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1. Introduction

By a meromorphism between two algebraic systems admitting the same
operations, we mean a many-many correspondence of elements which preserves
all algebraic combinations. In the present paper the correspondence of ele-
ments under the meromorphism $\varphi$ shall be written $a\rightarrow b(\varphi)$ or $a\varphi b$ . A mero-
morphism $\varphi$ is called a class-meromorphism if and only if $a\varphi b,$ $a^{\prime}\varphi b$ and $a^{\prime}\varphi b^{\prime}$

imply $a\varphi b^{\prime}$ . In Shoda’s theory on abstract algebraic systems the following
condition is often assumed:

Every meromorphism between two homomorphic images of an algebraic sys-
tem $A$ is a class-meromorphism.

In a previous paper [4] we have shown that the above condition is equi-
valent to the condition

$(\alpha)$ Every meromorphism of $A$ onto itself is a class-meromorphism.
A meromorphism $\varphi$ of an algebraic system $A$ onto itself may be considered

a relation between elements of $A$ . If $\varphi$ is refiexive, we shall call $\varphi$ a quasi-
congruence. In the paper cited above it has been shown also that a quasi-
congruence $\varphi$ on $A$ is a class-meromorphism if and only if it is a congruence
relation on $A$ . Let $\varphi$ and $\psi$ be two quasi-congruences on $A$ . We shall write
$a\varphi\psi b$ to mean $a\varphi c$ and $c\psi b$ for some $c\in A$ , and $a\overline{\varphi}b$ to mean $b\varphi a$ . Quasi-
congruences $\varphi$ and $\psi$ are called permutable if $\varphi\psi=\psi\varphi$ . The symmetricity and
transitivity of a quasi-congruence $\varphi$ are written $\overline{\varphi}\leqq\varphi$ and $\varphi^{2}\leqq\varphi$ respectively.
In the present paper we shall discuss the following conditions on an algebraic
system $A$ :

$(\beta)$ Every quasi-congruence on $A$ is a congruence.
$(\gamma)$ Every quasi-congruence on $A$ is symmetric.
$(\delta)$ Every quasi-congruence on $A$ is transitive.
$(\epsilon)$ All quasi-congruences on $A$ are permutable.
$(\zeta)$ All congruences on $A$ are permutable.
About those conditions it is easy to see that the following implications

hold.
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$(\gamma)$

$\nearrow$ $\searrow$

$(\alpha)\rightarrow(\beta)$ $(\epsilon)\rightarrow(\zeta)$

$\searrow$ $\nearrow$

$(\delta)$

Our object in the present paper is to clarify what algebraic systems satisfy
each of those conditions. For this purpose we shall first rewrite the condi-
tions into more explicit expressions. Using those expressions, we intend to
deal with the problem on multiplicative systems. We have succeeded to solve
the problem for commutative semigroups and obtained some results on general
semigroups and quasigroups. Our main results are the following:

THEOREM 3.2. Congruences on a commutative semigroup $S$ are permutable
if and only if ideals of $S$ are totally ordered under set-inclusion and non-
nilpotent elements of $S$ form a group.

THEOREM 3.3. Let $S$ be a commutative semigroup containing three or more
elements. Then the following assertions on $S$ are equivalent:

(1) Every quasi-congruence on $S$ is transitive.
(2) Quasi-congruences on $S$ are permutable.
(3) $S$ is a group.
THEOREM 4.2. Let $S$ be a completely simple semigroup without zero. Then

congruences on $S$ are permutable if and only if $S$ is a rectangular band of
groups of either one of the types $1\times 1,1\times 2,2\times 1,2\times 2^{1)}$ .

THEOREM 4.3. Let $S$ be a periodic semigroup containing three or more $ ele\rightarrow$

ments. Then the following assertions on $S$ are equivalent:
(1) Every quasi-congruence on $S$ is transitive.
(2) Quasi-congruences on $S$ are permutable.
(3) $S$ is a rectangular band of groups of either one of the types 1 X 1,

$1\times 2,2\times 1,2\times 2$ .
THEOREM 4.4. On a periodic semigroup $S$ the following assertions are equi-

valent:
(1) Every meromorphism of $S$ onto itself is a class-meromorphism.
(2) Every quasi-congruence on $S$ is symmetric.
(3) $S$ is a group.
THEOREM 5.1. Every meromorphism of a periodic quasigroup $G$ onto itself

is a class-meromorphism.

2. General discussions on quasi-congruences and congruences

Defining $\varphi\leqq\psi$ to mean that $a\varphi b$ implies $a\psi b$ , the set $Q(A)(\Theta(A))$ of quasi-
congruences (congruences) on an algebraic system $A$ forms a complete lattice.

1) We shall define rectangular bands of groups in \S 4.
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Let $P$ be a set of ordered pairs $(a, b)$ of elements of $A$ . We denote by $\theta(P)$

$(\theta^{*}(P))$ the least of quasi-congruences (congruences) $\varphi$ satisfying $a\varphi b$ for all
pairs $(a, b)\in P$ . Put $D=\{(a, a);a\in A\},$ $P^{\prime}=\{(b, a);(a, b)\in P\},$ $P_{0}=PUD$

and $P^{*}=PUDUP^{\prime}$ . Then we obtain immediately
LEMMA 2.1. $u\rightarrow v(\theta(P))$ holds if and only if there exists a polynomial

$p(\chi_{1}\ldots , x_{\nu})$ (an algebraic combination of $x_{1},$ $\cdots$ , $x_{\nu}$) such that

$u=p(a_{1}, \cdots , a_{\nu}),$ $v=p(b_{1}, \cdots , b_{\nu})$ for some $(a_{i}, b_{i})\in P_{0}$ ,

LEMMA 2.2. $u\equiv v(\theta^{*}(P))$ holds if and only if there exist a sequence of
polynomials $p_{i}(\chi_{i1}, x_{i\nu_{i}})$ and elements $u_{i},$ $\nu_{i}\in A$ such that

$u=u_{1},$ $v=v_{n},$ $v_{i}=u_{i+1},$ $u_{i}=p_{i}(a_{i1}, a_{i\nu_{i}}),$ $v_{i}=p_{i}(b_{t1}, \cdots , b_{i\nu_{i}})$

for some $(a_{ij}, b_{ij})\in P^{*}$ .
In a previous paper [3] we have shown that the condition $(\zeta)$ can be

written in the following expression.
LEMMA 2.3. All congruences on an algebraic system $A$ are permutable if

and only if, given $a,$ $b,$ $c\in A$ , an element $u$ exists such that $a\equiv u(\theta^{*}(c, b))$ and
$u\equiv b(\theta^{*}(a, c))$ .

Combining Lemma 2.2 and Lemma 2.3, we have
THEOREM 2.1. All congruences on an algebraic system $A$ are permutable

if and only if, given $a,$ $b,$ $c\in A$ , two sequences of polynomials $p_{i}(x, y, z_{1}, \cdots , z_{\mu_{i}})$

and $q_{j}(x, y, z_{1}, \cdots , z_{\nu j})$ exist such that

$a=p_{1}(b, c, s_{11}, ),$ $p_{i}(c, b, s_{i1}, )=p_{i+1}(b, c_{J}s_{i+1,1}, )$ ,

... $p_{m}(c, b, s_{m1}, )=q_{1}(a, c, t_{11}, )$ ,

... $q_{j}(c, a, t_{j1}, )=q_{j+1}(a, c, t_{j+1,1}, )$ ,

.. . $q_{n}(c, a, t_{n1}, \cdots)=b$ .
In the same way as above we can show the conditions $(\gamma)-(\epsilon)$ is rewritten

as follows:
THEOREM 2.2. Every quasi-congruence on an algebraic system $A$ is sym-

metric if and only if, given $a,$ $b\in A,$ $a\rightarrow b(\theta(b, a))$ holds; namely there exists a
polynomial $p(x, y_{1}, \cdots , y_{n})$ such that $a=p(b, t_{1}, \cdots , t_{n})$ and $b=p(a, t_{1}, \cdots , f_{n})$ .

THEOREM 2.3. Every quasi-congruence on an algebraic system $A$ is transi-
tive if and only if, given $a,$ $b,$ $c\in A,$ $a\rightarrow b(\theta(a, c)U\theta(c, b))$ holds; namely there
exists a polynomial $p(x, y, z_{1}, \cdots , z_{n})$ such that $a=p(a, c, t_{1}, \cdots , t_{n})$ and $b=$

$p(c, b, t_{1}, t_{n})$ .
THEOREM 2.4. All quasi-congruences on an algebraic system $A$ are per-

mutable if and only if, given $a,$ $b,$ $c\in A$ , an element $u$ exists such that $a\rightarrow u$

$(\theta(c, b))$ and $u\rightarrow b(\theta(a, c))$ ; namely there exist polynomials $p(x, y_{1}, \cdots , y_{m})$ and
$q(x, y_{1}, \cdots , y_{n})$ such that $a=p(c, s_{1}, \cdots , s_{m}),$ $p(b, s_{1}, \cdots , s_{m})=q(a, t_{1}, \cdots , t_{n})$ and
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$q(c, t_{1’ \prime}t_{n})=b$ .
By the way we should remark that in the propositions mentioned above

a polynomial $p(\cdots , x, )$ may not necessarily contain $\chi$ .
Now in the present paper we intend to deal with multiplicative systems.

A zero element of a multiplicative system $M$ is an element $0$ satisfying $aO$

$=0a=0$ for all $a\in M$. Concerning such an element we first show
LEMMA 2.4. Let $M$ be a multiplicative system containing three or more

elements. If all quasi-congruences on $M$ are permutable, then $M$ does not con-
tain $0$ .

PROOF. Given $a,$ $b,$ $c\in M$, we can find polynomials $p(x, y_{1}, \cdots, y_{m})$ and
$q(x, y_{1}, \cdots , y_{n})$ such that $a=p(c, s_{1}, \cdots , s_{m}),$ $u=p(b, s_{1}, \cdots , s_{m})=q(a, t_{1}, \cdots , t_{n})$

and $q(c, t_{1}, \cdots. t_{n})=b$ . If $c=0$ and $p(x, y_{1}, y_{m})$ contains $x$, then $p(c, s_{1}, \cdots, s_{m})$

$=0$ . So if $a\neq 0,$ $p$ cannot contain $x$ and hence $a=p(s_{1}, \cdots , s_{m})=u$ . Similarly
if $b\neq 0$ , we can infer $b=u$ . Therefore if $M$ contains $0$ , then $M$ cannot con-
tain two elements other then $0$ .

3. Meromorphisms and congruences on commutative semigroups

In \S 3 and \S 4 we deal with semigroups, $i$ . $e$ . associative multiplicative
systems. The basic concepts and notations on semigroups may be refered to
the books of Bruck [1] and of Clifford and Preston [2]. An ideal of a semi-
group $S$ is a subset $J$ of $S$ satisfying $JS\subseteqq J$ and $SJ\subseteqq J$, and a principal ideal
generated by $a$ is an ideal $J(a)$ such that $J(a)=SaSUaSU$ Sa $Ua$ . If $S$ con-
tains no proper ideal, then $S$ is called simple.

Now let all congruences on a semigroup $S$ be permutable. Then, given
$x,$ $y,$ $z\in S$ , we can find an element $u=u(x, y, z)=u(y, x, z)\in S$ such that $x\equiv u$

$(\theta^{*}(y, z))$ and $y\equiv u(\theta^{*}(x, z))$ . About such an element $u$ we first show
LEMMA 3.1. $a\not\in J(b)$ and $a\not\in J(c)$ imply $u(a, b, c)=u(b, a, c)=a$ .
PROOF. $u=u(a, b, c)=u(b, a, c)$ satisfies $a\equiv u(\theta^{*}(b, c))$ . Then by Lemma

2.2 we can find polynomials $p_{i}(x, y, z_{i1}, \cdots)$ such that

$a=a_{0}=p_{1}(b, c, s_{11}, ),$ $a_{1}=p_{1}(c, b, s_{11}, )$

$=p_{2}(b, c, s_{21}, ),$ $\cdots,$ $a_{n}=p_{n}(c, b, s_{n1}, \cdots)=u$ .
If $p_{i}$ contains $x$, then $a_{i-1}=p_{i}(b, c, s_{i1}, )\in J(b)$ , and if $p_{i}$ contains $y$, then $a_{i-1}$

$=p_{i}(b, c, s_{i1}, \cdots)\in J(c)$ . Hence if $a_{i-1}\not\in J(b)$ and $a_{i-1}\not\in J(c)$ , then $p_{i}$ cannot con-
tain both $x$ and $y$ , and it follows that $a_{i}=p_{i}(c, b, s_{i1}, )=p_{i}(b, c, s_{i1}, )=a_{i-1}$ .
Accordingly $a_{0}\not\in J(b)$ and $a_{0}\not\in J(c)$ imply $a_{0}=a_{1}=\ldots=a_{n}$ .

THEOREM 3.1. If all congruences on a semigroup $S$ are permutable, then
all ideals of $S$ are totally ordered under set-inclusion.

PROOF. Let $J_{1}$ and $J_{2}$ be two ideals and suppose that $J_{1}-J_{2}\ni a$ and $J_{2}-J_{1}$
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$\ni b$ . Put $ab=c$ . Then $J(c)\subseteqq J(a)\subseteqq J_{1},$ $J(c)\subseteqq J(b)\subseteqq J_{2}$ and hence $a\not\in J(b),$ $a\not\in J(c)$ ,
$b\not\in J(a),$ $b\not\in J(c)$ . By Lemma 3.1 we get $u(a, b, c)=a$ and $u(b, a, c)=b$ ; con-
sequently $a=b$ , that is a contradiction.

Next we shall consider commutative semigroups. If $x\equiv u(\theta^{*}(y, z))$ holds
in a commutative semigroup $S$ , then by Lemma 2.2 we get

$x=y^{\mu 1}z^{\nu_{1}}t_{1}^{\delta_{1}},$ $z^{\mu 1}y^{\nu_{1}}t_{1}^{\delta_{1}}=y^{\mu_{2}}z^{\nu_{2}}t_{2}^{\delta_{2}},$ $z^{u_{n}}y^{\nu_{n}}t^{\delta_{n}}=u$ ,

where $\mu_{i},$ $\nu_{i},$
$\delta_{i}$ are non-negative integers such that $\mu_{i}+\nu_{i}+\delta_{i}\geqq 1$ , provided

$y^{0},$ $z^{0},$ $t_{i}^{0}$ are delated when they occur. It follows that

$xy^{\nu_{1}}z^{f11}=y^{\mu 1+\nu_{1}}z^{\mu 1+\nu_{1}}t^{\delta_{1}}=y^{t\ell 1+\alpha_{2}}z^{\nu_{1}+\nu_{2}}t_{2}^{\delta_{2}}$

and
$xy^{\nu_{1}+\cdots+\nu_{n_{Z}}\mu 1+\cdot\cdot+\mu_{n}}=y^{\mu 1+\cdots+t^{l}\nu_{n}}z^{\nu\nu_{nn}}t_{n^{n}}^{\delta}=uy^{\rho_{1+\cdots+/z_{n}}}z^{\nu 1+\cdots+\nu n}$ ;

namely $xy^{\nu}z^{\prime l}=uy^{\prime 1}z^{\nu}$ for some non-negative integers $\mu,$ $\nu$ .
Now let $S$ be a commutative semigroup with or without zero $0$ , and all

congruences on $S$ be permutable. Then $a\not\in J(b)$ and $a\not\in J(c)$ imply $u(a, b, c)$

$=u(b, a, c)=a$ by Lemma 3.1 and $ba^{\nu}c^{\prime 1}=ua^{\prime 1}c^{\nu}=a^{\mu+1}c^{\nu}$ , since $b\equiv u(b, a, c)$

$(\theta^{*}(a, c))$ . So we see that $S$ satisfies the following lemmas.
LEMMA 3.2. $a\not\in J(b)$ and $a\not\in J(c)$ imply $ba^{\nu}c^{\mu}=a^{\prime l+1}c^{\nu}$ for some non-negative

integers $\mu,$ $\nu$ .
LEMMA 3.3. Given $a\in S$ , a positive integer $\alpha$ exists such that $a^{\alpha}\in a^{\alpha}S$ .
PROOF. Assume that $a\not\in aS$ . Then $a\not\in J(a^{2})=a^{2}SUa^{2}$ and $a\not\in J(a^{3})$ ; hence

we can infer $a^{2}a^{\nu}(a^{s})^{f1}=a/1+1(a^{8})^{\nu}$ by Lemma 3.2. Put

${\rm Min}(2+\nu+3\mu, \mu+1+3\nu)=\alpha,$ ${\rm Max}(2+\nu+3\mu, \mu+1+3_{1)})=\alpha+\beta$ .
Since $\mu\geqq 0,$ $\nu\geqq 0$ and $(2+\nu+3\mu)-(\mu+1+3\nu)=2(\mu-\nu)+1\neq 0$ , we get $\alpha\geqq 1$ ,
$\beta\geqq 1$ and $a^{\alpha}=a^{\alpha}a^{\beta}\in a^{\alpha}S$ .

LEMMA 3.4. If $a=ac$ , then $cS$ contains an idempotent $e$ satisfying $ae=a$ .
PROOF. If $c=a$ , then $c^{2}=c$ . If $c\in aS$ , then $c=ax$ satisfies $c^{2}=cax=ax=c$ .

In either case we may put $e=c$ . If $c\in c^{2}S$ and $c=c^{2}x$, then, putting $e=cx$

$\in cS$ , we get $e^{2}=c^{2}xx=cx=e$ and $ae=accx=ac=a$ . It remains only the
case that $c\not\in J(a)$ and $c\not\in J(c^{2})$ . Then by Lemma 3.2 we get $ac^{\nu}c^{2\mu}=c^{\mu+1}c^{2\nu}$ .
Since $ac^{\lambda}=a$ , we have $a=c^{\alpha}$ (a $=\mu+1+2\nu$) and $a^{2}=ac^{\alpha}=a$ ; thus $e=a$ satisfies
the conclusion of the lemma.

LEMMA 3.5. If $e$ is idempotent, then either $e=0$ or $e=1$ (the identity).
PROOF. Assume that $e\neq 0$ . We shall show $eS=S$ . Suppose $a\not\in eS$ and

put $b=ea$ . Then since $a\not\in J(e)$ and $a\not\in J(b)$ , we get $u(e, a, b)=a$ , and
$e\equiv u(e, a, b)(\theta^{*}(a, b))$ implies

$e=a^{\prime 11}b^{\nu_{1}}t_{1}^{\delta_{1}},$ $b^{\mu 1}a^{\nu_{1}}t_{1}^{\delta_{1}}=a^{\prime 12}b^{\nu_{2}}t_{2}^{\delta_{2}},$
$\cdots$ , $b^{\ell\ell n}a^{\nu_{n}}t_{n^{n}}^{\delta}=a$ .

Put $et_{i}^{\delta_{i}}=s_{i}$ . Since $ea^{\lambda}=b^{\lambda}$ , we have
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$b^{\mu_{i}+\nu_{i}}s_{i}=e(b^{\prime i}\dot{1}a^{\nu_{i}}t_{i}^{\delta_{i}})=e(a^{\prime x_{i+1}}b^{\nu_{i+1}}t_{i+1}^{\delta_{i+1}})=b^{\mu_{i+1+\nu_{i+1}}}s_{i+1}$

and $e=e^{2}=b^{\mu_{1+}\nu_{1}}s_{1}=b^{\mu 2+\nu_{2}}s_{2}=\ldots=b^{\prime 1}n+\nu_{n_{S_{n}}}=ea$ . Since $e\neq 0,$ $eS$ contains
$c=ec\neq e$ . Then $a\not\in J(c)$ and $a\not\in J(e)$ imply $ca^{\nu}e^{fJ}=a^{\mu+1}e^{\nu}$ . Since $ea=e$ and
$ec=c$ , we obtain $c=e(ca^{\nu}e^{\prime J})=e(a^{\mu+1}e^{\nu})=e$ , that is a contradiction. Thus $eS$

$=S$ and so $e=1$ .
LEMMA 3.6. If an element $a\in S$ is not nilpotent, then $S$ contains the

identity 1 and inverse $a^{-1}$ of $a:aa^{-1}=1$ .
PROOF. There exists a positive integer $\alpha$ such that $a^{\alpha}\in a^{\alpha}S$ ; hence we

can find an idempotent $e$ satisfying $a^{\alpha}=a^{\alpha}e$ by Lemma 3.4. If $a^{\alpha}\neq 0$ , then
$e\neq 0$ and hence $e=1$ . Suppose that $1\not\in aS$ . Then we see $1\not\in J(a),$ $1\not\in J(a^{2})$

and $a1^{\nu}a^{z\mu}=1^{\mu+1}a^{2\nu}$ by Lemma 3.2. Put

${\rm Min}(2\mu+1,2\nu)=\alpha$ and ${\rm Max}(2\mu+1,2_{1)})=\alpha+\beta$ .
Then $\beta\geqq 1$ and $a^{\alpha}=a^{\alpha}a^{\beta}$ , provided $a^{0}=1$ . It follows from Lemma 3.4 that
$a^{\beta}S$ contains an idempotent $e$ satisfying $a^{\alpha}=a^{\alpha}e$ . Since $a$ is not nilpotent,
$e=1$ and $aS\supseteqq a^{\beta}S\ni 1$ .

LEMMA 3.7. If $G$ is the set of non-nilpotent elements of $S$ , then $G$ is a
group.

PROOF. Let $a$ and $b$ be any elements of $G$ . Then $S$ contains 1 and $a^{-1}$ .
Since $(a^{-1})^{\alpha}(ab)^{\alpha}=b^{\alpha}\neq 0,$ $(ab)^{a}\neq 0$ and $ab\in G$ . Since $(a^{-1})^{\alpha}a^{\alpha}=1\neq 0,$ $(a^{-1})^{\alpha}\neq 0$

and $a^{-1}\in G$ .
In summary we have
THEOREM 3.2. Congruences on a commutative semigroup $S$ are permutable

if and only if (i) ideals of $S$ are totally ordered under set-inclusion, and (ii)
non-nilpotent elements of $S$ form a group.

PROOF. The necessity of the conditions (i), (ii) has been proved above.
Now suppose that $S$ satisfies (i) and (ii). If $a\neq b$ and $a\not\in bS$ , then $J(a)\not\leqq J(b)$ ,

whence we get $b\in J(b)\subseteqq J(a)$ by the condition (i). So it follows that $(i)^{\prime}$ two
distinct elements $a,$

$b$ of $S$ satisfy $a\in bS$ or $b\in aS$ . Let $S$ contain non-nilpotent
elements and $e$ be the identity of the group $G$ formed by them. If $a$ is nil-
potent, then $ax$ is also nilpotent. Hence $a\not\in G$ implies $e\not\in aS$ and $a\in eS$ by
$(i)^{\prime}$ ; accordingly $e$ becomes the identity of $S$ . Now let $\theta$ and $\varphi$ be any con-
gruences on $S$ and assume $a\theta c\varphi b$ for three distinct elements $a,$ $b,$ $c$ . We may
assume $b\in aS$ by $(i)^{\prime}$ .

Case I: $a\in cS$ . Then $b\in aS\subseteqq cS$ , and $a=cx$ and $b=cy$ imply $a=cx\varphi bx$

$=cxy=ay\theta cy=b$ .
Case II: $a\not\in cS$ . Then we may write $c=au\in aS$ by $(i)^{\prime}$ . Since $u\in G$

implies $a=auu^{-1}=cu^{-1}\in cS,$ $u\not\in G$ and $u^{\alpha}=0$ for some integer $\alpha$ . It follows
that $a\theta au,$ $au\theta au^{2},$ $\cdots$ , $au^{\alpha-1}\theta au^{\alpha}=0$ ; hence $a\theta O$ and $b=av\theta 0$ . Thus we have
$a\varphi a\theta b$ . So $\theta$ and $\varphi$ are permutable.
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In the above theorem $S$ may contain no non-nilpotent element. For in-
stance a nilpotent cyclic semigroup $Z(a, n)=\{a, a^{2}, \cdots , a^{n}=0\}$ satisfies the
condition.

On the other hand if two distinct elements $a,$
$b$ of $S$ satisfy $J(a)=J(b)$ ,

then $a=bx,$ $b=ay,$ $a=axy$ and we can show $x,$ $y\in G$ . Indeed, if $x\not\in G$ , then
$z=xy$ is nilpotent and $a=az=az^{\alpha}=0$ for some $\alpha$ . Conversely it is easy to
see that $x\in G$ implies $J(ax)=J(a)$ . So if we classify the elements by $x\equiv y$ to
mean $J(x)=J(y)$ , choose arbitrarily a representative $a_{i}$ from each nil class
$\{x;J(x)=J(a_{i})\},$ $a_{i}S\neq S$ , and set $Z=\{a_{i}\}$ , then $S$ is written either $S=Z$ or
$S=(ZU1)G$ , where $Z$ is a nil subset forming a totally ordered set under the
ordering $a_{i}\leqq a_{j}$ to mean $a_{i}\in J(a_{j})$ , and $G$ is a group.

Further let $S$ satisfy the ascending condition for ideals. Then we can
find a maximal principal nil ideal $J(a)$ , provided $S$ contains $0$ . If $b$ is any
nilpotent element, then $J(b)\subseteqq J(a)$ and $b$ is written $b=a^{\alpha}$ or $b=a^{\alpha}x$ for some
positive integer $\alpha$ and $x\not\in J(a)$ ; that is, $x\in G$ . Hence we can infer

COROLLARY 1. Let $S$ be a commutative semigroup with zero satisfying the
ascending condition for ideals. Then congruences on $S$ are permutable if and
only if a nilpotent element $a\in S$ exists and either $S$ is a nilpotent cyclic semi-
group $Z$ generated by $a$ or $S=(ZU1)G=\cup a^{i}GUG$ , where $G$ is a group.

A simple application of Corollary 1 is the following
EXAMPLE. Let $S$ be the multiplicative semigroup of residue classes of

integers modulo $m$ . Then congruences on $S$ are permutable if and only if $m$

is a power of a prime number.
The following corollary is obvious.
COROLLARY 2. Congruences on a commutative semigroup $S$ without zero

are permutable if and only if $S$ is a group.
In a previous paper [4] we have shown that every quasi-congruence on

a group is transitive. Therefore combining Lemma 2.4 and the above corol-
lary, we have

THEOREM 3.3. Let $S$ be a commutative semigroup containing three or more
elements. Then the following assertions on $S$ are equivalent:

(1) Every quasi-congruence on $S$ is transitive.
(2) Quasi-congruences on $S$ are permutable.
(3) $S$ is a group.
Further we have also proved in the paper cited above
THEOREM 3.4. The following assertions on a commutative semigroup $S$ are

equivalent:
(1) Every meromorphism of $S$ onto itself is a class-meromorphism.
(2) Every quasi-congruence on $S$ is a congruence.
(3) Every quasi-congruence on $S$ is symmetric.
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(4) $S$ is a periodic group.

4. Meromorphisms and congruences on general semigroups

About a semigroup on which congruences are permutable we have obtained
Theorem 3.1. As for a semigroup on which quasi-congruences are permutable
we show the following

THEOREM 4.1. If quasi-congruences on a semigroup $S$ containing three or
more elements are permutable, then $S$ is simple.

PROOF. Let $J(a)$ be any principal ideal of $S$ and suppose that $J(a)\ni\ni e$ .
Given $b\in S$, we can find polynomials $p(x, y_{1}, \cdots , y_{m})$ and $q(x, y_{1}, \cdots , y_{n})$ such
that

$e=p(a, s_{1}, \cdots , s_{m}),$ $u=p(b, s_{1}, \cdots , s_{m})=q(e, t_{1}, \cdots , t_{n}),$ $b=q(a, t_{1}, \cdots , t_{n})$ .
If $p$ contains $X$ , then $e=p(a, s_{1}, \cdot.. , s_{m})\in J(a)$ ; hence $p$ cannot contain $x$ and
we get $e=u=p(s_{1}, \cdots , s_{m})$ . On the other hand if $q$ does not contain $\chi$ then
$b=u=e$ ; so it follows that $b=q(a, t_{1}, \cdots , t_{n})\in J(a)$ for $b\neq e$ ; namely $J(a)=S-e$ .
Further ]$(b)\subseteqq J(a)$ implies $J(b)\exists\ni e$ , and $J(b)=S-e$ is deduced similarly as
above. Then if $q$ contains $y_{i}$ such that $t_{i}\neq e$ , we have $e=q(e, t_{1}, \cdots , t_{n})\in J(t_{i})$

$=S-e$ ; hence it follows that $e=q(e, e, \cdot.. , e)=e^{\alpha}$ . If $\alpha=1$ , then $q(x, y_{1}, \cdot.., y_{n})$

$=x$ and $b=a$ . Since $S$ contains at least one element $b$ different from $e$ and
$a,$ $e^{\alpha}=e$ must hold for some $\alpha>1$ . If $e^{\alpha}=e$ and $e^{\alpha-1}\neq e$ , then $e=e^{\alpha}\in J(e^{\alpha-1})$

$=S-e$ ; consequently we get $e^{2}=e$ . We can now assert from the arguments
stated above that an element $b$ different from $e$ and $a$ can be written
$b=q(a, e)$ . Since $ea\in J(a),$ $ea\neq e$ . If $ea\neq a$ , it follows that $a=q(ea, e)$ is re-
written either $a=eaq^{\prime}(ea, e)$ or $a=eq^{\prime}(ea, e)$ and in either case $ea=a$ , since
$e^{2}=e$ . So that we see $ea=ae=a$ and $b=q(a, e)=a^{\beta}$ for every $b\neq e$ . Then
$S$ is commutative and we infer that $S$ must be a group by Theorem 3.3, con-
tradicting $e\not\in J(a)$ . Thus $J(a)=S$ for all $a\in S$ .

Rees [5] has proved that if a periodic semigroup, that is, a semigroup in
which every element has a finite order, is simple, then it is completely simple.
A completely simple semigroup without zero is a union of disjoint subgroups
$\{H_{a\lambda} ; \alpha\in X, \lambda\in Y\}$ satisfying $H_{\alpha}{}_{\lambda}H_{\beta,1}=H_{\alpha,z}$ , which we shall call a rectangular
band of groups of type $|X|\times|Y|$ , provided $|X|$ means the cardinal number
of $X$. In such a semigroup $S,$

$R_{\alpha}=\bigcup_{\lambda}H_{\alpha\lambda}$ is a minimal right ideal,
$L_{\lambda}=\bigcup_{a}H_{\alpha\lambda}$

is a minimal left ideal, and $S=\bigcup_{a}R_{\alpha}=\bigcup_{\lambda}L_{\lambda}$ .
LEMMA 4.1. Let $S$ be a semigroup on which congruences are permutable.

Then $S$ cannot be decomposed into the union of three or more disjoint right
(left) ideals.

PROOF. Suppose that $S=R_{1}UR_{2}$ ) $ R_{3}U\ldots$ , where the $R_{\alpha}$ are right ideals
of $S$ and mutually disjoint. If congruences on $S$ are permutable, then, given
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$a\in R_{1},$ $b\in R_{2},$ $c\in R_{3}$ , we can find sequences of polynomials $p_{i},$ $q_{j}$ such that

$a=p_{1}(b, c, s_{11}, ),$ $p_{1}(c, b, s_{11}, )=p_{2}(b, c, s_{21}, ),$ $p_{m}(c, b, s_{m1}, )$

$=u=q_{1}(a, c, t_{11}, ),$ $q_{1}(c, a, t_{11}, \cdots)=q_{2}(a, c, t_{21}, ),$
$\cdots,$

$q_{n}(c, a, t_{n1}, \cdots)=b$ .
$a_{i}=p_{i}(b, c, s_{i1}, )$ is written into either one of the forms $bp_{i}^{\prime}(b, c, s_{i1}, \cdots),$ $cp_{i}^{\gamma}(b,$ $c$ ,
$s_{i1},$ ), $s_{ij}p_{i}^{\prime}(b, c, s_{i1}, )$ , and $bp_{i}^{\prime}\in R_{2},$ $cp_{i}^{\prime}\in R_{3}$ . Therefore if $a_{i}\in R_{1}$ , then $a_{i}$

$=s_{ij}p_{v}^{\prime}.(b, c, s_{i1}, )$ with $s_{ij}\in R_{1}$ and hence $a_{i+1}=s_{ij}p_{i}^{J}(c, b, s_{i1}, )\in R_{1}$ . Repeat-
ing this, we deduce $u=a_{m+1}\in R_{1}$ from $a=a_{1}\in R_{1}$ . Similarly $b\in R_{2}$ implies
$u\in R_{2}$ , contradicting $u\in R_{1}$ .

In the case that $S$ is completely simple, $S$ is decomposed into $ S=UR_{\alpha}\alpha$

$=U_{\lambda}L_{\lambda}$ . If congruences on $S$ are permutable, $X=\{\alpha\}$ can contain at most

two indices and so does $Y=\{\lambda\}$ ; hence $|X|\times|Y|$ must be either one of $1\times 1$ ,
$1\times 2,2\times 1,2\times 2$ .

THEOREM 4.2. Let $S$ be a completely simple semigroup without zero. Then
congruences on $S$ are permutable if and only if $S$ is a rectangular band of
groups of either one of the types $1\times 1,1\times 2,2\times 1,2\times 2$ .

PROOF. The half of the theorem has been proved above. Now let $S$ be
a union of group $\{H_{\alpha\lambda} ; \alpha\in X, \lambda\in Y\}$ satisfying $H_{\alpha}{}_{\lambda}H_{\beta\mu}=H_{\alpha\mu}$ and both $X$ and
$Y$ contain at most two indices. Then we shall show that $a\theta c\varphi b$ implies $a\varphi u\theta b$

for any congruences $\theta,$
$\varphi$ . Set $a\in H_{\alpha\lambda},$ $b\in H_{\beta\mu},$ $c\in H_{r\nu}$ . Suppose that $\gamma\neq\alpha$

and $\gamma\neq\beta$ . Then $\alpha=\beta$ must hold. If $e$ is the identity of the group $H_{\alpha\lambda}$ , then
$e$ becomes a left identity of $H_{\beta u}=H_{\alpha\lambda}H_{\beta\alpha}$ and we have $a=ea\theta ec\varphi eb=b$ with
$ec\in H_{\alpha\nu}$ . So we may assume $\gamma=\alpha$ , and it is sufficient to consider the two
cases: (1) $\gamma=\alpha,$ $\nu=\mu;(2)\gamma=\alpha,$ $\nu=\lambda$ .

Case (1): $\gamma=\alpha,$ $\nu=\mu$ . Let $e$ be the identity of the group $H_{\gamma_{\nu}}=H_{\alpha\mu}$ and
$c^{-1}$ the inverse of $c$ in $H_{\gamma_{\nu}}$ . Then $e$ becomes a left identity of $H_{\alpha\lambda}$ and a right
identity of $H_{\beta\mu}$ . Hence we get $a=ea=cc^{-1}a\varphi bc^{-1}a\theta bc^{-1}c=be=b$ .

Case (2): $\gamma=\alpha,$
$\nu=\lambda$ . Let $e$ and $f$ be the identities of $H_{\alpha\lambda}$ and $H_{\alpha\mu}$ re-

spectively, $c^{-1}$ the inverse of $c$ in $H_{\gamma}.=H_{\alpha\lambda}$ and $b^{-1}$ the inverse of $eb$ in $H_{\alpha\mu}$ .
Then we obtain the following formulas:

$ef=f,fe=e,$ $bf=b,$ $ea=ae=a,$ $cc^{-1}=c^{-1}c=e,fc^{-1}=c^{-1},$ $b^{-1}eb=f$ ;
and

$c^{-1}=(b^{-1}eb)c^{-1}\varphi b^{-1}ecc^{-1}=b^{-1}e$,

$a=cc^{-1}ac^{-1}c\varphi bc^{-1}a(b^{-1}e)b\theta bc^{-1}c(b^{-1}eb)=bef=b$ ,

completing the proof.
We can further prove that every quasi-congruence on $S$ is transitive if $S$

is a rectangular band of groups of either one of the types lxl, $1\chi 2,2\times 1$ ,

but not so does that of type $2\chi 2$ . On the other hand, if every element of
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$H_{\alpha\lambda}$ has a finite order, all semigroups of the above types satisfy the condition
$(\delta)$ . Indeed, let $a\theta c\theta b$ for any quasi-congruence $\theta$ . Then using the same nota-
tions as the above proof, we can deduce the following implications:

Case (1): $c\theta b$ and $a\theta c$ imply $a=cc^{-1}a\theta bc^{-1}c=b$ .
Case (2): Let the order of $eb$ in $H_{\alpha\mu}$ be $m$ and that of $c$ in $H_{\lambda}n$ .

Then $c=ec\theta eb$ implies $c^{mn-1}\theta(eb)^{mn-1}$ ; that is, $c^{-1}\theta b^{-1}$ ; hence we see
$a=cc^{-1}ac^{-1}ec\theta bc^{-1}cb^{-1}eb=b$ .

As shown in Theorem 4.1, if quasi-congruences on a periodic semigroup
$S$ are permutable, then $S$ is simple and accordingly completely simple; so we
infer

THEOREM 4.3. The following assertions on a periodic semigroup $S$ containing
three or more elements are equivalent:

(1) Every quasi-congruence on $S$ is transitive.
(2) Quasi-congruences on $S$ are permutable.
(3) $S$ is a rectangular band of groups of either one of the types $1\times 1,1\times 2$ ,

$2\times 1,2\times 2$ .
Next we shall deal with the symmetricity of quasi-congruences.
LEMMA 4.2. If every quasi-congruence on a semigroup $S$ is symmetric, then

$S$ is join-irreducible with respect to right (left) ideals; namely at least one of
right ideals $R_{1},$ $R_{2}$ satisfying $S=R_{1}UR_{2}$ coincides with $S$ .

PROOF. Suppose that $a\not\in R_{1}$ . Then $a\in R_{2}$ . Since every quasi-congruence
on $S$ is symmetric, given $b\in S$ , we can find a polynomial $p$ such that
$a=p(b, t_{1}, \cdots , t_{n}),$ $b=p(a, t_{1}, \cdots , t_{n})$ . Then we get either $a=bp^{\gamma}(b, ),$ $b$

$=ap^{\prime}(a, )\in R_{2}$ or $a=t_{i}p^{\prime}(b, ),$ $b=t_{i}p^{\prime}(a, )$ . In the latter case $a\not\in R_{1}$ im-
plies $t_{i}\not\in R_{1},$ $t_{i}\in R_{2}$ and hence $b\in R_{2}$ . Thus $R_{2}=S$ .

Since the union of right ideals is also a right ideal, in the above semi-
group $S,$ $S=R_{1}U\cdots UR_{n}$ implies $S=R_{i}$ for some $i$ .

THEOREM 4.4. The following assertions on a periodic semigroup $S$ are
equivalent:

(1) Every meromorphism of $S$ onto itself is a class-meromorphism.
(2) Every quasi-congruence on $S$ is a congruence.
(3) Every quasi-congruence on $S$ is symmetric.
(4) $S$ is a group.
PROOF. Suppose that a periodic semigroup $S$ satisfies (3). If $S$ contains

three or more elements, then from Theorem 4.1 $S$ is simple and hence com-
pletely simple. It is easy to see that a two-element semigroup is either a
commutative semigroup or a right or left group; and it follows from Theorem
3.4 that the former does not satisfy (3) unless it is a group. Anyhow $S$ is
completely simple, and indecomposable with respect to both right and left
ideals, as shown in the above lemma; accordingly $S$ is a group. Then it suf-
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fices to prove that every meromorphism of a periodic group onto itself is a
class-meromorphism. We shall show that on quasigroups below.

5. Meromorphisms of quasigroups

It has been proved by Trevisan [8] that congruences on any finite quasi-
group are permutable. We shall show more strongly that any periodic quasi-
group (in the sense mentioned below) possesses the property $(\alpha)$ .

LEMMA 5.1. A meromorphism $\theta$ of a quasigroup $G$ onto itself is a class-
meromorphism if any two of $a\theta b,$ $x\theta y,$ $ax\theta by$ imply the third.

PROOF. Suppose that $a\theta b,$ $a^{\prime}\theta b$ and $a^{\prime}\theta b^{\prime}$ . Choose elements $x,$ $y,$ $z$ and $u$

so that $a=ax,$ $b=by,$ $a^{f}=az$ and $b^{\prime}=uy$ . Then by the assumption we see
the following implications:

$a\theta b,$ $ax\theta by\rightarrow x\theta y;a\theta b,$ $az\theta by\rightarrow z\theta y;z\theta y,$ $az\theta uy\rightarrow a\theta u$ ;

consequently $a\theta u,$ $x\theta y\rightarrow ax\theta uy$ ; that is, $a\theta b^{\prime}$ .
Now in a quasigroup $G$ we shall denote

$a^{n}x=a(a(\cdots(a(ax))))$ , $xa^{n}=(((((xa)a)\cdots)a)a)$ .
By the order of an element $a$ we shall mean the maximal cardinal number of
the sets $\{a^{n}x;n=0,1, 2, \}$ and $\{xa^{n} ; n=0,1, 2, \}$ when $x$ runs through $G$ ,
and if every element of $G$ has a finite order we shall call $G$ periodic. Then
we can show

THEOREM 5.1. Every meromorphism of a periodic quasigroup $G$ onto itself
is a class-meromorphism.

PROOF. If the set $\{a^{n}x;n=0,1, 2, \}$ is finite, then $a^{m}x=a^{n}x$ for some
integers $m,$ $n(m>n\geqq 0)$ , and we get $a^{m-n}x=x$ by successive cancellation. Let
$\theta$ be a meromorphism of $G$ onto itself, and suppose that $a\theta b$ and $ax\theta by$ . Then
we have $a^{k}x\theta b^{k}y$ for all positive integers $k$ . If $a^{m}x=x$ and $b^{n}y=y$, then we
see $a^{mn}x=x,$ $b^{mn}y=y$ and so $x\theta y$ . Thus $\theta$ satisfies the condition of Lemma 5.1.

Again the proof of Theorem 4.4. has been completed.

Kobe University
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