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1. Introduction

According to Pick the classical Schwarz lemma can be stated in the fol-
lowing invariant manner. Every holomorphic map $f$ of the open unit disk
$D$ into itself is distance-decreasing with respect to the Poincar\’e metric $ds^{2}$ ,
$i$ . $e.,$ $f^{*}(ds^{2})\leqq ds^{2}$ , and if the equality holds at one point of $D$ , then $f$ is biholo $\cdot$

morphic. Bochner and Martin proved in their book [2] the following gener-
alization of the Schwarz lemma to higher dimension. Let $D_{n}$ be the open unit
ball in $C^{n}$,

$D_{n}=\{z=(z^{1}, z^{n});\Vert z\Vert^{2}=\Sigma|z^{j}|^{2}<1\}$ .
If $f$ is a holomorphic mapping of $D_{m}$ into $D_{n}$ such that $f(O)=0$ , then $||f(z)\Vert$

$\leqq\Vert z\Vert$ for every $z\in D_{m}$ . Using the fact that $D_{m}$ and $D_{n}$ are homogeneous, we
can formulate this in the following invariant manner. Every holomorphic
mapping $f:D_{m}\rightarrow D_{n}$ is distance-decreasing with respect to the Bergman metrics
$ds_{Dm}^{2}$ and $ds_{Dn}^{2}$ of $D_{m}$ and $D_{n},$ $i$ . $e.,$ $f^{*}(ds_{D_{7}}^{2}.)\leqq ds_{Dm}^{2}$ .

Recently Kor\’anyi [7] obtained the following generalization of the Schwarz
lemma. If $M$ is a hermitian symmetric space of non-compact type with the
Bergman metric $ds^{2}$ , then every holomorphic map $f:M\rightarrow M$ satisfies $f^{*}(ds^{2})$

$\leqq l\cdot ds^{2}$ , where 1 is the rank of $M$.
On the other hand, Ahlfors exposed in his generalization of the Schwarz

lemma the essential r\^ole played by the curvature. Let $M$ be a Riemann sur-
face with hermitian metric $ds_{M}$ whose Gaussian curvature is bounded above
by a negative constant $-B$ . Let $D$ be the unit disk in $C$ with an invariant
metric $ds_{D}^{2}$ whose Gaussian curvature is a negative constant -A. (If we take
$dzd\overline{z}/(1-|z|^{2})^{2}$ for $ds_{D}^{2}$ , then its curvature is equal to $-4.$) Then the gener-
alized Schwarz lemma by Ahlfors says that every holomorphic mapping $f:D$

$A$
$\rightarrow M$ satisfies $f^{*}(ds_{M}^{2})\leqq-Bds_{D}^{2}$ .

The main purpose of this paper is to generalize the results above in the
following form:
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THEOREM. Let $D$ be a bounded symmetric domain with an invariant Kahler
metric $ds_{D}^{2}$ whose holomorphic sectional curvature is bounded below by a nega-
tive constant -A. Let $M$ be a Kahler manifold with metric $ds_{M}^{2}$ whose holo-
morphic sectional curvature is bounded above by a negative constant -B. Then

every holomorphic mapping $f:D\rightarrow M$ satisfies $f^{*}(ds_{M}))\leqq\frac{A}{B}ds_{D}^{2}$ .
Although the theorem above can be generalized to the case when $M$ is a

hermitian manifold (with a suitable definition of holomorphic sectional curva-
ture) we shall restrict ourselves to the K\"ahler case in this paper.

2. The case $\dim D=1$ .
Let $D_{a}$ be the open disk of radius $a$ in $C,$ $D_{a}=\{z\in C;|z|<a\}$ . Then the

metric
$4a^{2}dzd\overline{z}$

$ds_{a}^{2}=_{A(a^{2}-z\overline{z})^{2}}---$

on $D_{a}$ has the curvature $-A$ . Let $M$ be a K\"ahler manifold with metric $ds_{M}^{2}$

whose holomorphic sectional curvature is bounded above $by-B$ . Let $u$ be the
non-negative function on $D_{a}$ defined by

$f^{*}(ds_{M}^{2})=u\cdot ds_{a}^{2}$ .

We want to prove that $u\leqq-A_{-}B$ on $D_{a}$ . Although $u$ may not attain its maxi-

mum in (the interior of) $D_{a}$ in general, we shall show that we have only to
consider the case when $u$ attains its maximum in $D_{a}$ . Let $r$ be a positive
number smaller than $a$ . Let $z_{0}$ be an arbitrary point of $D_{a}$ . Taking $r$ suf-
ficiently close to $a$ , we may assume that $z_{0}\in D_{r}$ . From the explicit expression
for $ds_{a}^{2}$ given above, we see that $(ds_{r}^{2})_{z_{0}}\rightarrow(ds_{a}^{2})_{z_{0}}$ as $r\rightarrow a$ . If we define a non-
negative function $u_{r}$ on $D_{r}$ by $f^{*}(ds_{M}^{2})=u_{r}\cdot ds_{r}^{2}$ , then $u_{r}(z_{0})\rightarrow u(z_{0})$ as $r\rightarrow a$ .
Hence it suffices to prove that $u_{r}\leqq\frac{A}{B}$ on $D_{r}$ . If we write $f^{*}(ds_{M}^{2})=hdzd\overline{z}$

on $D_{a}$ , then $h$ is bounded on $D_{\gamma}$ . On the othen hand, the coefficient of $ds_{r}^{2}$

approaches infinity at the boundary of $D_{r}$ . Hence, the function $u_{r}$ defined on
$D_{r}$ goes to zero at the boundary of $D_{r}$ . In particular, $u_{r}$ attains its maximum
in $D_{r}$ . The problem is thus reduced to the case where $u$ attains its maximum
in $D_{a}$ .

We shall now prove that $u\leqq\frac{A}{B}$ on $D_{a}$ under the assumption that $u$ at-

tains its maximum in $D_{a}$ , say at $z_{0}\in D_{a}$ . If $u(z_{0})=0$, then $u\equiv 0$ and there is
nothing to prove. Assume that $u(z_{0})>0$ . Then the mapping $f:D_{a}\rightarrow M$ is
non-degenerate in a neighborhood of $z_{0}$ so that $f$ gives a holomorphic imbed-
ding of a neighborhood $U$ of $z_{0}$ into $M$.
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We claim that the curvature of the (l-dimensional) complex submanifold
$f(U)$ ot $M$ is bounded above by $-B$ . This is a consequence of the following
general fact. Let $ Sb\circ$. a complex submanifold of a Kaehler manifold $M$. Let
$R_{M}$ and $R_{s}$ denote the Riemannian curvature tensors of $M$ and $S$ respectively.
Let $\alpha$ denote the second fundamental form of $S$ ; it is a symmetric bilinear
map of the tangent space $T_{p}(S)$ into the normal space at $p$ . From the equa-
tions of Gauss-Codazzi we obtain

$R_{s}(X, JX, X, JX)=R_{M}(X, JX, X, JX)-2\Vert\alpha(X, X)\Vert^{2}$ .
See O’Neill [8] for the detail of calculation leading to the formula above. The
formula implies that the holomorphic sectional curvature of $S$ does not exceed
that of M. (This fact is true for a hermitian manifold $M$ and a complex sub-
manifold $S$ of $M$. But the proof is more technical and will be given in a
forthcoming paper.)

Since $u$ attains its maximum at $z_{0},$
$\partial^{2}\log u/\partial z\partial\overline{z}$ is non-positive at $z_{0}$ . We

shall now express $\partial^{2}\log u/\partial z\partial\overline{z}$ in terms of the curvatures of $D_{a}$ and $f(U)$ .
Since $f:U\rightarrow f(U)$ is a biholomorphic mapping, we define the coordinate system
$w$ in $f(U)$ by $w\circ f=z$ . Identifying $f(U)$ with $U$ by the mapping $f$, we shall
identify $w$ with $z$ . Then we can consider $f^{*}(ds_{M}^{2})=hdzd\overline{z}$ as the induced
metric on $f(U)$ as well as on $U$. If we write $ds_{a}^{2}=gdzd\overline{z}$ , then

$u=h/g$ .
Hence

$\partial^{2}\log u/\partial z\partial\overline{z}=\partial^{2}\log h/\partial z\partial\overline{z}-\partial^{2}\log g/\partial z\partial\overline{z}$ .
If we denote by $k$ the curvature of the metric hdzd2, then

$k=-\frac{1}{2h}(\partial^{2}\log h/\partial z\partial\overline{z})$ .

Since the curvature of the metric gdzdz is equal to $-A$ , we have

$-A=-\frac{1}{2g}(\partial^{2}\log g/\partial z\partial\overline{z})$ .

Since $k\leqq-B$ as we have seen above, we have

$\partial^{2}\log u/\partial z\partial\overline{z}=-2kh-2Ag\geqq 2Bh-2Ag$ .
Since the left hand side is non-positive at $z_{0}$ , so is the right hand side. Hence,
$A/B\geqq h/g$ at $z_{0}$ . Since $u=h/g$ attains its maximum at $z_{0}$ , it follows that
$A/B\geqq u$ everywhere. This completes the proof of Theorem for the case
$\dim D=1$ .

This case is closely related with Aussage 3 in Grauert-Reckziegel [4].

Instead of assuming that the holomorphic sectional curvature of $M$ is bounded
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by $-B$, they assume that the curvature of every l-dimensional complex sub-
manifold of $M$ is bounded by $-B$ .

3. The case where $D=D_{a}^{\iota}=D_{a}\times\cdots\times D_{a}$ .
Let $\alpha=$ $(\alpha_{1}, -- , \alpha_{l})$ be an l-tuple of complex numbers such that $\sum_{j=1}^{l}|\alpha_{i}|^{2}=1$ .

Let $j:D_{\alpha}\rightarrow D_{o}^{p}$ be the imbedding defined by

$j(z)=(\alpha_{1}z, \alpha_{l}z)$ .
Let $ds_{D}$ be the product merric in $D=D_{a}^{\iota}$ . From the explicit expression of $ds_{n}$

given in Section 2, we see that $J^{;D_{a}}\rightarrow D_{a}^{\ell}$ is isometric at the origin of $D_{a}$ ,

$i.e.,$ $(ds_{a}^{2})_{0}=(j^{*}ds_{D}^{2})_{0}$ .
Let $X$ be a tangent vector of $D_{a}^{l}$ at the origin. For a suitable $\alpha=(\alpha_{1}, \cdots, \alpha_{l})$ ,

we can find a tangent vector $Y$ of $D_{a}$ at the origin such that $j_{*}(Y)=X$ . Then,
for any holomorphic mapping $f:D_{a}^{\ell}\rightarrow M$, we have

A $A$

$||f_{*}X\Vert^{2}=\Vert f_{*}j_{*}Y\Vert^{2}\leqq-B|Y\Vert^{2}=_{B}--\Vert X\Vert^{2}$ ,

where the inequality follows from the special case of Theorem proved in Sec-
tion 2 (applied to $foj:D_{a}\rightarrow M$ ) and the last equality follows from the fact
that $l$ is isometric at the origin. Since $D_{a}^{\iota}$ is homogeneous, the inequality

$A$
$\Vert f_{*}X\Vert^{2}\leqq$

$B\Vert X\Vert^{2}$ holds for all tangent vectors $X$ of $D_{a}^{\prime}$ . This completes the

proof of Theorem in the case $D=D_{a}^{\iota}$ .

4. The case where $D$ is a symmetric bounded domain of rank $l$

Let $D$ be a symmetric bounded domain of rank $l$ . With respect to a
canonical metric, its holomorphic sectional curvature lies between $-A$ and
$-A/l$ . For every tangent vector $X$ of $D$ , there is a (totally geodesic) complex
submanifold $D_{a}^{\iota}$ of $D$ such that $X$ is tangent to $D_{a}^{\prime}$ . (It is a complex submani-
fold of $D$ . More precisely, write $D=G/H$ and $\mathfrak{g}=\mathfrak{h}+\mathfrak{p}$ in the usual manner.
Let $\mathfrak{a}$ be a maximal abelian subalgebra contained in $\mathfrak{p}$ so that $\dim \mathfrak{a}=rankD=l$ .
We may assume that $X$ is an element of $()$ under the usual identification. Let
$J:p\rightarrow p$ be the complex structure tensor. Then the manifold generated by
$\mathfrak{a}+J\mathfrak{a}$ is the desired submanifold $D_{a}^{\iota}$). Now our theorem in its full generality
follows from the special case considered in Section 3.

$CoROLLARY$ . Let $D$ be a symmetric bounded domain with holomorphic sec-
tional curvature $\geqq-A$ . Let $M$ be a symmetric bounded domain of rank 1 so
that its holomorphic sectional curvature lies between $-lB$ and -B. Then every

holomorphic mapping $f:D\rightarrow M$ satisfies $f^{*}(ds_{M}^{2})\leqq--ds_{\dot{D}}^{\prime}AB$
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This corollary is in Kor\’anyi [7].

5. Concluding remarks

In the case where $\dim D=\dim M=1$ , a holomorphic mapping $f:D\rightarrow M$ is
distance-decreasing if and only if it is volume decreasing. Under a suitable
assumption on the Ricci tensor of $M$ every holomorphic mapping $f$ of the
unit ball $D$ in $C^{n}$ into an n-dimensional complex manifold $M$ is volume-decreas-
ing. See Dinghas [5] for the case where $M$ is a K\"ahler-Einstein, Chern [3]

for the case $M$ is a hermitian-Einstein and Kobayashi [6] for a further gen-
eralization.

University of California, Berkeley
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