J. Math. Soc. Japan
Vol. 20, Nos. 1-2, 1968

On the algebraic theory of elliptic modular functions®

Dedicated to S. Iyanaga on his 60th birthday

By Jun-ichi IGUSA

(Received Jan. 23, 1967)

Let £ denote an algebraically closed field over a prime field F (=@ or
Z/pZ) and j a variable over k. Choose an elliptic curve A; defined over F(j)
with j as its absolute invariant. Two such elliptic curves are isomorphic, but
the isomorphism is not necessarily defined over F(j). In order to avoid this
difficulty, we introduce the Kummer morphism “ Ku” defined over F(j). Then,
for every positive integer n, the field F(j, Ku(,A)) is intrinsic in the sense
that it is a uniquely determined finite normal extension of F(j) depending
only on p and n. In the case when n is not divisible by p, the extension is
separable and, taking % instead of F as ground field, it is called the elliptic
modular function field of level n in characteristic p. If we take C as k, we
get back to the classical case. One of the basic theorems in the algebraic
theory of elliptic modular functions describes the Galois group and the rami-
fication of F(j, Ku(,A;)) relative to F(j) (5). The purpose of this paper is to
give a similar description also in the case when n=7°¢ for p=0. It turns out
that F(j, Ku(,A,)) is a regular extension of F (cf. 8) and a normal extension

of degree —éﬂp%‘l(pﬁl) of F(j). Furthermore, the separable part has the

same Galois group as Q(cos (2z/n)) relative to @. The ramification (of the
separable part) takes place at supersingular invariants (cf. 2) and also at
7=0,12° so that the genus g of F(j, Ku(,A)) is given by

2g—2=1/20(p—1D(p* ' ~12p*'+1)—h,
in which £ is the number of supersingular invariants. The formula has to be
adjusted by —3/8 and —1/3 respectively for p=2 and 3. Also, in the special
case when p=2, ¢=1, we have to take g=0. It seems possible to better
understand this genus formula by the Kroneckerian geometry, i.e.,, by the
geometry of a scheme over Z constructed from Q(j, Ku(,A;)).

1. Jacobi quartics. We shall assume that the characteristic p is different
from 2. Consider a plane curve defined inhomogeneously by the following
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equation
Y= X*—2p - X>+1.

This curve is absolutely irreducible if and only if p?=1 (and p # c0). Moreover,
in this case, the point at infinity is the only singularity and the curve is of
genus 1. Therefore, we can introduce a normal law of composition over F(p)
taking the point (0, 1), say, as its neutral element. We call the curve with this
normal law of composition the Jacobi quartic of modulus p and we shall denote
it by J,. We note that the law of composition transported to a non-singular
model A, say, of J, converts A into an elliptic curve (= complete group variety
of dimension 1). Moreover, under the morphism A —J,, two points of order 2
on A are mapped to the singular point of J,. If u is a point of A, we shall
denote the x-coordinate of the corresponding point of J, by x(u); similarly for
y(u). We shall sometimes identify # with the corresponding point of J, as
long as it is different from the singular point. Then, for instance, we have

tu=(+x(w), y(w).

Furthermore, if #n is an odd positive integer and if we put x=—x(x) and y=3(u),
we have

1
2(n) =(—1)2 "V xME,(rOF (07, i) =G (OF (),
in which F,(X) and G,(X) are even polynomials in X with coefficients in F[p].
If we denote X"’ F,(X) by T,(X), we have

T(X)= 11 (X —x(a@)*,

na=

in which p° is the inseparability degree of the endomorphism nd of J,, We
call T(X) the n-th division polynomial of J,. It is of degree n? and is relatively
prime to F,(X). We note also that, if ¢ is a point of J, of order n, we have
F(p, a)=F(p, x(a)). More precisely, we have

Wa) = Fp(x(@)) - Gu(x(a))*,
in which G,(x(a))#0. Therefore y(a) is contained in F(p, x(a)) and, in fact,

in F(p, x*(a)). In the special case when n=p with p+0 and when p is as-
sumed, for a moment, to be a variable over F, we have

T,(0=XXXP S Po)yo)- X0P+(=13 " P(p)),

in which P(p) is the é—(p—l)-th Legendre polynomial and y,(p) are contained
in F[p]. We know that P(p) is a polynomial in p of degree é—(p—l) with

simple roots, and they are different from 4-1. If we compare the two expres-
sions for T,(X), we see that ,/, is a cyclic group of order p and
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P(0)=(~1* " (IT x@).

pa=
a0

Therefore, by specializing p to p’/ different from +1 and co, we see that
P(p)=0 if and only if ,J, reduces to the neutral element. We refer to (4)
for a systematic treatment, especially for the proofs of some non-trivial state-
ments that we have made so far.

Now, we shall find all Jacobi quartics which are “isomorphic” to J, and
we shall also find the isomorphisms themselves. Suppose that we have ¢:
Jo=3 ], for some p’. Then o gives rise to an isomorphism not only of the
corresponding function-fields but also of their subfields of even functions. We
observe that these subfields are generated over the universal domain by (x2, y)
and ((x")?%, y") respectively if (x’, y’) denote the coordinate functions on J,. In
this way, we get an isomorphism ¢, say, of the non-singular conic C, defined
inhomogeneously by

Y2=X?—2p - X+1

to a similarly defined C,. All these conics (forming a linear pencil) pass
through four points (the base points) with homogeneous coordinates (0, 1, 1),
0,1, -1, (1, 1,0), (1, —1,0). Since ¢ maps the neutral element of J, to the
neutral element of J,, necessarily o, keeps the point (0, 1, 1) fixed. We recall
that every isomorphism between two non-singular conics is a projective trans-
formation. Therefore o, determines an element S of PL, keeping (0, 1, 1) fixed.
On the other hand, the Jacobi quartic J,, or its non-singular model A, is rami-
fied over C, at the four points on C, that we have mentioned above; similarly
for J,, and C,. We know that S keeps (0,1,1) fixed. Therefore S has to
permute the three remaining points. In this way, we get the following 3!
possibilities

S=(1 0 0 1 -1 1 1 1 —1
0 1 0 2 0 —2 —2 0 =2

0o 0 1 -1 -1 —1 1 -1 —1
p'=p (p—3)(p+D —(p+3)(p—-D

1 0 0 1 —1 1 11 -1

{o —1 0] —2 0 2} [ 2 0 2]

0 0 —1 1 1 1 -1 1 1

—p —(p—3)(p+D* (p-+3)(p—D7.
All these cases are possible. We note that ¢ determines ¢, uniquely and o,
determines ¢ up to the sign of x. We have thus obtained the information that

we shall use later.
We can consider those six values of moduli as defining a transformation
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group on a projective straight line over F. The orbits consist of six points
in general except for the degenerate case {41, co}, the harmonic case {0, 3}

and the equianharmonic case {i(—S)}?'} with respective multiplicities 2, 2 and
3. We can identify these orbits to single points of another projective straight
line over F. Up to a projective transformation, the identification morphism is
given by
j=2%(p*3P(p—1)2 .

This j is called the absolute invariant of J, and also of any curve which is
birationally equivalent to J,. Actually, we know how to characterize j up to
the Kroneckerian transformation j— +4-j+integer (cf. 5). We note that the
three exceptional orbits are mapped respectively to oo, 12¢8 and 0. We also

note that the %(;b—l) simple roots of P(p) are divided into orbits. These

orbits are mapped to supersingular invariants on the j-line (cf. 2). For instance
0 is the only supersingular invariant for p=3. Using the Kronecker symbol,
we can write down the number h of supersingular invariants in general, and
it is as follows

h=A/12(p—1)+1/3H(A—~(=3/p)+A/HA—(—4/p)) -

2. The field F(p, Ku(,J,)) for n=p° First of all, suppose that A is an
elliptic curve defined over a field K of characteristic p+0. Then, for n=7»°

we have
[KGA) K], =p'(p—1), [KGA:K], <1,

provided that ,A4 is cyclic of order p for the second inequality. We leave the
proof as an exercise to the reader. We say that an “irreducibility theorem ”
holds for A and n over K if we have equality signs. In this case, clearly the
Galois group of the separable part of K(,A) over K is isomorphic to GL(Z/nZ),
i. e, to the Galois group of @Q(e*/?) over Q.

Now, we take an algebraically closed field % containing F for p=+2 and
also a variable p over k. We shall show that the irreducibility theorem holds
for J, and n=7° over k(p). We choose a sequence of points

= Ay Ay =" a, + O, ay, = 0

of J, with the property pa,.,=a, for m=0,1,2,---. Then we have F(p, , /o)
=F(p, x(a.)). In fact ,J, is a cyclic group of order n and ¢, is one of the
generators. Since the law of composition of ], is defined over F(p), we have
F(p, .Jo)=F(p, a,), and, as we have seen, this coincides with F(p, x(a,)). After
this remark, we take a root o’ of the Legendre polynomial P(p). We shall
show that: (1) there exists only one point P, in K,= k(p, x(a,)) lying over p’;
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(2) x(a,) is a local parameter of K, at P,; and (3) the order of p—p’ at P, is
P p—1). We shall prove (1), (2), (3) by an induction on e.
We observe that x(a,) is a root of
Tp(X)X ‘p:(Xp)pml'}"P(P) : UO((D’ X) s
in which

1
Uo(P, X) :0<z§p_1n(‘0> . (Xp)%_‘,(*l) 5 (P—1) )

Let ¢, denote a local parameter of a point of K, lying over p’. We shall com-
pute orders of elements of K, with respect to #,. Since Uy p, x(a,)) iS a unit
at t, =0, we have
p(p—1) - ord (x(a,)) = ord (o—p").
Since we have
ord (x(a,) =1, ord(p—p)=[K,:KI=p(p-1),
we get equality signs everywhere. This proves (1), (2), (3) for e=1. Suppose

next that (1), (2), (3) are verified up to e=m=1. We shall proceed to prove
them for e=m-+1. We observe that x(a,.,) is a root of

Ty —(—1)7 7 2(a,) - F(X)

= X7 P(0) - X? - Un(o, X)—(—1)% "V x(a,,
in which U,(p, X)—UJ(p, X) is given by

—(-D2 O @) () (XM= O .

Let f,., denote a local parameter of a point of K,,,, lying over P,. We shall
compute orders of elements of K,,, with respect to f,,,. Since U,(p - x(ay11))
is a unit at f,,,=0 and since P(p)- x(a,+,)” clearly has a larger order than
x(a,), we have

p? - ord (x(ap.y) = ord (x(am)) -
Since we have

Ord (x<am+1)) g 1 ’ Ord (-x<am)) é [Km+1 : Km:l é 172 ’

we get equality signs everywhere. This proves (1), (2), (3) for e=m-1, and
the induction is complete. We observe also that the polynomial for x(a,)? with
coefficients in K, , is separable. Therefore, we get [K,: K, ,],=p for e>1
and =p—1 for ¢=1, and hence

[K.: K], =p'(p—D, [K.:KJ=p°.

This shows that the irreducibility theorem holds for J, and n=p° over k(p),
hence a fortiori over F(p). In particular F(p, ,/,) is a regular extension of F
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(cf. 8). We shall calculate the genus of its subfield F(p, Ku(, /).

First of all, we may take Ku(u) to be (x2(u), y(u)). Then, we have
Fo, Ku(,J»)) = F(p, x¥a,)), and hence we have only to calculate the genus of
F(p, x*(a,))** = F(p, (x**°)(a,)) or of L,=k(p, (x**)(a,)). Suppose that p’ is an
arbitrary element of k. If p’ is not a root of p2—1, the specialization p— p’
over k extends uniquely to a specialization (J,, ,Jo) —(Jo» nJo). If further p’
is not a root of P(p), the specialization ,/,—,/, is an isomorphism of the two
cyclic groups. Therefore (K,)r¢ is ramified over k(p) at most at the roots of
(p*—1)P(p) and at co. Suppose that p’ is a root of P(p). We shall first com-
pute the contribution to the different of (K,)>¢ over k(p) of the unique point
of (K,)»¢ lying over p’. Since s,= x(a,)?° is a local parameter of (K,)»* at this
point, we have only to compute the order of dp/ds, with respect to s,. By
applying the chain rule and using the equation for x(a,.,)*™"! over (K,)*™ for
m=0,1, -, e—1, we get

(b2 " (p—D) S pm = p*- ().

Therefore, applying again the chain rule to (K,)» D L, D k(p), we see that the
contribution to the different of L, over k(p) of the unique point of L, lying
over p’ is

‘_%7(pe—l(‘be_2)_1)__: *%‘(p%_l—l)—«pe_l .

On the other hand, as we shall see presently in the next section, the contri-
bution coming from the points of L,lying over p’=+1 and co are same. We
shall show that they are all 0. For this purpose, we take a variable p, over
Q and consider the field Q(p,, »/J,,) for n =p° We know that ,J,, is an abelian
group of type (n, n). Therefore, it is generated by two elements a,, b, say.
‘Consider

§= II x(ma,+by).

m mecd n

Then & can be expanded into a power-series in p,—1 (with coefficients in the
principal order of Q(e*¥*)). This follows from the fact that & is invariant by
one of the local Galois groups of Q(p,, »Js,) Over Q(e™", py) at p,=1. There-
fore, if we take the reduction modulo a prime factor of x(b,), we see that
x(a)” has a power-series expansion in p—1 (with coefficients in F'). This proves
the assertion. Therefore, the genus g(L,) of L. is given by

20(L)—2= 5 (=D 5 (P11 p*=*) —p=(p—1).

As we have seen, g(L,) is also the genus of F (o, Ku(,/,)).
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3. The field F(j, Ku(,A;) for n=pc. We shall assume, using the same
notation as before, that p is a variable over k. The absolute invariant j of
Jo is given explicitly as a rational function of p with coefficients in F. We
choose an elliptic curve A,, defined over F(j), which is birationally equivalent
to J, (cf. 1, 5). We also choose a Kummer morphism for A; defined over F(j).
Then, if w and u are biregularly corresponding points of A4; and J,, we have
F(p, Ku(w))=F(p, Ku(u)). This implies F(p, Ku(,A;)) = F(p, Ku(,J,)) for n=p°.
Therefore F(p, Ku(,/,)) is the compositum of F(j, Ku(,A;) and F(p) over F(j).
Consequently, F(j, Ku(,A;)) is a regular extension of F and over F(j), the

separable and the inseparable degrees are respectively —é pei(p—1) and pe.

The situation remains same even if we replace F' by k. Since +1 and co on
the p-line are conjugate over k(j), this settles a minor point left at the end of
the previous section.

LEMMA. If j’'+ co is not a supersingular invariant, no point of k(j, Ku(,A;))
lying over j' 1s ramified in k(p, Ku(,Jp)).

PrROOF. Suppose that there is a ramification. Then there exists a point
P of k(p, Ku(,/,)) lying over j/ and an automorphism ¢ of k(p, Ku(,J,)) over
k(j, Ku(,A,), different from the identity, satisfying ¢P=P. Now, the mor-
phism A;—J, gives rise to a unique isomorphism of their Kummer varieties.
over F(p), hence over k(p). Applying o to the graph of this isomorphism, we
get an isomorphism of the Kummer variety of A; to the Kummer variety of
Jos. If we compose the inverse of the first isomorphism with the second iso-
morphism, using the notation of Section 1, we will get an isomorphism of the
conic C, to the conic Cp. Therefore, for every a in ,, J,, the image (x2(a)’, y(a)”)
of (x%(a), y(a)) under the automorphism o is precisely the image of (x%*(a), y(a))
under the isomorphism C,~ C,s, determined as above. On the other hand, be-
cause of ¢P =P, we have

(p% x%(a)’, ¥(@)’)(P)= (o, x*(a@), y(@)(P) .

If we combine this fact with the explicit expression for x%(a)” obtained in Sec-
tion 1, we immediately get a contradiction. In fact, for a #0, x2(a)(P) satisfies.
a quadratic equation when j/=0 and a linear equation when j/ =123, There-
fore, the only possibilities are n=p=3 and n=p=5. On the other hand,
since j/ is not supersingular, we have j’ 0 in both cases. This will bring a
contradiction. qg.e.d. '

We shall, now, proceed to determine the contributions of the points of
k(j, Ku(,Ap))*¢ lying over j’ == co to the different relative to k(j). Suppose first
that j/ is not supersingular. If j/ is different from 0 and 123, the contribution
is 0. If j7=0, using the previous lemma, we get (2/3)N for
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|
N:~2~p (p—1).

Similarly, if j/ =123, we get (1/2)N. Suppose next that j/ is supersingular. If
j* is different from 0 and 12% the contribution is clearly equal to

W= % (pZe—l_Zpe—l___l) .

If /=0 and p =3, since k(p, Ku(,J,))** is tamely ramified over k(j, Ku(,A,))
with 3 as its ramification index, calculating the derivative of ; with respect to
the local parameter of k(p, Ku(,J,))?® at any one of the points lying over j/ in
two different ways, we get (1/3)(W-+2N—2). Similarly, if j*=12% and p+3,
we get (1/2)(W-+N—1). On the other hand, if j*=0=12% and p =3, we proceed
as follows: There is only one point P, say, of k(o, Ku(,/,))* lying over j.
The second ramification group of P is the subgroup which corresponds to %(p).
Consequently, although k(p, Ku(,/,))** is wildly ramified over k(j, Ku(,A))?,
the second ramification group of P for this extension reduces to the identity.
The rest is the same as before, and we get (1/6)(W+7N—7).

Finally, in the case when j’=oco, we can show as before that it is not
ramified in k(j, Ku(,Ay))*°. Therefore, the genus g of this field, which is equal
to that of F(j, Ku(,A))), is given by

2g—2=Q1/2Hp—Dp* ' —12p**+1D—h,

in which % is the number of supersingular invariants. In the case when p=3,
it is necessary to subtract 1/3 from the right-hand side.

We shall, also, discuss the case when p=2. Assuming that j is a variable
over k, we consider a plane curve defined inhomogeously by

Y- XY =j1X%+j.

This cubic curve is absolutely irreducible and non-singular, hence it is of
genus 1. Therefore, it becomes an elliptic curve with the point at infinity,
say, as its neutral element. We shall use this elliptic curve as A; because it
has j as its absolute invariant. We observe that, if j—j/ is a specialization
over k, the elliptic curve A; has a similarly defined elliptic curve A; as its
unique specialization for j/ 0, co. Moreover, as we can see by using a dif-
ferent model, ;=0 is supersingular and, in fact, the only one in characteristic
2 (cf. 1, 2). On the other hand, if u=(x(w), y(w)) is a point of A, we have
x(—u)=x(u) and y(—u)= x(u)+y(u). Therefore, we may take Ku(u) to be x(u).
Furthermore, if we put x=x(u), we have the following duplication formula

xCu)=j'x24-j2x2,

We shall show that F(j, Ku(,A;) for n=2°is a regular extension of F and
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over F(j), the separable and the inseparable degrees are respectively 2¢-? and
2¢ provided ¢e>=2. We have only to prove the second part replacing F by £k.
We choose a sequence of points

Oy Ay *** s al:léoy 610:0

of A; with the property 2a,.4, = a,, for m=0,1, 2, ---. Since the group law is
defined over F(j) and since ,A; is a cyclic group of order n generated by a,
we have F(j, ,A)=F(j, x(a,), y(a,), and F(j, Ku(,Ap)=F(j, x(a;). On the
other hand, we have x(q,)=oc0, x(a,))=0 and =x(a,)*=j% Moreover, if we
introduce

e+1

X = (X(Qe45) (T ¥(Aes2)) ™)

for e=0, 1,2, ---, we have (x,)?*—x,=j% and in general x, is a root of X?>—X
= R,., with

Ry = (xo(x,— 1)1 (xg o+ Xouy)?
for e=1,2,-.-. We shall show that: (1) there exists only one point P,_, in
k(% -+ 5 Xo-y) lying over x,=oco; (2) the order of x,_, at P,, is —2%2; and (3)
if ¢,., is a local parameter of k(x,, -, x,-,) at P,., and if we replace x, by a
suitable

6, = x,-const. (,_,~)** ' +lower powers,
the equation for #, will take the form

(8.,)?—0,= const. ({,_, Y)**+lower powers
with
e =(2/3)2*—1)+1,

in which the constants are both different from 0. We observe that (1), (2), (3)
can be verified easily for e=1. Therefore, we shall assume that they are true
up to e=m=1. Since ¢, is an odd positive integer, we see that ¢,, generates
a separable quadratic extension of k(x,, ---, x,-,) ramified at P,_, (cf. 3), and
this extension is k(x,, ---, X,,). In particular, there exists only one point P, in
k(xy -+ xy) lying over P,_,, hence over x,= oo, and the order of t¢,., at P,
is 2. Since we have 2m—¢,, = (1/3)(2**—1) =1, the order of x, at P,, is —2,
Therefore, the order of R,, at P, is —2*+*2% Moreover, we have

m+2

AR/ by = (X(xo—1))*" 772+ (Xy -+ x) 7 - (dty/dlr)

for t,=x,7!, and the order of the coefficient of dt,/dt,, at P, is —22»*2, On
the other hand, the order of dt,/dt, at P,, can be calculated by the chain rule
using (3) for e=1, 2, ..., m (cf. 3), and we get

j’gzm-e(em) = (2/3)(2n—1).
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Therefore, the order of dR,/dt, at P, is equal to
—(@2/)@" 2 42) = —(epnt1D).

Consequently, if we expand R, into a series of powers of ¢, the highest
negative odd exponent will be precisely —e¢,.,. Since we have ¢, —2"
=(1/3)(2**"41) = 3, it is certainly possible to replace x,,, by a suitable

2m+1

O oy = XpparFconst. (4,712 +lower powers

so that the equation for 6,., takes the form
(0 1)t — 0,4, == const. (f,,” )™ 1 +lower powers;

in which the constants are both different from 0. We have thus proved (1),
(2), (3) for e=m+1, and the induction is complete.

If we observe that k(j, x(a,)) contains k(x,, -, x,_,) for e=3 and that k(x,)
is a separable quadratic extension of k(j), which incidentally is ramified only
at j=0, we see that the separable degree of k(j, x(a,)) over k(j) is 2¢°% and
that k(x,, ---, x,-,) 1s the maximal separable subfield of k(j, x(a,) over k().
Furthermore, because of

e—3
x(ap)* =7« (ILJ*"" " xm)?
m=0

we see that x(q,)** but not x(a.)**" is separable over k(j) for ¢=3. Con-
sequently, the inseparability degree of k(j, x(a,) over k(j) is 2° In view of
the fact that k(j, x(a,)) = k(jV%), we have completed the proof of the irreduci-
bility statement that we made in the beginning.

We can also determine the genus of F(j, Ku(,A;)), which is equal to that
of k(xy, -+, x,_y), for e=3. We observe that the contributions to the different
of k(x,, -, x,-,) relative to k(x,) come only from those points lying over j=0
and co. The contribution coming from the unique point lying over j=0, i.e,,
over x,— oo, has already been calculated in proving (1), (2), (3). We shall show
that j = co is not ramified in k(x, ---, x,-,). At any rate, over j=oco we have
two points x,=0and 1 in k(x,). Suppose that k(x,, ---, x,,) but not k(x,, ---, x,,_,)
is ramified over k(j) at j=oco. Then k(x,, -+, x,) is ramified over k(x,, -+, x,,—;)
at every one of the 2™ points lying over j=oco (because they are conjugate
over k(7). Now, there is one point P, say, where we have x,= .-+ = x,_,=1.
Then R,_, is finite at P, and hence the extension of k(x,, ---, x,_,) generated
by x, is unramified at P. This is a contradiction. In this way, we get

2g—2=(2'/3)(2%°—1)—2°2,

and this is a special case of the general formula if we make an adjustment



106

J. Icusa

by subtracting 3/8 from the right-hand side (of the general formula).
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