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Hypersurface with parallel Ricci tensor in a space
of constant holomorphic sectional curvature
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Introduction. It is well known that the Ricci tensor of a symmetric space
is parallel, that is, the covariant derivative of the Ricci tensor vanishes, which
is also true in an Einstein space if the dimension of the space is greater than
2. But, in general, the converse is not always true.

The purpose of this paper is to prove the equivalence of the following
statements for a complex hypersurface in a space of constant holomorphic
sectional curvature: 1) The hypersurface is a locally symmetric space. 2) The
hypersurface is an Einstein space. 3) The Ricci tensor of the hypersurface is
parallel.

Recently B. Smyth has shown in his thesis that the statement (2) above
implies (1) and also he has clasified such a hypersurface [2]

§1. Formulas for a complex hypersurface.

In this section we shall summarize the fundamental formulas for a com-
plex hypersurface which will be used in §2. All of them are well known and
easily proved as in the case of a real hypersurface [1]. The indices A4, B, C, -+
take the values 1, 2, ---, n+1 and the indices 1, j, %, --- take the values 1, 2, ---, 7.

Consider a Kihler manifold M’ of complex dimension n-+1 and a complex
hypersurface M in M’ which is a complex submanifold of M’ of complex codi-
mension 1. M is considered as a Kihler manifold by the induced metric from M’.
In terms of local complex coordinates (2%, --+, 2”) of M and (w?, ---, w™) of M’,
w4 is a holomorphic function of (2%, ---, z"). If we denote ow4/0z' by B#%, the
induced metric tensor gy is given by

5= BFEBiAgIEA s

where g’z, is the metric tensor of M’ and B;4= B
Let N4 be a complex unit normal vector to M, that is, N4 is defined lo-
cally and satisfies

*) This work was partially supported by the Sakkokai Foundation.



200 T. TAKAHASHI

g,EABzENA:O and g/EAN_BNA:].,
where N4= N4,
The covariant derivative of B;4 and N4 by the so-called van der Waerden-
Bortolotti covariant differntial operator V', are
VjBiA:HJ'iNA, V;BLAZO,
ViN4=c;N4, ViN4A=—H7BA—c;N4,
where Hj; is symmetric with respect to j and i, Hj; = H,;, H7'= Hj;g“ and
¢;=7¢;. Hj; and c; are depend on the choice of N4, Then denoting the curva-

ture tensors of M and M’ by Ky;7 and K'5esz respectively, we have the Gauss,
Codazzi and Ricci formulas.

LD K= BiPB,°B”B7*K 5o+ HiwHyi
a 2 4 Vs ji+CkHji:Viji+chki
. Vic_Hji_!_cl?Hji = BEBB]'CB@'BNZK/ECBZ
V 'Ci"‘_ViC j — O
(1.3) ! !

VicitV ;= —H7H;o+B7’BCNENAK 5057 .
Transvecting with g% we have
14 Kz = Bi®BAK'54+BzPB N BN 4K 5o53—HzHjq
where Ky; and K’z, are the Ricci tensors of M and M’ respectively.

If M’ has a constant holomorphic sectional curvature k, the curvature
tensor and Ricci tensor of M’ have the form

k
K'5opa = ——5(8'508 5a+8'588¢a)

Also in this case we have
B#PB°B#Bi*K' 505 = —L; (gw8w+Emem)
BiPB °BENAK 5057 =0
BiPBSN BN 2K 5057 = —%g;j .

On account of these equations, for a complex hypersurface in a space of con-
stant holomorphic sectional curvature 2 we have the following formulas:

k
(L.5) K;?ju‘;: —*2*(8'Ejgiﬁ“l”gz?igjﬁ)‘l“HﬁHﬁ
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1.6) ViH;; = cxHj;
%)) Pyt Vicr=— 1 g5 —H5"H,,
a8 K=" kgm—HyoH,a.

§2. Hypersurfaces with parallel Ricci tensor.

In this section we shall assume that M is a connected complex hypersur-
face in a space M’ of constant holomorphic sectional curvature 2 of complex
dimension n--1.

Differentiating and taking account of we have

(2.].) VkKﬁ = —Hja(V,cHia’I“C]gHia) .
Now we define the scalars a and 8 on M by the following:
(2.2) a=HyH;7g%g" and B=Hy/HiH;"H,F.

PROPOSITION 1. If the Ricci tensor of M is parallel, the scalars « and B
are real constant.
PrROOF. By the definition it is easily verified that these scalars are real.

Transvecting (1.8) with g7¢ we have

1 =,

and also from (1.8) we have
ﬁ:K,—.inuw;eur(nH)ka.

Thus « and 8 are constant, since K3 g’ and Kj K are constant.
PROPOSITION 2. If the Ricci tensor of M is parallel, there exists a constant
A such that

(2'3) HJEHEbei - RH‘N .
PrOOF. Since V ;K7 =0, using the Ricci’s identity we have
KE;’Z aKEh"i‘KEjhaK{a =0.
Substituing (1.5) and (1.8) in this equation, we have
b _ - _
@4 T(QEthaH&E —&j He®Han)+ Hy; H*Hg"Hyp— Hj Hy *H"H 57 = 0.

Transvecting (2.5) with H*®, we obtain
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aHj‘—‘H,;"th——ﬁHjh =0.
Thus we have

HjEHEbeh = /IH]]L

where 2=8/a, if a+0. If a=0, then H;; =0 and the proposition is trivial.
PROPOSITION 3. The Ricci tensor of M is parallel if and only if

(25> Vk ji+ckHji:0-

Proor. If (2.5) is satisfied, we can see directly from (2.1) that VK3 =0.
Conversely we assume that the Ricci tensor of M is parallel, then we have
from (2.1)

(2.6) V' H ) H; © = —cH jaH7 ® .

If M is totally geodesic, (2.5) is trivial. So we may assume that M is not
totally geodesic. Then the formula (2.3) holds and A+ 0. Differentiating (2.3)
and taking account of (1.6) and (2.6) we have

AV H =V HEH7 Hy+H Y HPHy+ HPHZV Hy,
= — ¢ H;*Hz Hy+cH 2 H7 " Hy,— ¢, H *H7Hy;
= —c,H 2 H;°H,,
=—Ac;Hj; .

Since 1+ 0, we get (2.5).

PROPOSITION 4. M 1is locally symmetric if and only if the Ricci tensor of
M 1is parallel.

Proor. It is well known that if M is locally symmetric, the Ricci tensor
of M is parallel. We may assume that the Ricci tensor of M is parallel. Tak-
ing account of (1.6) and (2.5) we have

Vi Ksjin=V Hen Hp+Hy7 ViHy,
= ¢ Hiy Hy;—cHey Hy;
=0.

This shows that M is locally symmetric.
Now assume that the Ricci tensor of M is parallel and M is not totally
geodesic. On account of (1.6) and (2.5) we have

VjHih:_CjHih VeHn = ceHi,
(2.7) VEVJ'HH,,: _Vic—CjHih_CI?chih
2.3) V¥VeHn=—V jex Hpp—ciciHn

Subtracting (2.8) from (2.7) and taking account of Ricci’s identity we have
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_Kka H,,— Kk]h = (chj—H7 i) H, -

Then taking account of [I.7) in the right hand side and [(1.5) in the left hand
side we have

k k k @
2.9) (Tgij_HEaHja>Hih+ (-2—.9 P "Hk'aHm>Hjn+ (‘Q“gﬁn’—HE Hha>H]i =0.
Transvecting (2.9) with g% and taking account of we obtain

("+2 k—a—22)Hip=0.

Since H;; #+ 0 in our assumption, we have

n+2
2

(2.10) k=a+22.

As B and a are positive and then 1= S/a is also positive, we see that k& must
be positive. Transvecting with g# we have

b _
o (nH;*H;z —ag;7) =0
and this implies

@.11) Hf*H;z= g5 -
Transvecting [2.11) with H,® and taking account of we have
ZH]C]‘ == %Hk] .

Thus we have 2=a/n, and from we have

a _k
2.12) =
Therefore we have
k
(2.13) H;°H, = 585 -

Substituting this in we obtain
n

This means that M is an Einstein space.

If M is totally geodesic, it is easily seen that M is a space of constant holo-
morphic sectional curvature 2 and therefore M is an Einstein space.

Summarizing the results of this section we have the theorems.

THEOREM A. If M is a connected complex hypersurface in a space of con-
stant holomorphic sectional curvature of complex dimension n+1 and n=2, the
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Sollowing statements are equivalent: 1) M 1is a Locally symmetric space. 2)
The Ricci tensor of M is parallel. 3) M is an Einstein space.

The non totally geodesic case of M occurs only in a space of positive con-
stant holomorphic sectional curvature, we have

THEOREM B. If M is a connected complex hypersurface in a space M’ of
non positive constant holomorphic sectional curvature k of complex dimension
n+1 and n =2, the following statements are equivalent: 1) M is totally geodesic
m M’. 2) M is a space of constant holomorphic sectional curvature k. 3) The
Ricci tensor of M is parallel. 4) M is an Einstein space. 5) M is a locally
symmetric.

THEOREM C. Let M be a connected complex hypersurface in a space M’
of positive constant holomorphic sectional curvature k. If the Ricci tensor of
M is parallel, then either M is totally geodesic in M’ and has a constant holo-
morphic sectional curvature k, or M is a locally symmetric Einstein space with
the scalar curvature n2k.
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