A remark on theorem A for Stein spaces

By Isao WAKABAYASHI

(Received March 29, 1967)

1. Concerning Stein spaces the following fundamental theorems of K. Oka—H. Cartan—J. P. Serre are well-known: Theorem A. If \mathcal{F} is a coherent analytic sheaf over a Stein space X with the structure sheaf $\mathcal{O}(X)$, then $\Gamma(X, \mathcal{F})$ generates \mathcal{F}_x for every $x \in X$. Theorem B. In the same case. $H^q(X, \mathcal{F}) = 0$ for any $q \ge 1$.

It is known further that the validity of the latter is sufficient for X to be a Stein space. Namely, a reduced complex space X is a Stein space if $H^{1}(X, \mathcal{J}) = 0$ for any coherent sheaf of ideals \mathcal{J} in $\mathcal{O}(X)$ determined by a zerodimensional analytic set in X.

In the present note we shall consider the problem if the former is sufficient for X to be a Stein space. Concerning a domain X in \mathbb{C}^n , Cartan ([1] p. 57) made a remark that, if a certain condition similar to theorem A is satisfied, then X would perhaps be a domain of holomorphy.

Our result is the following:

THEOREM. Let $(X, \mathcal{O}(X))$ be an n-dimensional reduced connected normal complex space. Suppose it satisfies the following condition (A): For any coherent sheaf of ideals \mathcal{I} in $\mathcal{O}(X)$ determined by a zero-dimensional analytic set in $X, \Gamma(X, \mathcal{I})$ generates \mathcal{I}_x as an $\mathcal{O}(X)_x$ -module at each point $x \in X$. Then Xis K-complete and identical with its Kerner's K-hull [4]. If, in addition, $\Gamma(X, \mathcal{O}(X))$ is isomorphic as a **C**-algebra to $\Gamma(X', \mathcal{O}(X'))$ of an n-dimensional reduced Stein space $(X', \mathcal{O}(X'))$, then X is a Stein space.

For example, if an unramified covering manifold over a Stein manifold satisfies the condition (A), then it is a Stein manifold. (In general a K-hull of a normal complex space is not necessarily a Stein space [2].)

2. In the following a complex space should be understood to be reduced. A complex space $(X, \mathcal{O}(X))$ is said to be K-complete if, for each point $x \in X$, there exists a holomorphic mapping τ from X to a complex affine space C^{m_x} which is non-degenerate at x, i. e., x is an isolated point of $\tau^{-1}(\tau(x))$. We call a complex space $(X, \mathcal{O}(X))$ a Stein space if it is K-complete and holomorphically convex.

Let \Re^n be a category whose objects are *n*-dimensional K-complete connected

I. Wakabayashi

normal complex spaces and whose morphisms are non-degenerate holomorphic mappings. Kerner [4] showed, for any object $(X, \mathcal{O}(X))$ of \mathfrak{R}^n , the existence and uniqueness of its holomorphy hull $(H(X), \mathcal{O}(H(X)))$ with the following conditions (we shall refer to it as *Kerner's* K-hull):

(i) $(H(X), \mathcal{O}(H(X)))$ is an object of \Re^n and there exists a morphism α : $X \to H(X)$ which induces the canonical isomorphism α^* : $\Gamma(H(X), \mathcal{O}(H(X))) \to \Gamma(X, \mathcal{O}(X))$.

(ii) For any object $(Y, \mathcal{O}(Y))$ of \mathbb{R}^n which has a morphism $\beta: X \to Y$ such that $\beta^*: \Gamma(Y, \mathcal{O}(Y)) \to \Gamma(X, \mathcal{O}(X))$ is an isomorphism, there exists a morphism $\gamma: Y \to H(X)$ satisfying $\alpha = \gamma \circ \beta$.

3. Proof of the theorem.

Suppose $(X, \mathcal{O}(X))$ is an *n*-dimensional connected normal complex space and satisfies the condition (A). In the following we shall denote by $\mathcal{J}(V)$ the coherent sheaf of ideals in $\mathcal{O}(X)$ determined by an analytic set V in X.

For a pair of distinct points $x_1, x_2 \in X$, the relation $\mathcal{J}(\{x_1\})_{x_2} = \mathcal{O}(X)_{x_2}$ holds. From the condition (A), there exists an element $f \in \Gamma(X, \mathcal{O}(X))$ with $f(x_2) \neq 0$, $f(x_1) = 0$. Hence $\Gamma(X, \mathcal{O}(X))$ separates points of X and, therefore, X is K-complete.

As $\Gamma(X, \mathcal{O}(X))$ separates points of X, we may consider X to be a subdomain of H(X) (Kerner [4]). Now, assume $X \subseteq H(X)$, then there exist a point x_0 in ∂X and a sequence of points $\{x_\nu\}_{\nu=1}^{\infty}$ in X which converges to x_0 . This sequence is a zero-dimensional analytic set in X. For any $f \in \Gamma(X, \mathcal{J}(\{x_\nu\}_{\nu=1}^{\infty})))$, there exists a holomorphic function \hat{f} on H(X) such that $f = \hat{f}$ on X by the definition of H(X). As f vanishes on $\{x_\nu\}_{\nu=1}^{\infty}$, so does \hat{f} on x_0 . The set $V_f = \{\hat{f} = 0\}$ is an analytic set containing $\{x_\nu\}_{\nu=1}^{\infty} \cup \{x_0\}$ in H(X), and so is $V = \bigcap_{f \in I} V_f$ (I = $\Gamma(X, \mathcal{J}(\{x_\nu\}_{\nu=1}^{\infty})))$. In a sufficiently small neighborhood of x_0 in H(X), the number of irreducible components of V is finite. Hence $V \cap X$ contains a point $x \in \{x_\nu\}_{\nu=1}^{\infty}$. By the condition (A), $\Gamma(X, \mathcal{J}(\{x_\nu\}_{\nu=1}^{\infty}))$ generates $\mathcal{J}(\{x_\nu\}_{\nu=1}^{\infty})_x$ as an $\mathcal{O}(X)_x$ -module. On the other hand, every element of $\Gamma(X, \mathcal{J}(\{x_\nu\}_{\nu=1}^{\infty}))$ vanishes at x as x is contained in V, and $\mathcal{J}(\{x_\nu\}_{\nu=1}^{\infty})_x = \mathcal{O}(X)_x$ holds as x is not contained in $\{x_\nu\}_{\nu=1}^{\infty}$, a contradiction. Therefore X = H(X). The proof of the first half of the theorem is hereby complete.

4. Proof of the theorem (continued).

Now we prove the second half under the assumption that $\Gamma(X, \mathcal{O}(X))$ is isomorphic as a *C*-algebra to $\Gamma(X', \mathcal{O}(X'))$ of an *n*-dimensional Stein space $(X', \mathcal{O}(X'))$. Denote the isomorphism by $\tau : \Gamma(X', \mathcal{O}(X')) \to \Gamma(X, \mathcal{O}(X))$. The

490

proof will be divided into five steps.

(i) Construction of $\phi: X \rightarrow X'$:

Since X' is a Stein space, by a theorem of Iwahashi [3], there exists a mapping $\phi: X \rightarrow X'$ with

$$\tau(f')(x) = f'(\psi(x)) \dots (*)$$

for every $f' \in \Gamma(X', \mathcal{O}(X'))$. It is injective because $\Gamma(X, \mathcal{O}(X))$ separates points of X and τ is an isomorphism.

(ii) ϕ is continuous:

To show $\psi(x_{\nu}) \rightarrow \psi(x_0)$ for a sequence of points $x_{\nu} \in X$ with $x_{\nu} \rightarrow x_0 \in X$, it suffices to verify $f' \circ \psi(x_{\nu}) \rightarrow f' \circ \psi(x_0)$ for every $f' \in \Gamma(X', \mathcal{O}(X'))$, since X' is a Stein space ([3]). This is obtained from (*).

(iii) ϕ is holomorphic:

Let g' be any function holomorphic at $\psi(x)$. Since X' is a Stein space, there exists a sequence of holomorphic functions f'_{ν} on X' which converges uniformely to g' in a sufficiently small neighborhood of $\psi(x)$. Then $\tau(f'_{\nu})$ converges uniformely to $g' \circ \psi$ in a neighborhood of x. Hence $g' \circ \psi$ is holomorphic at x, and so is ψ .

(iv) X' is irreducible:

 $\psi(X)$ is contained completely in an irreducible component X'_1 of X', since X is a connected normal complex space. As $\psi: X \to X'$ is holomorphic, so is $\psi: X \to X'_1$. Hence, an arbitrary holomorphic function on X'_1 can be understood to be a holomorphic function on X. By assumption, it is extended to a unique holomorphic function on X'_1 . This yields that $\Gamma(X'_1, \mathcal{O}(X'_1))$ is isomorphic as a C-algebra to $\Gamma(X', \mathcal{O}(X'))$. As X' is a Stein space, $X' = X'_1$ holds by Iwahashi's theorem mentioned above. Consequently X' is irreducible.

(v) X is a Stein space:

For this purpose, let us show that X' is a normal complex space. To this end, assume the contrary. Let $(X'^*, \mathcal{O}(X'^*))$ be a normalization of $(X', \mathcal{O}(X'))$, and $\pi: X'^* \to X'$ be an associated holomorphic mapping. By assumption, $(X', \mathcal{O}(X'))$ is not isomorphic to $(X'^*, \mathcal{O}(X'^*))$, and $(X'^*, \mathcal{O}(X'^*))$ is a Stein space by a theorem of R. Narasimhan. Consequently, by Iwahashi's theorem, there exists an element f^* of $\Gamma(X'^*, \mathcal{O}(X'^*))$ such that, even though $f^* \circ \pi^{-1}$ is a holomorphic function in the weak sense on X', $f^* \circ \pi^{-1}$ is not an element of $\Gamma(X', \mathcal{O}(X'))$. The set of those points of X' where $f^* \circ \pi^{-1}$ is not holomorphic is included in a thin analytic set V' in X'. Since dim $X = \dim X', \phi^{-1}(V') \cap X$ is also included in a thin analytic set in X. On a normal complex space the Riemann's continuation theorem holds, hence $f^* \circ \pi^{-1}$ determines an element $f \in \Gamma(X, \mathcal{O}(X))$, and $\tau^{-1}(f)$ coincides with $f^* \circ \pi^{-1}$ on X' except for a thin analytic set in X'. Since $\tau^{-1}(f)$ and f^* are continuous, $f^* \circ \pi^{-1}$ is a function on X'satisfying $\tau^{-1}(f) = f^* \circ \pi^{-1}$. This is a contradiction to our assumption. Hence, X' is a K-complete normal complex space with an injective holomorphic mapping $\phi: X \to X'$ with the property $\phi^*: \Gamma(X', \mathcal{O}(X')) \to \Gamma(X, \mathcal{O}(X))$ is an isomorphism. From the definition of Kerner's K-hull and from the first half X = H(X)of our theorem, $(X, \mathcal{O}(X))$ is isomorphic to $(X', \mathcal{O}(X'))$. Therefore $(X, \mathcal{O}(X))$ is a Stein space.

Tokyo Metropolitan University

References

- H. Cartan, Idéaux et modules de fonctions analytiques de variables complexes, Bull. Soc. Math. France, 78 (1950), 29-64.
- [2] H. Grauert, Bemerkenswerte pseudokonvexe Mannigfaltigkeiten, Math. Z., 81 (1963), 377-391.
- [3] R. Iwahashi, A characterization of holomorphically complete spaces, Proc. Japan Acad., 36 (1960), 205-206.
- [4] H. Kerner, Holomorphiehüllen zu K-vollständigen Komplexen Räumen, Math. Ann., 138 (1959), 316-328.