lattice $L$ lying in the hyperplane $\pi:x_{1}+x_{2}+x_{3}+x_{4}+x_{6}=0$ .
Obviously the five points $P(\xi^{(1)},$ $\cdots$ , $P(\xi^{(5)})$ lie at the same distance from the
origin $O$ of $R^{5}$ .

Let $\eta(\neq 1)$ be a unit in $H$ such that $P(\eta)\in L$ lies nearest to $O$ . Then our
main result is that $H$ is generated by any four of $\eta^{(1)},$ $\eta^{(2)},$ $\eta^{(3)},$ $\eta^{(4)},$ $\eta_{r}^{(5)}$

or geometrically expressed, $L$ is generated by $P(\eta^{(1)}),$ $\cdots$ , $P(\eta^{(6)})$ .
We shall namely prove the following theorem.
THEOREM. Let $K$ be an absolutely cyclic field of degree 5, and $H$ the group

of totally positive units of K. Then $H$ is generated by $\eta\in H$ and its conjugates.
where $\eta$ is an element $(\neq 1)$ of $H$ such that

$\sum_{\iota=1}^{5}(\log\eta^{(i)})^{2}\leqq\sum_{i=1}^{5}(\log\xi^{(\ell)})^{2}$

holds for any element $\xi\in H(\xi\neq 1)$ .

2. We shall first prove the following general proposition. Let $1\psi$ be an
n-dimensional lattice in $R^{n}$ , which is generated by $n$ vectors $oQ_{1},$

$OQ_{2}\rightarrow\rightarrow,$ $ oQ_{n}\rightarrow$ .
Let $d_{i}$ be the length of $ oQ_{i}\rightarrow$ $(i=1,2, \cdots , n)$ .
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(A) For any point $X\in R^{n}$, there exists a point $Y$ of $M$, such that the
distance

$\overline{XY}\leqq\frac{1}{2}(\sum_{i=1}^{n}d_{i^{2}})^{1/2}$

Here we can replace the sign $\leqq$ by $<$ except the case: $oQ_{i}\rightarrow\perp OQ_{j}$ ;
$\rightarrow$

for any
$i\neq j$ .

PROOF. We shall prove it by induction on the dimension $n$ .
1) If $n=1$ the assertion is trivial.
2) For $n\geqq 2$ let $N$ be the sublattice of $M$ generated by $ oQ_{1}\rightarrow$ , $\cdot$ .. , $ oQ_{n-1}\rightarrow$ .

Then $ M=Z\cdot OQ_{n}+N\rightarrow$, and each $ iOQ_{n}+N\rightarrow$ forms an $n-1$ dimensional lattice in
the hyperplane $\pi_{i}$ , where $\pi_{i}//\pi_{j}i\neq j$ . For any given point $X\in R^{n}$ we can

choose a suitable $i$ and a point $Z\in\pi_{i}$ such that $XZ\rightarrow\perp\pi_{i}$ and $\overline{XZ}\leqq-d_{2^{n_{-}}}$ . We

can replace $\leqq$ by $<$ , if $ oQ_{n}\rightarrow$ is not orthogonal to $\pi_{i}$ . With respect to the point
$Z\in\pi_{i}$ , and the lattice $N$, we can apply the assumption of the induction. Hence

there exists a point $Y$ of $N$ such that $\overline{YZ}\leqq\frac{1}{2}(\sum_{=,\backslash 1}^{n-1}d_{i^{2}})^{1}2$ Then we have

$\overline{XY}^{2}=\overline{XZ}^{2}+\overline{YZ}^{2}\leqq\frac{1}{4}-\sum_{i=1}^{n}d_{i^{2}}$ and we can replace $\leqq$ by $<$ except $ oQ_{i}\rightarrow\perp OQ_{j}\rightarrow$

for any $i\neq j$ . Q. E. D.

3. Now we proceed to the proof of the theorem. With the same nota-
tions as in the introduction, let $\tilde{L}$ denote the lattice in $\pi$ generated by $P(\eta^{(1)})$ ,
... , $P(\eta^{(5)})$ . Our aim is to prove $\tilde{L}=L$ . Now it is known that, 1 being an
odd prime, any cyclic field of degree 1 over $Q$ has the property that any $l-1$

among $\xi^{(i)}i=1,2,$ $\cdots$ , 1 forms a system of independent units in $K$ for any non
rational unit $\xi$ in $K$ (cf. Hilbert [2] \S 55). This implies obviously $\dim\tilde{L}=4$ .
Take $\tilde{L}$ as the lattice $\mathbb{J}I$ in Proposition (A). Then $Q_{i}=P(\eta^{(i)})(i=1,2,3,4)$

generate $\tilde{L}$ and $d_{1}=\ldots=d_{4}=(\sum_{?=1}^{5}(\log\eta^{(i)})^{2})^{1/2}$ Moreover, for some $ i\neq jOQ_{i}\rightarrow$ is

not orthogonal to $ oQ_{j}\rightarrow$ . Hence from Proposition (A) follows the proposition:
(B) For any point $X$ of $\pi$ there exists a point $Y$ of $\tilde{L}$ such that the

distance $\overline{XY}<d$ , where $d^{2}=\sum_{i=1}^{5}(\log\eta^{(i)})^{2}$ .
It is rather a routine reasoning to deduce our theorem from Proposition (B).

REMARK. Whether the similar result holds for a prime $p(\neq 3, \neq 5)$ or
not is an open problem.
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