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This paper is a direct continuation of a previous one [7], which we shall
refer to for terminologies and notations. In the previous paper, one of the
present authors determined the structure of complete Riemannian manifolds
admitting a concircular scalar field, and furthermore the structure of complete
product Riemannian manifolds admitting a nonisometric conformal vector field
under an assumption relative to dimension of manifolds. Here and hereafter
we say a vector field to be isometric or conformal if it generates a one-
parameter group of isometric or conformal transformations, respectively. A
vector field is said to be complete if it generates a global one-parameter group
of transformations.

After preliminaries are stated in \S 1, we shall study in \S 2 the structure
of manifolds, named pseudo-hyperbolic spaces in [7], in more details. In \S 3,
the expression of a concircular scalar field in a space form will be obtained.
In \S 4, we shall consider complete product Riemannian manifolds admitting a
conformal vector field and obtain the equations satisfied by the associated
scalar field in a simpler way than that in [7]. As a consequence, the structure
of manifolds having such properties is determined without assumption relative
to dimension. The purpose of \S 5 and of the present paper is to prove the
following

MAIN THEOREM. If a complete reducible Riemannian manifold admits a
complete nonisometric conformal vector field, then the manifold is locally
Euclidean and the vector field is homothetic.

This is a generalization of Tanaka’s theorem [5] for manifolds with par-
allel Ricci tensor and of Tachibana’s [4] for compact manifolds. Our method
of proof is elementary and different from theirs.

\S 1. Preliminaries.

In this paper we shall always deal with connected Riemannian manifolds
with positive definite metric, and suppose that manifolds and quantities are
differentiable of class $C^{\infty}$ .
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Let $M$ be an n-dimensional Riemannian manifold. Greek indices $\kappa,$
$\lambda,$

$\mu,$ $\nu$

run on the range 1, $\cdots$ , $n$ . Denote by $g_{\mu\lambda}$ the metric tensor of $M$, by $\{_{\mu^{\kappa}\lambda}\}$

the Christoffel symbol and by $\nabla$ covariant differentiation with respect to

$\{_{\mu^{\kappa}\lambda}\}$ . A concircular scalar field (abbrev. C-field) $\rho$ is by definition a scalar

field satisfying the equations

(1.1) $\nabla_{l^{k}}\nabla_{\lambda}\rho=\partial_{\mu}\partial_{\lambda}\rho-\{\mu^{\kappa}\lambda\}\partial_{\kappa}\rho=\phi g_{/x\lambda}$ ,

where $\phi$ is a scalar field. If the equations are in particular of the form

(1.2) $\nabla_{\mu}\nabla_{\lambda}\rho=(-k\rho+b)g_{\mu_{\lambda}}$

with constant coefficients $k$ and $b$ , then $\rho$ is called a special concircular scalar
jield (abbrev. SC-field) and $k$ the characteristic constant of $\rho$ If $\phi=0$ , the
field $\rho$ is said to be parallel. A point $P$ is called a stationary or ordinary
point of $\rho$ whether the gradient vector field $\rho_{\lambda}=\partial_{\lambda}\rho$ vanishes at $P$ or not.

Along any geodesic curve with arc length $u$ , the scalar field $\phi$ and $\rho$ are
differentiable functions of $u$ and the equations (1.1) turn to the ordinary
differential equation

(1.3) $\frac{d^{z}\rho}{du^{2}}=\phi$

and (1.2) to

(1.4) $\frac{d^{2}\rho}{du^{2}}=-k\rho+b$ .

According to the signature of $k$ , we put

$k=\left\{\begin{array}{l}l)\\II)\\l11)\end{array}\right.$ $-c0_{2}c^{2}’$

,

where $c$ is a positive constant. Choosing suitably the arc length $u$ and
supposing $b=0$ in the case of $k\neq 0$ without loss of generality, the solution
of (1.4) is given by one of

(1.5) $\rho(u)=\left\{\begin{array}{l}I,A) au (b=0)\\I,B) -2-bu^{2}+a1 (b\neq 0)\\II,A_{0}) aexpcu,\\II,A_{-}) asinhcu,\\lI,B) acoshcu,\\III) acoscu,\end{array}\right.$
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where $a$ is an arbitrary constant.
The $\rho$ -curves, the trajectories of the vector field $\rho^{\kappa}=\rho_{\lambda}g^{\lambda\kappa}$ , are geodesics.

When we denote by $u^{1}$ their arc length, suitably chosen, and by prime ordinary
derivatives of functions of $u^{1}$ , there is an adapted coordinate system $(u^{\kappa})$

$=(u^{1}, u^{a})$ in a neighborhood of an ordinary point of $\rho$ such that the metric
form of $M$ is given by

(1.6) $ds^{2}=(du^{1})^{2}+(\rho^{\prime}(u^{1}))^{2}\overline{ds^{2}}$ ,

where $\overline{ds^{2}}$ is the metric form of an $(n-1)$-dimensional Riemannian manifold
$M^{n-1}$ . Making Greek indices $\alpha,$ $\beta,$

$\gamma$ run on the range 2, $\cdot$ .. , $n$ , we shall put
$\overline{ds^{2}}=f_{\mathcal{T}\beta}du^{\gamma}du^{\beta}$ as occasion demands.

If $M$ admits an SC-field $\rho$ , then, by substituting (1.5) into (1.6) and trans-
ferring constant factors into the metric of $M^{n-1}$ , we can express the metric
form $ds^{2}$ of $M$ as

(1.7) $ds^{2}=\left\{\begin{array}{l}I,A)\\I,B)\\lI,A_{0})\\lI,A_{-})\\II,B)\\III)\end{array}\right.$ $(du_{1}^{1_{1}^{1}})_{2}^{2^{2}}+_{(si^{1}n}(du)^{2}+^{(ex^{2}p2c_{1}^{2}u_{2})\overline{d_{\overline{d^{S}s_{2^{2}}}’}}}(du)_{2}+(\sinh_{c}cu’)^{)_{2}}\overline{d_{2}s^{2}}(du^{1})+(u)\overline{ds_{cu_{1^{1}}^{1}}}(du^{1})^{2}+(\cos^{2}h_{u)\overline{d^{2}s}}(du)+ds$

,

in the respective cases. If we rewrite the coefficients of $\overline{ds^{2}}$ in these forms

by $\tau^{2}(u^{1})$ , the Christoffel symbol $\{_{\mu^{\kappa}\lambda}\}$ of $M$ has components

$\{_{1^{1}1}\}=\{1^{\alpha_{1}}\}=\{1^{1}\beta\}=0$ , $\{_{\gamma^{1}\beta}\}=-\tau\tau f_{\gamma\beta}$ ,

(1.8)

$\{_{1^{\alpha}\beta}\}=\div\delta_{\beta}^{\alpha}$ , $\{\}=\{\}$ ,

where $\{_{\overline{\gamma^{\alpha}\beta}}\}$ is the Christoffel symbol of the metric tensor $f_{\gamma_{\beta}}$ in $M^{n-1}$ .
One of the authors proved in [7, Theorem 2] that
THEOREM A. If a complete Riemannian manifold $M$ of dimension $n\geqq 2$

admits an SC-field $\rho$ having the characteristic constant $k$ , then $M$ is one of
the following manifolds;

I, A) the direct product $I\times M-1$ of a straight line I with an $(n-1)$ -dimen-
sional complete Riemannian manifold $M^{n-1}$ ,

I, B) $a$ Euclidean space,
II, A) a pseudo-hyperbolic space of zero or negative type,



Conformal transformations 331

II, B) a hyperbolic space of curvature $k=-c^{2}$ ,

II1) a spherical space of curvature $k=c^{2}$ .
A pseudo-hyperbolic space of zero or negative type has been defined in

[7] as a complete Riemannian manifold which is diffeomorphic to the product
$I\times M^{n-1}$ and whose metric form is given by II, $A_{0}$) or II, $A_{-}$) of (1.7) respec-
tively. A pseudo-hyperbolic space is of negative constant sectional curvature
$-c^{2}$ if and only if the manifold $M^{n- 1}$ is locally Euclidean in Case II, $A_{0}$) or of
negative constant sectional curvature $-c^{2}$ in Case II, A), [7, Lemma 3.1]. The
SC-field $\rho$ has no stationary point in Cases $l,$ $A$) and $lI,$ $A$), one corresponding
to $u^{1}=0$ in Cases I, B) and II, B), and two corresponding to $u^{1}=0$ and $u^{1}=$

$\pi/c$ in Case III). The metric forms in (1.7) are valid in the whole manifold
$M$ except these stationary points.

\S 2. Manifolds admitting functionally independent $C$-fields.

First we prove the following
LEMMA. If a C-field $\rho$ satisfies the equation (1.2) at ordinary points, $so$

does it at stationary points, that is, $\rho$ is an SC-field in the whole manifold $M$.
PROOF. $ lf\phi$ vanishes identically, then $\rho$ has no stationary point as is

easily seen. Hence we suppose that $\phi$ dose not identically vanish. Let $Q$ be
a stationary point of $\rho,$ $\rho_{\lambda}(Q)=0$ . Suppose first $\phi(Q)\neq 0$ . Then we have
$\partial_{\mu}\partial_{\lambda}\rho(Q)=\phi(Q)g_{\mu\lambda}(Q)$ and see that the matrix $(\partial_{\mu}\partial_{\lambda}\rho)$ is regular in a neigh-
borhood of $Q$ . Hence $Q$ is an isolated stationary point. By the comparison
of (1.1) with (1.2) and the continuity of $\phi$ and $\rho$ , we have also $\phi=-k\rho+b$

at $Q$ .
Suppose next $\phi(Q)=0$ . Then $\rho_{\lambda}(Q)=0$ and $\nabla_{\mu}\rho_{\lambda}(Q)=0$ . Join $Q$ with an

ordinary point $P$ neighboring to $Q$ by the geodesic curve, and let $Q$ be
renewedly the stationary point which is met first on the geodesic curve from
$P$ and at which $\phi$ vanishes. Then we have the equation (1.3) along the geodesic
curve and the equation (1.4) along the arc $PQ$ . Since $\rho^{\prime}(u)$ and $\rho^{\prime\prime}(u)$ vanish
at $Q$ , the constants $k$ and $b$ vanish in order that (1.4) is compatible with (1.3)
at $Q$ , and consequently $\phi$ vanishes identically. This is a contradiction.

Q. E. D.
By virtue of this lemma, we can restate more precisely Theorem 1 of [8]

as follows:
THEOREM 1. If two C-fields are functionally independent of each other,

then they are SC-fields in the whole manifold and have a characteristic constant
in common.

Now we are going to determine the structure of a complete Riemannian
manifold $M$ admitting $m$ functionally independent C-fields $\rho_{(i)}$ $(i=1, \cdots , m)$ ,
$m\leqq n$ . Let $k$ be the characteristic constant in common with $\rho_{(i)}$
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l) The case of $k=0$ . If there is an SC-field with $b\neq 0$ in (1.2), then the
manifold $M$ itself is a Euclidean space by Theorem $A,$ $I,$ $B$). If all the fields
$\rho_{(i)}$ are parallel, $i$ . $e.$ ,

(2.2) $\nabla_{\mu}\nabla_{\lambda}\rho_{(t)}=0$ ,

then we take $u^{1}$ as the arc length, suitably chosen, of the $\rho$ -curves of $\rho_{(1)}$ . By
Theorem $A,$ $I,$ $A$), $M$ is the direct product $I\times M^{n-1}$ . The metric form of $M$

is given by I, A) of (1.7) and the components of the Christoffel symbol vanish

all except $\{_{\gamma^{\alpha}\beta}\}$ which is equal to $\{_{\gamma\beta}\alpha\}$ formed from the metric tensor $f_{r\beta}$ of
$M^{n-1}$ . Then the equations (2.2) are decomposed into

(2.3) $\partial_{1}\partial_{1}\rho_{(t)}=0$ , $\partial_{1}\partial_{\beta}\rho_{(t)}=0$ , $\nabla_{\gamma}\nabla_{\beta}\rho_{(i)}=0$ $(i=2, \cdots m)$ .
From the first equations, we may put

(2.4) $\rho_{(i)}=a_{(t)}u^{1}+\beta_{(i)}$ $(i=2, \cdots m)$ ,

$a_{(t)}$ and $\beta_{(i)}$ being functions on $M^{n-1}$ . Moreover, from the second equations of
(2.3), it follows that $a_{(t)}$ are constants, and hence $\beta_{(i)}$ should be functionally
independent of one another on $M^{n-1}$ . From the third equations of (2.3), we
see $\beta_{(i)}$ satisfying

$\nabla_{\tau}\nabla_{\beta}\beta_{(t)}=\overline{\nabla},.\overline{\nabla}_{\beta}\beta_{(i)}=0$ $(i=2, m)$

where $\overline{\nabla}$ indicates covariant differentiation with respect to $\{_{\gamma\beta}\overline{\alpha}\}$ in $M^{n-1}$ .
Thus the part $M^{n-1}$ admits $m-1$ parallel scalar fields $\beta_{(i)}$ functionally inde-
pendent of one another. Applying the above discussions repeatedly, we see
that the manifold $M$ is the product $E’’\times M^{n-m}$ of an m-dimensional Euclidean
space $E^{m}$ with an $(n-m)$-dimensional complete Riemannian manifold $M^{n-7r\iota}$

and the $m$ fields $\rho_{(i)}$ are regarded as functions on $E^{m}$ . In a separate coordinate
system $(u^{i}, u^{p})$ , of which $(u^{i})$ belong to $E^{m}$ and $(u^{p})$ to $M^{n-m}$, the metric form
of $M$ is expressed in the form

$ds^{2}=ds_{0}^{2}+\overline{ds^{2}}$ ,

$ds_{0}^{2}$ and $\overline{ds^{2}}$ being the metric forms of $E^{m}$ and $M^{n-m}$ respectively. In the
remaining of this paragraph, Latin indices $i,$ $j,$ $k$ run on the range 1, $\cdots$ , $m$ ,

and $p,$ $q,$ $r$ on the range $m+1,$ $\cdots$ , $n$ unless otherwise stated. The Christoffel
symbol of $M$ is decomposed into those of the parts $E^{m}$ and $M^{n-m}$. If we denote
by $\nabla^{0}$ covariant differentiation in $E^{m}$, the equations (2.2) are reduced to

$\nabla_{k}^{0}\nabla_{j}^{0}\rho_{(i)}=0$ ,

which mean that the C-fields $\rho_{(t)}$ are regarded as parallel scalar fields in the
Euclidean part $E^{m}$ .

II) The case of $k=-c^{2}$ . We have the equations
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(2.5) $\nabla_{\mu}\nabla_{\lambda}\rho_{(i)}=c^{2}\rho_{(t)}g_{u\lambda}$ $(i=1, \cdots m)$ .
B) If one of the fields, say $\rho_{(1)}$ , is given by II, B) of (1.5) along the $\rho-$

curves of $\rho_{(1)}$ , then $M$ itself is a hyperbolic space of curvature $-c^{2}$ by Theorem
$A$ , II, B).

$A_{0})$ If $\rho_{(1)}$ is given by II, $A_{0}$) of (1.5), then $M$ is diffeomorphic to $I\times M^{n-1}$

and the metric form of $M$ is given by II, $A_{0}$) of (1.7) in an adapted coordinate
system $(u^{1}, u^{\alpha})$ . Then the nontrivial components of the Christoffel symbol are

$\{_{\gamma^{1}\beta}\}=-c(\exp 2cu^{1})f_{\mathcal{T}\beta}$ , $\{_{1^{\alpha}\beta}\}=c\delta_{\beta}^{\alpha}$ , $\{\}=\{\}$ .

Consequently the equations (2.5) are decomposed into
$\nabla_{1}\nabla_{1}\rho_{(i)}=\partial_{1}\partial_{1}\rho_{(t)}=c^{2}\rho_{(t)}$ ,

$\nabla_{1}\nabla_{\beta}\rho_{(t)}=\partial_{1}\partial_{\beta}\rho_{(i)}-c\partial_{\beta}\rho_{(i)}=0$ ,
(2.6)

$\nabla_{\gamma}\nabla_{\beta}\rho_{(i)}=\overline{\nabla}_{\gamma}\overline{\nabla}_{\beta}\rho_{(i)}+c(\exp 2cu^{1})f_{\gamma\beta}\partial_{1}\rho_{(i)}$

$=c^{2}(\exp 2cu^{1})\rho_{(i)}f_{r\beta}$ $(i=2, \cdots , m)$ .
From the first equations we may put

(2.7) $\rho_{(t)}=\beta_{(i)}\exp cu^{1}+a_{(t)}\exp(-cu^{1})$ $(i=2, \cdots , m)$ ,

where $\beta_{(i)}$ and $a_{(i)}$ are functions on $M^{n-1}$ . Moreover, substituting these ex-
pressions (2.7) into the second and the third of (2.6), we see that $a_{(t)}$ are
constants and $\beta_{(i)}$ satisfy the equations

$\overline{\nabla}_{\gamma}\overline{\nabla}_{\beta}\beta_{(i)}=2c^{2}a_{(i)}f_{\gamma\beta}$ $(i=2, \cdots m)$ .
If one of the coefficients $a_{(t)}$ is not equal to zero, then by Theorem $A,$ $I,$ $B$)

the part $M^{n-1}$ is an $(n-1)$-dimensional Euclidean space $E^{n-1}$ . Therefore $M$ is
diffeomorphic to an n-dimensional Euclidean space $E^{n}=I\times E^{n-}$ and the metric
form is given by

$ds^{2}=(du^{1})^{2}+(\exp 2cu^{1})\overline{ds^{2}}$ ,

where $\overline{ds^{2}}$ is the Euclidean metric form of $E^{n-1}$ . Thus the manifold $M$ is a
hyperbolic space of curvature $-c^{2}$ .

If all the coefficients $a_{(i)}$ vanish, then the $m-1$ scalar fields $\beta_{(t)}$ are parallel
and functionally independent of one another on $M^{n-1}$ . By means of results in
Case I), $M^{n-1}$ is a product $E^{m-}$ $\times M^{n-m}$ and hence $M$ is diffeomorphic to $E^{m}$

$\times M^{n-m}$ and the metric form of $M$ is given by

(2.8) $ds^{2}=(du^{1})^{2}+(\exp 2cu^{1})(\overline{ds_{0}^{2}}+\overline{ds^{2}})$ ,

where $\overline{ds_{0}^{2}}$ is the Euclidean metric form of $E^{m-1}$ . If we put

$ds_{0}^{2}=(du^{1})^{2}+(\exp 2cu^{1})\overline{ds_{0}^{2}}$ ,
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then $ds_{0}^{2}$ is a hyperbolic one of curvature $-c^{2}$ . The expression (2.8) can be
rewritten in the form

$ds^{2}=ds_{0}^{2}+\sigma^{2}\overline{ds^{2}}$

in a separate coordinate system $(u^{i}, u^{p})$ , and $\sigma$ is a function of $u^{i}$ only. The

components $\{_{k^{i}j}\}$ of the Christoffel symbol of $M$ are identical with $\{_{k^{i}j}\}_{0}$ of

the hyperbolic metric $ds_{0}^{2}$ . Since $\beta_{(i)}$ ($i=2,$ $\cdots$ , m) are functions on $E^{m-1}$ , the
C-fields $\rho_{(i)}$ ($i=1,$ $\cdots$ , m) are dependent of the coordinates $u^{i}$ only and the
equations (2.5) are reduced to

$\nabla_{k}^{0}\nabla_{j}^{0}\rho_{(i)}=c^{2}\rho_{(i)}g_{kj}$ $(i=1, \cdots m)$ .
Therefore $\rho_{(i)}$ are regarded as SC-fields on an m-dimensional hyperbolic space
$M_{0}$ of curvature $-c^{2}$ .

$A_{-})$ If $\rho_{(1)}$ is given by II, $A_{-}$) of (1.5), then the metric form of $M$ is
given by II, A) of (1.7) in an adapted coordinate system and the nontrivial
components of the Christoffel symbol are

$\{_{\gamma^{1}\beta}\}=-c(\sinh cu^{1}\cosh cu^{1})f_{r\beta}$ ,

$\{_{1^{\alpha}\beta}\}=c(\tanh cu^{1})\delta_{\beta}^{\alpha}$ , $\{_{\gamma^{\alpha}}\}=\{\overline{r^{\alpha}}\}$ .

The equations (2.5) are decomposed into

$\nabla_{1}\nabla_{1}\rho_{(i)}=\partial_{1}\partial_{1}\rho_{(i)}=c^{2}\rho_{(i)}$ ,

$\nabla_{1}\nabla_{\beta}\rho_{(i)}=\partial_{1}\partial_{\beta}\rho_{(i)}-c(\tanh cu^{1})\partial_{\beta}\rho_{(i)}=0$ ,

(2.9)
$\nabla_{\gamma}\nabla_{\beta}\rho_{(i)}=\overline{\nabla}_{\gamma}\overline{\nabla}_{\beta}\rho_{(i)}+c(\sinh cu^{1}\cosh cu^{1})f_{\mathcal{T}\beta}\partial_{1}\rho_{(i)}$

$=c^{2}(\cosh cu^{1})^{2}\rho_{(t)}f_{\gamma\beta}$ $(i=2, \cdots m)$ .
From the first equations we may put

$\rho_{(t)}=a_{(i)}\sinh cu‘+\beta_{(i)}\cosh cu^{1}$ ($i=2,$ $\cdots$ , m)

where $a_{(i)}$ and $\beta_{(i)}$ are functions on $M^{n-1}$ . Substituting these expressions
into the second and the third of (2.9), we see that $a_{(i)}$ are constants and $\beta_{(i\rangle}$

satisfy the equations

$\overline{\nabla}_{\gamma}\overline{\nabla}_{\beta}\beta_{(i)}=c^{2}\beta_{(i)}f_{\gamma\beta}$ $(i=2, \cdots m)$ .
Therefore the $m-1$ fields $\beta_{(t)}$ are SC-fields functionally independent of one
another on $M^{n-1}$ .

When we take the coordinate $u^{2}$ as the arc length of $\rho$ -curves of $\beta_{(2)}$ in
$M^{n-1}$ , there occur three cases where $\beta_{(2)}$ is given by the form of II, B), II, $A_{0}$)

or II, $A_{-}$) of (1.5). $ln$ the first case, it follows from the previous discussions
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that $M$ is diffeomorphic to $I\times E^{n-1}$ and the metric form is expressed in the
form

(2.10) $ds^{2}=(du^{1})^{2}+(\cosh cu^{1})^{2}\overline{ds^{Z}}$ ,

where $\overline{ds^{2}}$ is a hyperbolic metric form of curvature $-c^{2}$ , and the form (2.10)
itself is a hyperbolic one of curvature $-c^{2}$ . In the second case, the previous
discussions in $A_{0}$) imply that $M$ is diffeomorphic to $I\times E^{m-1}\times M^{n-m}$ and the
metric form can be expressed in the form

$ds^{2}=(du^{1})^{2}+(\cosh cu^{1})^{2}(\overline{ds_{0}^{2}}+\overline{\sigma}^{2}\overline{ds^{2}})$

or
$ds^{2}=(du^{1})^{2}+(\cosh cu^{1})^{2}\overline{ds_{0}^{2}}+\sigma^{2}\overline{ds^{2}}$ ,

where $\overline{\sigma}$ is a function of the coordinates $u^{2},$ $\cdots$ , $u^{m}$ belonging to $E^{m-1}$ and
consequently $\sigma$ is a function of $u^{i}$ belonging to $E^{m}=I\times E^{m-1}$ . Therefore the
manifold $M$ is diffeomorphic to the product $M_{0}\times M^{n-m}$ of a hyperbolic space
$M_{0}$ with a manifold $M^{n-m}$, and the metric form is

$ds^{2}=ds_{0}^{2}+\sigma^{2}\overline{ds^{2}}$

in a separate coordinats system $(u^{i}, u^{p})$ . By the same argument as that in
Case $A_{0}$), we see that $\rho_{(t)}$ are regarded as SC-fields in the hyperbolic part $M_{0}$ .

In the third case where $\beta_{(2)}$ is given by the form II, A) of (1.5), on the
repeated way to obtain the metric form of $M$, we may consider only the case
where the form II, $A_{-}$) of (1.5) appears successively. Finally we see that the
manifold $M$ is diffeomorphic to $E^{m}\times M^{n-m}$ and the metric form is expressed
in the form

$ ds^{2}=(du^{1})^{2}+\cosh^{2}cu^{1}[(du^{2})^{2}+\cosh^{2}cu^{2}[(du^{8})^{2}+\cdots$

... $[(du^{m-1})^{2}+\cosh^{2}cu^{m-1}[(du^{m})^{2}+\cosh^{2}cu^{m}\overline{ds^{2}}]]\cdots$ ]]

(2.12)
$=(du^{1})^{2}+\cosh^{2}cu^{1}[(du^{2})^{2}+\cosh^{2}cu^{2}[(du^{3})^{2}+\cdots$

... $[(du^{m-1})^{2}+\cosh^{2}cu^{m-1}(du^{m})^{2}]\cdots]]+\sigma^{2}\overline{ds^{2}}$ ,

where $\sigma$ is certain function of $u^{i}$ . Since $(du^{m-1})^{2}+\cosh^{2}cu^{m-1}(du^{m})^{2}$ is a two-
dimensional hyperbolic metric of curvature $-c^{2}$ , the metric form (2.12) deleted
the last term off is by induction a hyperbolic metric of curvature $-c^{2}$ . Thus
the manifold $M$ has the same structure as that of the second case, and $\rho_{(i\rangle}$

are SC-fields in the hyperbolic part $M_{0}$ .
III) The case of $k=c^{2}$ . The manifold $M$ is a spherical space of curvature

$c^{2}$ by means of Theorem $A$ , III).
Summerizing the above results, we can state that
THEOREM 2. If a complete Riemannian manifold $M$ of dimension $n\geqq 2$

admits C-fields $\rho_{(t)}$ functionally independent of one another, then either the
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manifold $M$ itself or a part $M_{0}$ is a space form of curvature $k$ , that is, I) $a$

Euclidean space for $k=0$ , II) a hyperbolic space for $k<0$, or III) a spherical
space for $k>0$ . In addition, $\rho_{(t)}$ are SC-fields having $k$ as the characteristic
constant in common and are regarded as functions on the space form.

The theorem enables us to pay our considerations to space forms as far
as we are concerned with SC-fields.

\S 3. $SC$-fields and isometric vector fields in space forms.

For the sake of later use, we shall seek for the expressions of SC-fields
and isometric vector fields in space forms.

It is well known that, in a space form $M$ of curvature $k$ , there is a co-
ordinate system $(x^{h})$ in which the metric form is expressed in the form

(3.1)
$ds^{2}=\frac{\Sigma(dx^{h})^{2}}{\{1+\frac{k}{4}\sum(x^{h})^{2}\}^{2}}$

.

In this paragraph, Latin indices $h,$ $i,$ $j,$ $k$ run on the range 1, $\cdots$ , $n$ , and the
summation convention is also applied to repeated indices unless otherwise is
stated. We put

$R^{2}=\sum(x^{h})^{2}$ , $S=1+\frac{k}{4}R^{2}$ .

For $k=-c^{2}$ , the manifold $M$ is diffeomorphic to the ball $R<2/c$ and the
expression (3.1) is valid there. For $k=c^{2}$ , the coordinate system $(x^{h})$ covers
the manifold $M$ except the north pole corresponding to $ R=\infty$ , and the metric
form (3.1) tends to zero as $R$ tends to the infinity.

The metric tensor of $M$ is equal to

$g_{ji}=(1/S^{2})\delta_{ji}$ ,

and the Christoffel symbol is equal to

$\{_{j^{h}i}\}=-\frac{1}{S}(S_{j}\delta_{ih}+S_{i}\delta_{jh}-S_{h}\delta_{ji})$

$=-\frac{k}{2S}(x^{j}\delta_{ih}+x^{i}\delta_{jh}-x^{h}\delta_{ji})$ ,

where we have put $S_{i}=\partial_{i}S=kx^{i}/2$ . Substituting these expressions into (1.2),
we obtain the equations

$\partial_{j}\rho_{i}+\frac{1}{S}(S_{j}\rho_{i}+S_{i}\rho_{j}-\delta_{ji}S_{h}\rho_{h})=\frac{1}{S^{2}}(-k\rho+b)\delta_{ji}$

or

(3.2) $\partial_{j}\partial_{i}(S\rho)=[\frac{k}{2}\rho+\frac{k}{2}x^{h}\rho_{h}-\frac{1}{S}(k\rho-b)]\delta_{ji}$ .
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If we put

(3.3) $2C=\frac{k}{2}\rho+\frac{k}{2}x^{h}\rho_{h}-\frac{1}{S}(k\rho-b)$ ,

then (3.2) are decomposed into the two following types:

$\partial_{j}\partial_{i}(S\rho)=0$ $(j\neq i)$ ,

$\partial_{i}\partial_{i}(S\rho)=2C$ (not summed in $i$).

The first equations mean that, for each value of $i,$ $\partial_{t}(S\rho)$ is a function of the
corresponding coordinate $x^{i}$ only. Then the second imply that $C$ is a constant
and the solution has the expression

$\rho=\frac{1}{S}(CR^{2}+B_{h}x^{h}+A)$ ,

where $A$ and $B_{h}$ are arbitrary constants. Substituting this into (3.3), we see
that

$C=-\frac{k}{4}A+\frac{b}{2}$ .
Hence the SC-field $\rho$ has the expression

$\rho=\frac{1}{S}[A(1-\frac{k}{4}R^{2})+B_{h}x^{h}+\frac{b}{2}R^{2}]$

in the coordinate system $(x^{h})$ .
Next let $W$ be an isometric vector field and denote by $(w^{h})$ its components

in the coordinate system $(x^{h})$ . The Killing equations for $W$ are
$S(W)g_{ih}=w^{k}\partial_{k}g_{ih}+(\partial_{i}w^{k})g_{kh}+(\partial_{h}w^{k})g_{ik}=0$ ,

where $S(W)$ indicates Lie differentiation with respect to $W$, see [9]. These
equations are reduced to

(3.4) $\partial_{i}w^{h}+\partial_{h}w^{i}=2\frac{w^{k}S_{k}}{S}\delta_{ih}$ .

with respect to the coordinate system $(x^{h})$ in the space form $M$. Putting
$T=w^{k}S_{k}/S,$ $T_{i}=\partial_{i}T$ and differentiating (3.4) in $\chi^{j}$ we have

$\partial_{j}\partial_{i}w^{h}+\partial_{j}\partial_{h}w^{i}=2T_{j}\delta_{ih}$ .
Permuting the indices $jih$ and taking the sum of the permutations $jih$ and
$ijh$ diminished by the permutation $hji$ , we get

(3.5) $\partial_{j}\partial_{i}w^{h}=T_{j}\delta_{ih}+T_{i}\delta_{jh}-T_{h}\delta_{ji}$ .
Differentiating again in $x^{k}$, exchanging the indices $k$ and $j$ , and equating the
results, we obtain

$(\partial_{k}T_{i})\delta_{jh}-(\partial_{k}T_{h})\delta_{ji}=(\partial_{j}T_{i})\delta_{kh}-(\partial_{j}T_{h})\delta_{kt}$ .
It follows that $\partial_{j}T_{i}=0$ for $n>2$ and hence $T_{i}$ are constants, say $T_{i}=c_{i}$ . Then
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the equations (3.5) are rewritten in

(3.6) $\partial_{j}\partial_{i}w^{h}=c_{j}\delta_{ih}+c_{i}\delta_{jh}-c_{h}\delta_{ji}$ .
For the indices $jih$ different from one another, (3.6) are reduced to $\partial_{j}\partial_{i}w^{h}=0$,
which mean that, for each pair $i,$ $h(i\neq h),$ $\partial_{i}w^{h}$ depends on the corresponding
coordinates $x^{\dot{t}}$ and $x^{h}$ only. Moreover, for $j=i\neq h$ , we have

$\partial_{i}\partial_{i}w^{h}=-c_{h}$ (not summed in i) ,

from which we may put

$\partial_{i}w^{h}=-c_{h}x^{i}+\beta_{ih}$ $(i\neq h)$ ,

$\beta_{ih}$ depending on $\chi^{h}$ only. Substituting these expressions into (3.6) with $j=h$

$\neq i$ , we have $d\beta_{ih}/dx^{h}=c_{\dot{t}}$ (not summed in h) and hence put

$\partial_{i}w^{h}=c_{i}x^{h}-c_{h}x^{i}+b_{ih}$ $(i\neq h)$

$b_{ih}$ being arbitrary constants. Therefore we can write

(3.7) $w^{h}=(\sum_{i\neq h}c_{i}x^{i})x^{h}-\frac{1}{2}c_{h}\sum_{?\neq h}(x^{i})^{2}+\sum_{i\neq h}b_{ih}x^{i}+\alpha_{h}$ ,

where, for each value of $h,$
$\alpha_{h}$ is a function of the corresponding coordinate

$x^{h}$ only. If the second derivative of (3.7) in $x^{h}$ is substituted into (3.6) with
$j=i=h$ , we have $d^{2}\alpha_{h}/dx^{h^{2}}=c_{h}$ and hence we put

(3.8) $\alpha_{h}=\frac{1}{2}c_{h}(x^{h})^{2}+b_{hh}x^{h}+a_{h}$ (not summed in h) ,

where $b_{hh}$ and $a_{h}$ are arbitrary constants. From (3.7) and (3.8), it follows that

(3.9) $w^{h}=c_{i}x^{i}x^{h}+\frac{1}{2}c_{h}R^{2}+b_{ih}x^{i}+a_{h}$ .

Substituting these expressions of $w^{h}$ into the Killing equations (3.4), we see
that the coefficients have to satisfy the relations

$b_{ih}+b_{hi}=0$ and $c_{i}=\frac{k}{2}a_{i}$ ,

and we have finally the expressions

(3.10) $w^{h}=a_{i}[(1-\frac{k}{4}R^{2})\delta_{ih}+\frac{k}{2}x^{i}x^{h}]+\frac{1}{2}b_{fi}(x^{j}\delta_{ih}-x^{i}\delta_{jh})$

as general solutions of (3.4).
Let $K$ be the Lie algebra of isometric vector fields. The algebra $K$ is

spanned by $n(n+1)/2$ vector fields

$W_{i}$ : $w_{(i)}^{h}=(1-\frac{k}{4}R^{2})\delta_{ih}+\frac{k}{2}x^{i}x^{h}$ ,

(3.11)
$W_{ij}$ : $w_{(ij)}^{h}=\delta_{ih}x^{j}-\delta_{jh}x^{i}$ .
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Let $K_{1}$ and $K_{2}$ be the vector subspaces of $K$ spanned by $n$ vectors $W_{i}$ and
by $n(n-1)/2$ vectors $W_{ij}$ respectively. By computations, we see that $[K, K]$

$\subset K_{2}$ . It is seen for $n=1$ and 2 that the $n(n+1)/2$ vectors of (3.11) satisfy
the Killing equations (3.4), that is, they are isometric vector fields, and span
the Lie algebra $K$ because $\dim K=n(n+1)/2$ .

\S 4. Conformal vector fields in a product Riemannian manifold.

A conformal vector field $V=(v^{\kappa})$ , or an infinitesimal conformal trans-
formation, in a Riemannian manifold $M$ is characterized by the equations

(4.1) $\nabla_{\mu}v_{\lambda}+\nabla_{\lambda}v_{\mu}=2\rho g_{\mu\lambda}$ ,

where $\rho$ is a scalar field and said to be associated with $V$ . A concircular
vector field is a conformal one, of which the associated scalar field is a C-field.

In this and next paragraphs, we shall consider a product Riemannian
manifold, say, the product $M=M_{1}\times M_{2}$ of two Riemannian manifolds $M_{1}$ and
$M_{2}$ . Let $n_{1}$ and $n_{2}$ be the dimensions of $M_{1}$ and $M_{2}$ respectively; $n_{1}+n_{2}=n$ .
A part, a submanifold isometrc to $M_{a}$ , through a point $P$ will be denoted by
$M_{a}(P),$ $a=1,2$ . The orthogonal projection of a vector field $V$ , restricted on
a part $M_{a}(P)$ , onto $M_{a}$ is called the restriction of $V$ on $M_{a}$ and denoted by
$V_{(a)}$ .

Denote a separate coordinate system in $M$ by $(u^{h}, u^{p}),$ $(u^{h})$ belonging to
$M_{1}$ and $(u^{p})$ to $M_{2}$ . Latin indices $h,$ $i,$ $j,$ $k$ will run on the range 1, $\cdot$ .. , $n_{1}$ and
$p,$ $q,$ $r,$ $s$ on the range $n_{1}+1$ , $\cdot$ .. , $n$ . The metric tensor of $M=M_{1}\times M_{2}$ has the
form

$(g_{\mu\lambda})=\left(\begin{array}{ll}g_{ji}(u^{h}) & 0\\0 & g_{rq}(u^{p})\end{array}\right)$

in such a coordinate system, and the nontrivial components of the Christoffel
symbol of $M$ is identical with those of the Christoffel symbols of $M_{1}$ and $M_{2}$ .
Therefore covariant differentiations in $M$ along the parts $M_{1}$ and $M_{2}$ coincide
with those in $M_{1}$ and $M_{2}$ and are commutative with each other. They are
denoted by $\nabla$ too, and distinguished with indices belonging to the parts.

We proved in [6] that a conformal vector field $V$ in a product Riemannian
manifold $M=M_{1}\times M_{2}$ satisfies the equations

(4.2) $\nabla_{j}v_{i}+\nabla_{i}v_{j}=2\rho g_{ji}$ , $\nabla_{q}v_{p}+\nabla_{p}v_{q}=2\rho g_{qp}$ ,

and the associated scalar field $\rho$ does

(4.3) $\nabla_{j}\nabla_{i}\rho=\phi g_{ji}$ , $\nabla_{q}\nabla_{p}\rho=-\phi g_{qp}$ .
These equations mean that the restriction $V_{(a)}$ of $V$ on each part $M.(P)$

$(a=1,2)$ through any point $P$ defines a concircular vector field in $M_{a}$ . Now
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we shall prove that
THEOREM 3. Let $M$ be a complete product Riemannian manifold $M_{1}xM_{2}$

but not a locally Euclidean manifold. Given a nonisometric conformal vector
field $V$ in $M$, the scalar field $\rho$ associated with $V$ satisfies the equations

(4.4) $\nabla_{j}\nabla_{i}\rho=-k\rho g_{ji}$ , $\nabla_{q}\nabla_{p}\rho=k\rho g_{qp}$ ,

$k$ being a nonvanishing constant.
The statement of this theorem was shown in the proof of [7, Theorem 5]

under a stronger assumption that $n_{1}$ or $n_{2}\geqq 3$ . The reason was that we
utilized properties of concircular vector fields in complete Riemannian manifolds
of dimension $\geqq 3$ and it was rather complicated. We give here simpler

PROOF. If $n_{1}=n_{2}=1$ , the product $M=M_{1}\times M_{2}$ is locally Euclidean. Con-
sequently we may suppose that the dimension of one of the parts, say $n_{1}$ , is
$\geqq 2$ . By the first equations of (4.3), the restrictions of $\rho$ on the parts $M_{1}(P)$

through points $P$ in $M$ are C-fields in $M_{1}$ . If, among the restrictions, there
are C-fields functionally independent of one another, then they are SC-fields
with the same characteristic constant by means of Theorem 1. Hence we
may put

(4.5) $\phi=-k\rho+\beta$ ,

where $\beta$ is a function depending on points of $M_{2}$ .
If all the restrictions are functionally dependent of one another, then we

take one of the restrictions, say $\rho_{1}=\rho|M_{1}(P)$ for a point $P$ , and put

(4.6) $\rho=\alpha\rho_{1}+\gamma$ ,

by means of Lemma 1 of [8], where $\alpha$ and $\gamma$ are functions in $M_{2}$ . Let $\phi_{1}$

be the restriction of $\phi$ on $M_{1}(P)$ . Then we have

(4.7) $V_{j}\nabla_{i}\rho_{1}=\phi_{1}g_{ji}$ .
By substituting (4.6) and (4.7) into the equations of (4.3), we have

(4.8) $\phi=\alpha\phi_{1}$ ,

and the equations
$(\nabla_{q}\nabla_{p}\alpha)\rho_{1}+(\nabla_{q}\nabla_{p}\gamma)=-\alpha\phi_{1}g_{qp}$ .

Differentiating covariantly these equations with respect to $u^{i}$ belonging to $M_{1}$ ,
we have

$(\nabla_{q}\nabla_{p}\alpha)\nabla_{i}\rho_{1}=-\alpha(\nabla_{i}\phi_{1})g_{qp}$ .
Since $\rho_{1}$ and $\phi_{1}$ are functions in $M_{1}$ and $\alpha$ and $g_{qp}$ are functions in $M_{2}$ , we
may put

(4.9) $\nabla_{i}\phi_{1}=-k\nabla_{i}\rho_{1}$

and
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(4.10) $\nabla_{q}\nabla_{p}\alpha=k\alpha g_{qp}$

with a constant coefficient $k$ . It follows from (4.9) that $\phi_{1}$ is of the form

(4.11) $\phi_{1}=-k\rho_{1}+a$ ,
$a$ being a constant, and from (4.8) and (4.11) that $\phi$ is also written in the
form (4.5).

Next we show that $\beta$ in the expression (4.5) vanishes. In the case of
$k\neq 0$ , by substituting (4.5) into the first of (4.3), we have

$\rho g_{ji}=\frac{1}{k}(\beta g_{ji}-\nabla_{j}\nabla_{i}\rho)$ .

From these equations and the first of (4.2), we obtain the equations

(4.12) $\nabla_{j}(v_{i}+\frac{1}{k}\rho_{i})+\nabla_{i}(v_{j}+\frac{1}{k}\rho_{j})=\frac{2}{k}\beta g_{ji}$ .

Since $\beta$ is constant on $M_{1}(P)$ through any point $P$ , these equations mean that
the components $v_{i}+\rho_{i}/k$ define altogether a homothetic vector field on $M_{1}(P)$ .
It is known $[3, 10]$ , however, that if a complete Riemannian manifold of
dimension $\geqq 2$ admits a nonisometric homothetic vector field then the manifold
is locally euclidean. Therefore either $\beta$ should vanish identically or $M_{1}$ should
be locally Euclidean. However, in the later case, $M$ is locally decomposed into
three parts, and it is known [6] that, in such a manifold, the scalar field
associated with a conformal vector field is always parallel, that is, $k=0$ ; it
is a contradiction.

In the case of $k=0$ and $\beta\neq 0$ at a point $P$ , the restriction $\rho_{1}=\rho|M_{1}(P)$ is
an SC-field with $k=0$ and $b=\beta(P)$ in (1.2). By means of Theorem $A,$ $I,$ $B$),
$M_{1}$ is a Euclidean space. In the case of $k=0$ and $\beta=0,$ $\rho_{1}$ is a parallel scalar
field and $M_{1}$ is a product manifold by means of Theorem $A,$ $I,$ $A$). In either
of these two cases, $M$ consists of at least three irreducible parts and a con-
formal vector field in $M$ is reduced to an isometric one, unless $M$ is locally
Euclidean by [7, Theorem 6.1]. Q. E. D.

Now we define a vector field $Z=(z^{\kappa})$ in $M$ by putting

(4.13) $z^{h}=g^{hi}\rho_{i}$ , $z^{p}=-g^{pq}\rho_{q}$

with respect to a separate coordinate system $(u^{h}, u^{p})$ . Then we know [7,

Theorem 7.1] that $Z$ is a conformal vector field satisfying the equations

$ig(Z)g_{\mu\lambda}=\nabla_{\mu}z_{\lambda}+\nabla_{\lambda}z_{\mu}=-2k\rho g_{\mu\lambda}$ ,

and a conformal vector field $V$ with associated scalar field $\rho$ is decomposed
into

(4.14) $V=-\frac{1}{k}Z+W_{1}+W_{2}$ ,

where $W_{1}$ and $W_{2}$ are isometric vector fields in $M_{1}$ and $M_{2}$ respectively. This
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fact can be easily proved from the equations (4.12) with $\beta=0$ and the analogue
in $M_{2}$ .

Without loss of generality, we may assume $k=-c^{2}<0$ . Since $M_{1}$ and $M_{2}$

admit SC-fields, the part $M_{1}$ is a pseudo-hyperbolic space and $M_{2}$ a spherical
space of curvature $c^{2}$ . By means of the notice following Theorem 2, $M_{1}$

contains a hyperbolic part $M_{0}$ of curvature $-c^{2}$ and $Z$ is regarded as a vector
field along the produdt $M_{0}\times M_{2}$ in $M=M_{1}\times M_{2}$ . Hence the properties of con-
formal vector fields in $M$ are clarified by those of isometric vector fields and
of the conformal vector fields, such as $Z$, derived from scalar fields satisfying
(4.4) in the product of space forms.

\S 5. Conformal vector fields in the product of space forms.

Let $M_{1}$ and $M_{2}$ be hyperbolic and spherical spaces respectively and normalize
the metric of $M=M_{1}\times M_{2}$ such as $k=-1$ by a homothety. Then the equations
(4.4) turn to

(5.1) $\nabla_{j}\nabla_{i}\rho=\rho g_{ji}$ , $\nabla_{q}\nabla_{p}\rho=-\rho g_{qp}$ .
Now we take coordinate systems $(x^{h})$ and $(y^{p})$ in $M_{1}$ and $M_{2}$ , with respect to
which the metric forms are expressed in

$ds_{1}^{2}=\frac{\Sigma(dx^{h})^{2}}{\{1-\frac{1}{4}\Sigma(x^{h})^{2}\}^{2}}$
,

$ds_{2}^{2}=\frac{\Sigma(dy^{p})^{2}}{\{1+\frac{1}{4}\Sigma(y^{p})^{2}\}^{2}}$

respectively. We put

$R_{1}^{2}=\Sigma(x^{h})^{2}$ , $R_{2}^{2}=\Sigma(y^{p})^{2}$

and
$S_{1}=1-\frac{1}{4}R_{1}^{2}$ , $S_{2}=1+\frac{1}{4}R_{2}^{2}$ .

By use of the results in \S 3, the general solution of (5.1) is written in

$\rho=\frac{1}{S_{1}S_{2}}[A(1+\frac{1}{4}R_{1}^{2})(1-\frac{1}{4}R_{2}^{2})+(1-\frac{1}{4}R_{2}^{2})B_{i}x^{i}$

$+(1+\frac{1}{4}R_{1}^{2})C_{p}y^{p}+D_{ip}x^{i}y^{p}]$ ,

where $A,$ $B_{i},$ $C_{p}$ and $D_{ip}$ are arbitrary constants. Hence the vector space of
solutions of (5.1) is spanned by the four kinds of the following scalar fields:

$\rho_{(0)}=\frac{1}{S_{1}S_{2}}(1+\frac{1}{4}R_{1}^{2})(1-\frac{1}{4}R_{2}^{2})$ ,

$\rho_{(i)}=\frac{1}{S_{1}S_{2}}(1-\frac{1}{4}R_{2}^{2})x^{i}$ ,
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$\rho_{(p)}=\frac{1}{S_{1}S_{2}}(1+\frac{1}{4}R_{1}^{2})y^{p}$ ,

$\rho_{(ip)}=\frac{1}{S_{1}S_{2}}x^{i}y^{p}$ .

The corresponding vector fields defined by (4.13) are given by

$Z_{o}\left\{\begin{array}{l}z_{(o)}^{h}=(1-\frac{1}{4}R_{2}^{2})x^{h}/S_{2},\\z_{(o)}^{s}=(1+\frac{1}{4}R_{1}^{2})y^{s}/S_{1},\end{array}\right.$

$Z_{i}\left\{\begin{array}{l}z_{(i)}^{h}=(1-\frac{1}{4}R_{2}^{2})(S_{1}\delta_{ih}+\frac{1}{2}-x^{i}x^{h})/S_{2},\\z^{s_{(i)}}=x^{i}y^{s}/S_{1},\end{array}\right.$

\langle 5.2)

$Z_{p}\left\{\begin{array}{l}z_{(p)}^{h}=x^{h}y^{p}/S_{2},\\z_{(p)}^{s}=-(1+\frac{1}{4}R_{1}^{2})(S_{2}\delta_{ps}-\frac{l}{2}y^{p}y^{s})/S_{1},\end{array}\right.$

$Z_{ip}\left\{\begin{array}{l}z_{(ip)}^{h}=(S_{1}\delta_{ih}+\frac{1}{2}x^{i}x^{h})y^{p}/S_{2},\\z_{(ip)}^{s}=-(S_{2}\delta_{ps}\frac{1}{2}y^{p}y^{s})x^{i}/S_{1}.\end{array}\right.$

Let $L$ be the Lie algebra of conformal vector fields in $M=M_{1}\times M_{2}$ , and $L_{0}$ ,
$L_{1},$ $L_{2}$ and $L_{12}$ the vector subspaces of $L$ spanned by $Z_{0},$ $Z_{i},$ $Z_{p}$ and $Z_{ip}$ re-
spectively.

On the other hand, it is known that an isometric vector fields in a product
Riemannian manifold is decomposed into the sum of isometric ones in the
parts, [2]. Hence, from the results in \S 3, the Lie algebra $K$ of isometric
vector fields in $M$ is spanned by four kinds of the following vector fields:

(5.3) $\left\{\begin{array}{l}W_{i}. w_{(i)}^{h}=(1+\frac{1}{4}R_{1}^{2})\delta_{ih}-\frac{1}{2}x^{i}x^{h}, w_{(i)}^{s}=0,\\W_{ij}\cdot. w_{(ij)}^{h}=\delta_{ih}x^{j}-\delta_{jh}x^{i}, w_{(tj)}^{s}=0,\\W_{p}. w_{(p)}^{h}=0, w_{(p)}^{s}=(1-\frac{1}{4}R_{2}^{2})\delta_{ps}+\frac{1}{2}y^{p}y^{s},\\W_{pq}\cdot. w_{(pq)}^{h}=0, w_{(pq)}^{s}=\delta_{ps}y^{q}-\delta_{qs}y^{p}.\end{array}\right.$

Let $K_{11},$ $K_{12},$ $K_{21}$ and $K_{22}$ be the subspaces of $K$ spanned by $W_{i},$ $W_{if},$ $W_{p}$ and
$W_{pq}$ respectively.

By straightforward computations, the bracket products of the vector fields
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$W’ s$ with $Z’ s$ are listed in

$[W_{i}, Z_{0}]=Z_{i}$ ,

$[W_{i}, Z_{j}]=\delta_{ij}Z_{0}$ ,

$[W_{i}, Z_{p}]=Z_{ip}$ ,

$[W_{i}, Z_{jp}]=\delta_{ij}Z_{p}$ ,

$[W_{ij}, Z_{0}]=0$ ,

$[W_{ij}, Z_{k}]=\delta_{ik}Z_{j}-\delta_{jk}Z_{i}$ ,

$[W_{ij}, Z_{p}]=0$ ,

$[W_{ij}, Z_{kp}]=\delta_{ik}Z_{jp}-\delta_{jk}Z_{ip}$ ,

$[W_{p}, Z_{0}]=-Z_{p}$ ,

$[W_{p}, Z_{i}]=-Z_{ip}$ ,

$[W_{p}, Z_{q}]=\delta_{pq}Z_{0}$ ,

$[W_{p}, Z_{iq}]=\delta_{pq}Z_{i}$ ,

$[W_{pq}, Z_{0}]=0$ ,

$[W_{pq}, Z_{i}]=0$ ,

$[W_{pq}, Z_{r}]=\delta_{pr}Z_{q}-\delta_{qr}Z_{p}$ ,

$[W_{pq}, Z_{ir}]=\delta_{pr}Z_{iq}-\delta_{qr}Z_{ip}$ .

The relation of inclusion of the above bracket products in $L’ s$ is shown in the
following table:

$\overline{|_{\frac{}{K_{22}}}^{\overline{\frac{K}{K_{12}}}}\frac{}{K_{21}}11|_{\frac{}{0}}^{\frac{L}{0}}\frac{L_{0}}{1}\frac{}{L_{2}}|_{\frac{L}{L_{12}}}^{\frac{L}{}}\frac{}{0}\frac{L_{0}}{1}1|_{\frac{0}{L_{0}}}^{\frac{L}{12}}\frac{}{L_{2}}\frac{L}{}2|_{\frac{L}{L_{12}}}^{\frac{L}{L_{2}}}\frac{}{1}\frac{}{L_{12}}12|}$

From this table, we see that a number of times of bracket products of any
conformal vector field with suitable isometric vector fields is contained in $L_{0}$ ,

for example,
$[K_{21}, [K_{11}, [K_{22}, [K_{12}, L]]]]\subset L_{0}$ .

Now we are going to give the
PROOF OF MAIN THEOREM. In virtue of de Rham’s theorem [1], the

universal covering space of a complete reducible Riemannian manifold $M$ is a
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product space. The completeness of $M$ and of vector fields in $M$ is carried
into the covering space. We may therefore assume that $M$ is a complete
product Riemannian manifold. Let $V$ be a nonisometric conformal vector field
with associated scalar field $\rho$ in $M$. Since an isometric vector field is complete
in a complete Riemannian manifold [3] and the group of conformal transfor-
mations is a Lie group, the decomposition (4.14) implies that, if $V$ would be
complete in $M$, then so would be the conformal vector field $Z$ defined by (4.13).
In order to prove the theorem, it is sufficient to show that $Z$ is not complete
in the product of a hyperbolic space $M_{1}$ with a spherical space $M_{2}$ . Since the
product manifold $M_{1}\times M_{2}$ admits the isometric vector fields $W’ s$ in (5.3) and a
number of times of bracket products of $Z$ with $W’ s$ becomes $Z_{0}$ multiplied
with a non-zero constant factor, we suffice to show that the conformal vector
field $Z_{0}$ is not complete in $M_{1}\times M_{2}$ .

Let $0$ be the point with coordinates $\chi^{h}=0,$ $y^{p}=0$ . The vector field $Z_{0}$

has components
$z_{(0)}^{h}=x^{h}$ , $z_{(0)}^{p}=0$

on the part $M_{1}(O)$ through the point $0$ . Hence the part $M_{1}(O)$ is invariant
under transformations of $Z_{0}$ and the trajectories of points of $M_{1}(O)$ satisfy the
equations

\langle 5.4) $\frac{dx^{h}}{dt}=x^{h}$

with respect to the canonical parameter $t$ of $Z_{0}$ . The trajectory issuing from
a point with coordinate $x_{0}^{h}$ in $M_{1}(O)$ is given by

$x^{h}=x_{0}^{h}\exp t$

and overruns the boundary of the ball $R_{1}<2$ within a finite value of $t$ . Thus
the vector field $Z_{0}$ is not complete. Q. E. D.

Okayama University
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