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1. The principal ideal theorem was conjectured by D. Hilbert and was
proved by Ph. Furtwingler [3]. The proof was simplified by S. Iyanaga 4l
H.G. Schumann (and W. Franz) and E. Witt [1I]. The purpose of this
short note is to give a cohomology-theoretic interpretation of these proofs.

The problem can be formulated in any class formation. We use the same
notations as in [5] Let & be the given family of fields. To each k= & an
abelian group E(k) is attached such that (i) for each extension K/k (k, K& &)
there is an injection ¢, x: E(k)— E(K), (ii) for each Galois extension K/k (k, K
e ) the Galois group G=G(K/k) operates on E(K) and ¢, cE(k)=E(K)* V.
We assume, furthermore, that {E(K); K < &} satisfies the axioms of a class
formation in [5].

Let k, K, Le & kC KC L such that K/k and L/k are both Galois exten-
sions, and let K/k be the maximal abelian extension in L/k. Hence the Galois
group H=G(L/K) is the commutator subgroup of the Galois group G=G(L/k):
H=[G, G].

PRINCIPAL IDEAL THEOREM. Under the above assumptions

(D uxE(R) C NgE(L)  for H=[G, G].

Since HY(G, E(L)) = E(k)/NgE(L), H*(H, E(L))=E(K)/NyzE(L) and the restric-
tion mapping resqy: HYG, E(L))— H*H, E(L)) is the canonical mapping:
a mod N;E(L)— a mod NgE(L), the above proposition (I) is equivalent to

(D* resq s HYG, E(L)=1  for H=[G, G].

2. Let &, H¥G, E(L)) and &, < H*(H, E(L)) be the canonical cohomo-
logy classes. By the fundamental theorem of J. Tate [9] there are isomor-
phisms: H-%G, Z)= HG, E(L)) by 7,4 — &Iy and H*(H, Z)=H"(H, E(L))
by &k — Erx\Jrx, Where Z denotes the additive group of integers on which

1) For a G-group A we denote by A& the set of all G-invariant elements of A, by

Ig A the set 3] (6—1)A, and by gA the set of all a € A such that Nga =0. Here Ny
cEG

means the norm operation with respect to the group G.
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G and H operate trivially. By the formulas resg z(a\J 8) = (resqma) \J (resq,z )
and resg ;&= &L x the proposition (I)* is equivalent to

(ID* resg,pH %G, Z)=1 for H=[G, G].

Since H¥G, Z2)=G/[G,G), H*H, Z)= H/[H, H], and resqy: H %G, Z)—
H-*(H, Z) is given by the transfer mapping : ¢ mod [G, G]—(Vg-ro)mod [ H, H],
the proposition (II)* is equivalent to

an Ve-rGC[H, H]  for H=[G, G].

This is the group-theoretical formulation of the principal ideal theorem due to
E. Artin [1].

3. Let H be a normal subgroup of G. Let Z(G)= 3 Zo be the group
ced
algebra of G over Z and I(G)=I(Z(G))= >, Z(c—1). We denote do=0—1 for
oFl

o= G. Then we have an exact sequence of G-groups and G-homomorphisms

(€)) 0—I(G) —‘—>Z(G)—T» Z—0 (exact),

where ¢ is the injection and T(Xa,0)=a, (¢, Z). Since Z(G) has trivial
cohomologies with respect to both G and H we have the isomorphisms:
04:H*G, Z)= H YG, (&)= I(G)/IsI(G) and 0% :H*H, Z)= H'(H, [(())=
al(G)/IgI(G) = IyZ(G)/I4I(G). Here 6% and ¢% are given by ¢ mod[G, G]—
oo mod I;I(G) and p mod [H, H]—dp mod I4I(G), respectively. H-YG, I(G)) and
H-(H, I(G)) are both G-groups and H operates trivially on them. Hence we
can consider them as G/H-groups. The restriction mapping resq: H (G, I(G))
— H-Y(H, I(G))¢ is a G/H-homomorphism, and is given by a— Ngza for
a s H G, I(G)). Since 0% -resqpy=—resSqy- 0% holds, the proposition (II)* is
equivalent to

Ty resgnH (G, IGH=1  for H=[G, G].

Let G=J Hr;, Then by the above considerations (T} is equivalent to
=1

1D ( é )G I4I(G)  for H=[G, G].

This is the additive formulation of the principal ideal theorem due to E. Witt

(11}

4. Let H be a normal subgroup of G as above. Consider the G/H-group
I(G)/I4I(G) as the group extension :

(2 0—IxZ(G)/Ixl(G)— I(G)/Ixl(G)— (G)/IyZ(G)—0  (eXact)
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where the first term is isomorphic to H/[H, H] and the third term is isomor-
phic to I(G/H), (see [6], p. 420).

PROPOSITION. The G/H-group I(G)/IzI(G) is isomorphic to the G/H-group
WU defined by Iyanaga ([&), p. 353) for the group W= H/[H, H]. Namely, the
G/H-group I[(G)/IxI(G) is essentially the same as the splitting group of G/LH, H]
considered by Iyanaga.

PROOF. Let G= "z’ Hr, and peH. Since 8(o7y)=708p+dr:+(3p)(d7s)

=0p+0r;mod I;I(G), we can express a € I[(G) by a = 2a,,5p+ Zb ot;mod I;I(G),
ap, b;eZ. Let 11~(1’[A°@)11 and consider the mapping @: I(G)/I;I(G)—1 de-

fined by @(a)=( HZAE;“')( IIHp“ﬂ). Let z;-7,=p-7,, p= H.  Since 7,07y
= o<

= 0r;—0r;+0p mod I;I(G), we have O(zr;-0t;)=A,- Aj'-p. Comparing this

with the definition of T in [4] we see that @ is a G/H-isomorphism, Q. E. D.

5. By using this Proposition we can translate the proof by Iyanaga to a
proof of [(IIT} This was done by Witt [II]. For the sake of completeness we
shall indicate the outline of the proof of [(TIT)

Let 2= Z(G) and consider the mapping ¥;: I(G)— I(G) defined by ¥ a)
=Aa for a = I(G).

(IV) In order that ¥'; maps I(G)/I;I(G)— I[xZ(G)/I;I(G) it is necessary and
sufficient that

=1r( g ) mod I,Z(G) .

Moreover, v is given by r=T(1)/n, where n=[G: H].
ProoOF. (i) Let 7;-0=p; -7;(p;= H) for c € G. Then we can see easily
(oo = dop; mod I,1(G).
(i) Let T ,((G)CIxZ(G). Put 2:12(2 ap;p)T;+ Gp; < Z. Then 2Ado
=1 pcH
__Zaj Ty O = Z_)apjp 05— Za,,j,p-,wa belongs to I;Z(G) if and only if all a;

belong to I(H). Th1s is equivalent to T(a;)=0 (U=1,--,n),ie Za,,,_r

(j=1, -, n). This implies 1=r(3r,) mod I;Z(G), Q. E.D. e
REMARK. Since H operates trivially both on I(G)/I;I(G) and on I4Z(G)

/I.I(G), we can consider ¥y for 1 = Z(G/H).

(V) In order that (III) holds it is necessary and sufficient that there exists an

element 1< Z(G) (or = Z(G/H)) with the property T(2)=n and ¥ (I(G)CTII(G).
This follows immediately from (IV). We see also

(VD) (o, o, o) = B 000, 1€ 2(6) with T(u)=rm, (=1, -+, N).

The last step is the most important part of the proof.
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(VII) (Witt) Assume that [H, H]=1. We can choose generators o,, -+, o, Of
G with the relations

@) Ilofw-p;=1, i=1, -, N,
k

where ¢, =[G, G] and det(my)=n, (n=[G:H]). Apply the homomorphism
0:G/[G, G]—I(G) to (3). Then we have

N

pibdoy =0  G=1, -, N)
k=1
with T(py) =my,. Consider iy, in Z(G/H) and take Z=det(f;) in Z(G/H).
Then 2 satisfies the condition in (V).

Proor. Take the cofactor 1, of g, in Z(G/H). Then we have
0= 3 Tnifludo = det (7)o, mod Igl(G) (h=1, -+, N) and T(det (7)) = det (my)

=n. Hence, 1=det (g, satisfies the condition in (V) (cf. also Artin-Tate [2],
Chap. 13). Q.E.D.-

University of Tokyo
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