A remark on the principal ideal theorem

Dedicated to Professor S. Iyanaga on his sixtieth birthday

By Yukiyosi KAWADA

(Received Oct. 2, 1967)

1. The principal ideal theorem was conjectured by D. Hilbert and was proved by Ph. Furtwängler [3]. The proof was simplified by S. Iyanaga [4], H. G. Schumann (and W. Franz) [8] and E. Witt [11]. The purpose of this short note is to give a cohomology-theoretic interpretation of these proofs.

The problem can be formulated in any class formation. We use the same notations as in [5]. Let \Re be the given family of fields. To each $k \in \Re$ an abelian group E(k) is attached such that (i) for each extension K/k $(k, K \in \Re)$ there is an injection $\varphi_{k/K} : E(k) \to E(K)$, (ii) for each Galois extension K/k $(k, K \in \Re)$ the Galois group G = G(K/k) operates on E(K) and $\varphi_{k/K}E(k) = E(K)^{G \, 1}$. We assume, furthermore, that $\{E(K); K \in \Re\}$ satisfies the axioms of a class formation in $\lceil 5 \rceil$.

Let $k, K, L \in \mathbb{R}$, $k \subset K \subset L$ such that K/k and L/k are both Galois extensions, and let K/k be the maximal abelian extension in L/k. Hence the Galois group H = G(L/K) is the commutator subgroup of the Galois group G = G(L/k): H = [G, G].

PRINCIPAL IDEAL THEOREM. Under the above assumptions

(I)
$$\varphi_{k/K}E(k) \subset N_HE(L)$$
 for $H = [G, G]$.

Since $H^0(G, E(L)) \cong E(k)/N_G E(L)$, $H^0(H, E(L)) \cong E(K)/N_H E(L)$ and the restriction mapping $\operatorname{res}_{G/H}: H^0(G, E(L)) \to H^0(H, E(L))$ is the canonical mapping: $\alpha \mod N_G E(L) \to \alpha \mod N_H E(L)$, the above proposition (I) is equivalent to

(I)*
$$\operatorname{res}_{G/H}H^{0}(G, E(L)) = 1$$
 for $H = [G, G]$.

2. Let $\xi_{L/k} \in H^2(G, E(L))$ and $\xi_{L/K} \in H^2(H, E(L))$ be the canonical cohomology classes. By the fundamental theorem of J. Tate [9] there are isomorphisms: $H^{-2}(G, \mathbf{Z}) \cong H^0(G, E(L))$ by $\eta_{L/k} \to \xi_{L/k} \cup \eta_{L/k}$ and $H^{-2}(H, \mathbf{Z}) \cong H^0(H, E(L))$ by $\zeta_{L/K} \to \xi_{L/K} \cup \zeta_{L/K}$, where \mathbf{Z} denotes the additive group of integers on which

¹⁾ For a G-group A we denote by A^G the set of all G-invariant elements of A, by I_GA the set $\sum_{\sigma \in G} (\sigma - 1)A$, and by GA the set of all $\alpha \in A$ such that $N_G\alpha = 0$. Here N_G means the norm operation with respect to the group G.

G and H operate trivially. By the formulas $\operatorname{res}_{G/H}(\alpha \cup \beta) = (\operatorname{res}_{G/H}\alpha) \cup (\operatorname{res}_{G/H}\beta)$ and $\operatorname{res}_{G/H}\xi_{L/k} = \xi_{L/K}$ the proposition (I)* is equivalent to

(II)*
$$\operatorname{res}_{G/H}H^{-2}(G, \mathbf{Z}) = 1$$
 for $H = [G, G]$.

Since $H^{-2}(G, \mathbf{Z}) \cong G/[G, G]$, $H^{-2}(H, \mathbf{Z}) \cong H/[H, H]$, and $\operatorname{res}_{G/H}: H^{-2}(G, \mathbf{Z}) \to H^{-2}(H, \mathbf{Z})$ is given by the transfer mapping: $\sigma \mod [G, G] \to (V_{G \to H} \sigma) \mod [H, H]$, the proposition (II)* is equivalent to

(II)
$$V_{G\to H}G\subset [H,H] \quad \text{for } H=[G,G].$$

This is the group-theoretical formulation of the principal ideal theorem due to E. Artin $\lceil 1 \rceil$.

3. Let H be a normal subgroup of G. Let $Z(G) = \sum_{\sigma \in G} Z\sigma$ be the group algebra of G over Z and $I(G) = I_G(Z(G)) = \sum_{\sigma \neq 1} Z(\sigma - 1)$. We denote $\delta \sigma = \sigma - 1$ for $\sigma \in G$. Then we have an exact sequence of G-groups and G-homomorphisms

(1)
$$0 \longrightarrow I(G) \xrightarrow{\ell} Z(G) \xrightarrow{T} \mathbf{Z} \longrightarrow 0$$
 (exact),

where ι is the injection and $T(\sum a_{\sigma}\sigma) = \sum a_{\sigma}$ ($a_{\sigma} \in \mathbb{Z}$). Since Z(G) has trivial cohomologies with respect to both G and H we have the isomorphisms: $\delta_{\sigma}^{*}: H^{-2}(G, \mathbb{Z}) \cong H^{-1}(G, I(G)) \cong I(G)/I_{G}I(G)$ and $\delta_{H}^{*}: H^{-2}(H, \mathbb{Z}) \cong H^{-1}(H, I(G)) \cong I(G)/I_{H}I(G) = I_{H}Z(G)/I_{H}I(G)$. Here δ_{σ}^{*} and δ_{H}^{*} are given by $\sigma \mod [G, G] \to \delta \sigma \mod I_{G}I(G)$ and $\rho \mod [H, H] \to \delta \rho \mod I_{H}I(G)$, respectively. $H^{-1}(G, I(G))$ and $H^{-1}(H, I(G))$ are both G-groups and H operates trivially on them. Hence we can consider them as G/H-groups. The restriction mapping $\operatorname{res}_{G/H}: H^{-1}(G, I(G)) \to H^{-1}(H, I(G))^{G}$ is a G/H-homomorphism, and is given by $\alpha \to N_{G/H}\alpha$ for $\alpha \in H^{-1}(G, I(G))$. Since $\delta_{H}^{*} \cdot \operatorname{res}_{G/H} = \operatorname{res}_{G/H} \cdot \delta_{G}^{*}$ holds, the proposition (II)* is equivalent to

(III)*
$$res_{G/H}H^{-1}(G, I(G)) = 1$$
 for $H = [G, G]$.

Let $G = \bigcup_{i=1}^{n} H\tau_i$. Then by the above considerations (III)* is equivalent to

(III)
$$(\sum_{i=1}^{n} \tau_i) I(G) \subset I_H I(G) \quad \text{for } H = [G, G].$$

This is the additive formulation of the principal ideal theorem due to E. Witt [11].

4. Let H be a normal subgroup of G as above. Consider the G/H-group $I(G)/I_HI(G)$ as the group extension:

(2)
$$0 \rightarrow I_H Z(G)/I_H I(G) \rightarrow I(G)/I_H I(G) \rightarrow I(G)/I_H Z(G) \rightarrow 0$$
 (exact)

168 Y. KAWADA

where the first term is isomorphic to H/[H, H] and the third term is isomorphic to I(G/H), (see [6], p. 420).

PROPOSITION. The G/H-group $I(G)/I_HI(G)$ is isomorphic to the G/H-group $\overline{\mathfrak{U}}$ defined by Iyanaga ([4], p. 353) for the group $\mathfrak{U}=H/\llbracket H,H \rrbracket$. Namely, the G/H-group $I(G)/I_HI(G)$ is essentially the same as the splitting group of $G/\llbracket H,H \rrbracket$ considered by Iyanaga.

PROOF. Let $G = \sum_{i=1}^n H \tau_i$ and $\rho \in H$. Since $\delta(\rho \tau_i) = \delta \rho + \delta \tau_i + (\delta \rho)(\delta \tau_i)$ $\equiv \delta \rho + \delta \tau_i \mod I_H I(G)$, we can express $\alpha \in I(G)$ by $\alpha \equiv \sum_{\rho \in H} a_\rho \delta \rho + \sum_{i=2}^n b_i \delta \tau_i \mod I_H I(G)$, a_ρ , $b_i \in \mathbb{Z}$. Let $\mathfrak{U} = (\prod_{i=2}^n A_i^{c_i})\mathfrak{U}$ and consider the mapping $\Phi: I(G)/I_H I(G) \to \overline{\mathfrak{U}}$ defined by $\Phi(\alpha) = (\prod_{i=2}^n A_i^{b_i})(\prod_{\rho \in H} \rho^{a_\rho})$. Let $\tau_j \cdot \tau_i = \rho \cdot \tau_k$, $\rho \in H$. Since $\tau_j(\delta \tau_i) \equiv \delta \tau_k - \delta \tau_j + \delta \rho \mod I_H I(G)$, we have $\Phi(\tau_j \cdot \delta \tau_i) = A_k \cdot A_j^{-1} \cdot \rho$. Comparing this with the definition of $\overline{\mathfrak{U}}$ in [4] we see that Φ is a G/H-isomorphism, Q. E. D.

5. By using this Proposition we can translate the proof by Iyanaga to a proof of (III). This was done by Witt [11]. For the sake of completeness we shall indicate the outline of the proof of (III).

Let $\lambda \in Z(G)$ and consider the mapping $\Psi_{\lambda} : I(G) \to I(G)$ defined by $\Psi_{\lambda}(\alpha) = \lambda \alpha$ for $\alpha \in I(G)$.

(IV) In order that Ψ_{λ} maps $I(G)/I_GI(G) \rightarrow I_HZ(G)/I_HI(G)$ it is necessary and sufficient that

$$\lambda \equiv r(\sum_{i=1}^n \tau_i) \mod I_H Z(G)$$
.

Moreover, r is given by $r = T(\lambda)/n$, where n = [G:H].

PROOF. (i) Let $\tau_j \cdot \sigma = \rho_j \cdot \tau_{j'}(\rho_j \in H)$ for $\sigma \in G$. Then we can see easily $(\sum \tau_j)\delta\sigma \equiv \sum \delta\rho_j \mod I_H I(G)$.

(ii) Let $\Psi_{\lambda}(I(G)) \subset I_H Z(G)$. Put $\lambda = \sum_{j=1}^n (\sum_{\rho \in H} a_{\rho j} \rho) \tau_j \cdot a_{\rho j} \in \mathbb{Z}$. Then $\lambda \delta \sigma = \sum_{j'} \alpha_{j'} \tau_{j'}$, $\alpha_{j'} = \sum_{\rho} a_{\rho j} \rho \cdot \rho_j - \sum_{\rho} a_{\rho j'} \rho \cdot \lambda \delta \sigma$ belongs to $I_H Z(G)$ if and only if all $\alpha_{j'}$ belong to I(H). This is equivalent to $T(\alpha_{j'}) = 0$ $(j = 1, \dots, n)$, i.e. $\sum_{\rho \in H} a_{\rho j} = r$ $(j = 1, \dots, n)$. This implies $\lambda \equiv r(\sum_{\rho} \tau_j) \mod I_H Z(G)$, Q. E. D.

REMARK. Since H operates trivially both on $I(G)/I_GI(G)$ and on $I_HZ(G)/I_HI(G)$, we can consider $\Psi_{\overline{\lambda}}$ for $\overline{\lambda} \in Z(G/H)$.

(V) In order that (III) holds it is necessary and sufficient that there exists an element $\lambda \in Z(G)$ (or $\in Z(G/H)$) with the property $T(\lambda) = n$ and $\Psi_{\lambda}(I(G)) \subset I_H I(G)$.

This follows immediately from (IV). We see also

(VI)
$$\delta(\sigma_1^{m_1}, \dots, \sigma_N^{m_N}) = \sum_{i=1}^N \mu_i(\delta \sigma_i), \ \mu_i \in Z(G) \text{ with } T(\mu_i) = m_i \ (i = 1, \dots, N).$$

The last step is the most important part of the proof.

(VII) (Witt) Assume that [H, H] = 1. We can choose generators $\sigma_1, \dots, \sigma_N$ of G with the relations

(3)
$$\prod_{k} \sigma_{k}^{m} i k \cdot \varphi_{i} = 1, \quad i = 1, \dots, N,$$

where $\varphi_i \in [G, G]$ and $\det(m_{ik}) = n$, (n = [G: H]). Apply the homomorphism $\delta: G/[G, G] \to I(G)$ to (3). Then we have

$$\sum_{k=1}^{N} \mu_{ik} \delta \sigma_k = 0 \qquad (i = 1, \dots, N)$$

with $T(\mu_{ik}) = m_{ik}$. Consider $\bar{\mu}_{ik}$ in Z(G/H) and take $\bar{\lambda} = \det(\bar{\mu}_{ik})$ in Z(G/H). Then $\bar{\lambda}$ satisfies the condition in (V).

PROOF. Take the cofactor $\bar{\lambda}_{ik}$ of $\bar{\mu}_{ik}$ in Z(G/H). Then we have $0 = \sum\limits_{k,i} \bar{\lambda}_{hi} \bar{\mu}_{ik} \delta \sigma_k \equiv \det{(\bar{\mu}_{ik})} \delta \sigma_h \mod{I_H I(G)} \ (h=1,\cdots,N) \ \text{and} \ T(\det{(\bar{\mu}_{ik})}) = \det{(m_{ik})} = n$. Hence, $\bar{\lambda} = \det{(\bar{\mu}_{ik})}$ satisfies the condition in (V) (cf. also Artin-Tate [2], Chap. 13). Q. E. D.

University of Tokyo

References

- [1] E. Artin, Idealklassen in Oberkörpern und allgemeines Reziprozitätsgesetz, Abh. Math. Sem. Univ. Hamburg, 7 (1930), 46-51.
- [2] E. Artin and J. Tate, Class field theory, Lecture Notes, Harvard University and Princeton University, 1951-52.
- [3] Ph. Furtwängler, Beweis des Hauptidealsatzes, Abh. Math. Sem. Univ. Hamburg, 7 (1930), 14-36.
- [4] S. Iyanaga, Zum Beweis des Hauptidealsatzes, Abh. Math. Sem. Univ. Hamburg, 10 (1934), 349-357.
- [5] Y. Kawada, Class formation, Duke Math. J., 22 (1955), 165-178.
- [6] Y. Kawada, Cohomology of group extensions, J. Fac. Sci. Univ. Tokyo, Sect. I, 9 (1963), 417-431.
- [7] Y. Kawada, Daisûteki Seisûron (Algebraic theory of numbers), Kyôritsu Syuppan, Tokyo, 1957, § 7.5.
- [8] H.G. Schumann, Zum Beweis des Hauptidealsatzes, Abh. Math. Sem. Univ. Hamburg. 12 (1938), 42-47.
- [9] J. Tate, The higher dimensional cohomology groups of class field theory, Ann. of Math., 56 (1952), 294-297.
- [10] T. Tannaka, Daisûteki Seisûron (Algebraic theory of numbers), Kyôritsu Syuppan, Tokyo, 1949, § 25.
- [11] E. Witt, Verlagerung von Gruppen und Hauptidealsatz, Proc. Internat. Congress, 1954, 71-73.