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Introduction.

The main purpose of the present paper is to establish a new prolongation
theorem for certain linear group structures which are of infinite type and even
not elliptic, and is to apply this theorem to the geometry of differential sys-
tems (distributions in the sense of Chevalley) and the geometry of real sub-
manifolds in complex manifolds. (A linear group G is called elliptic if the Lie
algebra g of G contains no matrix of rank 1, and a G-structure is called elliptic
if the linear group G is elliptic. A recent work of Ochiai has shown that
a G-structure is elliptic if and only if the defining equation of infinitesimal
automorphisms of the G-structure forms an elliptic system of linear differential
equations).

First of all, we introduce the notion of a generalized graded Lie algebra
(Def. 2.1). Let g be a Lie algebra, and let (g,),cz be a family of subspaces of
g, Z being the additive group of integers, which satisfies the following con-
ditions :

1) g=2> g, (direct sum);

2) dim gp <00}

3) I:gp: gq]Cgp+q'
Under these conditions, we say that the direct sum g=3 g, is a generalized
n

graded Lie algebra or simply a graded Lie algebra. (Note that ¢, is a sub-
algebra of g and the mappings g, X g, 2 (X,, X,)—[X,, X,] =g, define repre-
sentations p, of the Lie algebra g, on the vector spaces g,.)

Now consider a graded Lie algebra of the form qg_,+g_,+g, where we
must think g, (p <—2 or p>0) of vanishing, and assume the following con-
ditions :

1° g,=[0-1, 811

2° the representation p_, of the Lie algebra g, on the vector space g,

is faithful.
It is shown that there corresponds to such a graded Lie algebra ¢ _,+g_,-4g, a
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suitable graded Lie algebra g= % g, (the prolongation of g_,+g_,+g,) such
p=—2

that the given graded Lie algebra g_,+g_,-g, will be a subalgebra of g (see
§2). One finds that this situation is just analogous to the usual prolongation
of a subalgebra g, of the general linear Lie algebra gl(g-,) of a vector space
g-, (cf. Singer-Sternberg [5).

From now on, we shall consider a fixed graded Lie algebra g_,+¢-;+0
(over the field R of real numbers) satisfying conditions 1° and 2° and its

prolongation g= % 9 We set m=g_ ,+g,, m=dimm, n’=dimg., and
p=—2

n=dimg_,. We have [g,, m]Cm and hence g, may be identified with a sub-
algebra of the Lie algebra gl(m) by condition 2°. Let G, be the group of g,
being a connected Lie subgroup of the general linear group GL(m) of m. The
elements ¢ of G, may be represented by the matrices of the form

(pﬁ(o') 0 )
0 o]

where p,(p= —2, —1) denotes the representation of G, on g, corresponding to
the representation p, of g, on g,. Let G§ denote the subgroup of GL(m) con-
sisting of all the linear automorphisms of m represented by matrices of the

form
(P—2(0> 0 )
v o)
where ¢ € G, and v are linear mappings of g_, to g_;.

G} being a Lie subgroup of GL(m), we have the notion of a Gi-structure
(Def. 1.2). A Gf-structure on a manifold M of dimension m is defined to be
a pair (P§, ) formed by a principal fiber bundle P} over the base space M
with structure group G§ and an m-valued 1-form w® (the basic form) on P}
satisfying certain conditions. We denote by v (p= —2, —1) the g,-component
of w® with respect to the decomposition m=g_,+q_,. Moreover, we define
the notion of a pseudo-G,-structure. A pseudo-G,-structure on a manifold M
of dimension m is a pair (P,, 6) formed by a principal fiber bundle P, over
the base space M with structure group G, and a collection 8 = {09, 69} as
follows: 69 is a g_,-valued 1-form on P, while 69 is a g_,-valued 1l-form
defined only for vectors in a differential system D, on P,. Moreover the col-
lection 6> must satisfy certain conditions. We show that to every Gi-struc-
ture (P§ o) on a manifold M there is associated a pseudo-G,-structure
(P,, 6°) on M in such a way that the assignment (P§, »®)—(P,, ) will be
compatible with the respective isomorphisms (Th. 4.1).

The main theorem (Ths. 4.1, 4.2 and Cor. 1) in this paper may roughly be
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stated as follows: (1) Let (P ‘) be a Gi-structure on a manifold M which
satisfies the follwing condition

Ci: dw@ﬁé»-—[w‘_"%, ®f4]=0  (modwf),

and let (P,, 6°) be the corresponding pseudo-G,-structure on M. Then we
have a sequence

(P) - =Py 0%) > (Pyy, 0FD) > s (P, §D) — (P, 6)
W'y, Wy
(the prolongation of (P, 6°) or (P, w)) as follows:
1) P, is a principal fiber bundle over the base space P,_, with a certain
group G, as structure group, and w, is the projection of P, onto P,_,, where
Gy is an abelian Lie group of dimension equal to dim g;, and it is constructed

from the prolongation g= % ap of g_,4a-,4q, (see §3);
p=-—2

2) 0% is a collection (%) _,<p=r—, as follows: OP (—2=<p<k—1)is a g,-
valued 1-form on P,, while 6, is a g;_,-valued 1-form defined only for vectors
in a differential system D, on P;;

3) the pair (P, 6®) defines a “ pseudo-Gy-structure” on P, , (Def. 4.2);

(2) the assignment (P%, »®)—(P) is compatible with the various isomor-
phisms.

It should be noted that, in the case where n’=0, we have (P§ o®)
= (P,, /) and the sequence (P) reduces to the usual prolongation of the Gj-
structure (P%, ). The construction (see §§5 and 6) of the sequence (P) is
much more complicated and delicate compared with the construction (cf.
Singer-Sternberg [5] and E. Cartan [I]) of the usual prolongation of a linear
group structure.

As an immediate consequence of the above prolongation theorem, we have
the following finiteness theorem for Gf§-structures (Cor. 3 to Ths. 4.1 and 4.2):
Let (P§, ) be a G§-structure on a manifold M satisfying condition C3Z If
the Lie algebra g is finite dimensional, then the Lie algebra a of all the in-
finitesimal automorphisms of (P§, o) is finite dimensional and of dimension
<dimg. It should be emphasized that, in the case where n’ =0, the linear
group G% is not elliptic and hence is of infinite type.

The first application will be concerned with the geometry of differential
systems (see §7). Let M be a manifold of dimension n+n’ and let D be a
differential system on M of dimension n. Our main theorem is only and well

applied for the case where n/ < %n(n—l). We define the “torsion” T of the

differential system D, and, under suitable conditions on 7, we show that there
corresponds to D a graded Lie algebra g_,-+g_,-}+g, satisfying conditions 1° and
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2° together with a G,-structure (P% »®) on M satisfying condition Cj, where
dimg_,=n’ and dimg_,=n. The above-mentioned finiteness theorem proves
that the Lie algebra of all the infinitesimal automorphisms of D is generally

finite dimensional in the following two cases: n’:~%~n(n-1)—1 (n even =4)
and n’:—%n(n—l) (n = 3).

The second application will be concerned with the geometry of real sub-
manifolds in complex manifolds (see §8). This geometry turns out to be just
similar to the geometry of differential systems. In the following, we assume
the differentiability of class C®. Let M (resp. M’) be a real submanifold in a
complex manifold M (resp. M . A real analytic homeomorphism ¢ is called
an isomorphism of M onto M’ if it can be extended to a complex analytic
homeomorphism ¢ of a neighbourhood of M onto a neighbourhood of M’. Let
M be a real submanifold in a complex manifold M. The tangent vector space
T (M ) to M at any point x € M is a complex vector space and the tangent
vector space T.(M) to M at x is a real subspace of the complex vector space
T.(M). This being said, we say that M is of type (z, n’) if we have dim M
=2n+n’ and if the complex dimension of the maximum complex subspace of
T.(M) contained in T,(M) is equal to n. We shall see that our geometry is
essentially reduced to the case of real submanifolds M of type (n, n’) in com-
plex manifolds M of complex dimension n-++n’.

Now let M be a real submanifold of type (n, n’) in a complex manifold M
of complex dimension n-4n’. Our main theorem is only and well applied for
the case where n’ <n2: We define the “torsion” or the “ Levi form” T of
the real submanifold M, and, under suitable conditions on T, we show that
there corresponds to M a graded Lie algebra g_,+g_,+g, satisfying conditions
1° and 2° together with a G§-structure (P¥ o) on M satisfying condition C§,
where dimg.,=n’ and g_, is equipped with a structure of a complex vector
space of complex dimension n. From the above-mentioned finiteness theorem,
it follows that the Lie algebra of all the infinitesimal automorphisms of M is
generally finite dimensional in the following three cases: n’ =1 =1), n'=n?-1
(n=2) and n’=n% (n=1). We notice that the geometry of real submanifolds
M of type (n, n’) in complex manifolds M of complex dimension n-+n’ has an
intimate relationship with the geometry of Siegel domains D of second kind
developed by Pyatetski-Shapiro and others. The relation is given through the
Silov boundaries of the domains D. We want to take up this problem at
another occasion.

In the subsequent paper [8], we shall introduce the notion of a generalized
filtered Lie algebra, and, as an application, prove a structure theorem for cer-
tain homogeneous spaces whose linear isotropy representations are reducible.
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Furthermore, we shall make a more profound study of the equivalence of two
Gi-structures (P, »™®) satisfying condition C%.
Finally, we add that our theory may be extended to more general theories

in which graded Lie algebras of the form g= % g, (B =3) will play important
p=—k
roles (cf. Remarks at the ends of §§7 and 8).

§1. Preliminaries: Differential forms defined on differential systems,
principal fiber bundles and linear group strucfures.

Throughout this paper except §8, we always assume the differentiability
of class C~. The manifolds to be considered are manifolds satisfying the
second axiom of countability.

Let M be an m-dimensional manifold. An n-dimensional differential sys-
tem on M is, by definition, a differentiable mapping D which maps every
point x = M to an n-dimensional contact element D, to M at x.

DEFINITION 1.1. Let D be an n-dimensional differential system on an m-
dimensional manifold M. A p-form on (M, D) is a differentiable mapping «
which maps every point x € M to an anti-symmetric p-form «, on the vector
space D,.

A O-form « on (M, D) is nothing but a function on M. And if n=m, a
p-form a on (M, D) reduces to a usual p-form on M. Let a (resp. B) be a
p-form (resp. g-form) on (M, D). Then we define the exterior product a A S,
being a (p+¢)-form on (M, D) in the same manner as in usual forms on M.
Given a finite dimensional vector space V, we define a V-valued p-form a on
(M, D) in a trivial manner.

Let « be a V-valued p-form on (M, D), and let D’ be a differential sub-
sytem of D, i.e, D, D, at each x& M. Then «|D’, being a V-valued p-form
on (M, D’), will denote the restriction of @ to D’. Let ¢ be a mapping of a
manifold M’ to M. We assume that ¢ is of maximal rank, i.e., the differential
V4 Of @ at x’ is surjective at each x’ € M’. D’=¢*D will denote the differ-
ential system on M’ defined by D = (¢4,)*D, at each x/, where x = ¢(x").
Given a V-valued p-form a on (M, D), a’ =¢*a will denote the V-valued
p-form on (M’, D) defined by af, = (ps.)*a, at each x’.

Let a (resp. @’) be a V-valued p-form (resp. V’-valued p’-form) on (M, D).
Let (v;) (resp. (v})) be a base of V (resp. V’) and express a (resp. a’) as
o= Zﬁ ay; (resp. a’ =2 ajv;). Let c(x—c,) be a mapping of M to the vector
space of all the bilinjear mappings of V X V’ to a finite dimensional vector

space W. Then the notation c(a, a’) will denote the W-valued (p+p/)-form on
(M, D) defined by c(a, a’)= X c(v;, vj)a; A\ a}, where c(v,, v;) means the map-
7
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pings M = x—c,(v;, vj;) € W. Analogous but more general notations may be
defined in the same way.

11 s
Let ﬁ:tzl) B, be a W-valued ¢g-form on (M, D) and let a= > a;v; (resp.
= =1
o = _210(9 v, resp. a’ = 3 afvy) be a V-valued p-form (resp. V/-valued p’-form,
= k=1

resp. V”-valued p”-form) on (M, D). By the notation =0 (mod a, a’ - a”), We
shall mean the following: 8,=0 (mod a;, e Aaf 1<i<s, 1< <5/, 1<k=s"))
for all | (1 =1<t), where the meaning of mod should be considered in the
algebra of all the forms on (M, D). Analogous but more general notations
may be defined in the same way.

A V-valued 1-form w =3 ww; on (M, D) is called V-independent if the

linear mapping D, > X —w(X) € V is surjective at each x € M. It is clear that
o is V-independent if and only if (w,;) is linearly independent at each x e M.
Let @ be a W-valued 2-form on (M, D) and let w be a V-valued 1-form on
(M, D) which is V-independent. If a@=0 (modw?), then there is a unique
mapping ¢ of M to the vector space of all the anti-symmetric bilinear map-
pings of VX V to W such that a=c(w, w). Analogous results in the same
line can be also obtained.

Let P be a principal fiber bundle over a manifold M with a Lie group G
as structure group. Such a principal fiber bundle P will be symbolically
written as P(M, G). A tangent vector Y to P is called a vertical vector in
P(M, G) if we have 7,Y =0, = being the projection of P onto M. For each
o € G, the transformation R(¢): P> z—z0 < P is called the right translation
induced by o. Let g be the Lie algebra of G. For each X g, let #(X) be
the vector field on P induced by the one parameter group R(expt X). This
vector field (X) is called the vertical vector field induced by X. Now, let N
be a closed normal subgroup of G. We define an equivalence relation ~ in
P as follows: Let z 2z’ = P. Then z~ 2’ if and only if there is a ¢ € N such
that z’ =ze. The quotient space P/N by the equivalence relation ~ is natu-
rally a manifold. Furthermore P (resp. P/N) may be considered as a principal
fiber bundle over the base space P/N (resp. M) with structure group N (resp.
G/N).

Let us now define the notion of G-structures. Given a finite dimensional
vector space V over a field K, GL(V) (resp. gi(V)) will denote the group (resp.
the Lie algebra) of all the automorphisms (resp. all the endomorphisms) of the
vector space V.

DEFINITION 1.2. Let m be an m-dimensional vector space over the field R
of real numbers and let G be a Lie subgroup of GL(m). Let M be an m-
dimensional manifold and let P be a principal fiber bundle over the base
space M with structure group G. Let @ be an m-valued 1-form on P. Then
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the pair (P, ¢) is called a G-structure on M if it satisfies the following con-
ditions :

1) Let Z be a tangent vector to P. Then 6(Z)=0 if and only if Z is a
vertical vector in the principal fiber bundle P(M, G);

2) R(o)*0 =070 for all o € G.

Let (P, 0) (resp (P, 8")) be a G-structure on a manifold M (resp. M’). A
bundle isomorphism ¢ of P onto P’ is called an isomorphism of (P, §) onto
(P’, 0) if we have ¢*¢’=6¢. An isomorphism ¢ of (P, §) onto (P’, §") is called
an equivalence if M =M’ and if ¢ induces the identity transformation of M.

It is clear that the 1-form @ is m-independent.

As an important example of a G-structure, we shall now explain the frame
bundle F of any manifold M of dimension m. We take a fixed m-dimensional
vector space m over R, and denote by F the set of all the linear isomorphisms
z of m onto the tangent vector spaces T,(M) to M at x e M, where x runs
through any points of M. Then F is naturally a manifold, and the group
GL(m) acts on F, as a Lie transformation group, by the mapping F X GL(m)
2(z,0)—z0=z00c F. Thus we get a principal fiber bundle F' over the base
space M with structure group GL(m) with projection z:F=>z—xe M. This
principal fiber bundle F is called the frame bundle of M. Now define an m-
valued 1-form w on F by z-w(Z)=r.Z for all Z< T,(F). Then the pair (F, w)
is clearly a GL(m)-structure on M.

Let G be a Lie subgroup of GL(m). Let P be a G-subbundle of F and
denote by @ the restriction of w to P. Then the pair (P, §) forms a G-struc-
ture on M. The 1-form @ is called the basic form of P. Conversely, we can
prove the followings: (1) Let (P, 0) be a G-structure on M. Then there is a
unique base preserving injecteve homomorphism ¢ of P to F such that 0= *w.

(2) Let (P, 0) and (P, 0”) be two G-structures on M, and let ¢ and ¢’ be
the corresponding homomorphisms of P and P’ to F respectively. Then ¢«(P)
=¢(P’) if and only if there is a unique equivalence ¢ of (P, §) onto (P’, 6")
such that /o =rc.

§2. Prolongation of generalized graded Lie algebras g_,g_,-g,.

In this section, the vector spaces and the Lie algebras to be considered
are those over a fixed field K of characteristic zero. Z will denote the addi-
tive group of integers.

DEeFINITION 2.1 ([7]). Let g be a Lie algebra and let (g,),cz be a family
of subspaces of g. Then the pair {g, (g,)} is called a generalized graded Lie
algebra or simply a graded Lie algebra if it satisfies the following conditions :

1) g= g}ygp (direct sum);

y AV A
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2) dimg, <oo;
3) I:gp’ gq:l - gp+q .
It is clear that g, is a subalgebra of g. Let g be a Lie algebra and let
@picp<t b€ a family of subspaces of g. We shall say that g= 3 g, is a graded
k<p<i

Lie algebra if {g, (3,)} forms a graded Lie algebra by setting g,= {0} for
p=kor p=I

Now, consider a graded Lie algebra g_,+g_,+g, which satisfies the follow-
ing conditions:

2.1 D g=0[g-16-11;
2) if X, =g, and if [X,, g_,]= {0}, then X,=0.

We shall show that to such a graded Lie algebra there is associated a
“maximal ” family (g,),=, of vector spaces such that

1° the direct sum g= i g, is a graded Lie algebra;

p==-2

2° let p be any integer =0. If X, =g, and if [X,, g_,]1={0}, then we
have X,=0;

3° the given graded Lie algebra g_,+g_,+4g, is a subalgebra of g:%‘,gp.

First we define vector spaces g, together with bilinear mappings ¢, X g,
= (Xp’ X—l>—>|:Xp’ X—l] € gp—l and gp X g-—z e (Xp’ X~2) ’”’[Xp: X—Z] € gp—z (P g 0)
inductively as follows: For p=0, these things have already been defined.
Suppose that we have defined vector spaces g, together with bilinear mappings
8p X g1 3 (Xp’ X—1) '*[Xp’ X—l] & 0p—1 and Gp X G—p 2 (Xp: X—z) - [Xp7 X—z] E Gp-2
O0=p=<Fk—1) in such a way that we have

2.2) Xy X Yo 1-[0X,, Yool Xl =10X,, [Xoy, Yo7,
D:Xpr X1 Y ]= [[Xp’ Y. .1, X-.]

for all X, =g, A=p=<k-1),X_, Y =9, and X_,=q.,. Then we define g
to be the vector space of all the linear mappings X, of g_, to g,_, satisfying
the following conditions: There are linear mappings X; of g_, to g,_, such
that

2.3) XXy, Yo J-TX(Yo), X 1=X([X -y, Y.
[XE (X0, Yo ]=[X(Y-0)s X]

for all X_, Y ,e¢., and X ,=q,. Weset [X; X_,1=X(X_) forall X_,eq_,.
Since we have g_,=[g_,, 9,1, we see that X, is uniquely determined by X,.
This being said, we set [X;, X_,]=X,(X_,) for all X_,¢_,. Thus we get
bilinear mappings g, X g-; 2 (Xp X-)—[Xp X1l E gy and g, X g, 2 (X, X_p)
—[Xp X_s]E 01— We have clearly equalities [2.2) with p =k, completing our
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inductive definition.
From ¢g_,=[g-;, g-,] and we get easily

24) [[Xe X0, Yoo} =[[Xp Yp ]y X

for all X,eq;, (=0) and X_,, Y_, =g,

We set [X_,, X,]1=—[X,, X_,] and [X_,, X,]=—[X,, X_,] for all X, g,
(PpzD,X_,=q., and X_,=g,. Let us now define bilinear mappings g, X g,
2 (X, Xp—[ Xy X1E0psq (0 q=0) inductively as follows: For p=g=0,
these things have already been defined. Suppose that we have defined bilinear
mappings g, X g, 2 (X,, X —[ X, X1 € 8prg (P, 9=0, p+qg< k) in such a way
that we have

(2.9) [([X, X X 0=[[Xp Xo11, X J4+[X, [ Xy X417,
[[X, X0 X1 =[[Xp X0l X J+[X, [ X X200
for all X, g, X, =9, (0, ¢=0, p+q<k), X_,e9-,and X ,=q_,. We take any

X,€9, and X, eq, (p,¢=0, p+g=~) and define linear mappings X, and Xj
of g_, and g_, to gz, and g;_, respectively by

Xk(-X—l) - [[Xp! X—l]’ Xq]‘l’[Xpr [Xq’ X~1]:| ’
X]/c (X—z): [[Xpr X—z]’ Xq:I_I_EXp: [ti X—Z]]

for all X_;eq., and X_,=q_,. Then we see that X, and X} satisfy with
p=~k. Hence we have X, =g, This being said, we define [ X,, X,] to be X,.
Thus we get bilinear mappings g, X g, > (X,, X9 —[X,, X¢d<E 0,4 (P, ¢=0,
p+q=~Fk). We have clearly equalities with p and ¢ (p,¢=0, p+qg==F~),
completing our inductive definition. Note that [X,, X,]=—[X, X,] for all
X,e9, and X, =9, (p, g=0).

By induction, we can also prove

(2.6) [[X, X,J X+H0X, X0, X1+ 0X X0 X, ]=0
for all X, =g, X,=q9, and X, g, (p, ¢, v =0).

Finally we set g= § g, (direct sum). By [2.2), [2.4), [2.5) and [2.6), we
p==2

know that the bracket operation in g_,+qa_,+q, and the bilinear mappings

ap X 8 2 (Xp, X9 —[X,, X,]E 8,44 thus defined, give a structure of Lie algebra

on g in such a way that the direct sum g= 3g, satisfies conditions 1°—3°

V4
stated above. The graded Lie algebra g= 3}g, is called the prolongation of
14

the graded Lie algebra g_,--g_,--g,.
We shall now state an important proposition concerning a graded Lie

algebra g= 3 g,, Given such a graded Lie algebra, we denote by p, the

p=—2
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representation of the Lie algebra g, on g, defined by p,(XoX,=[X, X,] for
all X, =g, and X, =g,.

PROPOSITION 2.1 Let g= f} g, be a graded Lie algebra satisfying the fol-
lowing conditions: e

a) g 1S finite dimensional ;

b) [6-1 g1+ {0};

c) let p be any integer =0. If X, =g, andif [X,, g-,1= {0}, then we have
X,=0;

d) both the representations p_, and p_, are irreducible;

e) ¢+ {0}.

Then we have:

1) g is simple;

2) ¢,={0} for any p>2, and dimg,=dimg_, for any p.

A stronger theorem will be proved in the subsequent paper [8].

§3. The groups N;, Gf and G,.

Let g_,+g_,+g, be a graded Lie algebra over R satisfying condition (2.1)
and let g= X g, beits prolongation. We have [g,, §-,]C g, [30 §-;]C g, and
p=-2

hence [g,, a_5+8-,1Cg-»+a-;,. By condition (2.1), 2), we know that the repre-
sentation of the Lie algebra g, on g.,+g_, is faithful. Therefore g, may be
identified with a subalgebra of gl(g_,+g.,). We denote by G, the connected
Lie subgroup of GL(g_,+g-,) generated by the subalgebra g, of gl(g_,+g_,). It
is clear that g_, and g_, are G,-invariant subspaces and that the bracket opera-
tion in g_,+a_, is also G,-invariant.
We set n’ =dimg_,, m, = % g, and m;=dimmm,, and denote by L;? the
p=—2
vector space of all the linear mappings v of g_, to g,. Given a vector Xeg, X,
will denote the g,-component of X.
The groups N, (k=0). For each ve £3% (B=0), we define an element
Byv) of GL(m-,) by
By)X = X+v(X_,)
for all Xem, ,. We have
B )B(vy) = By(v,+vy) .
We denote by N, the closed connected abelian subgroup of GL(m,_,) consisting
of all the elements B,(v) (v e Li2). For each ve £, (=0), we define an
element b,(v) of gl(m,—,) by b (WX=v(X_,) for all Xem,_,. Then we have

B, (v) =exp by(v). The Lie algebra of N, is given by the subalgebra n, of
gl(m,_,) consisting of all the elements b,(v) (v e Lz2).
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The groups Gf (=0). For any ae G, and v e L2, we have
B,(v)a =aB,wv%,

where v® is the element of .£-} defined by v*(X_,) =a (e X_,) for all X_,=q_,.
For each X, =g; (k=1), we define an element S,(X,) of GL(m,_,) by

SiXDY =Y+ Xe Y 1+[Xe YV.o]
for all Y em,_,. Then we have
S Xp)By®) = B (v)Su(Xy)
and we have: If k=1, then
SiIXDS(Y)=S,(X,+Y)B,(y(X,, YY),

where y(X,, Y,) denote the element of £3? defined by (X, Y)X_,=[X, [V,
X_,]] for all X_,=gq_,, and if 2> 1, then

Sk<Xk)Sk< ch) = Sk<X1c+ ch) .

With these preparations, let us define connected Lie subgroups Gf (k=0) as

follows: G§ is defined to be the product G,- N,, and G# (k=1) to be the sub-

group of GL(my;_;) consisting of all the elements Sy(X)B:v) (Xi € g, Vv € L52).
For each X, =g, (k=1), we define an element s,(X,) of al(m,_,) by

S XY =[Xp Y 14+[ Xk YV,
for all Yem, ;. We have: If k=1, then

exp 5:(X) = Si(X)By(5 (X X))

and if 2> 1, then
exp (X)) = Si(Xp) -

We denote by gf the Lie algebra of G#¥. We have gf =g,+1n, and we know
that gf (k=1) is given by the subalgebra of g{(m;_,) consisting of all the ele-
ments sy(Xp)+0,v) (Xi € g v E LE2).

The groups G, (=0). N, is a closed normal subgroup of G#. The factor
group G¥/N, may be identified with the subgroup G, of G¥. For each k=1,
we denote by G, the factor group Gf/N,. Every element ¢ of G, (k=1) is
represented by a unique element of Gf of the form S.(X,). This ¢ will be
denoted by Siy(Xp. We have Sy X)Su(Yy)=S«(Xi+Yy. Hence G, (k=1) is
an abelian group. If 2>1, we may identify G, with a closed subgroup of G¥
in such a way that we have §k(X,c)=S,c(Xk). We denote by g, the Lie algebra
of Gy, i.e, §r=gf /. We have §,=g,. Every element X of §, (=1) is re-
presented by a unique element of gf of the form s,(X,). This X is denoted
by 5.(Xy)-
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§4. Prolongation of pseudo-G,-structures.

In this section, we shall use the same notations as the previous sections.
The group Gf being a Lie subgroup of GL(m;_,), we have the notion of a G§-
structure (P#, ®®) on a manifold M,_, of dimension m,_,. By the definition,
w™® is an m,_,-valued 1-form on P#. Given a g-valued form « on a manifold
P, a, will denote the g,-component of a.

DEFINITION 4.1. Let (P#, w®) be a G#-structure on a manifold M,_, of
dimension m,_, (£=0). We say that the Gf-structure (P#, ™) satisfies con-
dition C# if we have, for k=0,

dw‘_"%—kéf[w‘i’}, 0w%]=0 (mod 0%
and if we have, for £> 0,

do% + 5 [0%, 0%]1=0  (modw¥),

k-2
doP,+LoP, o0 ]1=0  (mod 0¥, ( Elw$“>)2) .
==

We now give the following

DErFINITION 4.2. (1) Let M;_, be a maniold of dimension m,_, (¢ =0) and
let P, be a principal fiber bundle over the base space M,., with structure
group Gy Let 8% =(0%®)_,=,=,—, be a collection which satisfies the following
conditions ;

1) For each p (—2=p<k—1), 0P is a g,-valued 1-form on P;

2) 0% is g_,-independent, i.e., the mapping T,(P,) 2 Y —-0%(Y)eg., is
surjective at each y e P;.

3) Denote by D, the differential system on P, (of codimension #n’) defined
by the equation 6% =0. Then 6, is a g;_,-valued 1-form on (P, Dy).

4) Let Y be a tangent vector to P,. 6P(Y)=0 for all p (—2=p=<k—1)
if and only if Y is a vertical vector in the principal fiber bundie P, (M;_,, Gy).

5) For each ¢ = G;, denote by R(o) the right translation of P, induced by
o. If k=0, then we have

R(o)*0% = 07109,

R(0)*09 = 07169
for all ¢ € G,, and if 2> 0, then we have
RO P =09 (—2=p<k—2),
R(0)*0i2, = 02, —[ X, 098],
R(o)*0P =08, —[ Xz, 09 | D;]
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for all o =S(Xy) € Gu(X; < ap).

Under the above conditions, we say that the pair (P, 6%) is a pseudo-G,-
structure on AM,_,.

(2) Let (P, 0°) (resp. (P, 0’®)) be a pseudo-G,-structure on a manifold
M., (resp. M;_y). A bundle isomorphism ¢ of P, onto P/ is called an isomor-
phism of (P,, %) onto (P}, §/®) if it satisfies the following conditions:

@O = H© (—2ZpZk-1).

— K-
It is clear that the I-form 3% 6% | Dyt 8%, on (P, Dy is 3 g,-independent.
p=—1 p=—1

DEFINITION 4.3. Let (P, V) be a pseudo-G,-structure on a manifold M,_,
of dimension m;_, (¢ =0). We say that the pseudo-G,-structure (P, ) satisfies
condition C, if we have, for £ =0,

d0%) Dyt [09, 091 =0
and if we have, for &> 0,

6% +-§-[0<_kg, 681=0  (modH%),

k_
d0%®,| D, +[0®, 09 |D,]=0  (mod (p:zf 021D

The main purpose of this paper is to prove the following two theorems.

THEOREM 4.1. (1) To every Gi-structure (PZ, o®) on a manifold My,
(k=0), there is associated, in a natural way, a pseudo-G-structure (P, %) on
M,_, having the following properties:

1) The principal fiber bundle Py(My_,, Gy) is just equal to the principal
fiber bundle P#/N(M_,, Gy, the quotient of P by the normal subgroup N, of
GE.

2) Denote by By the projection of P§ onto P,=Pf/N,. Then we have

BOP=wP  (—22p<k-1),
ﬁ;ckﬁl(c@l = wf, | Df,

where Di denotes the differential system (of codimension n’) on P# defined by
the equation w® =0.

Moreover, if (P#, o™®) satisfies condition C§, then (Py, 0%) satisfies condi-
tion Cy.

(2) The assignment (P¥, o®)— (P, 09) 1s compatible with the respective
isomorphisms: Let (P, o®) (resp. (Pi¥, w’®™)) be a G-structure on a manifold
My (resp. Mj_,) and let (Py, 0°) (resp. (Ph, 8'®)) be the corresponding pseudo-
Gy-structure on My-, (resp. M ).
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i) Every isomorphism ¢f of (P¥, o®) onto (P, '®) induces a unique
isomorphism @y of (Py, 0®) onto (P}, ),

it) If ¢, is an isomorphism of (Py, 09) onto (P}, 6’™), then there corres-
ponds to ¢, a unique isomorphism @f of (P§, o®) onto (Pi#, o’™®) which induces
the given ¢y.

THEOREM 4.2. (1) To every pseudo-G,_,-structure (Py_, 6% ) on a mani-
fold M., (k=1) satisfying condition C,_,, there is associated, in a canonical
manner, a Gf-structure (Pf, ®™®) on P,_, satisfying condition C§ which has the
following properties: Denote by a, the projection of PF onto P_,. Then we
have

affy P =P (—2=2p< k=2,

k—1) — (K
a0 = 2| DE

# being just as in Th. 4.1.

(2) The assignment (Py_y, 0% ) —(P#, 0®) is compatible with the respec-
twe isomorphisms: Let (Pg_y, 0% ) (resp. (Ph_y, 0’% D)) be a pseudo-Gy_,-struc-
ture on a manifold M,_, (resp. M}_,) satisfying condition Cy-,, and let (P§, o®)
(resp. (Pi#, ’™)) be the corresponding G§-structure on P,_, (resp. P}_y).

1) If @4y 15 an isomorphism of (Py_y, 0% D) onto (P}_y, 0’% D), there cor-
responds to .-, a unique isomorphism @i of (P#, o™®) onto (Pi¥, o’™®) which
nduces the given ¢;_,.

ii) FEvery isomorphism @f of (P#, @®) onto (Pi#, w’™®) induces a unique 1s0-
morphism @iy 0f (Py—y, %) onto (Pj_,, 0’% D).

COROLLARY 1. (1) To every pseudo-G,-structure (P,, 6°) on a manifold M_,
satisfying condition C,, there is associated, in a canonical manner, a sequence
of pseudo-Gi-structures

(P) = (Pas 09) = (Pyy, 0%0) — wos =+ (Py, 6%) = (Po, 0)
K W,
as follows:
1) For each k=1, (P, %) is a pseudo-G-structure on Py, and Wy 1is the
projection of P, onto Pj_,.
2y For each k=1, we have

0P =wiog™> (—2Z5p<k—-2),
08, D= wEOET
(2) The assignment (P,, 0°)—(P) is compatible with the various isomor-
phisms.
Proor. This follows immediately from Ths. 4.1 and 4.2.  Indeed, let

(Py_., 6%) be a pseudo-G;_,-structure on a manifold M,_, satisfying condition
Ce; (k=1). By Th. 42, there is attached to (P, 0%V) a Gf-structure
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(PE, ™) on P,_, satisfying condition C#. By Th. 4.1, (P#, o) gives rise to
a pseudo-Gy-structure (P, ) on P,_, satisfying condition C,. Let a; (resp.
B resp. w,) denote the projection of P# (resp. P, resp. P;) onte P, (resp.
P,, resp. P,_,). We have w,o By=a, Therefore we have SFwiiy™ = a}ffF "
=o® = pF0P for any p (—2=p<k—2), whence widF>=0P. In particular,
it follows that wi¥D;.,=D;. Moreover we have D} =afD,_,= BfD;. Hence
we get Biwiogfs® = afffF3® = o®y| Df = BE(OF;| Dy, whence wiofsd =0®,|D,.
The iterative applications of the assignment (P,_,, %) — (P, §®) y1e1d the
desired sequence (P).

The sequence (P) is called the prolongation of the pseudo-G,-structure
(P()’ 0(0)).

COROLLARY 2. Let (P§#, o) be a G§-structure on a connected manifold
M_, satisfying condition C§. If dimg< oo, then the group @f of all the auto-
morphisms of (P¥, o) becomes a Lie group of dimension <dimgq with respect
to the natural topology (in such a way that @f is a Lie transformation group
on M_,).

Proor. By Th. 4.1 applied for k=0, there is attached to (P§, o) a
pseudo-G,-structure (P, ) on M_, satisfying condition C,. Let us consider
the sequence (P) in Cor. 1 which is attached to (P, 6°). Denote by @, the
group of all the automorphisms of (P,, #). By Cor. 1, the group @, is natu-
rally isomorphic with the group @,_, for any 2=1. Let [ be the smallest 2
with 2=0 and g,={0}. Then we have G,={e} and G;,,={e}. Hence we
have P;,,=P,=P,_,, where we put P_,=M_,. We have 84" =0 and we find

that the linear mapping T,(P.)27Z—E&2Z)= 0“‘“”(2) em_, =g gives an

isomorphism at each ze< P,,,. Furthermore we ﬁnd that the group @=0,,,
is composed of all the transformations ¢ of P,,; which leave the l-form &
invariant. Therefore a theorem of Kobayashi [3] shows that @ becomes a
Lie group of dimension <dim g in such a way that it is a Lie transformation
group on P,.;. By Cor. 1, it follows that @ may be considered as a Lie trans-
formation group on M_,. By Th. 4.1 applied for 2=0, we have a natural
isomorphism of @, onto @¥, and we know from the above remark that @ is
naturally isomorphic with the group @,. Consequently, we have shown that
@¥ becomes a Lie group of dimension < dim g so that it is a Lie transformation
group on M_,.

Cor. 2 remains true in its local form. Namely we have the following

COROLLARY 3. We use the same notation as in Cor. 2. If dimg< oo, then
the Lie algebra of all the infinitesimal automorphisms of (P¥, o) is finite
dimensional and of dimension <dim g.

The proof of Cor. 3 is just analogous to that of Cor. 2, but it is base on
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the local property®? of the assignment (P§, w®)—(P).

§5. Proof of Theorem 4.1.

Let (P#, w®) be a Gf-structure on a manifold M,_,(k=0). We denote by
«; the projection of P# onto M,_, and by D# the differential system on P§
(of codimension n’) defined by the equation w%=0. We set P,=P#/N;.
Then Pj# is a principal fiber bundle over the base space P, with structure
group N,. We denote by f, the projection of P# onto P,. Moreover, P; is
a principal fiber bundle over the base space M, , with structure group Gy
=G#/N;. We denote by 7w, the projection of P, onto M, ,. We have a;
=wyo B For each o = Gf (resp. o = Gy), R¥(0) (resp. R(¢)) will denote the right
translation of P#(M,_,, G#) (resp. P(M,_,, Go) induced by o¢. Since (Pf, o™®)
is a Gf-structure on M,_,, we have

1) R(o)*o® =0"10® for all ¢ = G}.

2) Let Z be a tangent vector to P#. Then »®(Z)=0if and only if Z is
a vertical vector in P#(M,_,, G}).

LEMMA 5.1. (1) For each p(—2=p<k—1), there is a unique g,valued
1-form 0% such that

kW —
BEOY = 0P .

(2) Denote by D, the differential system on P, (of codimension n') defined
by the equation 0% =0. Then there is a unique g.,-valued 1-form 0, on
(P, Dy) such that

B2 = P | D .

Proor. (1) For any o € N, we have R*(o)*o® = ol (—2< p <k—1). Since
a vertical vertor in P#(P,, N,) is also a vertical vector in P#(M,_,, G¥), we
have wP(Z)=0 (—2=< p < k—1) for any vertical vector Z in P#(P;, N;). There-
fore, for each p(—2=<p<k—1), there is a unique g,-valued 1-form 6% on P,
such that B¥0® =@®.

(2) For any oce N, we have R#(o)*oP =o®, (modw®). We have
R#(0)*Di = D{. It follows that R*(¢)* (0, | D) = w®,|Df. The vertical vectors
in P#(Py, Np) are contained in Df and we have 0®,(Z2)=0 for any vertical
vector Z in P#(Py, N). We have D} = BfD,. Therefore there is a unique
Ge--valued 1-form 6 on (P, D) such that 0P, = w®|D}.

03 being as in Lemma 5.1, we set % =(0%)_,<,<,—,- We shall show that
the pair (P, 0°) is a pseuco-G,-structure on M, ,. Since w® = B¥0% is g_,-
independent, so is #%. Now, let ¥ be a tangent vector to P,. We take a

1) From the proofs of Ths. 4.1 and 4.2 given §§5 and 6, we shall see that the as-
signment (P#,, »®®) - (P) has a local property necessary for Cor. 3 to be valid.
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fixed tangent vector Z to P# such that 8.Z=1Y. Since a,=w;o Bi, We see
that Y is vertical in Py(M,_,, Gy) if and only if Z is vertical in P#(M;-,, G¥)-
It follows that Y is vertical in Py(M;_,, Gx) if and only if we have (Y )=0
(—2< p<k—1). We have thereby proved (P;, /%) satisfies conditions 2) and
4) in Def. 4.2. It remains to prove that it satisfies also condition 5) in Def. 4.2.

The case k=0. Let ¢ be any element of G, We have R(0) o B,=f8, o Rf(0).
Therefore we have

BE(R(GY*69) = R¥(0)* 8109 = R*(o)* 0% = 0" 0% = fi(o10")
whence R(o)*0%=0"10%. We have R(¢)*D,=D,, R*(0)*D}=D¢ and
F(R(0)*09) = R*(0) By 0% = R*(0)*(wH| DY)
=07 | Df = f(009),

whence R(0)*09% =o07109.

The case £>0. Let & be any element of G, and express it as Sk(Xk)(Xk
€. We set 0 =5S5,(Xy). We have R(5) o = ;o R*(0). Therefore we have,
for each p(—2=p<k—2),

HREYOP) = RH0)*BE0Y = R¥ Yol = off = BEOY
whence R(a)*09 =03’. We have
BE(R@)* 052 = R “(0)*572‘0;&’92 = R*(0)* w2,
= wi%—[Xp 08 1= Br0i2—[Xp 65 7]),
whence R(6)*0#, = 0F,—[ X, 097]. We have R()*D,=D,, R¥(¢)*Dj = D} and
F(R(2)*02)) = R*(o)* B0, = R* (o) (@i, | D)
= 01| Df—[ Xy 0 | DE]= BELOE—[ X 09 | Di]),

whence R(3)*0P =08 —[ X, 0% |D,]. We have thus shown that (P, %) be-
comes a pseudo-Gy- structure on M,_,.

The notation being as above, we have easily: If (P#, o®) satisfies condi-
tion C#, then (P, 0®) satisfies condition C;.

Let us now show that the assignment (P#, w™®)—(P,, %), thus obtained,
is compatible with the respective isomorphisms. Let (P#, ™) (resp. (Pg¥, w’™))
be a Gf-structure on a manifold M, , (resp. M}_,), and let (P, %) (resp.
(P}, 0’®)) be the corresponding Gj-structure on M,_, (resp. M}_). We shall
write as A’ the quantity in (Pi#, w’®) or (P, /™) which corresponds to a
quantity A in (P*, o®) or (P, 6%).

Let ¢* be an isomorphism of (P%#, ™) onto (P/*, w'™®). Since we have
0*(z0) = p*(2)o for all ze P# and o = G, ¢* induces a bundle isomorphism ¢
of Py(My-,, Gy) onto Pi(Mj_y, Gr). We have ¢o B,=f; c¢* Since we have
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¥’ P =w®, we have ¢*0® =0 (—2<p=<Fk—1) just in the same way as
above. Therefore, ¢ gives an isomorphism of (P, %) onto (P}, §’™).

Let ¢ be an isomorphism of (P, §®) onto (P, 8’®). Let ¢ be a bundle
isomorphism of P} (M-, Gf) onto P#(Mj_y, Gf) such that fLo¢=¢o b
Then we have easily the following two equalities :

GRY Pral,® =o®  (—2=p<k-1),
P B D) = w2y | D .

Now, let ¢’ be a second bundle isomorphism of P#(M,_,, Gf) onto P#(M;_, Gf)
such that Bio¢’=¢ o ;. Then we can find a unique mapping K of P to N,
such that

9@ =) - K2)

for all ze P#. Let Z be a tangent vector to P# at z< P#. Then we have

PsZ = R¥K(@)sP+Z+W ,

where W is a suitable vertical vector in P#(P;, N,). It follows that
(@0 O)2) = K@) (0 ®)Z).

We now take a unique mapping v(z—v,) of P# to .L£3?% such that K(z)= Bi(v,)
for all ze P#. Since we have ¢*o'® =w®, we get the equality:

(5.2) P*' P = *’ P —v(w-,) .

Assume now that both ¢ and ¢’ are isomorphisms of (P#, »®) onto
(Pi#, @'®). Since we have ¢*o'®=¢*w’® =P, it follows from that
V(w-,) =0. Therefore we get v,=0, i.e., K(z)=e¢ for all ze P§. Hence ¢’ and
¢ coincide.

¢ being as above, we must finally show that there is an isomorphism ¢¥*
of (Pf, o™®) onto (Pi¥, w’®) which induces the given ¢. From the uniqueness
of ¢* just proved, we may assume without loss of generality that both
Pi(My—y, GF) and PF#(M/._;, G¥) are trivial. Then we can find at least one
bundle isomorphism, say ¢, of P#(M;_,, Gf) onto P #(M;_i, G£) such that ¢o S
= Bio¢. By [5.I), we have ¢*w® =w® (—2=p<k—1) and ¢*o;*—wi =0
(mod w%®). Therefore there is a unique mapping v(z—v,) of P# to L% such
that

(5.3) P*e'® —p® =p(R).
LEMMA 5.2. We set K(z2)= By(v,). Then we have

K(zo)=0"1K(2)o
for all z= P¥ and o = GE.
Proor. Let o be any element of G¥. Then we have
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R¥(0)(v(@%)) = (R¥(e)*v)(R*(0)*w%) .
We have R'#(¢)o ¢ =¢ o R*(o) and
R¥ o) w(@%)) = R¥(oY*¢*0/®— R#(g)w®
= *R'#(0) ¥/ P — o 1p®
=0 (¥’ P—w®)=c"w(w%).
Hence we have the equality:
(R*(o)*v)(R¥(0)w®) = 'v(w%).
If £=0, we have R#(0)*w% =(0_,) 0%, where, for each ¢ € G¥, o_, denotes the
linear automorphism of g_, defined by ¢_,X ,=0X_, (modg_)) for all X_,=q_,.
If 2> 0, we have R*(o)*0% =w® and o 'v(w%) =v(w®). Therefore we have:
If =0, v,,(X_p)=0",(0_,X_,) for all X ,eq.,; if >0, v,,(X_,)=0v,(X_,)
for all X_,=qg_,. From these equalities, we easily get the equality in Lem-
ma 5.2.

We set ¢/(2) =¢(2)- K(z) for all ze P¥. By we see that the
mapping ¢’: Pf 2 z—¢'(z) € P;* gives a bundle isomorphism of P#(M;_;, GF)
onto PF(Mj_y, GE). Since K(z) € N, we have Bo¢’ =¢o ;. Therefore we get
P*0'® = P*e'®—p(0%) =o® by and [5.3) We have thus proved ¢’ to

be an isomorphism of (P#, ) onto (Pi¥, w'®).

§6. Proof of Theorem 4.2.

Before proceeding to the proof, we shall explain the notations that will
be needed hereafter.

k
We set b= 3 g, We denote by L' the vector space of all the linear

p=—1

mapping u of b,_, to g, by I7' the vector space of all the anti-symmetric
bilinear mappings ¢ of b, X b, to g, and by I3 the vector space of all the
bilinear mappings ¢’ of g_, X Dz t0 . We set L£,=_L7'X.L3% and T,=g3!
X Tz%. We define a linear mapping 0 of £, to 9., (k=0) as follows: For
any (u, u’) e Ly, o, u’)={(c, ¢’) is defined to be

(X, ¥)="[u(X), Y_,J—-[u(Y), X, J—uw' (X, Y_,]),
NZ-y, Y)=[w(Z-p), Y ,1—[u(Y), Z_,]

for all X, Yeb,., and Z_,=g_,.

We have easily

LEMMA 6.1. Let (u, u") be an element of Lp-, (R=1). 0, u)=0 if and
only if we have
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1) w(Y)=0 for all Yekigp;
p=0

2) there is a unique element X, of ¢ such that

u(Y-—l) = [Xlu Y—l] ’
w(Y_p)=[Xs Y_,]

for all Y_jegqg_, and Y_,=q_,.
For each (u, u) e L1, (k=1), we define an element A,(u, u’) of GL(m;_,)
by

k—2
Alu, uHX = X+u(p=2—1 ‘XP)—I_M/(XMZ)
for all Xem,_;,. We have
Ay, u)By(v) = By ) Axlu, u’),

Ay, ul) Ar(ug, us) = Ag(uy~+uy, ui+up)Bi(u, o ug) .

We denote by H, (R=1) the closed subgroup of GL(m,_,) consisting of all the
elements A (u, u)B ) ((u, v) e Ly, ve Li72). Let (u,u’) be an element of
L, with 0(u, u)=0, and let X, be the element of g, determined by (u, u’)
(see Lemma 6.1). Then we have clearly A (u, u") = Si(X5.

Therefore we have

LEMMA 6.2. The group G§ (kR=1) consists of all the elements Ai(u, u)Bv),
where (U, u') € Ly, ve Li2 and d(u, u’)=0.

For each (u, u’) e L;_,, we define an element a,(u, u’) of gl(m,_,) by

axn, w)Y =u( S V)+u(¥ey)

for all Y em,_,. The Lie algebra of H, is given by the subalgebra }, of
gl(m;—,) consisting of all the elements a,(u, u")+b,V)((u, u) € L1-1, v € Li%).

From now on, we shall consider a fixed pseudo-G,_,-structure (Pj_,, 6% )
on a manifold M,_, of dimension m,_, (¢=1). We denote by D,_, the differ-
ential system on P,_; defined by the equation 8% =0. For each o< G,_,
(resp. X €q;_.), R(o) (resp. (X)) will denote the right translation of P,_, (resp.
the vertical vector field on P;_,) induced by ¢ (resp. X). Let us define a
linear mapping @ of g,_, to the vector space X¥(P,-,)? of all the vector fields
on P,_, as follows: If k=1,

@(XO)ZT(XO)
for all X,eq,=8,; if £>1,

2) In general, let M be a manifold. (M) will denote the vector space of all the
vector fields on M.
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O(Xy-1) = 1(-1(Xe-0))
for all X;_, € g
P,_, is a manifold of dimension m,_;. By using the vector space m,_;, we
define the frame bundle F(P;.,, GL(m;_))) of P,_, as in §1. Let m= denote the
projection of F onto P,_,. We denote by F, the subset of F which is com-
posed of all the elements z satisfying the following equalities:

082X ) =8, X, (—25q¢=Fk—3),
082z X)=0,,X, (~lSpshk—2 —2=q=k—2),
22Xy = @(Xk—-l)ﬂ(z)

for all X, =g,(—2=<p=<k-—1), where (J,,) denotes the Kronecker’s symbol.
LEMMA 63. (1) #n(Fy) =Py_;.
(2) Let z€Fy and 0 € GL(m_,). Then zo € Fy if and only if o € H,.
Proor. (1) We only remark the following things: Let x be a point of
P;_,. 1) The linear mapping T,(Ps_,) 2 X —0%(X) e g_, is surjective and its

kernel is (D;_),. 2) The linear mapping (Dy_.),2> X— kiz 0% 2(X) € dy—y 1S
p=—1

surjective and its kernel is the vector space V, of all the vertical vectors at
x in Py (Myy, Gi—)). 3) The mapping X, ,—>®P(X,-), gives an isomorphism
of g,_, onto V,.

(2) We have easily: zoeF, if and only if we have the following
equalities :

A

(0X_p),=0_,,X_, —2Zrv<k-3),
(0 Xp),=10,,X, (—-1<Zp=k-2 —2Zr<k-2),
O Xy =0rprXey (=227 =k—1)

for all X,eg, (—2=<p=<k—1). These equalities clearly mean that ¢ is of the
form Au, u)B,), i.e., o & H,.

By Lemma 6.3, we see that F, is a Hi-subbundle of the frame bundle F
of P,_,. The projection r, of F, onto P,_, is given by the restriction of = to
F;. We denote by w the basic form of F,. For any ¢ < H,, R(s) will denote
the right translation of F, induced by o.

LEMMA 64. (1) w,=7f0F> (—2=Zp<k-—2).

(2) Denote by D, the differential system on F (of codimension n’) defined
by the equaiton w_,=0. Then we have

wi-s| D= 205"
Proor. Let Z be any vector in T,(F)(z€F;). Then we have myZ=
z-o(Z)= kil z-w,(Z). Therefore, for each g (—2=<g< k—2), we have
p=—2
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k—2 k—2
@TEOFNZ)= T 25«({“_1)(2 cwy(2) = pz z5q,pwp(Z) =w (%),
p:—' = —
whence 7}0¢ " =@w, We have D,=nr¥D,_, and, for all Ze (D),

k—2 k—2
(#TFOFPNZ) = p;_lﬂ,(ck:z”(z cw,(2)) = p;_lﬁk_z,pa)p(Z) =wp-4(Z),

whence 7¥0¢30 = w;_,| D,.
LEMMA 6.5.
dw, =0 (mod w? (=22 p<k-2),
dwy.,=0 (mod w_,, w?).
Proor. This follows immediately from the existence of a connection in
Fi(Pr-1, Hp).

Assume for a moment that k=1. For any ¢ G, and X em, we define
an element ¢X of m, by

o X=0X_toX_+oX07t.

The mapping G, X m, > (g, X)—oX em, clearly gives a representation of G,
on m,. For any zeF, and o € G,, we define an element zo of F by

(z0)X = R(0)(z - (¢ X))
for all X em,.

LEMMA 6.6. Let z€ F, and o, 7 = G,.

1 zoeF,.

@) (zo)r =2z(o7).

3 m(z0)=m(2)0.

(4) Denote by E(o) the transformation F,> z—zo & F,. Then,

E(oY*o =0 'w .

Proor. (1) 09(z0)X_,) =(R(0)*0%)(z2(c X _,))=0"10%z(c X ,)=00 X_,=X_,
forall X , ¢, 09(z0)X_)=0"10%z(0X_))=0 forall X_,eg_,. 09(=0)X_-,)
=07109((6X ) =010 X_;=X_;. (20)X,=R(0)x(2(6 X,07))=R(0)xP(06 X0 Dz c»
=0(070X,07'0)r 00 = DX )myre TOr all X, =g,. Hence we get zo € F,.

(2) and (3) are clear.

@) Let Ze T,(F). r,xE(0)+Z=(20)- - (E(o)*w)(Z).

T1xE(0)xZ = R(0)47 xZ = R(0)x(2z - ©(2)) = (z0) - 6 '0(Z) .
Hence we get E(0)*w =0 'w.

LEMMA 6.7. There is a linear mapping @ of g, into X(F,) having the fol-
lowing properties: Let X,<g, Then,

) 70Xy, =0X e,y at each z & Fy;
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2) wp(¢(X0)): 5p,0X0 p=-2,-1,0);

3) "E(—D_(Xo)s)wp_i'[Xo: wp] = O (p: _2’ _1: 0)

Proor. For any X, =g, let @(X,) denote the vector field on F, induced
by the one parameter group E(expt X,). Then the mapping @ :g,> X, —D(X,)
isjlinear by (2). 1) and 3) immediately follow from
(3) and (4). We have 7,0(X,),=z w(@(X,), at each zeF, and 7,,0(X,),
= O(X )iy = 2 - X,y whence w(@(X,))=X,. Therefore we have 2).

Now, assume for a moment that 2> 1. For any 0"=§k-1(Xk—1) e Gy, and
Y em,_,, we define an element ¢Y of m,_, by

k—2
oY = Sk—1(Xk—1)p§_2 Yp+ Y

- Y+[Xk—1: Y~1:|+EXIC-1: Y~2] .
Let 0 =5,_,(Xi_), 7=S5:-1(Ys_) € G4_;. Then we have: If k=2,

0(z2) =(01) A0, y(X;, Y))Z

for all Zem,; if k> 2,
o(z2)=(ct)Z

for all Zem,_,. For any ze F; and ¢ € G,_,, we now define an element zo
of F by
(20)Y = R(@)(z(cY))

for all Yem,_,.

LEMMA 68. Let zeFy and 0 =S, ,(Xi_), 7=541(Yiey) € Gr_s.

1) zoeEF;.

@) If k=2, zo)r=(z-(o7)): A0, y(Xy, Y)); if k>2, (zo)r =2(07).

@) 7m(zo) =m(2)o.

(4) Denote by E(o) the transformation Fy,> z—zo & F,. Then,

o(E(o)*ow)=w .

Proor. (2)-(4) are just analogous to (2)-(4) in Lemma 6.6. We shall prove
@). Let Y,eg, (—2=p=k—1). Then we have:

0> (20)Y ) = OF (@Y _p+2[ Xoms, Yoo D)
=0V (—2=g=k—4),

035" ((20)Y -p) = (045" — [ X1, 0% D@Y o +2[ Xi-yy Y-2)
= [ X, You ]+ [ Xseey Y_,]=0,

3) In general let X be a vector field on a manifold M. _Lx will denote the Lie
derivation with respect to X.



238 N. TaANAKA

05 P(z0)Y_) =087V 1 +2[ Xp-y, Vi)
=3y Y.  (—2=g=h—d),
05 (z0) Y ) = (085" — [ Xy—y, 0% DY 1 4-2[ Xp-y, Y1)
= 5k—3,~1 Y.,
0P ((z0) Y =) = (0853 — [ Xip-1, 0% | Dy DY 120 Ximr, Vi)
=—[ Xy, Y [ Xeyy Y 1= 0,
OFP((z0)Y,) = 0% (zY )
=047, 0= p<k—-2 —2=Zqg=k-—2),
(20)Y 1= R(0)4(z2Y3-1) = R(U)*@(Yk~1)rrk<z> = (D(Yk—l)rrkcz)a .
This last equality is the case, because G,_,(k>1) is an abelian group. These
equalities clearly mean that zo c F,.

LEMMA 6.9. There is a linear mapping @ of q, into XF,) having the
Sfollowing properties: Let Xy E gz Then,

D) @ (Xpemy) = O(X4- ey Gt each z € Fy;

2) wp(é(Xk—1>) = 5p,1c—1X1c—1 (=2=p=k-1);

3) IE(Xk_l)G)p:O (—“2§p§ k—4 or p: k——l),

Ia(Xk—l)wk—?,—{_[Xk—l! w_,]1=0,
GEE(X]C—-1)(UIC—2+I:XIC~1’ w-,]1=0.

Proor. This follows from Lemma 6.8. In the case k> 2, the situation is
just analogous to that in Lemma 6.7. We have only to define @(X,_,) to be
the vector field on F, induced by the one parameter group E(exp t5;-1(Xi-1))
= E(Sp-1(tX;-1)- _

The case k=2. We set o,=exp15,(X,)=S,¢X,). Then we see that E(g,)
is a one parameter family of transformations of F, and that E(o,) is equal to
the identity transformation of F,. This being said, we define @(X,) to be the
vector field on F, induced by the family E(s)), i.e.,

Bty= 0

at each zeF,. Let us show that the mapping @ :g, =2 X, —0(X,) € £F,) is
linear. We set ¢, =exp t5,(X;) and z,=expi5,(Y;). We have o,r;, =exp 15,(X,
+7Y,), and, by Lemma 6.8, (2), we have

E(z)E(0,) = E(Az(o: (X, YD))E(oizy) .

Therefore we have @(X,)+P(Y,) =B(X,+Y,). Moreover we have clearly @(1X,)
=20(X)) for all 2 R, proving our assertion. Now, 1) and 2) follow from
Lemma 6.8, (3). To prove 3), we use Lemma 6.8, (4) and the equality



Generalized graded Lie algebras 239

0E(a,)*
"—(g;) @ =Loxpw -

t=0

Let us return to the general case. Hereafter we assume that (P, %)
satisfies condition C,_,. By and condition C,_,, we have easily
LEMMA 6.10.

doyt5 Loy 0-]=0 (mod w_y),

k—3
dwg—s+[ 0y 0, 1=0 (mod w_,, (pzz_lwp)z) (>1).
We set as follows:

,Ql_z = da)—z”}‘“;_[w—l’ w“l:H—[wO’ w‘zj ’

‘Q;c—s = dwk—3+[a)lc—2’ w—l]’l—[wk—p w_,] (k> 1) ’
2y =doy_ s+ Lop—1, ©-1] (k=1).

LEMMA 6.11. For any k=1, we have:

k-3 k-2
Q4—=0 (mod (w_,)?% (p=2—1 Wp)? W_y+ pglwp) s
k—2
2, =0 (mod w_,, (p;lwp)Z) .
Proor. By Lemma 6.5, we have
k—1 k-1
(61) -Q;c—s =0 (mOd (w—2)2’ (pzz_lwp)zs W_g* p_z_lwp) ’
k—1
6.2) 2..,=0 (mod w_,, (pzz_la)p)Z) .
By Lemma 6.10, we have
(6.3) Q=0 (mod w_y, ('S w)?).
p=-1
It follows from (6.1) and (6.3) that
. k-3 k—
(6.4 Dy =0 (od (-1, (3 0% 0se 3 ).
By Lemmas 6.7 and 6.9, we have
(6.5) 0o P X)) =0p 1 Xy (—2=Zp=k—1).

Let Z by any vector field on F,. By (6.5), we have
dw ) (P (Xy-1), Z) = O Xy )0(Z)— Zo> (P X 1)) — 0, (D( K1), ZT)
=0 X)) (Z)— 0, (P(Xy-y), Z])

= (LI -0)Z) -
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Therefore by Lemmas and B.9, we have
dwy—( @( X)) Z)+H[Ximyy 0-5(Z)]=0,
dwy—o D(X-))y Z)+[ Xpoy, 0-,(Z)]1=0.
Hence by [6.5), we get
(6.6) Qo @Xy), Z) = dwe-@(Xi—), Z)+[ X1y 0(Z)]1=0,
6.7 2o DO( X)), Z) = dwy o @(Xy-1), Z)+[Xp—1, 0-,(Z)]=0.

From (6.4), and [(6.6), we get the first equality in and, from
and (6.7), we get the second equality in Lemma 6.11.

From Lemma 6.11, we know that there are a unique mapping T'(z— T2
of F, to 9g% and a unique mapping T(z—T,) of F, to Izl respectively as
follows :

k-2 k—
Qs t T 3 0 =0 mod (@-%, (3 0,9,

1 k-2 k—2
Qk_z—l——Z—T( > Wy X w,)=0 (modw._,).
p=—1 p=-1
LEMMA 6.12. Let o= A (u, uw)B,v)e H, and z F,. Then we have:
(sz T;,;) - (Tzr T;)‘i—a(u’ u/) .
ProOor. We have R(o)*0=0"'9 and o !'= A (—u, —u’) By(uou —v).
Therefore we have
Ro)w,=w, (—2=p<k-2),
E(O')*wk—z = Wpy— U (®-5) ,
— k—2
R0 *w;-, = wk,l——u(p;_lwp) (mod w_,) .
Moreover we have

dw_ﬁ—%f[w_l, -, ]=0 (mod w_,) .

We shall prove Lemma 6.12 only for the case where 2=1. The case where
k>1 can be similarly dealt with.

Ry ( Q2+ T/ (- @-))=0 (mod (w_,)7) .
dw_2+%[w_1—u’(w_2), w_1—u(w_s) ]+ ws—ulw-1), ®-5]

—{—(]?(0‘)*71’)(&)_2, w_;—u'(w-,) =0 (mod (»_,)?) .
do_t—5-Los, 03T+ 00 0T RO TNy 0-)

—[u(w_y), o 1-[ulw_), ;] =0 (mod (w_,)*) .
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— T (@-3 w—l)‘|‘(ﬁ(0)*T/)(w—zr w_)—[u(w_y), w_,]
—[uw-y), ©-,]=0 (mod (w-,)?) .
“=07” in this last equality clearly reduces to “=0". Therefore we"have
(6.8) (E(O‘)*T’)(X_Z, Y )=T(X Y_)+[uw/ (X)), Yo J—[u(Y_y), X_,]
forall X ,eg¢,and Y_,eq._,.

E(O)*(gﬂ‘*‘—é‘T(w—p w-)=0 (mod w_,).
d(w-;—u'(w_y))+[w,—ulw-p), o_;—u'(w-5)]

g RO TN/ (0-2), 0w ) =0 (mod ).

dw—1+[wo: w—1]+%(P-<U)*T)(CU—1: w_;)
—[ulw-,), o_;]—u'{dw_y) =0 (mod w_,) .

3 T(oy 0 )+ RO TN @, 0-)—~[(w-s), 0]

+ 3w oy 0 D=0 (mod w_).

“ =0 in this last equality clearly reduces to “ =0”. Therefore we have
(6.9) R@*TYX -y, Yor)=TX_y, Yo)+[u(Xoy), Yo4]
—Lu(Y-p), Xy ]—w/ (X, Yi0)
for all X_,Y_,eq_,, From and [(6.9), we get
(R)*T, R(o)*T") = (T, T")+0(u, u’).

Now consider the linear mapping 0 of £,_, to 9_,. For each k=1, we
choose, once for all, a complementary subspace 9§, of 0.L,_, in T, _,.

We denote by PJF the subset of F, consisting of all the elements z such
that (T,, T,) € 9f,. We shall show that P# is a Gf-subbundle of F(P;_,, Hy)-
First we have #n,(P#)=P,_,. Indeed, take any z< F;. Thereisa (u, u)eLy_,
such that (T, Tp+ou, u)e I, If we set o= Ay(u, u"), we have (T, Ts)
=(T,, TH+o(u, u)e g%, (Lemma 6.12). This means zo = P§. Therefore we
must have z, (P =P,.,. Now let ze P§ and o= Ay, w)B,v)e H,., We
have (Tg Th)=(T,, TH+0(u, u’) by Since (T,, T) e If., we
have: zo e P}, i.e, (T Tl 9%, if and only if 9(u, u’)=0. Therefore by
we have: zo € P# if and only if ¢ <= G#, which completes our
assertion.
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We denote by «® the basic form of P#. Since w™ is the restriction of
o to P#, we see from Lemmas and that the G#-structure (P#, o™®)
satisfies condition C#. Let a; be the projection of P} onto P, which is
just the restriction of =z, to P#. Then by (1), we have o® =
aFf¢P (—2=p<k—2). Moreover let Df denote the differential system on
P# defined by the equation w® =0. Then we have T,(P#) N Dy, = (D), at
each z e P§, D¥f =a}D,_, and hence o{®,|Di = a¥0¥3> by 2).

We have thus shown that to every pseudo-G,_,-structure (P,_;, 6% ) on a
manifold M,_, satisfying condition C,.,, there is associated, in a canonical
manner, a G#-structure (P#, o™®) on P,_, satisfying condition C# and the con-
dition in Th. 4.2. We must show that the assignment (P,_,, 6% ) —(P#, »®)
is compatible with the respective isomorphisms. Let (P,_,, 8% ) (resp. (Pj-y,
§’*-1)) be a pseudo-G,_,-structure on a manifold M,_, (resp. M;_,) and let
(PE, o®) (resp. (P#, o’®)) be the corresponding Gf-structure on P,_, (resp.
Pi_). Let (F,, ) (resp. (F1, ®)) be the corresponding H,-structure on Pj_,
(resp. P;_,). We shall write as A’ the quantity in (P, 8’%?) or (Pi#, o’™®)
or (F;, ) which corresponds to a quantity A in (Pj_;, 0% ) or (P#, o®) or
(Fy ).

Let ¢,; be an isomorphism of (P,_,, 0% V) onto (P;_;, 8’* ). From the
definition of (F}, w) and of (Fj, '), we see that ¢,_, yields an isomorphism ¢
of (Fy, w) onto (Fi,w’). We have clearly ((T")yw; (T")ow) = (T, T,) for all
z € F,. Therefore ¢ induces an isomorphism ¢f of (P#, ™) onto (P, w’™®).

Conversely, let ¢f be an isomorphism of (P#, o®) onto (Pi#, w’®). Let
¢y, denote the diffeomorphism of P,_, onto P;_; induced by ¢f. Since ¢;_,0a;
=apo@f, we have @i 0P =0F" (—2=p=<k—2). Now, take any z= P{ and
set 2/ =pf@@), x=ayz) and %' =a}(@) =@, (x). Then we have @/(X, )
=2+ Xpo1 = Pr-11(2 * Xjp—)) = 05 15@(Xi-1)p- This means that 7/(X)= @ 147(X)
for all X =§,-,. Since the Lie group G,-, is connected, it follows that ¢,_,(xa)
=@p_(x)o for all xe P,_, and o € G4-,. We have thereby proved ¢, to be
an isomorphism of (P,_;, %) onto (Pj_;, 6% D).

§7. Applications to the geometry of differential systems.

Let D (resp. D’) be a differential system on a manifold M (resp. M"). A
diffeomorphism f of M onto M’ is called an isomorphism of (M, D) onto (M,
D’) if we have fyD,= D}« at each xe M.

Let (n, n’) be a pair of integers with n=0, v/ =0 and n+n’>0. We set
m=mn+n’. We consider the vector space m = R™, the space of m real variables,
and denote by e, -+, ey, ¢;, .-+, €, the natural base of it. Let g_, (resp. g_,) be
the subspace of m spanned by (e.);zas. (resp. (e),=i<,). We have m=g_,+q_,
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(direct sum). Let H be the closed subgroup of GL(m)=GL(m, R) consisting of
all the elements ¢ which leave g_, invariant. For each ¢ € H, o_, and o_,
will denote the linear automorphisms of g_, and g_, respectively defined by
o_,X_,=0X_, (modg_)) for all X ;=g ,and by o_,X_=0¢X_, for all X_,=g_,.
Let S be the closed subgroup of H consisting of all the elements ¢ which
leave g_, invariant, and let NV, be the kernel of the homomorphism ¢ —(o_,, 0_,)
of Honto S=GL(g_,) X GL{g_)=GL(n', Ry X GL(n, R). We have H=N,S.

As is easily observed, to every n-dimensional differential system D on an
m-dimensional manifold M, there is associated a H-structure (¥, w) on M, uni-
que up to equivalence, such that the differential system z*D on F is defined
by the equation w_,=0, = being the projection of /' onto M and w_, being the
g-,-component of w, and vice versa. The assignment (M, D)—(F, w) is clearly
compatible with the respective isomorphisms.

We shall now define the “torsion” T of any H-structure (F, w).

We denote by It the vector space consisting of all the linear mappings L
of the second exterior product A2g_, of g_, tog_,. The group GL(g-,) linearly
acts on A%, by the rule: e(X_,AY_)=0X_,AcY_, for all 6 = GL(g-,) and
X_, Y_,=q_,. Let us now make the group H operate on I as follows: Let
LeWM aud s H. Then L= is defined to be

L*(B) = (0-,)"'L(0-,B)

for all Be A2g_,. We have (L°)" = L°". We shall denote by (M, H) this trans-
formation group H on Ik.

LEMMA 7.1. Let (F, w) be a H-structure on a manifold M. There is a
unique mapping T(z—T,) of F to M such that

dw—z+_%—T(w—1 ANw_)=0 (mod w_,),

where w, (p=—2, —1) denotes the g,-component of w.
PrOOF. Since F(M, H) admits a connection, we have

dw_, =0 (mod w_,, (w_)?).

Lemma 7.1 follows immediately from this equality.
LEMMA 7.2. The notations being as above, we have

Tzﬂ' = (Tz ’
for all z€ F and o = H.
Proor. For each ¢ € H, let R(o) denote the right translation of F induced
by o. We have R(0)*w =0"'w, from which follows that R(o)*w_,=(0_,) 'w-,
and R(o)*w_,=(0_) 'ow_; (modw_,). Lemma 7.2 follows easily from these
equalities.
Given a H-structure (F, w) on a manifold M, we shall denote by T(F, w)
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the subset of M consisting of all the elements T,(z= F). By we
see that T(F, w) is composed of several orbits of (M, H). If the pseudo-group
I" of all the local automorphisms of (F, w) is transitive on M, then it is clear
that T(F, w) forms a single orbit.

DEFINITION 7.1. Let TR be an orbit of (I, H). We say that a H-structure
(F, w) on a manifold M or the corresponding differential system D on M is of
type %t if T(F, w) coincides with the given N.

DEFINITION 7.2. An orbit St of (M, H) is called g_,-maximal if some and
hence any L €M maps A%g_; onto g_,.

Let L be any element of M. We denote by G#(L) the isotropy group of
(M, H) at the point L, and set G,(L)=G¥§(L)NS. Then we have G§(L)=N, -
GyL) and 6 LIX_  ANY_D)=L(6X_;A0cY_) for all ceGy(L) and X_,, Y_,=g_,.
Let g,(L) be the Lie algebra of G,(L). Let us now make the direct sum g_,
+q_;+g,(L) a graded Lie algebra by defining a bracket operation [,] as fol-
lows: [g-s g-2-+9-,1=1{0}, [ Xy, Y1=X,Y for all X,eg(L), Y €g-5+0-1, [ Xy,
Y J=LX_ ANY_) for all X ,,Y_ g, and [ X, Y, 1=X,Y,—Y, X, for all
X, Yoeg,(L). Now, assume that I, maps A2, onto g_,. Then we know?®
that the graded Lie algebra g_,+g_,+g,(L), thus defined, satisfies condition (2.1)
in §2, and that the groups N,, G§(L) and G,(L) are just associated® with this

graded Lie algebra. We denote by g(L)=g ,+q_+ f}gp(L) the prolongation
=0

of the graded Lie algebra g _,+g_;+g,(L). Finally we remark the following
points: The mapping ¢ —o_, gives an isomorphism of G,(L) onto a subgroup
of GL(g_,), and this subgroup consists of all the elements z € GL(g_,) such that
zL71(0) = L7(0).

Let M be a g_,-maximal orbit of (M, H) and let (F, w) be a H-structure of
type N on a manifold M. We fix an element L of % and use the notations as
above. T being as in Lemma 7.1, let P¥(L) denote the subset of I consisting
of all the elements z such that 7,= L. Since T(F, ) =N, we see from Lemma
7.2 that P§(L) is a G#(L)-subbundle of F. We denote by ‘(L) the basic
form of P§(L), which is the restriction of w to P#(L). Then we know from
Lemma 7.1 that the G§(L)-structure (P§(L), (L)) satisfies condition C§. It
is clear that the assignment (F, w)—(P§(L), 0 ®(L)) is compatible with the

4) Let ¢ be any element of H. Then the group G,(L?) (resp. the graded Lie al-
gebra g_p+g-1+go(L?)) is canonically isomorphic with the group G,(L) (resp. the graded
Lie algebra g—s+g-1+go(L)).

5) The group Gy(L) is generally not connected. Therefore we should rigorously
consider the connected component of the identity of G¢(L) and that of G#¥,(L) instead
of Gy(L) and G¥,(L). However since we are exclusively concerned with local problems,
this difference does not have any essential influences on our applications of the main
theorems. The same remark will hold for the groups G,(L) and G¥(L) in §8.
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respective isomorphisms.

From Cor. 3 to Ths. 4.1 and 4.2, we get

PROPOSITION 7.1. Let % be a g_,-maximal orbit of (M, H) and let D be an
n-dimensional differential system of type N on an m-dimensional connected
manifold M. Let L be an element of k. If dimg(L) < oo, then the Lie algebra
of all the infinitesimal automorphisms of (M, D) is finite dimensional and of
dimension < dim g(L).

Finally, we shall observe, in several cases, the maximal orbits %t of the
transformation group (M, H), the graded Lie algebras g_,+g_,+g,(L) (L),

and their prolongations g_,+q_,+ g)gp(L).
=0

(1) The case where n’=1and n =2k (k=1). In this case, every element
L of M may be considered as an anti-symmetric bilinear form on g_;, and vice
versa. Let 9, denote the subset of M consisting of all the elements L which
are non-degenerate. Then we see that %, is open and dense in M and that
it is the unique maximal orbit of (O, H). A H-structure (F, w) of type 9, on
a manifold M or the corresponding differential system D on M is called a
contact structure. Now, define a skew-symmetric matrix [=(/;;) of degree 2k
by Iij=Tlips; =0 and I, py;=—1ly;;=0;; (1=1,j<k), and define an element
L of N, by L(e; ANe)=1I;¢; for all 1,7 (1=<1,j=<2k). Then the group G, (L)
consists of all the matrices ¢ of degree 2k-+1 of the form:

ea? 0
0 ab) !

where a >0, be GL2k, R), ¢2=1 and *bIb=¢l. From the above argument, we

may say that a contact structure is a Gf(L)-structure (P§(L), (L)) on a mani-

fold M satisfying condition C¥.

(1 We use the same notations as in (1). Let G, be the subgroup of
G,(L) defined by the equations e=1 and a=1. Hence the group G, is iso-
morphic with the group Sp (&, R). Setting G¥=N, -G, we say that a Gf-
structure (P¥#, ») on a manifold M satisfying condition C§, is a strict con-
tact structure. As is well known, the principal fiber bundle P# naturally
reduces to a G,-subbundle. Let g, be the Lie algebra of G, which is isomor-
phic with the simple Lie algebra &, (k, R). Then the direct sum g_,+g¢_;+g,

forms a subalgebra of g_,4-g_,+g,(L). Let g= > g, be the prolongation of
p=—2

g-2+6-1+g,. Then we can easily prove: g, (p=0) is isomorphic with the p-th
prolonged space &, (k, R)® in the usual sense of the representation of &,(k, R)
on R*, and [g,, g-,]={0} for any p=0. It follows that g is infinite dimen-
sional. Moreover it follows that the prolongation g(L)=g_,+g_,+ f}gp(L) of
=0
g-s+a_,+a,{L) is also infinite dimensional. ’
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(2) The case where n’:—%—n(n—«l)—l and n=2k (k=2). Let L be the
linear mapping of A%g_, onto g_, such that the kernel L-*(0) of L is spanned

by the element ﬁ] Ie; N\ ej, where I=(I;,) denotes the matrix defined in (D).

4,j=1
Let R, be the Z)rbit of (M, H) through L. Then we see that 9, is open and
dense in M and hence that it is the unique maximal orbit of (M, H). More-
over we see that the group G(L) may be identified with the subgroup of
GL(g.)=GL(n, R) consisting of all the elements b € GL(n, R) such that bI‘b
= pl with some p= R. An easy computation shows that g,(L)={0} for all

p=1. Hence we have dim g(L)=dim g_,+dim g_,+dim g,(L) = %A(n%tn).
(8) The case where n’:%n(n-l) (n=3). Let N, denote the subset of

M consisting of all the elements L M which map A%_, isomorphically onto
g_,. Then we see that 9, is open and dense in I and that 9N, is the unique
maximal orbit of (M, H). We take a fixed element L of %, and identify g_,
with A2g_, by the isomorphism L. Then we see that the group G,(L) may be
identified with the group GL(g_,), and we can easily prove: g,(L)+ {0} and
g,(L)=1{0} (p>2). Since both the representations p_, and p_, on g_, and g,
are. irreducible, we know from Prop. 2.1 that the Lie algebra g(L) is simple
and dim g(L) =2(dim g_,+dim g_))+dim g,(L) = 2n%+4-n: More precisely, g(L) is
isomorphic with the simple Lie algebra &(n, n-+1), and we have the natural
identifications : g,(L) =g_, ®¢*,, 6.(L) =g*, and g_,(L) = A%g*,, where g*, denotes
the dual space of g_,.

REMARK. A general study of the equivalence of n-dimensional differential
systems D on (n+n’)-dimensional manifolds M will require graded Lie algebras

of the form g—= %gp (k< —3). This will be the case especially in the case
=k

where n’ = ~—%n(n—l). The particular case where n’=3 and n=2, has thoroughly
been investigated by E. Cartan [2] In his paper, he implicitly utilizes a

graded Lie algebra of the form g= i Op-
p=-3

§8. Applications to the geometry of real submanifolds in
complex manifolds.

In this section, we always assume the differentiability of class C*.

DEFINITION 8.1 ([6] and [7]). Let f (resp. f/) be an imbedding of a real
manifold M(resp. M’) to a complex manifold M(resp. M’). An analytic homeo-
morphism ¢ of M onto M’ is called an isomorphism of (M, f) onto (M’, f/) if
there is a complex analytic homeomorphism ¢ of a neighborhood of f(M) onto
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a neighborhood of f/(M’) such that f/op=@of. Furthermore, we say that
M, f) and (M’, f") are equivalent if M= M’ and if the identity transforma-
tion of M is an isomorphism of (M, f) onto (M’, /).

Let V be a complex vector space and let W be a real subspace of V.
Then, W~ —1W (resp. W4++/—1 W) is the maximum (resp. the minimum)
complex subspace of V contained in W (resp. containing W). We say that W
is of type (n, n’) if dimo(W NV —1 W)=n and dimo(W -+~ —1 W)=n-+n’. We
have dimgW = 2n-+n’'.

Let f be an imbedding of a real manifold M to a complex manifold M.
Let x be any point of M. M being a comlpex manifold, the tangent space
Tf<x)(1\7[) to M at f(x) is a complex vector space, and the image f,T,(M) of
the tangent space T,(M) to M at x by the differential f, of f is a real sub-
space of the complex vector space T_f(m(]VI ).

DEFINITION 8.2. The notation being as above, we say that f is of type
(n, n") if, at each x e M, f«T,(M) is a subspace of type (n, n’) of Tm)(z\?).

An imbedding f of type (n, 0) means that the image f(M) of M by f is
an n-dimensional complex submanifold of A, and an imbedding f of type
(0, n) means that f(M) is a real part of M if dim,M=n’. Moreover, any
imbedding f of a (2n-+1)-dimensional manifold M to an (n-+1)-dimensional
complex manifold M is of type (n, 1.

REMARK 1. Let f be an imbedding of a real connected manifold M to a
complex manifold M. Denote by p the maximum of the integers dimy(fT,(M)
4+ =1 To(M)) (xe M). Set n=dimzM—p and n’=2p—dimyM and denote
by M, the subset of M consisting of all the points x such that f T,(M) is a
subspace of type (n, n’) of Tf(x)(ZVI). Then it can be proved that the subset
M, is open and dense in M. This fact justifies the introduction of the notion
of imbeddings of type (n, n’). '

REMARK 2. Let f be an imbedding of a real manifold M to a complex
manifold M. Then we can prove the following reduction theorem: If f is of
type (n, n’), there is a “unique” (n+n’)-dimensional complex submanifold MO
of M such that f(M)cC M,.

REMARK 3. Let f(resp. f/) be an imbedding of a real manifold M(resp. M’)
to a complex manifold M(resp. AZI’). We assume that both f and f’ are of
type (n, n’) and that dimgM = dimoM’ =n+n’. Then we can prove the follow-
ing uniqueness theorem: If ¢ is an isomorphism of (M, f) onto (M’, f*), there
is a “unique ” complex analytic homeomorphism ¢ of a neighborhood of f(M)
onto a neighborhood of f/(M’) such that f' o =@of.

The results in Remarks 2 and 3 can be given reasonable proofs by the
use of the E. Cartan’s theory of involutive exterior differential systems. From
now on, we shall exclusively deal with imbeddings of type (n, n’) from (2n--n’)-
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dimensional real manifolds to (n-}n’)-dimensional complex manifolds. By
virtue of Remark 2, this does not offer any essential restrictions for our
problem.

Let (n, n’) be a pair of integers with =0, n’ =0 and n+n’>0. We set
m=2n+n’ and "m=mn-4n’. Now, consider the complex vector space f=C"m,
the space of 7% complex variables, and denote by ¢}, ---, ¢, e,, ---, ¢, the natural
base of it. Denote by g_, (resp. g_,) the real subspace (resp. the complex sub-
space) of fit spanned by (€});=zq=, OVer R (resp. by (e;);=s=, Over C), and set
m=g_,+g_,. Note that m is a real subspace of type (n,n’) of m. We set
H= GL(i) = GL(#, C) and denote by H the subgroup of A consisting of all
the elements ¢ which leave minvariant. As is easily observed, the representa-
tion of H on m is faithful. Therefore we may identify H with a subgroup
of GL(m)=GL(m, R). Let o be an element of A. Then we see that ¢ = H if
and only if ¢ satisfies the followings: 1) og_,=g¢_,, 2) for each X_,=g._,,
there is a Y_,eg_, such that 6 X_,=Y_, (modg_,). For each ¢ € H, denote by
o_, and o_, the complex linear automorphism of g_, and the real linear auto-
morphism of g_, respectively defined by ¢_,X_,=0¢X_, for all X_,eqg_, and by
0_,X ,=0X_, (modg_,) for all X ,=g._,. LetS denote the closed subgroup of
H consisting of all the elements ¢ which leave g_, invariant, and let N, denote
the kernel of the homomorphism ¢—(o_,, 6_,) of H onto S=GL(g_,) XxGL(g-,)
=GL(n', R) X GL(n,C). We have H=N,-S.

Since H is identified with a Lie subgroup of GL(m), we have the notion
of H-structures. Let (F, w) be a H-structure on a manifold M of dimension
m.  being an m-valued 1-form on F, it may be expressed as

n! n
0= w.ly+ X we;,
a=1 i=1

where (w,) are real valued 1-forms on F and (w;) are complex valued 1-forms
on F. It is clear that the m forms wi, ---, Wy, Wy, *+* , Wy, @y, -+, B, are linearly
independent over C at each ze F.

DEFINITION 8.3. The notations being as above, we say that the H-struc-
ture (F, w) is integrable if we have the equalities:

dw,=0 (mod w}, -+, Wy Wy, =+, W),
do;,=0 (mod w}, =+, Wy, @y, -+, w,) A=a=n/, 1=i1=n),

where the meaning of mod should be considered with respect to complex
valued forms. Furthermore, we say that (F, o) satisfies condition (C) if we
have the first n’ equalities.

We shall show that to every imbedding f from an m-dimensional manifold
M to an #-dimensional complex manifold M, there is associated, in a natural
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way, an integrable H-structure (F, w) on M.

Let M be an #-dimensional complex manifold. We denote by g, the mani-
fold of all the real contact elements of type (n, n’) to M, which is a fiber
bundle over M.

REMARK 4. Let ¢ be the manifold of all the m-dimensional real contact
elements to /. Then it can be shown that G, is open and dense in ¢. This
implies that there are many real submanifolds of type (n, n’) in M.

As is well known, there is associated to M an integrable H-structure
(F, @ on M. Let # be the projection of / onto M. Every element z of F
induces a complex isomorphism of ft onto Ti,(M), and we have clearly z-m
€ g, for any z= £ It is easily seen that the mapping p(z—z+-m) maps F
onto ¢, and that £ becomes a principal fiber bundle over the base space &,
with structure group H with projection p (the action of H on F is given by
the restriction to H of the action of / on ﬁ). & being an f-valued 1-form
on F, it may be expressed as

r

n n
&= 3 drent X Biey,
1 =1

where (@7) and (&,) are complex valued forms on F Since (F, @) is integrable,
we have the equalities:

~

dé, =0 (mod &;, ---, &L, &y, -+, By),
dé; =0 (mod &, ---, &L, &, -+, &, AZasn, 1Z1<n).

Now, let f be an imbedding of type (n, n’) from an m-dimensional real
manifold M to M. Let f, be the mapping of M into g, defined by fy(x)
=f4T,(M) for any x M. We denote by F the principal fiber bundle over
the base space M with structure group H which is induced from the principal
fiber bundle £(g,, H) by the mapping f,, From the definition of F, it follows
that there is a unique mapping f, of F to F such that pofo=soor and f(z0)
= 7(2)o for any ze F and o € H, where = denotes the projection of F onto M.
We define an M-valued 1-form o on F to be v =f¥a.

LEMMA 81. (1) o is an m-valued 1-form on F.

(2) The pair (F, w) is an integrable H-structure on M.

Proor. (1) Let z be any point of F and set y=f(z). We have y-@(Y)
=#,Y for any Y e Ty(ﬁ‘). Since we have #of,=fox, we have, for all
Ze TF),

y @)=y 3(fosxZ)=Eo f)Z=(f o m)sZ .

Therefore we have

Y (TN = sTrax(M)=fs0on(@) =p o f2) =y - m,
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Hence we get w(7T,(F))=m.

(2) Let R(o0) (resp. B(o)) denote the right translation of F (resp. /) induced
by ¢ € H (resp. aeﬁ). We have R(0)*@ =0¢"1@ for any o e H. Since f,(z0)
= fy(z)o for any z < F and ¢ = H, we have clearly R(¢)*» =0¢ 'w for any ¢  H.
Let Z be a tangent vector to F' at z=F. Since f is an imbedding, we see
from the above argument that w(Z)=0 if and only if 7,Z=0, i.e, Z is a
vertical vector in F(M, H). We have thereby proved (F, w) to be a H- struc-
ture on M. That (F, w) is integrable follows from the integrability of (F, &).

LEMMA 8.2. The assignment (M, f)—(F, w) is compatible with the respective
1somorphisms.

This has already been proved in the case where n’=1 (6], Th. 1). The
proof in the general case is just similar to this case.

REMARK 5. We can prove the following realization theorem for integrable
H-structures: Let (F, w) be any integrable H-structure on a manifold M of
dimension m. Then there are an #-dimensional complex manifold M and an
imbedding f of type (n, n’) from M to M such that the given H-structure
(F, w) is equivalent to the H-structure corresponding to (M, f). By
8.2, we know that (M, f) is uniquely (up to equivalence) determined by (F, w).
Therefore this theorem combined with generalizes a theorem of
Whitney-Bruhat concerning the complexification of real analytic manifolds.
(Note that, in the case where n=0, F is nothing but the frame bundle of M
and hence it does not give any structure on M.)

We shall now define the “torsion” or the “Levi form” T of any H-
structure (F, w) satisfying condition (C).

Let g &g, denote the complex tensor product of the complex vector
space g_, and itself. We set

— 1 — -
X G ANY = T(X-—l QY 1—Y QXD

for all X_,, Y_,=q_,, where X_, denotes the vector conjugate to X_, with
respect to the real form R" of g_,=C". We denote by AZg_, the real subspace
of g_,®g¢-, spanned by X_AY_(X_,Y_, eq.,) over R. The group GL(g-))
=GL(n, C) acts® linearly on ‘A%g_, by the rule: ¢(X_,AY_)=(X_)A(cY_-)
for all ce GL(g-,) and X_,, Y_,=g_,. We denote by M the vector space con-

j— n
6) The vector space A%, is composed of all the elements }; b;;e;ej; where
1,j=1

b = (b;;) is a skew-hermitian matrix of degree n. Let ¢ = (s4;) be a matrix in GL(n, C)
and let b = (b;;) be a skew-hermitian matrix of degree n. Then we have

o(L bijes®e;) =}, owbuonei@e;
[2%) %)k,

=2, (ob'v)1jei®ej.
5
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sisting of all the linear mappings L of A%_, to g_,. Let us now make the

group H operate on I as follows: Let LeM and s H. Then, LM is
defined to be

L*(B) = (0-,)"'L(0-,B)

for all Be A%_,. We have (L) = L".
LEMMA 8.3. Let (F, w) be a H-structure on a manifold M satisfying con-

dition (C). There is a unique mapping T(z—T,) of F to M satisfying the
equality

dw*2+-%‘T(w_17\w_l) =0 (mod w_,),

Where w, (p=—2, —1) denotes the g,-component of w.
Proor. Uniqueness is clear. Since (F, w) satisfies condition (C), we can

find a unique system (7'%);=i,j=n,1=a=n 0f complex valued functions on F such
that

doet—y 3 Tho A5,=0 (modaf -, 0f) (=a=n),
i,j=

Te+Tsa=0 (1<i,j<n l<a<n’).

We have only to define 7T, I to be
_ 1 . N
TXanY-)=—5 2 T35 I —yi% e

for all X_,=2>xe;, Y, =3 ye;€0,.
7 7
LEMMA 8.4. The notation being as above, we have

T,,=(T)°

for all ze F and o< H.

The proof of this is analogous to that of

Once we have established Lemmas and we may now proceed just
as in §7.

Let (F, w) be a H-structure on a manifold M satisfying condition (C). We
denote by T(F, w) the subset of I consisting of all the elements T,(z € F).

DErFINITION 8.4. Let M be an orbit of (M, H) and let (F, w) be a H-struc-
ture on a manifold M satisfying condition (C). We say that (F, w) is of type
N if we have T(F, w)=N. An imbedding f of type (n, n’) from an m- dimen-
sional real manifold M to an 7-dimensional complex manifold A/ is said to be
of type Mt if the corresponding H-structure (F, w) on M is of type R.

DEFINITION 85. An orbit it of (M, H) is called g_,-maximal if some and
hence any L It maps /A%_, onto g_,.

Let L be any element of M. We define the group G¥§(L)= N,G,(L) and
the graded Lie algebra g_,+g_,+q,(L) just as in §7. Note that we have
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[X_ ., Y ]=LX_,AY.) for all X_,, Y_,eg,. Under the assumption that L

maps 25, onto g_,, we see that the graded Lie algebra g_,-+g_,-+g,(L) satisfies
condition (2.1) in §2 and that the groups N, and G,(L) are just associated

with this graded Lie algebra. We denote by g(L)=g¢-,+0_,+ %gp([,) the pro-
longation of the graded Lie algebra g ,+g_,+go(L). =

Let % be a g_,-maximal orbit of (M, H) and let (F, ) be a H-structure of
type N on a manifold M. We fix an element L of . Then we define the
G¥#(L)-structure (P#(L), (L)) on M just asin §7. By this G§(L)-
structure satisfies condition C¥.

Consequently from Cor. 3 to Ths. 4.1 and 4.3, we get

PROPOSITION 8.1. (1) Let & be a g_,-maximal orbit of (M, H) and let
(F, w) be a H-structure of type Nt on a connected manifold M. Let L be an
element of N. If dimq(L)<oco, then the Lie algebra af all the infinitesimal
automorphisms of (F, w) is finite dimensional and of dimension < dim g(L).

(2) Let f be an imbedding of type (n, n’) from an m-dimensional connected
manifold M to an T-dimensional complex manifold M. We assume that f is
of type R with respect to a g_,-maximal orbit N of (M, H). Let L be an ele-
ment of M. If dim g(L) < co, then the Lie algebra of all the infinitesimal auto-
morphisms of (M, f) is finite dimensional and of dimension = dim g(L).

Finally, we shall observe, in several cases, the maximal orbits N of the
transformation group (M, H), the graded Lie algebras g ,+g_,4g,(L) (L)

and their prolongations g_,+q_,+ igp(L).
=0
(1) The case where n’=1and nz1. Let 2 be an integer with 0=2=[ - |.
We set as follows: ¢=—1(1=1=<2ande=1U<i=n), and define a skew-

hermitian matrix I;=(I;,;) of degree n by I;;;=+~'—1ed;; 1=1, j<n). By
using the matrix I;, we now define an element L, of M by L (X_,AY_)
:—é—“izllm(xiyj——yi@)e{ forall X_, = zi)xiei, Y_.= gyjej € q_,. Let N; denote the
orbit of (M, H) through L;. Then we see easily that %, (0§ 1< [%]) are
open sets of M and that the maximal orbits of (M, H) are just given by R,
The group G,(L;) consists of all the matrices ¢ of degree n-+1 of the form

ea? 0

0 ab)’
where a >0, be GL(n, C), e2=1 and *%I;b=¢l,. An easy calculation shows:
a:(L) # {0} and ¢, (L)=1{0} (»>2). Since both the representations p_, and
p-1 of g,(L;) on g, and g, are irreducible, we see from Prop. 2.1 that g(L,)
is a simple Lie algebra and that dim ¢(L;)=2(dim g_,+dimgg_,)+dim g,(Ly)
=n2+4n+3. More precisely, g(L,;) is isomorphic with the simple Lie algebra
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gu(n+1—24, 14+ 2).

By Prop. 8.1, we have the following and [7]): Let f be an imbedd-
ing of a (2n+1)-dimensional connected manifold M to an (n+1)-dimensional
complex manifold M. If f is of type %, then the Lie algebra of all the in-
finitesimal automorphisms of (M, f) is finite dimensional and of dimension
< n24+4n-+3.

An imbedding f of type M, means that the real hypersurface f(M) of M
is non-degenerate of index 2 in the sense of [6] In particular, an imbedding
f of type M, means that f(M) is a pseudo-convex hypersurface of M.

(2) The case where n’ =n?—1 (n=2). This case is just analogous to case

(2) in §7. Let A be an integer with ngg[%]. Let L; be the linear map-

ping of A2g_, onto g_, such that the kernel L;}(0) of L, is spanned by the ele-
ment 3} [;e;Qe, where I;=(I;,;) denotes the matrix defined in (1). Let %;
7,J=1

denote the orbit of (W, H) through L, Then we see that %, (0=<2< [—3—])

are open sets of M and that the maximal orbits of (M, H) are just given by
R,. Moreover we know that the group G,(L;) may be identified with the sub-
group of GL(g_)=GL(n, C) consisting of all the elements b= GL(n, C) such
that bI;'h = pI, with some p = R. We have, as before, g,(L;) = {0} for all p=1.
Hence we have dim g(L;) =dim g_,+dimgg_,+dim g,(L;) = 2(n?>+n).

(3) The case where n’=n% (n=1). This case is just analogous to case
) in §7. We denote by N, the subset of M consisting of all the elements
L =M which map A?%;_, isomorphically onto g_,. Then we see that %, is open
and dense in M and that N, is the unique maximal orbit of (M, H). Let L
be a fixed element of N, and identify g_, with A%_, by the isomorphism L.
As before the group G,(L) may be identified with the group GL(g-,) = GL(n, C),
and we have ¢,(L)+ {0} and g,(L)={0} (> 2). Since both the representations
p—; and p_; of g,(L) on ¢g_, and g, are irreducible, we know from Prop. 2.1
that g(L) is a simple Lie algebra and that dim g(L)=2(dim g_,+dimgg_,)+
dim go(L) =4(n*+n). More precisely, g(L) is isomorphic with the simple Lie
algebra 2u(n, n+1), and we have the natural isomorphisms : g,(L) =g-, @ g*,, g.(L)
=g*, and g,(L) = A%g*,, g*, being the dual space of the complex vector space
8-1-

REMARK 6. Let f be an imbedding of type (1, 2) from a 4-dimensional
connected manifold M to a 3-dimensional complex manifold M. We have
proved that the Lie algebra of all the infinitesimal automorphisms of (M, f)
is generally finite dimensional and of dimension <5. Note that n’ =2>1=n?2
The proof of this fact uses a real graded Lie algebra of the form g_,+g.,
+g_,+¢, where g_, is equipped with a structure of 1-dimensional complex
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vector space and dimg,=1 (p=—3, —2, 0).
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