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In this paper we shall investigate some properties -concerning the behavior
of the eigenvalues and singular values of complex matrices. Let A be an n-
square matrix and p be any positive integer. Let the eigenvalues of A and
the singular values of A? be denoted by 21, and «® (1 <1=<n) respectively,
which are so arranged that |A,]=|4,]= - =|2,] and aP =z a® = --- = a.

1
Then in § 1 we shall prove that lima{®? =|4,|, i=1, 2, ---, n. This generalizes

proo
a Gautschi’s result p. 138). In §2 we shall treat non-negative matrices
and state some properties which improve some results obtained by Gautschi
and Brauer [1]

The writer wishes to express his hearty thanks to Professor Y. Nakai for
his advice and encouragement during the preparation of this paper.

Notations and definitions: We consider n-square matrices with complex
elements and certain notational conventions will be observed throughout this
paper. The (i,)) element of an n X n matrix A will be denoted, using the

corresponding small letters, by a;;. R (A) stands for i‘, lag;l and C,;(A) for
Jj=1

f‘,]a”]. We shall put R(A)=max R,(A) and C(A)=maxC,(4). We adopt
=1 2 1

the notations 'A and A* for a transposed matrix and a conjugate transposed
matrix of A respectively. A(A) signifies any one of the eigenvalues of A. The
singular values of A are the square roots of the eigenvalues of (A*)A or AA*,
The spectral radius of A is p(A)=max|A(A4A)|]. We mean by a non-negative
(positive) matrix the one whose elements are non-negative (positive) real num-
bers. |A| denotes the matrix whose (i, j) elements are given by |a;;|. By a
vector x, we mean one column matrix and the Euclidean length of x, (x*x)V2,
will be denoted by |x]|.

§1. The behavior of the singular values

Let || | be a matrix norm consistent with a vector norm (cf. [4]). Then

1
lim | A?|? = p(A) is well known as a special case in the theory of Banach
P00
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algebra (e. g. [5]) and was also proved by Gautschi [3] in different formula-
tions, but we give here an elementary proof for the sake of completeness.

LEMMA. Let | | be a matrix norm consistent with a vector norm, then for
every positive integer p, we have

PDZ AT AL and p(A)=lim | 427 .

If p, G=1,2,---) is a strictly increasing sequence of positive integers such that

b is divisible by p;y 1=2,3, ---), then the sequence {| A¥t H_l;—i}(i:l, 2,3,-) is
monotone decreasing and converges towards p(A) as 1— oco.

PrROOF. Let x be a non-trivial eigenvector corresponding to an eigenvalue
2 of A, then APx = 2?x for any positive integer p. Hence |2|?|x| = | A?||x|

1
and |x|>0. From this it follows that || =< | A?||? < || A|. Thus the sequence

1
{l A7 ?} (p=1,2, ---) is contained in the bounded closed interval [p(A), [|Al],
and has at least one limit point in it. Let « be any limit point of this sequence,
then p(A)<a=| A|. Now suppose that p(A) < e, then there exist a subse-
1 1
quence {||A%i|| i }(i1=1, 2, ---, 1 £ p, < p, <--+) such that || AP¢|| »i -« as i —co, and
a positive number a’ such that p(A)<a’<a. Then p( 6‘3 = ;, p(A) <1,

therefore ( cé ) —{ as i—oo0. Since a matrix norm is continuous with respect

()

constant ¢, there is an integer N(¢) such that

(A

1
This is a contradiction and we have p(A4)= a, which implies lim || A?|| # = p(A).
prroo

to the elements, we get —0 as 1—oco. Hence if we take a positive

(o)

1 1
P < limepi =1,

f—roc

<e for every i> N(e),
and we have

¢ — lim

[44 {0

1<

Further, if p,,,=mp, where m is a positive integer, we have

| A% | T = | A Rt < | AR
This completes the proof.
COROLLARY. Let A=(a;;) and B =(b;;) be two matrices such that |a;;| <b;;
G,7=1,2,--,n), then p(A)=< p(|A}) =< p(B).
This is known as a part of the Perron-Frobenius theorem (cf. [7]), but us-
ing Lemma we can prove easily as follows: Let | Al = 3 |a;|, then || A?]
(2%

1 1 1
={A%|I= 11 AI7|=1B?], i.e, [|A?]|? < ||| A]?|# <||B?| 7, hence making p—oo
we obtain p(A) =< p(| A]) = p(B).
REMARK. Lemma holds for any matrix function ¢ satisfying the following
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conditions :
M ¢(A) =0, and ¢(A)=0 if and only if A=0
A ¢(aA)=|a|¢(A) for any complex number «
(1) ¢(AB) = H(A)P(B)

avy if lim A, =0 (considering an n X m matrix A, as a point of the nm

dimensional complex affine space), then 11m #(Ap)=0.

Now we prove the following :

THEOREM 1. Let A be a matrix of order n and p be any positive integer.
Let the eigenvalues of A and the singular values of AP be denoted by A; and
a® (1 <1< n) respectively, which are so arranged that

L2122 212, aPZaP = zaP.

Then we have

1
limaP? =], 1=12,--,n.

p-roo

Proor. As is well known, we have
1
@ p(A)P = p(A?) < p{(AP)* AP} * < N(AP)

where N(A) stands for the Euclidian norm, i.e, N(Al’):\/ ﬁ la@ | for
i,J=1

AP =(a{®). Hence we have from (1)
0(A) = p{(AP* AP35 < N(AP)T — p(A)  (p—co)

1
e, lima{®» =|2,]. Applying this to the k-th compound matrix C,(AP) of AP
p-rco

(cf. [6]), we get
) 11mHa(p”’—H12|

p-ro0 §=1
. . k
since o[ {Ci(AP)}*Ci(AP)] = p[Cr{(AP)* AP}] :(1:11 a2 If 2,=0, the assertion
is trivial, so, without loss of generality, we may assume that
) | = - 2| 4| > 0=]Agss] = - =| sl

Then we have af >0 for any p. For, suppose that af =0 for some p, then
it follows that a{™ =0 for m = p since

rank {(AP+1)* AP+1) — rank (A?*!) < rank (A?) =rank {(AP)* AP} .

Hence we have H afmm W =0 for m = p, but lim H oz(m) m = H | 2;]> 0 by (2) and

m=+o0 1=1

(3), which is a contradiction. Therefore we have af® >0 = < 1 < k) for any p, and
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. 1 .
lim @ ? = lim

tim {(iL )7 /(T a) )

= (I 1a0)/(B1a0) =141, isk+l.

—|2+11=0 as p-—oo for every j > k41, it is clear that

Pp-rco

s e

1
Since 0= af® ? < af®y
for j > k+41.

]
lim a7 =| 4]
p"OO

This completes the proof.
COROLLARY. Let the assumptions and notations be the same as in Theorem

1. Then we have
1
2

v

k 1 . k —
IHHa®4 = - = lim]] af®?
i=1

@ 11 a® = 1T af?
i=1 T =1 p-oo =1
k
:leily k=1,2,,n.
i=1
Proor. For any matrix A, B, it is well known that

p{(ABY*(AB)} < p(A*A) - p(B*B).

Hence we have
p=1,2, ..

PAAZFA®} S [p{(AZ A7) ]2
Applying this to the k-th compound matrix C,{(A®)*A%}, we get (4) from

Theorem 1.
THEOREM 2. Let A be a matrix, then we have

1
lim ('] A?| | A% = lim o(|(A?)*A?|) % = o(A).
D0 proo

Proor. This is an immediate consequence of Lemma and thezfollowing

inequalities :
o(A) = p(A7)? < p(| AP|)T = p('| A?| | A|Y = N(A?)T

and
P(A) < p{(APyF AP 7 < (| (APY<AP|} 75 < N(A?) 7

where N(A) is the Euclidian norm defined in (1).

§2. Non-negative matrices

A square matrix A is called reducible in case there exists a¥permutation

matrix P such that
AIZ)

All
‘PAP =
- U
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where A;, and A,, are square submatrices; otherwise it is called irreducible.
We have

THEOREM 3. Let A be a non-negative irreducible matrix of order n, then
we have

1
p(A)=lim R(A%?, 1=1,2,-,n.
poco

PrOOF. By the Perron-Frobenius theorem on non-negative matrices, there
exists a positive eigenvalues 1, with p(4)=21, and a positive eigenvector x
with x, >0 (t=1, 2, -+, n) corresponding to 1,. Let A?=(a{®), then, from the
relation A?x =A% x, we have AL x,= ;}a%?)xj. Put m;':lx Xp = X mkin Xy =% and

—;‘L =0 >0, then

1 1 1 1
Axi? = (D aipx) ? S (L) Pxe ? = (MAX AUF) P xa P,
J J

hence

1 X, \-L 1 A .
207 S 2,(—15)7 SR(ADT < R(AD 7,  i=12,n.

Xa
1
Since R(A) is a matrix norm, we have R(A?)? —p(A)=21, as p—oco. There-
d 1
fore we have R;(A?)? -1, (1 <i<n) as p—co since 1,02 — A, as p—co.
From this proof, we see that Theorem 3 also holds whenever an eigenvalue
with the largest non-zero absolute value has a positive eigenvector. By Bra-

uer’s theorem [2], power positive matrices have these properties, and so we
have the following:

COROLLARY 1. Let A be a power positive matrix, i.e.,- a real matrix such
that A* is a positive matrix for some k, then

1 |
o(A)=lim R(A?? and p(A)= lim C(A?7, i=1,2, 7.
Pro0 P00

The next corollary is an improvement of the result of Brauer [1].
COROLLARY 2. Let A be a non-negative matrix and r(A)= min R,(A). Then
we have ’

FA)S r(A)Y S HAY Y £ o < p(A)= lim R(AZY™
p—roo

Y
2

< - < R(AY = R(AY)

Moreover if non-negative matrix A is trreducible, then

= R(4).

(A% P —p(A) as p—co.
Proor. For any non-negative matrix A and B, it is easy to see that r(AB)

> r(A)r(B), hence we have r(A®)=r(A*™)? i.e, T(Azp)_zlf’ = r(A?™ -1 . Take
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the greatest non-negative eigenvalue A of !4 and a non-negative vector y cor-
responding to A, then from ‘Ay—= 21y, we have i R(A)y; =2 Zn)yi. Since y,=0
=1 i=1
for every 7 and Z? y; >0, we see that 1=7(A). Hence applying this to A? we
=1

1 1
get p(A)=r(A?)?. The assertion lim r(A?)? = p(A) will follow in case of non-
Do

negative irreducible matrices from
THEOREM 4. Let A be a non-negative matrices, then

—jim o ATEAT N
o= timp(-EHA Y,

Ap+tAp

DA Yo < oA Ay,

PROOF. As is easily seen, we have p(A) = p(
Hence Theorem 4 follows from Theorem 1.
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