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1. Introduction

According to Pick the classical Schwarz lemma can be stated in the fol-
lowing invariant manner. Every holomorphic map f of the open unit disk
D into itself is distance-decreasing with respect to the Poincaré metric ds?,
i.e., f*(ds®)=<ds? and if the equality holds at one point of D, then f is biholo-
morphic. Bochner and Martin proved in their book the following gener-
alization of the Schwarz lemma to higher dimension. Let D, be the open unit
ball in C?,

D,={z=(2" -, 27; |z|P=Z|2|2 < 1}.

If f is a holomorphic mapping of D, into D, such that f(0)=0, then [|f(2)]
<|z| for every ze D,. Using the fact that D,, and D, are homogeneous, we
can formulate this in the following invariant manner. Every holomorphic
mapping f:D,— D, is distance-decreasing with respect to the Bergman metrics
ds3,, and ds}, of D, and D, i.e., f*(ds},) = dsh,.

Recently Koranyi [7] obtained the following generalization of the Schwarz
lemma. If M is a hermitian symmetric space of non-compact type with the
Bergman metric ds?, then every holomorphic map f:M—M satisfies f*(ds?)
<[.ds? where [ is the rank of M.

On the other hand, Ahlfors exposed in his generalization of the Schwarz
lemma the essential réle played by the curvature. Let M be a Riemann sur-
face with hermitian metric ds}, whose Gaussian curvature is bounded above
by a negative constant —B. Let D be the unit disk in ¢ with an invariant
metric ds}, whose Gaussian curvature is a negative constant —A. (If we take
dzdz/(1—|z|?* for ds}, then its curvature is equal to —4.) Then the gener-
alized Schwarz lemma by Ahlfors says that every holomorphic mapping f: D

M satisfies F*(dsi) < -4 dst,

The main purpose of this paper is to generalize the results above in the
following form:

*) Partially supported by NSF Grant GP-5798.
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THEOREM. Let D be a bounded symmelric domain with an invariant Kdhler
metric ds} whose holomorphic sectional curvature is bounded below by a nega-
tive constant —A. Let M be a Kdhler manifold with metric dsy whose holo-
mor phic sectional curvature is bounded above by a mnegative constant —B. Then

every holomorphic mapping f:D— M satisfies f*(ds}) < ~‘§~ dss,.

Although the theorem above can be generalized to the case when M is a
hermitian manifold (with a suitable definition of holomorphic sectional curva-
ture) we shall restrict ourselves to the Kidhler case in this paper.

2. The case dim D =1.

Let D, be the open disk of radiusa in C, D,={z< C; |z|<a}. Then the
metric

o 4atdzdz
4Se="pa—zzy"

on D, has the curvature —A. Let M be a Kédhler manifold with metric dsi
whose holomorphic sectional curvature is bounded above by —B. Let u be the

non-negative function on D, defined by
S*(dsy)=wu-ds:.

We want to prove that u<-°,- on D,. Although u may not attain its maxi-

A
B
mum in (the interior of) D, in general, we shall show that we have only to
consider the case when u attains its maximum in D,. Let r be a positive
number smaller than a. Let z, be an arbitrary point of D,. Taking r suf-
ficiently close to @, we may assume that z, = D,. From the explicit expression
for ds; given above, we see that (ds}), —(ds}),, as r—a. If we define a non-

negative function u, on D, by f*(ds})=wu,- dsl, then u.(z,)—u(z,) as r—a.

Hence it suffices to prove that ur<iéL on D,. If we write f*(ds})= hdzdz

on D, then & is bounded on D,. On the othen hand, the coefficient of ds?
approaches infinity at the boundary of D,. Hence, the function u, defined on
D, goes to zero at the boundary of D,. In particular, u, attains its maximum
in- D,. The problem is thus reduced to the case where u attains its maximum
in D,.

We shall now prove that ué%— on D, under the assumption that u at-

tains its maximum in D,, say at z,€ D,. If u(z,)=0, then 4 =0 and there is
nothing to prove. Assume that u(z,)>0. Then the mapping f:D,— M is
non-degenerate in a neighborhood of z, so that f gives a holomorphic imbed-
ding of a neighborhood U of z, into M.
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We claim that the curvature of the (l-dimensional) complex submanifold
f(U) ot M is bounded above by —B. This is a consequence of the following
general fact. Let S be a complex submanifold of a Kaehler manifold M. Let
R, and Ry denote the Riemannian curvature tensors of M and S respectively.
Let a denote the second fundamental form of S; it is a symmetric bilinear
map of the tangent space T,(S) into the normal space at p. From the equa-
tions of Gauss-Codazzi we obtain

Ry(X, JX, X, JX)=Ry(X, JX, X, JX)—2lla(X, X)|*.

See O’Neill for the detail of calculation leading to the formula above. The
formula implies that the holomorphic sectional curvature of S does not exceed
that of M. (This fact is true for a hermitian manifold M and a complex sub-
manifold S of M. But the proof is more technical and will be given in a
forthcoming paper.)

Since u attains its maximum at z,, 0%log u/0z0z is non-positive at z,, We
shall now express 02log #/0z0Z in terms of the curvatures of D, and f(U).
Since f: U—f(U) is a biholomorphic mapping, we define the coordinate system
w in f(U) by wof=1z. Identifying f(U) with U by the mapping f, we shall
identify w with z. Then we can consider f*(ds%)= hdzdz as the induced
metric on f(U) as well as on U. If we write ds = gdzdz, then

u=~n/g.
Hence
0%log u/0z 02 =0%log h/0z dz—0% log g/0z 0z .
If we denote by % the curvature of the metric hdzdz, then

b= —71,;(32 log h/dz 92) .

Since the curvature of the metric gdzdz is equal to — A, we have
. 1 -
—A= -—2§(82 log g/0z 0%) .

Since £ < —B as we have seen above, we have
0*logu/0z 0= —2kh—2Ag=2Bh—2Ag.

Since the left hand side is non-positive at z;, so is the right hand side. Hence,
A/B=h/g at z,, Since u=~h/g attains its maximum at z, it follows that
A/B=u everywhere. This completes the proof of for the case
dim D =1.

This case is closely related with Aussage 3 in Grauert-Reckziegel [4].
Instead of assuming that the holomorphic sectional curvature of M is bounded
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by —B, they assume that the curvature of every l-dimensional complex sub-
manifold of M is bounded by —B.

3. The case where D=D,=D, X --- X D,.

Let a=(a,, -, a;) be an [-tuple of complex numbers such that ﬁ} la;|2=1.
i=1
Let j:D,— D) be the imbedding defined by

j(z):(alz! Tty 6\.’12).

Let ds; be the product metric in D=D!. From the explicit expression of ds,
given in Section 2, we see that j:D,— D! is isometric at the origin of D,
i.e, (dsi),=(*dsy),

Let X be a tangent vector of D) at the origin. For a suitable a=(a,, ‘-, a;),
we can find a tangent vector Y of D, at the origin such that j,(Y)=X. Then,
for any holomorphic mapping f:D:— M, we have

X 1= faaY IS 1Y = 5 X,

where the inequality follows from the special case of proved in Sec-
tion 2 (applied to foj:D,— M) and the last equality follows from the fact
that j is isometric at the origin. Since D! is homogeneous, the 1nequality

Ife X2 < 2,1 1 X% holds for all tangent vectors X of D.. This completes the
proof of in the case D= D..

4. The case where D is a symmetric bounded domain of rank !/

Let D be a symmetric bounded domain of rank ({ With respect to a
canonical metric, its holomorphic sectional curvature lies between —A and
—~A/l. For every tangent vector X of D, there is a (totally geodesic) complex
submanifold D! of D such that X is tangent to D). (It is a complex submani-
fold of D. More precisely, write D=G/H and g="%-+p in the usual manner.
Let a be a maximal abelian subalgebra contained in p so that dim a=rank D=I[.
We may assume that X is an element of a under the usual identification. Let
J:p—p be the complex structure tensor. Then the manifold generated by
a+Ja is the desired submanifold D%). Now our theorem in its full generality
follows from the special case considered in Section 3.

COROLLARY. Let D be a symmetric bounded domain with holomorphic sec-
tional curvaturez= —A. Let M be a symmetric bounded domain of rank ! so
that its holomorphic sectional curvature lies belween —IB and —B. Then every

holomorphic mapping f:D— M satisfies f*(ds%,,)é«éds%,.



Distance, holomorphic mappings and the Schwarz lemma 485

This corollary is in Koranyi

5. Concluding remarks

In the case where dim D =dim M =1, a holomorphic mapping f:D—M is

distance-decreasing if and only if it is volume decreasing. Under a suitable
assumption on the Ricci tensor of M every holomorphic mapping f of the
unit ball D in €™ into an n-dimensional complex manifold M is volume-decreas-

ing.

for

See Dinghas for the case where M is a Kihler-Einstein, Chern [3]
the case M is a hermitian-Einstein and Kobayashi for a further gen-

eralization.
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