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Silva [15] and Raikov [12] [13] studied projective and injective limits of
compact sequences of locally convex spaces and revealed remarkable properties
of the locally convex spaces expressed as those limits. However, they do not
seem to have noticed at first that those spaces are exactly the Fr\’echet Schwartz
spaces and their strong dual spaces discussed by Grothendieck [5].

We extend their results to the limit spaces of weakly compact sequences
of locally convex spaces and show that almost all important properties are
preserved. We presuppose only the text of Bourbaki [1] except for the closed
range theorem and the definition of (DF) spaces.

A projective (injective) sequence of locally convex spaces with (one-one)

continuous linear mappings:

$ X_{1}-X_{2^{-}}\ldots-X_{n}-\cdots$

$(X_{1}\rightarrow X_{2}\rightarrow\ldots\rightarrow X_{n}\rightarrow )$

is said to be weakly compact or compact if all mappings are weakly compact
or compact respectively. The limit space $\varliminf X_{j}(\lim_{\rightarrow}X_{j})$ of a weakly compact

or compact projective (injective) sequence is said to be $(FS^{*})$ or (FS) $((DFS^{*})$

or (DFS)) respectively. $(FS^{*})$ spaces are totally reflexive and Fr\’echet and (FS)
spaces are also separable and Montel. $(DFS^{*})$ spaces are Hausdorff, totally
reflexive, fully complete, bornologic and $(DF)$ , and (DFS) spaces are moreover
separable and Montel.

Closed subspaces, quotient spaces and projective limits of sequences of
$(FS^{*})$ spaces ($(FS)$ spaces) are $(FS^{*})((FS))$ . Closed subspaces, quotient spaces
and injective limits of sequences of (DFS) spaces are (DFS). Quotient spaces
and direct sums of sequences of $(DFS^{*})$ spaces are $(DFS^{*})$ . Closed subspaces
of $(DFS^{*})$ spaces are not always $(DFS^{*})$ . However, the bornologic topology
and the Mackey topology associated with the induced topology are the same
on any closed subspace and they make the subspace into a $(DFS^{*})$ space.

The strong dual spaces of $(FS^{*})$ spaces ($(FS)$ spaces) are $(DFS^{*})((DFS))$

and conversely the strong dual spaces of $(DFS^{*})$ spaces ($(DFS)$ spaces) are
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$(FS^{*})((FS))$ . More explicitly we have the isomorphisms $(\varliminf X_{j})‘=\lim_{\rightarrow}X_{j}^{\prime}$ and
$(\varliminf X_{j})^{\prime}=\varliminf X_{j}^{\prime}$ when the sequence satisfies certain conditions. The perma-
nency of those classes of locally convex spaces is proved also through similar
representations as limit spaces of subspaces, quotient spaces etc. If $X$ is an
$(FS^{*})$ space and $Y$ its closed subspace, then the strong dual spaces of $Y$ and
$X/Y$ are $x//Y^{0}$ and $Y^{0}$ equipped with the bornologic topology respectively.
If $X$ is a $(DFS^{*})$ space and $Y$ its closed subspace, then the strong dual spaces
of $Y$ and $X/Y$ are $X^{\prime}/Y^{0}$ and $Y^{0}$ respectively.

A locally convex space $X$ is $(FS^{*})((FS))$ if and only if it is Fr\’echet and
for each absolutely convex neighborhood $V$ of zero there is another neigh-
borhood $U\subset V$ such that $\hat{X}_{U}\rightarrow\hat{X}_{V}$ is weakly compact (compact). There is a
similar characterization of $(DFS^{*})$ and (DFS) spaces in terms of bounded sets.
Lastly two lemmas in Serre’s paper [14] on his duality are discussed in our
setting.

The author wishes to thank Professor J. Wloka who informed him of the
works by Silva and Raikov. Since Raikov’s papers [12] and [13] were not
available when this paper was prepared, the author owes much to Wloka’s
lecture [16] as regards Raikov’s theory.

Compact and weakly compact mappings. Let $X$ and $Y$ be locally convex
spaces. A linear mapping $u:X\rightarrow Y$ is said to be weakly compact (compact)

if there is a neighborhood $V$ of zero in $X$ such that $u(V)$ is relatively weakly
compact (relatively compact) in $Y$ .

The composition of a weakly compact (compact) mapping and a continuous
linear mapping on either side is weakly compact (compact). If a weakly
compact (compact) mapping $u:X\rightarrow Y$ maps a closed subspace $X_{1}$ of $X$ into a
closed subspace $Y_{1}$ of $Y$, then the restriction $\overline{u}:X_{1}\rightarrow Y_{1}$ and the induced
mapping $u^{*}:X/X_{1}\rightarrow Y/Y_{1}$ are weakly compact (compact). If $v:Z\rightarrow W$ is
another weakly compact (compact) mapping, then the direct product $u\times v$ :
$X\times Z\rightarrow Y\times W$ is weakly compact (compact). The proofs are trivial.

LEMMA 1. Let $X$ and $Y$ be Banach spaces and let $u:X\rightarrow Y$ be a continuous
linear mapping. Denote by $X^{\prime},$ $Y^{\prime},$ $X^{\prime\prime}$ and $Y^{\prime\gamma}$ the strong dual spaces and the
strong bidual spaces of $X$ and $Y$, and by $u^{\prime}$ and $u^{\gamma\gamma}$ the dual and bidual map-
pings of $u$ . Then the following are equivalent:

(a) $u$ is weakly compact;
(b) $u^{\prime}$ is weakly compact;
(c) $u^{\prime\prime}$ maps $X^{\prime\gamma}$ into $Y$ .
PROOF. The following proof is a little shorter than that given in Dunford-

Schwartz [3].
$(a)\ni(b)$ . $u$ maps each bounded set in $X$ into a relatively weakly compact

set. Therefore by the duality $u^{\prime}$ is continuous on $Y_{\tau}^{\prime}$ with the Mackey topology
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into $X^{\prime}$ with the strong topology. Since $(Y_{\tau}^{\prime})^{\prime}=Y,$ $u^{\prime}$ is also continuous with
respect to the weak* topology $\sigma(Y^{\prime}, Y)$ and the weak topology $\sigma(X^{\prime}, X^{\prime\prime})$ . Thus
the unit ball in $Y^{\prime}$ , which is compact in $\sigma(Y^{\prime}, Y)$ , is mapped by $u^{\prime}$ to a weakly
compact set in $X^{\prime}$ .

$(b)\Rightarrow(c)$ . It is enough to show that the unit ball $B^{\prime\prime}$ in $X^{\prime\prime}$ is mapped
into $Y$. From the above proof it follows that $u^{\prime\prime}$ is continuous with respect
to the weak* topology $\sigma(X^{\prime\prime}, X^{\prime})$ and the weak topology $\sigma(Y^{\prime\prime}, Y^{\prime\prime\prime})$ . Since $B^{\prime\prime}$

is the $\sigma(X^{\prime\gamma}, X^{\prime})$-closure of $B=B^{\prime/}\cap X,$ $u(B^{\prime\prime})$ is contained in the $\sigma(Y^{\prime\prime}, Y^{\prime\prime\prime})-$

closure of $u(B)$ which is in $Y$ . The weak closure coincides with the strong
closure for convex sets. Therefore $u(B^{\prime\prime})$ is contained in $Y$ .

$(c)\Rightarrow(a)$ . $u^{\prime/}:$ $X^{\prime\prime}\rightarrow Y$ is continuous with respect to the weak* topology
$\sigma(X^{\prime\prime}, X^{\prime})$ and the weak topology $\sigma(Y, Y^{\prime})$ . Since the unit ball $B$ in $X$ is
relatively weakly* compact in $X^{\gamma/},$ $u(B)$ is relatively weakly compact. This
completes the proof.

In particular, if either $X$ or $Y$ is reflexive, any continuous linear mapping
$u:X\rightarrow Y$ is weakly compact.

Projective and injective limits. A projective (injective) sequence of locally
convex spaces is by definition a system of a sequence of locally convex spaces
$X_{j},$ $j=1,2,$ $\cdots$ , and (one-one) continuous linear mappings $u_{jk}$ : $X_{k}\rightarrow X_{j}$ defined
for any pair $j<k(j>k)$ and satisfying the chain condition $u_{ij}\circ u_{jk}=u_{ik}$ for
$i<j<k(i>j>k)$ . (The mappings $u_{jk}$ are assumed to be one-one for injective
sequences in order to avoid some difficulty in proving Theorem 6.) Any $u_{jk}$

are written as compositions of mappings of the form $u_{jj+1}(u_{j+1j})$ .
Two projective (injective) sequences $\{X_{j}, u_{jk}\}$ and $\{Y_{p}, v_{pq}\}$ are said to be

equivalent if for each $j$ there are an index $p\geqq j$ and a (one-one) continuous
linear mapping $s_{jp}$ : $Y_{p}\rightarrow X_{j}(s_{pj} : X_{j}\rightarrow Y_{p})$ and for each $p$ there are an index
$j>p$ and a (one-one) continuous linear mapping $t_{pj}$ : $X_{j}\rightarrow Y_{p}(t_{jp} : Y_{p}\rightarrow X_{j})$

such that $t_{pj}\circ s_{jq}=v_{pq}$ and $s_{jp}\circ t_{pk}=u_{jk}$ ( $t_{jp}\circ s_{pk}=u_{jk}$ and $s_{pj^{o}}t_{jq}=v_{pq}$). $lt$ is
easy to prove that this is an equivalence relation. Subsequences are equivalent
to the initial sequence.

The projective (injective) limit $X=\lim_{}X_{j}(X=\lim X_{j})$ of a sequence
$\{X_{j}, u_{jk}\}$ is defined to be the subspace of the direct product $\Pi X_{j}$ composed
of the elements $(x_{j})$ satisfying $x_{j}=u_{jk}(x_{k})$ (the quotient space of the direct
sum $\sum X_{j}$ obtained by identifying those elements $(x_{j})$ satisfying $\sum_{j}u_{kj}(x_{j})=0$

for suffciently large $k$ with zero). There are natural linear mappings $u_{j}$ : $X\rightarrow X_{j}$

(one-one linear mappings $u_{j}$ : $X_{j}\rightarrow X$ ) which satisfy $u_{j}=u_{jk^{O}}u_{k}(u_{k}=u_{j}\circ u_{jk})$ .
The topology of the projective (injective) limit is defined to be the weakest
(strongest) locally convex topology which makes the mappings $u_{j}$ continuous.
Equivalent sequences have the same and isomorphic limits.

The sets of the form $u_{j}^{-1}(V_{j})$ , where $V_{j}$ is a convex neighborhood of zero
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in $X_{j}$, form a fundamental system of neighborhoods of zero in the projective
limit $X$ . Therefore the projective limit is always Hausdorff. On the other
hand, a convex set $V$ in the injective limit $X$ is a neighborhood of zero if
and only if $u_{j}^{-1}(V)$ is a neighborhood of zero in $X_{j}$ for all $j$ . The injective
limit topology is not necessarily Hausdorff.

Let $\{X_{j}, u_{jk}\}$ and $\{Y_{j}, v_{jk}\}$ be projective (injective) sequences and let $X$

and $Y$ be their limits. If $h_{j}$ : $X_{j}\rightarrow Y_{j}$ are continuious linear mappings such
that $v_{jk}\circ h_{k}=h_{j}\circ u_{jk}$ for any $j$ and $k$ , then there is a unique continuous linear
mapping $h$ : $X\rightarrow Y$ such that $v_{j}\circ h=h_{j}\circ u_{j}(v_{j}\circ h_{j}=h\circ u_{j})$ . $lf$ all $h_{j}$ are one-
one, then so is $h$ . $lf$ all $h_{j}$ are onto in the injective case, then so is $h$ .
However, this is not necessarily true in the projective case.

Weakly compact sequences. A projective (injective) sequence $\{X_{j}, u_{jk}\}$ is
said to be weakly compact if for each $j$ there is some $k$ such that $u_{jk}(u_{kj})$ is
weakly compact. A projective (injective) sequence of Banach spaces $\{X_{j}, u_{jk}\}$

is said to be strictly weakly compact if the image by $u_{j-1j}(u_{j+1j})$ of the unit
ball in $X_{j}$ is weakly compact in $X_{j-1}(X_{j+1})$ .

LEMMA 2. Any weakly compact projective (injective) sequence of locally
convex spaces $\{X_{j}, u_{jk}\}$ is equivalent to a $s$trictly weakly compact projective
(injective) sequence of Banach spaces.

PROOF. We consider only the injective case. The proof is the same in
the projective case. Choosing a subsequence, we may assume that $u_{j+1f}$ are
all weakly compact. If a linear mapping $u:X\rightarrow Y$ is weakly compact and
maps an absolutely convex neighborhood $V$ of zero in $X$ into an absolutely
convex weakly compact set $A$ in $Y$, then it is decomposed as the composition
of two linear mappings:

$\hat{u}$ $i$

$X-Y_{A}\rightarrow Y$ ,

where $Y_{A}$ is the subspace of $Y$ generated by A. $Y_{A}$ normed with the gauge
of $A$ is a Banach space ([1] Chap. III, Lemma 1, p. 21). $\hat{u}$ is continuous, and
one-one if $u$ is one-one. Applying this decomposition to our case, we get a
sequence of Banach spaces $Y_{j}$, one-one continuous linear mappings $\hat{u}_{j+1j}$ :
$X_{j}\rightarrow Y_{f}$ and injections $i_{j}$ : $Y_{j}\rightarrow X_{j+1}$ which map unit balls to weakly compact
sets. Let $v_{f+1j}=\text{{\it \^{u}}}_{J+zJ+1}\circ i_{j}$ and define $v_{jk}$ by their compositions. Then $\{Y_{j}, v_{jk}\}$

forms a strictly weakly compact sequence of Banach spaces which is equivalent
to $\{X_{j}, u_{jk}\}$ .

Projective limits of weakly compact sequences.

THEOREM 1. The projective limit $\lim X_{j}$ of a weakly compact sequence of
locally convex spaces is a reflexive Fr\’echet space.

PROOF. By Lemma 2 we may assume that $\{X_{j}, u_{jk}\}$ is a strictly weakly
compact sequence of Banach spaces. Let $B_{j}$ be the unit ball in $X_{j}$ . Then the
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countable system $\{n^{-1}u_{j}^{-1}(B_{j})\}$ forms a fundamental system of neighborhoods
of zero in $X=\lim X_{j}$ . Thus the limit $X$ is a metrizable locally convex space.
To prove the completeness let $x_{n}$ be a Cauchy sequence in $X$. For each $j$

$u_{j}$ : $X\rightarrow X_{j}$ is continuous and therefore $u_{j}(x.)$ is a Cauchy sequence in $X_{j}$ .
Let $y_{j}$ be its limit. Then by continuity of $u_{jk}$ we have $u_{jk}(y_{k})=y_{j}$ for any
$j<k$ . Hence there is an element $x$ in $X$ such that $y_{j}=u_{j}(x)$ . We have
$u_{j}(x.-x)\rightarrow 0$ for any $j$ . Thus $x_{n}$ converges to $x$ in $X$ .

Later we will prove that $X=X^{\prime\prime}$ explicitly. However, Mackey’s criterion
of reflexivity is also easy to check. We want to show that any bounded set
$B$ in $X$ is relatively weakly compact. By Eberlein’s theorem ([8] p. 316) it is
enough to show that any sequence $x_{n}\in B$ has a weakly convergent subsequence.
Since $B$ is bounded, $u_{j}(B)=u_{jj+1}\circ u_{j+1}(B)$ is relatively weakly compact for any
$j$ . By Smulian’s theorem ([8] p. 316) $u_{1}(x_{n})$ has a weakly convergent sub-
sequence $u_{1}(x_{n}^{(1)})$ in $X_{1}$ . Extract a weakly convergent subsequence $u_{2}(x_{n}^{(2)})$ of
$u_{2}(x_{n}^{(1)})$ and so on. Then the diagonal sequence $y_{n}=x_{n}^{(n)}$ has the property that
$u_{j}(y_{n})$ converges weakly for all $j$ . By the same argument as above we see
that $u_{j}(y_{n})$ converges weakly to $u_{j}(x)$ for some $x\in X$.

Now let $f:X\rightarrow C$ be a continuous linear functional. In view of the def-
inition of the topology of $X,$ $f$ can be decomposed as the composition of con-
tinuous linear mappings:

$u_{j}$ $f_{j}$

(1) $X\rightarrow X_{j}\rightarrow C$

for some $j$ . Thus $f(y_{n})=f_{j}(u_{j}(y_{n}))$ converges to $f(x)$ .
THEOREM 2. Let $Y$ be a closed subspace of the projective limit $X=\lim X_{j}$

of a weakly compact sequence, and let $Y_{j}$ be the closure of $u_{j}(Y)$ in $X_{j}$ . Then
the sequence $\{Y_{j},\overline{u}_{jk}\}$ is weakly compact and the subspace $Y$ is isomorphic to
the projective limit $\lim Y_{j}$ .

PROOF. Since the continuous mapping $u_{jk}$ maps $u_{k}(Y)$ onto $u_{j}(Y)$ , it maps
$Y_{k}$ into $Y_{j}$ . If $u_{jk}$ : $X_{k}\rightarrow X_{j}$ is weakly compact, its restriction $\overline{u}_{jk}$ : $Y_{k}\rightarrow Y_{j}$ is
also weakly compact. Thus the system $\{Y_{j},\overline{u}_{jk}\}$ forms a weakly compact
projective sequence of locally convex spaces. Let $Z$ be its projective limit.
The continuous injections $i_{j}$ : $Y_{j}\rightarrow X_{j}$ induce a continuous injection $i:Z\rightarrow X$.
Clearly $i(Z)$ contains $Y$ .

To prove the converse, let $z$ be an element of $X$ which is not in $Y$. Then
by the Hahn-Banach theorem there is a continuous linear functional $f$ on $X$

such that $f(y)=0$ for any $y\in Y$ and $f(z)\neq 0$ . Decompose $f$ as (1). We have
$f_{j}(u_{j}(z))=f(z)\neq 0$ . On the other hand, $f_{j}(y_{j})=0$ for any $y_{j}\in Y_{j}$ . Thus $u_{j}(z)$

is not in $Y_{j}$ . This means that $z$ is not in $i(Z)$ . Therefore $i$ is a one-one onto
continuous linear mapping.

The mapping $i$ is also open. $ln$ fact, let $V$ be a neighborhood of zero in
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$Z$ of the form $\overline{u}_{j}^{-1}(V_{j})$ with an absolutely convex neighborhood $V_{j}$ of zero in $Y_{j}$ .
Since $V_{j}=Y_{j\cap}U_{j}$ for a neighborhood $U_{j}$ of zero in $X_{j},$ $i(V)=Y\cap u_{j}^{-1}(Y_{j}\cap U_{j})$

$=Y_{\cap}u_{j}^{-1}(U_{j})$ is a neighborhood of zero in $Y$ . This is also proved by the open
mapping theorem.

REMARK 1. Let $Y$ be $X$ . Then we see that any projective limit $X$ of a
weakly compact sequence is the projective limit of a weakly compact se-
quence $\{X_{j}, u_{jk}\}$ such that $u_{j}(X)$ is dense in $X_{j}$ for any $j$ .

THEOREM 3. Let $X$ be the projective limit of locally convex spaces such
that $u_{j}(X)$ is dense in $X_{j}$ for any $j$ and let $Y$ and $Y_{j}$ be as in Theorem 2.
Then the sequence $\{X_{j}/Y_{j}\}$ is weakly compact and the quotient space $X/Y$ is
isomorphic to the projective limit $\lim X_{j}/Y_{j}$ .

PROOF. Clearly the sequence $\{X_{j}/Y_{j}\}$ with the induced continuous linear
mappings $u_{jk}^{*}$ forms a weakly compact projective sequence. Let $Z$ be its
projective limit. The continuous projections $p_{j}$ ; $X_{j}\rightarrow X_{j}/Y_{j}$ induce a continuous
linear mapping $p;X\rightarrow Z$. The kernel is $Y$ by Theorem 2. Therefore we have
a continuous injection $i:X/Y\rightarrow Z$.

The image $i(X/Y)$ is dense in $Z$. For, let $z$ be an arbitrary element in
$Z$ and let $W$ be a neighborhood of zero in Z. $W$ contains a set of the form
$u_{j}^{*-1}(W_{j})$ , where $W_{j}$ is a neighborhood of zero in $X_{j}/Y_{j}$ . Since $u_{j}(X)$ is dense
in $X_{j}$ , we can find an element $x\in X$ such that $u_{j}^{*}(z)-p_{j}\circ u_{j}(x)\in W_{j}$ . Then
$z-p(x)$ is in $W$ .

The injection $i$ is also an isomorphism. Let $V$ be a neighborhood of zero
in $X/Y$ of the form $(u_{j}^{-1}(2U_{j})+Y)/Y$ with a neighborhood $U_{j}$ of zero in $X_{j}$

and let $W$ be the neighborhood $u_{j}^{*-1}((U_{j}+Y_{j})/Y_{j})$ of zero in Z. $lfz$ is in
$W\cap i(X/Y)$ , there is an $x\in X$ such that $z=p(x)$ and $u_{j}(x)\in U_{j}+Y_{j}\subset 2U_{j}$

$+u_{j}(Y)$ . Thus $i^{-1}(z)=(x+Y)/Y$ belongs to $V$ . Since both $X/Y$ and $Z$ are
complete, the injection $i$ is an onto isomorphism.

THEOREM 4. Let $X=\lim X_{j}$ and $Y=\lim Y_{j}$ be projective limits of weakly
compact sequences of locally convex spaces. Then the sequence $\{X_{j}\times Y_{j}\}$ is
weakly compact and the product space $X\times Y$ is isomorphic to the projective limit
$\varliminf(X_{j}\times Y_{j})$ .

THEOREM 5. Let $X^{(k)}=\varliminf X_{j^{(k)}},$ $k=1,2,$ $\cdots$ , be projective limits of weakly

compact sequences of locally convex spaces. Then the product space $\prod_{k=1}^{\infty}X^{(k)}$ is

isomorphic to the projective limit $\lim Z_{j}$ of the weakly compact sequence of
locally convex spaces $\{Z_{j}\}$ defined by

$Z_{j}=X_{j^{(1)}}\times X_{j-1}^{(2)}\times\cdots\times X_{1}^{(j)}$ .
Proofs of Theorems 5 and 6 are easy and omitted.
REMARK 2. In the proofs of Theorems 1-5 we have not made any essen-
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tial use of the fact that the sequences are weakly compact except for the
proof of the reflexivity. Thus projective limits of sequences of Banach spaces
are Fr\’echet and we can prove the projective representations of their closed
subspaces, quotient spaces and product spaces with countable factors.

Injective limits of weakly compact sequences.
LEMMA 3. The inductive limit $X=\lim_{\rightarrow}X_{j}$ of a weakly compact sequence

of locally convex spaces $\{X_{f}, u_{kj}\}$ is Hausdorff. Any bounded set $B$ in $X$ is the
image $u_{j}(B_{j})$ of a bounded set $B_{j}$ in $X_{j}$ for some $j$ .

PROOF. we may assume, without loss of generality, that $\{X_{j}, u_{kj}\}$ is a
strictly weakly compact sequence of Banach spaces. Suppose that $x$ is an
element in $X$ different from zero. $x$ is written as $x=u_{p}(x_{p})$ for a $p$ . We
construct a sequence of absolutely convex neighborhoods $V_{j}$ of zero in $X_{j}$ for
$j=p,$ $p+1,$ $\cdots$ such that

(i) $u_{kj}(V_{j})\subset V_{k}$ for $k>j$ ;
(ii) $x_{j}=u_{jp}(x_{p})\not\in V_{j}$ ;

(iii) $u_{kj}(V_{j})$ is weakly compact in $X_{k}$ for $k>j$ .
Then $V=\cup u_{j}(V_{j})$ is a neighborhood of zero in $X$ in which $x$ is not contained.

$j\geqq p$

In fact, $u_{j}^{-1}(V)$ contains either $u_{jp}^{-1}(V_{p})$ or $V_{j}$ . Therefore $V$ is a neighborhood
of zero in $X$ . Because of (ii) $x$ is not contained in $V$ .

Choose for $V_{p}$ any closed ball which does not contain $x_{p}$ . Since the se-
quence is strictly weakly compact, condition (iii) is satisfied for $V_{p}$ . Suppose
that $V_{p},$ $V_{p+1},$ $\cdots$ , $V_{j}$ have been chosen. $u_{j+1j}(V_{j})$ is weakly compact and hence
is strongly closed in $X_{j+1}$ . Since $x_{j+1}$ is not contained in $u_{j+1j}(V_{j})$ , there is a
small closed ball $B_{j+1}$ such that the convex hull Conv $(B_{j+1}, u_{j+1j}(V_{j}))$ does not
contain $x_{j+1}$ . Let $V_{j+1}$ be the convex hull. Then (i) and (ii) are clearly sat-
isfied. If $k>j+1,$ $u_{kj+1}(V_{J+1})=Conv(u_{kj+1}(B_{j+1}), u_{kj}(V_{j}))$ is weakly compact
because both $u_{kj+1}(B_{j+1})$ and $u_{kj}(V_{j})$ are weakly compact.

The second statement is proved similarly. Let $B$ be a bounded set in $X$

and assume contrarily that for each $j$ either $B$ is not contained in $u_{j}(X_{j})$ or
$u_{j}^{-1}(B)$ is unbounded in $X_{j}$ . Then we can construct, in the same way as above,
a sequence of absolutely convex neighborhoods $V_{j}$ of zero in $X_{j}$ and a sequence
of elements $x_{j}$ in $B$ such that

(i) $u_{kj}(V_{j})\subset V_{k}$ for $k>j$ ;

(ii) $x_{1},$
$\frac{1}{2}x_{2},$

$\cdots$ $\div x_{j}\not\in u_{j}(V_{j})$ ;

(iii) $u_{kj}(V_{j})$ is weakly compact in $X_{k}$ for $k>j$ .
$V=\cup u_{j}(V_{j})$ is a neighborhood of zero in $X$ in which $x_{j}/j$ are not contained.
This is a contradiction because the sequence $x_{j}/j$ converges to zero.

THEOREM 6. The injective limit $X=\lim_{\rightarrow}X_{j}$ of a weakly compact sequence
of locally convex spaces is a complete reflexive and bornologic (DF) space. For
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each bounded set $B$ in $X$ there is an index $k$ such that $B$ is the image $u_{k}(B_{k})$

of a bounded set $B_{k}$ in $X_{k}$ and $u_{k}$ is a weak homeomorphism of $B_{k}$ onto B. $In$

particular, a sequence $x_{n}$ in $X$ converges weakly to zero if and only if there is
a sequence $y_{n}$ in some $X_{k}$ with $x_{n}=u_{k}(y_{n})$ which converges weakly to zero in $X_{k}$ .

PROOF. Any bounded set $B$ in $X$ is of the form $B=u_{j}(B_{j})$ with a bounded
set $B_{j}$ in $X_{j}$ . Therefore $B=u_{k}(u_{kj}(B_{j}))$ is relatively weakly compact in $X$,

where $k$ is an index such that $u_{kj}$ is weakly compact. $u_{k}$ gives a weak
homeomorphism of $B_{k}=u_{kj}(B_{j})$ onto $B$ . Thus $X$ is semi-reflexive and con-
sequently quasi-complete. $X$ is bornologic. For, an absolutely convex set $V$

in $X$ is a neighborhood of zero if and only if $u_{j}^{-1}(V)$ absorbs a neighborhood
of zero in $X_{j}$ for any $j$ and hence if and only if $V$ absorbs all bounded sets
in $X$ . Thus $X$ is barrelled. Clearly $X$ has a countable fundamental system
of bounded sets. Therefore $X$ is a reflexive (DF) space. In particular, $X$ is
complete as the strong dual space of a Fr\’echet space.

THEOREM 7. Let $Y$ be a closed subsapace of the injective limit $X=\lim_{\rightarrow}X_{j}$

of a weakly compact sequence and let $Y_{j}$ be the inverse image $u_{j}^{-1}(Y)$ . Then
the sequence $\{Y_{j}\}$ is weakly compact. Its limit $Z=\lim_{\rightarrow}Y_{j}$ is the same as $Y$ as
a set and the natural mapping $Z\rightarrow Y$ is continuous. Moreover $Y$ and $Z$ have
the same strong dual space. If $Y$ is barrelled, then $Y$ is isomorphic to $Z$.

PROOF. $Y_{j}$ is a closed subspace of $X_{j}$ and $u_{kj}$ maps $Y_{j}$ into $Y_{k}$ . Thus
the subspaces $Y_{j}$ with the restrictions $\overline{u}_{kj}$ form a weakly compact injective
sequence. The injections $i_{j}$ : $Y_{j}\rightarrow X_{j}$ induce a continuous injection $i:Z\rightarrow X$

and clearly the image $i(Z)$ coincides with $Y$ . Both in $Y$ and in $Z$ bounded
sets are images of bounded sets in some $Y_{j}$ . Thus both spaces have the same
bounded sets. Therefore the dual mapping $i^{\prime}$ is an isomorphism of the strong
dual space $Y^{\prime}$ into the strong dual space $Z^{\prime}$ . Later we will prove that $X^{\prime}/Y^{0}$

is the strong dual space of the reflexive space $Z$. On the other hand, by the
Hahn-Banach theorem $Y^{\prime}$ is identified with $X^{\prime}/Y^{0}$ as a set. Thus $i^{\prime}$ is an
onto mapping. In particular, the strong bidual space $Y^{\prime\prime}$ is isomorphic to
$Z^{\prime/}=Z$. If $Y$ is barrelled, the topology of $Y$ is the same as the induced
topology in $Y$ as a subspace of $Y^{\prime\prime}$ and therefore $Y$ is isomorphic to $Z$ . The
last statement follows also from Pt\’ak’s open mapping theorem [11].

REMARK 3. $Z$ is bornologic and barrelled. Thus the topology of $Z$ is the
bornologic and at the same time the Mackey topology associated with the
induced topology in $Y$ .

The topology of $Z$ can be different from that of $Y$ . Grothendieck ([5],
p. 97) constructed a Montel (DF) space $X$ which can be expressed as the
inductive limit of a weakly compact sequence and a closed subspace $Y$ of $X$

which is neither (DF) nor quasi-barrelled. Later we will prove that two
topologies coincide if the sequence $\{X_{j}\}$ is compact.
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THEOREM 8. Let $X,$ $Y$ and $Y_{j}$ be as in Theorem 7. Then the sequence
$\{X_{j}/Y_{j}\}$ is weakly compact and the quotient space $X/Y$ is isomorphic to the
inductive limit $\lim_{\rightarrow}X_{j}/Y_{j}$ . Bounded sets in $X/Y$ are the images of bounded
sets in $X$ .

PROOF. If $k>j$ , $Y_{j}$ is the inverse image $u_{kj}^{-1}(Y_{k})$ . Thus the induced
mapping $u_{kj}^{*}$ : $X_{j}/Y_{j}\rightarrow X_{k}/Y_{k}$ is one-one and weakly compact. Let $Z$ be the
inductive limit of the weakly compact sequence $\{X_{j}/Y_{j}, u_{kj}^{*}\}$ . The projections
$p_{j}$ ; $X_{j}\rightarrow X_{j}/Y_{j}$ induce a continuous projection $p:X\rightarrow Z$. The kernel is clearly
equal to $Y$. Thus we have a one-one onto and continuous mapping $i:X/Y\rightarrow Z$.
$i$ is also open. For, if $U$ is an open convex set in $X$, then $U+Y$ is open in
$X$ and hence $p_{j}\circ u_{j}^{-1}(U+Y)=u_{j}^{*-1}(p(U))$ is open in $X_{j}/Y_{j}$ . This means that
$p(U)=Uu_{j}^{*}\circ u_{j}^{*-1}(p(U))$ is open.

To prove the last statement we assume without loss of generality that
$\{X_{j}, u_{kj}\}$ is a sequence of Banach spaces. Any bounded set in $X/Y$ is the
image $u_{j}^{*}(B_{j}^{*})$ of a bounded set $B_{j}^{*}$ in $X_{f}/Y_{j}$. Since $X_{j}$ is Banach, $B_{j}^{*}$ is the
image of a bounded set $B_{j}$ in $X_{j}$ . $u_{j}(B_{j})$ is bounded in $X$ and $u_{j}^{\star}(B_{j}^{*})$ is equal
to its image under the projection $p:X\rightarrow X/Y$ .

THEOREM 9. Let $X=\lim_{\rightarrow}X_{j}$ and $Y=\lim Y_{j}$ be two inductive limits of
weakly compact sequences of locally convex spaces. Then the product space
$X\times Y$ is isomorphic to the inductive limit $\rightarrow^{\lim}(X_{j}\times Y_{j})$ of the weakly compact
sequence $\{X_{j}\times Y_{j}\}$ .

THEOREM 10. Let $X^{(k)}=\lim_{\rightarrow}X_{j^{(k)}},$ $k=1,2,$ $\cdots$ , be inductive limits of weakly

compact sequences. Then the direct sum $\sum_{k=1}^{\infty}X^{(k)}$ is isomorphic to the inductive

limit $\lim_{\rightarrow}Z_{j}$ of the weakly compact sequence
$Z_{j}=X_{j}^{(1)}\times X_{j-1}^{(2)}\times\cdots X_{1^{(k)}}$ .

Proofs of Theorems 9 and 10 are omitted.
Limits of compact sequences. A projective (injective) sequence $\{X_{j}, u_{jk}\}$

of locally convex spaces is said to be compact if for each $j$ there is some $k$

such that the mapping $u_{jk}(u_{kj})$ is compact. The projective and injective
limits of compact sequences have been discussed by Silva [15] and Raikov
[12] and [13]. Lemmas 2-3, Theorems 1-10 and their proofs remain true if
we replace ‘ weakly compact ’ by ‘ compact ‘. The counterpart of Lemma 1 is
the famous Schauder theorem. Of course, we have some improved results
caused by compactness particularly for injective limits.

THEOREM 1’. The projective limit $X=\lim X_{j}$ of a compact sequence of
locally convex spaces is a separable Fr\’echet Montel space.

PROOF. The diagonal argument in Theorem 1 shows, in this case, that
any bounded set is relatively compact. By Dieudonn\’e’s theorem ([8] p. 373)
$X$ is separable as a Fr\’echet Montel space. We can prove it, however, also in
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the following way. We may assume that $X_{j}$ are Banach and $u_{j}(X)$ is dense
in $X_{j}$ for all $j$ . Let $u_{jk}$ be compact. Then the image $u_{jk}(B_{k})$ of the unit ball
$B_{k}$ is separable. Thus each space $X_{j}$ is separable. Choose a countable dense
set of the form $u_{j}(D_{j})$ in each $X_{j}$ . Then the union V $D_{j}$ is a countable dense
set in $X$ .

THEOREM 6’. The inductive limit $X=\lim_{\rightarrow}X_{j}$ of a compact sequence of
Iocally convex spaces is a separable complete bornologic (DF) Montel space. $On$

each bounded set $B$ in $X$ the inductive topology coincides with the weak topology
and there is a bounded set $B_{k}$ in some $X_{k}$ such that $u_{k}$ : $B_{k}\rightarrow B$ is a homeo-
morphism. A sequence $x_{n}$ in $X$ converges to zero if and only if there is a
sequence $y_{n}$ in some $X_{k}$ with $x_{n}=u_{k}(y_{n})$ which converges (weakly) to zero in $X_{k}$ .

The topology of $X$ is the inductive limit topology of topological spaces $X_{j}$,
$i$ . $e$ . $a$ not necessarily convex set $S$ is open (closed) in $X$ if and only if $u_{j}^{-1}(S)$

are all open (closed) in $X_{j}$ .
PROOF. We may assume that $X_{j}$ are Banach. To prove the separablilty

it is enough to show that the image $u_{j}(B_{j})$ of the unit ball $B_{j}$ in $X_{j}$ is
separable in $X$ . If $u_{kj}$ is compact, $u_{kj}(B_{j})$ is relatively compact and therefore
separable in $X_{k}$ . Since $u_{k}$ : $X_{k}\rightarrow X$ is a homeomorphism on the relatively
compact set $u_{kj}(B_{j}),$ $u_{j}(B_{j})=u_{k}(u_{kj}(B_{j}))$ is separable.

It is well known that the initial topology coincides with the weak topology
on each bounded set in a Montel space.

Silva [15] gives a direct proof of the last statement. Let us prove it as
a consequence of the Banach-Dieudonn\’e theorem ([1] pp. 73-74). Necessity is
clear. Suppose that $u_{j}^{-1}(S)$ is open in $X_{j}$ for any $j$ . Since $X$ is the strong
dual space of a Fr\’echet Montel space $Y$, the topology in $X$ is the uniform
convergence topology on each compact set in $Y$ . Thus by the Banach-Dieudonn\’e
theorem it is enough to show that for any absolutely convex closed bounded
set $B,$ $S\cap B$ is open relative to the topology on $B$ induced by the weak
topology $\sigma(X, Y)$ . $B$ is the image $u_{k}(B_{k})$ of a compact set $B_{k}$ in some $X_{k}$ and
$B$ and $B_{k}$ are homeomorphic. By assumption $u_{k}^{-1}(S)\cap B_{k}$ is open in $B_{k}$ . Since
the weak topology is the same as the initial topology on $B$ , it follows that
$S\cap B=u_{k}(u_{k}^{-1}(S)\cap B_{k})$ is weakly open in $B$ .

THEOREM 7’. Let $Y$ be a closed subspace of the injective limit $X=\lim_{\rightarrow}X_{j}$

of a compact sequence and let $Y_{j}=u_{j}^{-1}(Y)$ . Then the subspace $Y$ is isomorphic
to the injective limit $\lim_{\rightarrow}Y_{j}$ of the compact sequence $\{Y_{j}\}$ .

PROOF. Let $Z$ be the injective limit $\lim_{\rightarrow}Y_{j}$ and let $i:Z\rightarrow Y$ be the natural
mapping. We have to prove that $i$ is open. Since equivalent sequences for
$X$ induce equivalent sequences $\{Y_{j}\}$ , we may assume that the sequence $\{X_{j}, u_{kj}\}$

is a strictly compact sequence of Banach spaces. Let $U$ be an absolutely
convex open neighborhood of zero in $Z$. We construct a sequence of absolutely
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convex neighborhoods $V_{j},$ $j=1,2,$ $\cdots$ , of zero in $X_{j}$ such that
(i) $u_{kj}(V_{k})\subset V_{k}$ for $k>j$ ;

(ii) $V_{j\cap}Y_{j}\subset u_{j}^{-1}(i(U))$ ;
(iii) $u_{kj}(V_{j})$ is compact in $X_{k}$ for $k>j$ .

Then $ V=\cup u_{j}(V_{j})\infty$ is an absolutely convex neighborhood of zero in $X$ which
$j=1$

satisfies $V\cap Y\subset i(U)$ . Thus $i(U)$ is a neighborhood of zero in $Y$ .
First note that $U_{j}=u_{j}^{-1}(i(U))$ is an open neighborhood of zero in $Y_{j}$ , so

that the complement of $U_{j}$ relative to $Y_{j}$ is closed in $X_{j}$ . Choose for $V_{1}$ a
closed ball so small that $V_{1}\cap Y_{1}\subset U_{1}$ . (iii) is satisfied because the sequence
is strictly compact. Suppose that $V_{1}$ , $\cdot$ .. , $V_{j}$ have been chosen. Then $u_{j+1j}(V_{j})$

is compact in $X_{j+1}$ and is disjoint with the complement of $U_{j+1}$ relative to $Y_{j+1}$ .
Therefore the distance between these sets is positive. Take a closed balk
$W_{j+1}$ with radius less than the distance and let $V_{j+1}=Conv(W_{j+1}, u_{j+1j}(V_{j}))$ .
Properties (i), (ii) and (iii) are easily checked.

Duality.
THEOREM 11. Let $\{X_{j}, u_{jk}\}$ be a weakly compact projective sequence of

Banach spaces such that $u_{j}(X)$ is dense in $X_{j}$ for each $j$ . Then the dual se-
quence $\{X_{j}^{\prime}, u_{jh}^{\prime}\}$ is a weakly compact inductive sequence and the strong dual
space of the projective limit $\varliminf X_{j}$ is isomorphic to the injective limit $\lim_{\rightarrow}X_{j}^{\prime}$.

PROOF. Since $u_{jk}$ has dense range, the dual mapping $u_{jk}^{\prime}$ : $X_{j}^{\prime}\rightarrow X_{k}^{\prime}$ is one-
one. If $u_{jk}$ is weakly compact, then so is $u_{jk}^{\prime}$ . Thus $\{X_{j}^{\prime}, u_{jk}^{\prime}\}$ is a weakly
compact inductive sequence. Denote by $X$ and $Y$ the projective limit $\lim X_{j}$

and the injective limit $\lim X_{j}^{\prime}$ respectively. There is a natural duality between
$X$ and $Y$ . In fact, if $x\in X$ and $y=u_{j^{\prime}}(y_{j})\in Y$, then $\langle x, y\rangle=\langle u_{j}(x), y_{j}\rangle$ defines
a bilinear form independent of the representation $y=u_{j}^{\prime}(y_{j})$ . If $\langle x, y\rangle=0$ for
all $y$ , then $u_{j}(x)=0$ for all $j$ and hence $x=0$ . Since $u_{j}(X)$ are dense, it follows
that if $\langle x, y\rangle=0$ for all $x$, then $y=0$ . Since $u_{j}$ : $X\rightarrow X_{j}$ is continuous, any
element $y\in Y$ is continuous on $X$ . Conversely if $x^{\prime}$ is a continuous linear
functional on $X$, it is decomposed as $x^{\prime}=y_{j}\circ u_{j}$ with a continuous linear
functional $y_{j}$ on $X_{j}$ for some $j$ . Thus $x^{\prime}$ coincides with a $y\in Y$ .

To prove that the topologies are the same, let $B$ be an absolutely convex
bounded set in $X$ . Then its polar set $B^{0}$ in $Y$ is the union $Uu_{j}^{\prime}((u_{j}(B))^{0})$ .
Since $u_{j}(B)$ is bounded in $X_{j},$ $(u_{j}(B))^{0}$ is an absolutely convex neighborhood
of zero in $X_{j}^{\prime}$ . Hence $B^{0}$ is a neighborhood of zero in $Y$. Conversely let $V$

be an absolutely convex closed neighborhood of zero in $Y$ . Let $B$ be the
polar set $V^{0}$ in $X$ . Then $u_{j}(B)$ is bounded for any $j$ because $u_{j}(B)$ is contained
in $(u_{j^{-1}}^{\prime}(V))^{0}$ . $lf$ we prove that $X$ is the dual space of $Y$, we have $V=B^{0}$

showing that $V$ is a neighborhood of zero in $X^{\prime}$ .
Any element $x\in X$ belongs to $Y^{\prime}$ , because $\langle x, u_{j}^{\prime}(y_{j})\rangle=\langle u_{j}(x), y_{j}\rangle$ is con-
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tinuous on each $X_{j}^{\prime}$ . Conversely let $f$ be a continuous linear functional on $Y$.
Since $f\circ u_{j}^{\prime}$ is continuous on $X_{j}^{\prime}$, there is an element $x_{j}\in X_{j}^{\prime\prime}$ such that $f(y)$

$=\langle x_{j}, y_{j}\rangle$ for any $y=u_{j}^{\prime}(y_{j})$ with $y_{j}\in X_{j}^{\prime}$ . We have $\langle x_{k}, u_{jk}^{\prime}y_{j}\rangle=\langle x_{j}, y_{j}\rangle$ for
any $y_{j}\in X_{j}^{\prime}$ and $k>j$ . Hence it follows that $x_{j}=u_{j^{\prime\prime}k}x_{k}$ for $k>j$ . Lemma 1
shows that $x_{j}$ is in $X_{j}$ and therefore there is an element $x\in X$ such that
$x_{j}=u_{j}(x)$ .

REMARK 4. Incidentally we have obtained a direct proof of the reflexivity
of projective limits. Conversely we can prove the theorem starting with the
reflexivity. Suppose in general that $X$ is the projective limit of a (not neces-
sarily weakly compact) sequence of Banach spaces such that $u_{j}(X)$ is dense
in $X_{j}$ . (Note that any Fr\’echet space can be expressed in this way.) If $X$ is
distinguished or in particular reflexive, then the strong dual space $X^{\prime}$ is
isomorphic to the injective limit $\lim X_{j}^{\prime}$ . In fact, the proof of the above
theorem is valid except for the last step. Now suppose that $V$ is an absolutely
convex neighborhood of zero in $Y$ . Then $V$ absorbs every equicontinuous set
$B$ in $x/$ . To prove this, it is enough to show that $B$ is contained in the image
$u_{j^{\prime}}(B_{j})$ of a bounded set $B_{j}$ in $X_{j}$ for some $j$ . Any neighborhood of zero in $X$

contains the inverse image $u_{j^{-1}}(U)$ of a ball $U$ in $X_{j}$ . Since $U\cap u_{j}(X)$ is dense
in $U$, any linear functional on $X$ which is bounded on $u_{j}^{-1}(U)$ can be written
as $u_{j}$ times a linear functional on $X_{j}$ which is bounded on $U$. Thus the polar
set of $u_{j}^{-1}(U)$ coincides with $u_{j}^{\prime}(U^{0})$ . Since $X$ is barrelled and $X^{\prime}$ is bornologic
(Grothendieck [5] Th\’eor\‘eme 7), $V$ is a neighborhood of zero in $X^{\prime}$ .

The condition that $X$ is distinguished is also necessary in order that the
strong dual space $X^{\prime}$ is isomorphic to the injective limit $Y$ . For, $Y$ is
bornologic as an injective limit of Banach spaces, and $x/$ is bornologic if and
only if $X$ is distinguished.

THEOREM 12. Let $X$ be the inductive limit of a weakly compact sequence
$\{X_{j}, u_{kj}\}$ of Banach spaces. Then $\{X_{j}^{\prime}, u_{kj}^{\prime}\}$ is a weakly compact projective se-
quence and the strong dual space $X^{\prime}$ is isomorphic to the projective limit $\lim X_{j^{\prime}}$ .

PROOF. Clearly {X;, $u_{kj}^{\prime}$ } forms a weakly compact projective sequence.
Let $Y$ be the projective limit. The inner product between $X$ and $Y$ is defined
by $\langle x, y\rangle=\langle u_{j}^{-1}(x), u_{j}^{\prime}(y)\rangle$ as before. If $\langle x, y\rangle=0$ for all $\chi$ then we have
$u_{j}^{\prime}(y)=0$ for any $j$ and hence $y=0$ . Thus each $y\in Y$ corresponds to a unique
linear functional on X. $Y$ coincides with the dual space $X$‘ by this corres-
pondence. $ln$ fact, for each $j,$ $\langle u_{j}(x_{j}), y\rangle=_{\backslash }\langle x_{j}, u_{j}^{\prime}(y)\rangle$ is continuous on $X_{j}$ .
Therefore $Y$ is contained in $X^{\prime}$ . On the other hand, let $f$ be a continuous
linear functional on $X$. Then for each $j$ there is an element $y_{j}\in X_{j}^{\prime}$ such
that $ f(u_{j}(x_{j}))=\langle x_{j}, y_{j}\rangle$ for all $x_{j}\in X_{j}$ . From the identity $\langle u_{kj}(x_{j}), y_{k}\rangle=\langle x_{j}, y_{j}\rangle$ ,
$j<k$ , it follows that $u_{kj}^{\prime}(y_{k})=y_{j}$ . Thus there is an element $y\in Y$ such that
$ f(u_{J}(x_{j}))=\langle x_{j}, u_{j^{\prime}}(y)\rangle=\langle u_{j}(x), y\rangle$ . Hence $f$ coincides with $y\in Y$ .
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To prove that the topologies are the same, it suffices to show that the
identity mapping $Y\rightarrow X^{\prime}$ is continuous because both spaces are Fr\’echet. Any
neighborhood of zero in $X^{\prime}$ contains the polar set $B^{0}$ of a bounded set $B$ in
X. $B$ is the image $u_{j}(B_{j})$ of a bounded set $B_{j}$ in $X_{j}$ . Thus $B^{0}=u_{j^{-1}}^{\prime}(B_{j}^{0})$ is a
neighborhood of zero in $Y$ .

REMARK 5. To prove the isomorphism of $X^{\prime}$ and $Y$ we used only the fact
that every bounded set in $X$ is the image of a bounded set in some $X_{j}$ and
that $X$ is a (DF) space. Thus the isomorphism between $(\varliminf X_{j})^{\prime}$ and $\varliminf X_{j}^{\prime}$

holds also for strict inductive limits of normed spaces ([1] p. 8) and complete
inductive limits of Banach spaces ([6] p. 17). It should be noted that a locally
convex space is complete and the inductive limit of a sequence of Banach
spaces if and only if it is a (quasi-) complete bornologic (DF) space.

END OF THE PROOF OF THEOREM 7. We have to prove that the quotient
space $X^{\prime}/Y^{0}$ is the strong dual space of $Z$. It follows from Theorem 12 that
$Z^{\prime}=\lim_{}Y_{j^{\prime}}=\lim X_{j}^{\prime}/Y_{j}^{0}$ , and from Theorem 3 that $X^{\prime}/Y^{0}=\lim X_{j}^{\prime}/\overline{u_{f}^{\prime}(Y^{0}}$). We
want to show that two sequences are equivalent. Since $Y=Y^{00}$ in the duality
between $X$ and $X^{\prime},$ $\chi_{j}\in X_{j}$ is in $Y_{j}=u_{j}^{-1}(Y)$ if and only if $\langle x_{j}, u_{j}^{\prime}(Y^{0})\rangle=0$ .
In other words, we have $Y_{j}=(u_{j}^{\prime}(Y^{0}))^{0}$ . Thus $Y_{j}^{0}$ is the weak* closure of $u_{j}^{\prime}(Y^{0})$

in $X_{j^{\prime}}$ . Consequently there is a natural mapping $s_{jj}$ : $x_{j}^{\prime}/\overline{u_{j^{\prime}}(Y^{0})}\rightarrow X_{j}^{\prime}/Y_{j}^{0}$ . On
the other hand, let $u_{kj}$ be weakly compact. Then by Lemma 1 $u_{kj}^{\prime}$ is continuous
on $X_{k}^{\prime}$ with the weak* topology into $X_{j}^{\prime}$ with the weak topology. Therefore
$u_{kj}^{\prime}$ maps $Y_{k}^{0}$ into $\overline{u_{f}^{\prime}(Y^{0}}$). Thus the mapping $u_{jk}^{*}$ : $X_{k}^{\prime}/Y_{k}^{0}\rightarrow X_{j}^{\prime}/Y_{j}^{0}$ is decom-
posed as $u_{jk}^{*}=s_{jj}\circ t_{jk}$, where $t_{jk}$ : $X_{k^{\prime}}/Y_{k}^{0}\rightarrow X_{j}^{\prime}/\overline{u_{j}(Y^{0}}$). The composition $t_{jk}\circ s_{kl\sigma}$

is clearly the initial mapping: $X_{k}^{\prime}/\overline{u_{k}(Y^{0}}$) $\rightarrow X_{j}^{\prime}/\overline{u_{j}(Y^{0}}$).

THEOREM 13. Let $Y$ be a closed subspace of the projective limit $\lim X_{j}$ of
a weakly compact sequence of locally convex spaces. Then the strong dual space
$Y^{\prime}$ is isomorphic to the quotient space $X^{\prime}/Y^{0}$ of the strong dual space $X^{\prime}$

modulo the orthogonal subspace $Y^{0}$ .
PROOF. We may assume that $\{X_{j}, u_{jk}\}$ is a weakly compact sequence of

Banach spaces such that $u_{j}(X)$ is dense in $X_{j}$ for all $j$ . Let $Y_{j}=\overline{u_{j}(Y)}$ . Then
by Theorem 2, $Y=\lim Y_{j}$ . Clearly $\overline{u}_{j}(Y)$ is dense in $Y_{j}$ . Thus the strong dual
space $Y^{\prime}$ is identified with the injective limit $\lim Y_{j}^{\prime}$ by Theorem 11. On the
other hand, the quotient space $X^{\prime}/Y^{0}$ is identified with the injective limit
$\lim_{\rightarrow}X_{j}^{\prime}/u_{j^{-1}}^{\prime}(Y^{0})$ by Theorem 8. Since $X_{j}$ is Banach, the strong dual space of
$Y_{j}$ is the quotient space $X_{j}^{\prime}/(u_{j}(Y))^{0}$ , which is clearly the same as $X_{j}^{\prime}/u_{J^{-1}}^{\prime}(Y^{0})$ .

THEOREM 14. Let I’ be a closed subspace of the projective limit $X=\lim X_{j}$

of a weakly compact sequence of locally convex spaces. Then the strong dual
space $(X/Y)^{\prime}$ of the quotient space is isomorphic to the subspace $Y^{0}$ of $X^{\prime}$

equipped with the bornologic or the Mackey topology associated with the induced
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topology. If the sequence is compact, $(X/Y)^{\prime}$ is isomorphic to $Y^{0}$ with the
induced topology.

PROOF. We may assume that $X_{j}$ are Banach and that $u_{j}(X)$ are dense in
$X_{j}$ . Then it follows from Theorems 3 and 11 that $(X/Y)^{\prime}=\lim_{\rightarrow}(X_{j}/\overline{u_{j}(Y)})^{\prime}$

$=\lim u_{j^{-1}}^{\prime}(Y^{0})$ . The last limit is exactly $Y^{0}$ with the bornologic or the Mackey
topology associated with $Y^{0}$ by Theorem 7. If the sequence is compact, $Y^{0}$

itself is bornologic and barrelled by Theorem 7’.
THEOREM 15. Let $Y$ be a closed subspace of the injective limit $X=\varliminf X_{j}$

of a weakly compact sequence of locally convex spaces. Then the strong dual
space $Y^{\prime}$ is isomorphic to the quotient space $x//Y^{0}$ .

PROOF. This follows from Theorems 7 and 14 easily.
THEOREM 16. Let $X$ and $Y$ be as in Theorem 15. Then the strong dual

space $(X/Y)^{\prime}$ of the quotient space is isomorphic to the orthogonal subspace $Y^{0}$

of $X^{\prime}$ .
PROOF. This is an immediate consequence of Theorems 1, 2 and 13.
Characterization of weakly compact and compact limits.
THEOREM 17. The following conditions are equivalent for a Fr\’echet space

$X$ :
(a) $X$ is the projective limit of a weakly compact (compact) sequence of

locally convex spaces;
(b) Any continuous linear mapping on $X$ into a Banach space $Y$ is weakly

compact (compact);
(c) For each absolutely convex neighborhood $V$ of zero there is an absolutely

convex neighborhood $U\subset V$ of zero such that the natural linear mapping:
$\hat{X}_{U}\rightarrow\hat{X}_{V}$ is weakly compact (compact);

(d) The strong dual space $X^{\prime}$ is the injective limit of a weakly compact
(compact) sequence of locally convex spaces.

PROOF. $(a)\Rightarrow(b)$ . Let $X$ be the projective limit $\lim X_{j}$ of a weakly com-
pact (compact) sequence of locally convex spaces. If a linear mapping $f:X\rightarrow Y$

is continuous, it is decomposed as the composition of continuous linear map-
pings:

$u_{j}$
$f_{j}$

$X\rightarrow X_{j}\rightarrow Y$

for some $j$ . If $u_{jk}$ is weakly compact (compact), $f_{j}\circ u_{jk}$ : $X_{k}\rightarrow Y$ is weakly com-
pact (compact). Thus there is a neighborhood $V$ of zero in $X$ of the form
$u_{k}^{-1}(V_{k})$ with a neighborhood $V_{k}$ of zero in $X_{k}$ which is mapped to a relatively
weakly compact (compact) set in $Y$ .

$(b)\Rightarrow(c)$ . Apply (b) when $Y$ is $\hat{X}_{V}$ .
$(c)=\geq(a)$ . Let $\{V_{j}\},$ $j=1,2,$ $\cdots$ , be a fundamental system of absolutely con-

vex neighborhoods of zero in $X$. We may assume that $V_{j}\supset V_{j+1}$ . Let $X_{j}=\hat{X}_{r_{j}}$
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and let $u_{jk}$ : $X_{k}\rightarrow X_{j}$ be the natural linear mapping. Clearly $\{X_{j}, u_{jk}\}$ forms
a weakly compact (compact) projective sequence. It is easy to prove that $X$

is isomorphic to the projective limit.
$(a)\Rightarrow(d)$ by Theorem 11.
$(d)\Rightarrow(a)$ . It follows from Theorem 12 that the strong bidual space $X^{\prime\prime}$

satisfies (a). Therefore the closed subspace $X$ of $X^{\prime\prime}$ satisfies (a).
REMARK 6. Grothendieck [5] calls a locally convex space $X$ a Schwartz

space if it satisfies equivalent conditions (b) and (c) in the parenthesized form.
Thus a locally convex space is Fr\’echet Schwartz if and only if it is the pro-
jective limit of a compact sequence of locally convex spaces.

We refer to Fr\’echet Schwartz spaces as (FS) spaces and to the projective
limits of weakly compact sequences as $(FS^{*})$ spaces for short.

THEOREM 18. The following are equivalent for a complete (DF) space $X$ :
(a) $X$ is the inductive limit of a weakly compact (compact) sequence of

locally convex spaces;
(b) For each absolutely convex closed bounded set $B$ there is an absolutely

closed bounded set $A\supset B$ such that the natural mapping $X_{B}\rightarrow X_{A}$ is weakly
compact (compact) and $X$ is barrelled (this is not necessary in the compact
case);

(c) The strong dual space $X^{\prime}$ is the projective limit of a weakly compact
(compact) sequence of locally convex spaces and $X$ is barrelled (the last condi-
tion is not necessary in the compact case).

PROOF. $(a)\Rightarrow(b)$ . Suppose that $X=\lim X_{j}$ with a weakly compact (com-

pact) sequence of Banach spaces $X_{j}$ . Then $X$ is barrelled. Any absolutely
convex closed bounded set $B$ is the image $u_{j}(B_{j})$ of an absolutely convex closed
bounded set $B_{j}$ in $X_{j}$ . If $k$ is sufficiently large, $u_{kj}(B_{j})$ is relatively weakly
compact (compact) in $X_{k}$ . Thus if we choose a closed ball $A_{k}$ which contains
$u_{kj}(B_{j})$ , then the closed bounded set $A=\overline{u_{k}(A_{k}}$) satisfies condition (b).

$(b)\Rightarrow(c)$ . Let $ B_{1}\subset B_{2}\subset\ldots$ be a fundamental system of absolutely convex
closed bounded sets in $X$ and let $X_{j}=X_{B_{j}}$ . Then the sequence $\{X_{j}\}$ with the
natural injections $u_{kj}$ : $X_{j}\rightarrow X_{k}$ forms a weakly compact (compact) injective
sequence. The limit $Y=\lim_{\rightarrow}X_{j}$ coincides with $X$ as a set and the natural
mapping $i:Y\rightarrow X$ is clearly continuous. $X$ and $Y$ have the same class of
bounded sets and both spaces are semi-reflexive. In fact, any bounded set is
relatively weakly compact in $Y$ and hence in $X$. Thus the dual mapping $i^{\prime}$

on the strong dual space $X^{\prime}$ into the strong dual space $Y^{\prime}$ is a homeomorphism
with dense range. Since both $X^{\prime}$ and $Y^{\prime}$ are Fr\’echet, $X^{\prime}$ must coincide with
$Y^{\prime}$ which is the projective limit of a weakly compact (compact) sequence.

We can also prove the isomorphism of $X$ and $Y$ directly by Pt\’ak’s open
mapping theorem [11].
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$(c)\Rightarrow(a)$ . Suppose that $X$ is barrelled. Then $X$ is a closed barrelled sub-
space of the bidual space $x/’$ . Thus $X$ satisfies (a) by Theorem 7. If $X^{\prime}$ is
\langle FS), then $X^{\prime}$ is separable. Therefore any strongly bounded set in $X^{\prime}$ is equi-
continuous. Since $X$ is complete, thus $X$ is barrelled.

We call the strong dual spaces of (FS) spaces and $(FS^{*})$ spaces (DFS)

spaces and $(DFS^{*})$ spaces respectively.
Serre’s lemma. The following theorem has been employed often to prove

various duality theorems and existence theorems of partial differential equa-
tions ([14], [10], [9] etc.).

THEOREM 19. Let $X_{1},$ $X_{2}$ and $X_{3}$ be Fr\’echet spaces and let $u_{1}$ : $X_{1}\rightarrow X_{2}$ and
$u_{2}:X_{2}\rightarrow X_{\theta}$ be densely defined closed linear mappings such that $u_{2}\circ u_{1}=0$ .
Denote by $X_{j}^{\prime}$ and $u_{j}^{\prime}$ the strong dual spaces of $X_{j}$ and the dual mappings of
$u_{j}$ respectively:

$u_{1}$ $u_{2}$

$X_{1}\rightarrow X_{2}\rightarrow X_{3}$

$X_{1}^{\prime}X_{2}^{\prime}X_{3}^{\prime}\underline{u_{1}^{\prime}}\underline{u_{2}^{\prime}}$ .
Then,

(i) The image im $u_{j}$ is closed in $X_{j+1}$ if and only if the image im $u_{j}^{\prime}$ is
$(weakly^{*})$ closed in $X_{j}^{\prime}$ .

(ii) Suppose that both im $u_{1}$ and im $u_{2}$ are closed. Let $Z=keru_{2},$ $B=imu_{1}$ ,
$z*=keru_{1}^{\prime}$ and $B^{*}=imu_{2}^{\prime}$ . Then the quotient space $H=Z/B$ is Fr\’echet and its
dual space $H^{\prime}$ is identified with the quotient space $H^{*}=Z^{*}/B^{*}$ as a set. If $X_{2}$

is $(FS^{*})$ , then $H$ is $(FS^{*})$ and the strong dual space $H^{\prime}$ is isomorphic to $H^{*}$

equipped with the bornologic or the Mackey topology associated with the quotient
topology in $H^{*}$ . If $X_{2}$ is (FS), then so is $H$ and $H^{\prime}$ is isomorphic to $H^{*}$ .

PROOF. (i) is exactly the closed range theorem of Dieudonn\’e-Schwartz
[3] supplemented by Browder [2] and Grothendieck ([7] p. 296).

(ii). $Z$ and $B$ are Fr\’echet spaces as closed subspaces of the Fr\’echet space
$X_{2}$ . Therefore $H=Z/B$ is a Fr\’echet space. Since $Z^{*}$ and $B^{*}$ are weakly*
closed, it is easy to prove that $z*$ and $B^{*}$ are orthogonal subspaces $B^{0}$ and
$Z^{\theta}$ of $B$ and $Z$, respectively, relative to the duality between $X_{2}$ and $X_{2}^{\prime}$ . The
dual space $Z^{\prime}$ is identified with $X_{2}^{f}/B^{*}$ in the weak sense by the Hahn-Banach
theorem and topologically if $X_{2}$ is $(FS^{*})$ . In the same way the dual space $H^{\prime}$

is identified with the orthogonal subspace $B^{0}$ relative to the duality between
$Z$ and $X_{2}^{\prime}/B^{*}$ . Since the polar set of $B$ in $X_{2}^{\prime}$ is $Z^{*},$ $B^{0}=Z^{*}/B^{*}=H^{*}$ . If $X_{2}$

is $(FS^{*})$ or (FS), then so are $Z$ and $B$ , and therefore so is the quotient space
$H$. By Theorem 14 the strong dual space $H^{\prime}$ is $H^{*}$ with the bornologic (or

the Mackey) topology.
Schwartz’s lemma. The assumption that im $u_{1}$ and im $u_{2}$ are closed is

usually difficult to prove. The Banach-Dieudonn\’e theorem and the following
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are the only general theorems available.
THEOREM 20. (i) Suppose that $H=Z/B$ has a Fr\’echet cross-section, $i$ . $e$ .

there is a Fr\’echet space $Y$ with a continuous linear mapping $f:Y\rightarrow Z$ such
that the composition $Y\rightarrow Z\rightarrow Z/B$ is one-one and onto. Then $B=imu_{1}$ is closed
and $H$ is isomorphic to Y. The $cr$oss-section exists if $H$ is of finite dimension.

(ii) Suppose that $X_{2}$ and $X_{3}$ are $(FS^{*})$ . If there is a $(DFS^{*})$ cross-section
$Y^{*}$ of $H^{*}=Z^{*}/B^{*}$ , then $B^{*}=imu_{2}^{\prime}$ is closed and $H^{*}$ with the bornologic topo-
logy associated with the quotient topology is isomorphic to $Y^{*}$ . The cross-
section exists if the algebraic dimension of $H^{*}$ is countable.

PROOF. (i). Let $G(u_{1})$ be the graph of $u_{1}$ in $X_{1}\times X_{2}$ . The mapping $u_{1}$ is
realized as the continuous projection on $G(u_{1})$ to the second component $X_{2}$ .
Thus $u_{1}$ is decomposed as the composition of continuous linear mappings:

$G(u_{1})\rightarrow^{p}G(u_{1})/keru_{1}\times\{0\}\rightarrow^{v}Z$ .
Since $keru_{1}$ is closed, $X=G(u_{1})/keru_{1}\times\{0\}$ is a Fr\’echet space. Consider the
linear mapping

$v\times f:X\times Y\rightarrow Z$

defined by $v\times f(x, y)=v(x)+f(y)$ . By assumtion $v\times f$ is a one-one continuous
linear mapping on the Fr\’echet space $X\times Y$ onto the Fr\’echet space $Z$. Thus
$Z$ is isomorphic to the product $X\times Y$ by Banach’s open mapping theorem.
Therefore the subspace $B$ which corresponds to $X\times\{0\}$ is closed in $Z$ and
$H=Z/B$ is isomorphic to $Y$. The cross-section clearly exists if $H$ is of finite
dimension.

(ii). In this case $u_{2}^{\prime}$ is decomposed as

$G(u_{2}^{\prime})\rightarrow^{p}G(u_{2}^{\prime})/keru_{2}^{\prime}\times\{0\}\rightarrow^{v}z*$ .
$X^{*}=G(u_{2}^{\prime})/keru_{2}^{\prime}\times\{0\}$ and $Z^{*}$ become $(DFS^{*})$ spaces if we introduce the
bornologic topologies. $v$ is also continuous under these topologies because it
maps bounded sets in $X^{*}$ to bounded sets in $Z^{*}$ . Now $X^{*}\times Y^{*}$ is $(DFS^{*})$ as
a product of $(DFS^{*})$ spaces and the mapping $v\chi f:X^{*}\times Y^{*}\rightarrow Z^{*}$ is a one-
one continuous linear mapping on the $(DFS^{*})$ space $X^{*}\times Y^{*}$ onto the $(DFS^{*})$

space $Z^{*}$ . Apply Theorem 19 to the exact sequence $0\rightarrow X^{*}\times Y^{*}\rightarrow Z^{*}\rightarrow 0$

and its dual. Then it follows that $(v\times f)^{\prime}$ is an isomorphism of the Fr\’echet
space $(Z^{*})^{\prime}$ onto the Fr\’echet space $(x*\times Y^{*})^{\prime}$ . Since $x*\times Y^{*}$ and $z*$ are
reflexive, $v\times f$ is an isomorphism. Of course, Pt\’ak’s open mapping theorem
shows directly that $v\times f$ is open. The rest is the same as above. Since the
bornologic topology is determined only by the family of bounded sets, the
bornologic topology on $B^{*}$ as a closed subspace of $z*$ is the same as that on
$B^{*}$ as a closed subspace of $X_{2}^{\prime}$ .
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If $H^{*}$ is of countable dimension, choose a basis $\{e_{j}\}$ and then a representa-

tive $f_{j}$ in $Z^{*}$ from each class $e_{j}$ . Let $Y^{*}$ be the direct sum $\sum_{J=1}^{\infty}C$ or $\sum_{f=1}^{\infty}R$ and

define $f(y)=\sum_{J=I}^{\infty}y_{j}f_{j}$ . Then $Y^{*}$ is (DFS) and $f$ gives a cross-section of $H^{*}$ .
Added in proof. Professon Raikov kindly informed the writer that some

of the results of the paper had been obtained also by Makarov [17] and
Raikov [18].

University of Tokyo
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