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§0. Introduction.

Our aim of this paper is to investigate the regular points of multi-dimen-
sional standard processes having an adequate Green function G(x, y) with the
condition (S);

(S). There exists a =(0,d) (d=3) such that for any compact set K given,
there exist 0 >0 and C, C, < (0, o) such that

Cilx=p["* = Gx, ) = Cla—y| =~

for |x—y| <0 and x, ye K.
In case d=2, we include the following case:

1 1
Cilog-————=2Gx, ) =C,log-—= —-.
1 g|x_y|__ x, »=C, glx—yl
In §1, for an adequate Green function with the condition (S), we shall
construct a standard process in Dynkin’s sense with

Eu(f Fexdt) = 61

by modifying Ray’s theory. [Th. 1.1.]
In §2 and §3, we shall apply the result of §1 to the uniformly elliptic
operators of the forms

. P A ou
where {a;;} are bounded, measurable and symmetric,
.. 0? a 0
1i). D¥u= 3} (@i uw)— 23 —87(01" u),

=1 0x;0x; i=1

where {a;;}, {a;} are bounded Holder continuous, and in addition W. Littman’s
condition (L) is assumed :

L —L}Dv(x)dx >0
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for every non-negative C?function v with compact support in a ball £, where
D is a formal adjoint operator of D*. The continuity of the paths of the
process connected with D* will be proved in §2.

In §4 if the standard process having a Green function with the property
(S) satisfies an additional condition (R):

(R) Pios <= [_G(x 3)pady),

we shall prove the Wiener test (Th. 4.1) by the same idea as in Ito-Mckean
[7] and in S. Watanabe and using this we can see that given two pro-
cesses with the Green functions satisfying the condition (S) with the same
index a, a point is regular for one if and only if it is so for the other. [Th.
4.2.]

In §5, by verifying the condition (R), we shall show that a point is re-
gular for the canonical diffusion processes connected with D, its dual processes
connected with D* and minimal diffusion processes connected with D% if and
only if it is regular for the Brownian motion. This result corresponds to
that of R.M. Hervé [4] in the case of the differential operator D and of W.
Littman, J. Stampacchia and F. Weinberger in the case of the differential
operator DS,

When the coefficients of D are assumed to be only continuous, the above
result does not always hold, as is shown by an example in §7. In addition
we shall show that no such example exists for the 3-dimensional rotation-
invariant process connected with D with continuous coefficients.

Finally, the author wishes to thank Professor K. Ito, Professor N. Ikeda
and Professor S. Watanabe for their useful suggestions.

§1. Construction of a multi-dimensional standard process from a Green
function.

Let us first introduce some preliminary notions and notations.

Let £ denote a domain in the d-dimensional space R%d=2). We shall
consider the following space of functions defined on 2.

Cy is the space of continuous functions with compact support in £.

C, is the space of continuous functions vanishing at infinity (with respect

to the one-point compactification of Q).

DEFINITION 1.1. A function G(x, y): 2 X2 —(0, co] is called a Green func-
tion if it satisfies the following four conditions.

(G. 1). G(x, x)=o00 and G(x, ) is continuous in (x, y) as far as x +y.

(G. 2). feC, implies Gf(x)= j Glx, W(dy e C,.
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(G. 3). Gf(x),feCy separate any two points on L.
(G. 4. (the weak principle of the positive maximum). If m= 89}3 Gf (%) is
strictly positive, m equals sup Gf(x), where S= [x; 7 > 0}. "

We shall often impose the condition (S) on the singularity of G(x,y) on
x=y.

THEOREM 1.1. Given a Green function G(x, y) satisfying the condition (S),
we can construct a unique standard Markov process (in Dynkin’s sense) X
= (x4, & M,, Py) with

(L1) Eu(f sedt) = 61

Proor. Using a standard method (see D.B. Ray [137], G. Lion [107) we
can construct a family of linear operators {G?},,, satisfying the following
conditions

1.1. A G* maps C, into C,,

A.1. B) 2G| =1.*

Q1. C) Z; >0, (u—ADGG*= G*—G*, (resolvent equation),

1.1. D) Gf=GYAGf+f)=G¥+AGG, f € Cx;

G% A2>0 are called resolvent operators. Using the separation assumption
(G. 3), we can see that for any f<(C, there exists a bounded measurable
function 7 such that

(1.2) lim kG*f=F.

kToo

Furthermore, in case f belongs to G(Cx) = {Gf, f € Cx} we have

A

(1.3) j=r.
Therefore by applying Ray’s theory [13] (cf. also H. Kunita-H. Nomoto [87),
we can construct a Markov process which may have branching points. Note
that there exist positive measures of total mass <1, {u(x, dy), x € £} such
that

(L4 f=lim kGH ()= [ futx, dy),  feC,.

p(x, E) is called the branching measure at x and x is called a branching point
if p(x, {x}9>0.

We shall later use the following property of the branching measure.

If A is the set of all branching points,

1.5) plx, Ay=0 for every x.

Furthermore, if x= 2— A, we have f(x) = f(x) as was proved by G. Lion [10].
To see that there is no branching point we shall prove,

* || s the norm of Cy: £ =sup f(x) .
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PROPOSITION 1.
1.6) lim RG*f(x) = f(x), xef, fed,.
ko0
ProoF. Now assume that there exists a point x, €  belonging to A. Let

U(x,) be a neighborhood {x;|x—x,|<r} of x, and g(x) be a continuous function
such that

g=1 xe0,
1.7 0=gn=1l, x€Q—0Q,
gn=0, xe02-0,
where Q= {x; |x—x,] <7’} and Q'={x; |x—x,|<2r'}(2r' <r). Then we can

select a sufficiently large compact set K such that

@8 JJ 60 e)dyuts, di)< 5[ Gl e)ds,

for sufficiently small any /. Indeed, by the condition (S) we have

[ Glx 3)8(3)dy = comst | |x,—y|-*g(3)dy = const | |x,—y|-"dy
2 2 Q

and
sup f G(x, Vg(»dy < sup const j‘ | x—y|-*dy= const f [ x,—y|~%dy .
reQ’ e Q Q

Hence, if we choose a large compact set K such that p(x, £—K) is sufficienly
small, noting that there exists an absolute constant M such that

L= JQ/I xy—y|~*dy

= <M,
fQ | Xo—y|~“dy

we have by the weak principle of the positive maximum the left-hand side of

18 = sup [ Gx, ygG)dyptx, 2—K)=sup( Gx, Ng(Ndyu(x, 2—K)
zeR-KY Q zeEQY 2

< the right-hand side of (1.8).
Using (G. 1) and (S) we can obtain constants C,, C, >0 depending only on
K such that
Ci =%, 72 G(xy, x) > Co - | x,— 2,75 2, ¥, €K,
by change C, and C, in the condition (S). Furthermore, by (1.5), it holds
p(xo, {%,})=0, so we can select U(x,) sufficiently small such that

s 1
1.9 e UG < C-gyps
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where M is an absolute constant which depends only on the dimension d and
will be determined later. Hereafter we shall fix K and U(x,). By choosing
7/ sufficiently small, we have

(1.10) sup_ [ G(x 3)g0)dy <—5-f GCx ey

K-U(zg)=x

Indeed it holds
sup G(x, Mg(y)dy < C,(r—2r)~*|Q’|,

rEK-U(xg)Y 2

j Gxo, gy > C2r) | Q.

As ' is sufiiciently small, we have —C,(2)"*|Q] > C,(r—2r)*|Q'|. So we

obtain (1.10). In the following, we shall show that there exists a constant M
depending only on the dimension d such that

sup G(x, y)g(y)dy c
1.11) zeUz) Y@ — >
2

M.
f GG ey

Indeed we have

C, sup | |x—y|=2g(y)dy
the left-hand side of (1.11) < —=€Uz0~ £

Caf 1x—y1-"g(5)dy
2

< Cl nggo) fQLlfﬁjyl“ dy — fl_fﬁ?_’iﬁiiﬁig ¢, M.

Cuf 1%o—y1=ody C.f 1x—yl-edy ~ ©

From (1.9), (1.11), (1.10) and (1.8), we obtain

§ J G0 neGyptny, dy={ [ GG Da(dypix, dx)

+{ v { G ey, dx)+jg_K | G Dg()dyucx, dx)

C 1 1
< @M { G Ng()dy - —g-j— -37\7+TIQG(X0’ 28(Ndy

+5-f Gl gy = [ Gl DIy

in contradiction with (1.3). Hence we have A=¢.
To see that the process obtained above is a standard process we need
only prove
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PRrRoOPOSITION 2. If we set
GC)={GY; /ey 2> 0},

G(C,) is dense in C, with respect to the uniform norm.
Proor. From the results of D.B. Ray [13] (cf. G. Lion [10]), when f be-
longs to the following function class;

E;={f<C, non-negative, V& =0, kG*f<f},
kG*f increases to f monotonically as k { co. By (1.1. A) kG* «C, and by Pro-
position 1 f =feC, and so by the Dini’s theorem, we have lim 2G*f(x)=f(x),
kToo
uniformly in x. Therefore, for any fe E={fe Co,f:fl—fz,fiezy E}, we
0

see that the convergence is uniform. To complete the proof of our proposi-
tion, we have only to note that £ is dense in C,, which is shown in [10].

By the above results we can apply the Hille-Yosida theorem to construct

a semi-group {T,};z, which is strong continuous and sub-Markov on C, such
that

Gif = oooe—’“Tt fdt .

The transition probability P(t, x, I') corresponding to this semi-group is con-
tinuous in the sense that

lim P(¢, x, U)=1, U open set=x
tio

by Dynkin [2], lemma 2.10. Following Dynkin [2], Th. 3.7, we can construct
a bounded Markov process whose almost all paths are right continuous and
have left limits. Furthermore, by Dynkin [2], Th. 3.10, it is strong Markov,
so that by Dynkin [2] Th. 3.13, we find that it has quasi-left-continuity. Thus
the process obtained above is a standard process.

REMARK. Under the condition (S), (G. 3) is satisfied necessarily. For any
two points x,, y, such that |x,—y,|=7, let Q, Q' be sufficiently small balls

Q={y; x,—y|<r} and Q' ={y; [x—y|<2r}Cr' <7).

Then we can construct a potential Gg(x):fﬂG(x, »e(ydy which separates x,
and y, by choosing an adequate function g(x) having the form (1.7).

§2. A diffusion process connected with the self-adjoint elliptic operator
of second order.

In this section we shall consider the following differential operator in the
d-dimensional space R%d = 3)
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i 0 ou
Dru= 3 - (age)
where {a;;} are symmetric with respect to 7-j, bounded and measurable, D?
is assumed to be uniformly elliptic. For this operator on a ball £, W. Litt-
man, G. Stampacchia and F. Weinberger [127] have shown that there exists
a Green function G(x, y) having the condition (S) with o« =d—2, which is a
weak solution of —D*G =4, in the sense of [12]. (G. 1)~(G. 3) are proved
in [127], P. 64~P. 67. (G. 4) is proved as follows.

For any f & Cx(£2), Gf(x) is a solution of —D*Gf(x)=f(x), so we have by
the definition

2 g GI@)- puds={ f-gdx,

where ¢ = Hy*(2). Let S be S={x; f(x) >0} and ¢ be a non-negative func-.
tion with compact support in £2—S belonging to C<({). Then we have

[, 2 055G adx = [ [ gdx=[__f0)- ptrdx=0.

Hence Gf is a Df-subsolution in £—S, and so we can apply G. Stampacchia’s
maximum theorem [16] to Gf-m where m = sup Gf(x), which is clearly non
xES

positive on 9(2—S). Then Gf<m on £—S, and so

m = Gf(x), vie Q.

From this Green function we can construct a standard process by Theorem
1.3. We call this process the minimal process associated with D® and is de-
noted by X°.

We are going to prove the continuity of the sample paths of this process.
Let us first observe the following fact for a standard process in general.

LEMMA 2.1. If for an arbitrary ball Q2 and a point x,& 2—0Q, there
exist functions f,, f, with compact supports in 2—Q, measurable, such that Gf,
Gf, are bounded measurable and

) GH(Nz=Gf(x) for x€8

i) GfinN=Gf(x) for x€Q

i) Gfy(0)>Gfo(x)  for some neighborhood U(x,) of x,,
then the harmonic measure concentrates on the boundary of Q, that is,

Px(erEQ—*Q-)ZO,

where To=inf (t =0, x, & Q).
Proor. By Dynkin’s formula we have

2.1 E,Gf (x:9) = Gf (%) for xeQ, 1=1,2.
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Now we suppose that the harmonic measure P,(x-, < dy) has strictly positive
mass on a neighborhood U(x,) of x,, Then we have

EGf(x:g) > E,Gf (<) -
This contradicts (2.1).

THEOREM 2.1. There exists a continuous standard process X = (x,, £, M,, Py)
on 82 whose generator is D°.

PrOOF. We have only to show the continuity of the sample paths. For
any ball Q€ £ and any point x,& 2—Q, let us consider the following func-
tion g.(x) (a; positive constant) which is used in [12] for other purpose,

1 4 0

0
_Za‘i.jzlaz'j*ax_tio(x) * 78;‘7“ Gmo(x)’ a é Ga:o(x) é 3a s

ga(x) -
0, otherwise,

- where G,(x) =G(x, x,). Then we have

Gxo(x): Gxo(x) é a,
[ 66 D8u)dy=| Gaf—— 7 GuD—0), a=Cu)=3a,

2a, G (%) = 3a.
If we fix a sufficiently large compact subset K of £ in the condition (S), there
exists a constant C >0 such that
Cr:-¢>G(x, x)  for any x=(Q,

where r denotes the distance between x, and Q. Hence if we select a con-
stant a such that a>=Cr?"%, we have g,(X)=0 in Q. Let us set f,(¥) = g;, (%)
and f,(x) =g,(x), then f, and f, satisfies the conditions i), ii), iii) in lemma 2.1,
so we have

P(xqe 2—Q)=0

for each ball . This means that almost all sample paths are continuous
from Courrege and Priouret [1] and R. Kondo [unpublished].

§3. The dual process of the canonical diffusion process.

_ 0
Du= @Z;’ 0x,0x;

Let us consider the following differential operator D* in R?
d

a 0
(@s;- u)“i;{ *aggi‘(ai - U)

where {a;;}, {a;} are Holder continuous and bounded and {a,;} is strictly posi-
tive definite. D* is the formal adjoint operator of the strictly elliptic opera-
tor D
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g 02 d ou
Du= sz) aw-——————axiaxj u-+ 1,;1 ai—ax—i .

The Markov process whose generator is D is called a (minimal) canonical
diffusion process X [2]. Hereafter we shall assume W. Littman’s condition

(L) — j Dradxz0

for every non-negative C2-function v with compact support in £.
Let us set
G¥(x, )= Gy, 1),
where G9(x, y) is the Green function in a ball 2 of D.

THEOREM 3.1. There exists a standard Markov process X* in a ball in the
sense of theorem 1.1 with respect to G*(x, y).

ProoF. It is sufficient to prove that G*(x, y) is the Green function with
the condition (S). The property (G. 1) is obvious, because it is true for G(y, x).
The property (G. 4) is proved by using the following W. Littman’s theorem
[117], theorem B. p. 210. Let Q be a smooth domain in £.

W. Littman’s theorem : if under the condition (L)

(3.1) f JH@DV@)dx =0

holds for all non-negative v in C2(Q) with compact support in Q where u is
locally integrable in @, and if, in addition, for some compact subdomain

Q’'c Q we have
0 < M = ess sup u(x) = ess sup u(x),
z2E€EQ zEQ
then u= M almost everywhere in Q.
Indeed, let u(x) be jG*(x, Wf(»dy, where f e Cg, and let S be {x; f(x)>0}.

Then for any smooth domain Q — £—S and any non-negative C?2-function v
with compact support in @ we have

[ [ 6% »fdyDu@dx= [ f(3)dy| Gy, HDv(R)dx
QY L2 2 2

=—[ 7Oy = — fOW(Hdy=0.
2 Q

Hence, if we set m = sup u(x), then u(x)—m\V o satisfies (3.1) by the condition
reS
(L). Suppose A= sug u(x) >mVo, then this supremum is attained at some
re

point z in £2—S because ue Cy(2). (uesCy(2) follows from (G. 2) which is
proved later without using (G. 4).) Let z be such a point. Then for any
smooth domain @ inside £—S and containing z the hypothesis of Littman’s
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theorem is satisfied, and hence u= A inside @, that is, u= A on the part of
0S. But this contradicts u & C,(2).

To verify the condition (S), it suffices to prove it for the Green function
G(x, ») in R?% of the operator D. We can show this by using a theorem in D.
Gilbarg and J. Serrin [3], which is an extension of the so-called maximum
principle, but here we shall prove it, using the estimate of the fundamental

solution p(t, x, y) in R? of Dp= —g}p— with Ililrn p, x, ) =0:

GG, )= [ p(t, % )it x, y = R,

ay-x2

P, x, NS Mt-Y2e ¢

PGt %, )= Mt=¥2e T Myt e T,

ally—z12 d., _agly—x12

where M, a, M, M,, a;, a,, 2 are positive constants [6]. The proof is as fol-
lows. We define p,(t, x, 3), p.(f, x, 3) by pi(E, x, y) = M, t=%2¢=1v-2%L (¢, x, y)
= M,tC¥»+ig-22y-212/t  and choose constants 4, r,, C} such that

(1 a M\
5 ~ M2> ,

“\4 a
3.2)
5((1/2)—-1 1/d—2
ry=—
2 d
242 )al(-5)
1 M
CQ:T al‘ I'd/2).
Then, from the following estimate,
> gy L@ 1
J it e =M 25

f:pl(t’ x, Y)dt < MJ;;"Wzdl‘ = Ml(—g-%2~> o-d/zt1

we have
0 I'(d/2) 1 2 . e
§ 0t 9yt > MA=CE = My (T )0
and from (3.2) we have
0 1 /2 1
fo pl(t! X, J/)dt% ‘Z“Ml <a,1/ ) lx__yld—éy ’ ‘ for ix'"yl < Vi

Hence, noting p(t, x, ¥) = p.(t, x, ¥)—p,(t, x, ¥), we have for |x—y|<r,
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fw;b(t, x, y)dt Zfa:b(t, x, y)dt
0 0

1 1'(d/2) 1 o @?!L‘ch
=g Mo ey 0 e M
_ 1 F(d/Z) 1 &M, I'd/2) 1 -
2 a; [x—y|o2 as [x—y|*?
1. I'd/ 1 1
M ey = Gy
It is obvious that C,— = 1 M =G(x, »), C,>0. Therefore the condition (S)

is satisfied for a =d—2 (d = 3).
To prove the property (G. 2) we have only to show

lim G*(x, y) = hm G(y, x)= acsaf.

xT=ra

In the following we shall use the notion “(super) harmonic (X) in G” for
brevity, which means “ (super) harmonic in an open set G with respect to a
Markov process X” according to Dynkin’s book [2] Noting that G@(x, y)
=G(x, Y)—E;G(x:q, y), we have only to show for x= £

3.3 lim E,G(xcg, ¥m) =G, 3), yn €8,y 082 .
Ym Y
First, by Fatou’s lemma we have
3.4 lim E,G(X:g, Ym) = E, lim G(xzg, Yu)
YmY Ym=Y

=E,G(Xcg, V), ym<E 2,y 0, x= 2.
On the other hand, as G(x, y) is superharmonic (X) in x, we have

(3.5) im E,G(xrg, ) < Im G(x, 3,) =G(x, 3), x 2.

Ym™Y Ym—=Y

Therefore, if we can prove E,G(x:q, ¥) = G(x, y), we obtain (3.3) from (3.4) and
(35). Let y= 02 and let 0 be a center of £2. If we choose a sequence {y,}

on the half line 0¥~ 2° which converges to y as m tends to infinity, we have

G G G
=T, G(u, ¥)

Gu, y,) = W(zzf Tu— y|d2——-

for all u € 02 by the property (S) of G(x, ), and G(u, y,) converges G(u, y)
as n tends to infinity. Hence, noting E(G(x:p, ) < co by (3.4) and (3.5), we
have by Lebesgue’s convergence theorem

(3.6) lim E,G(xrg, ¥u) = E;G(x+g, ¥) -

Noting that E,G(xcg, ¥n) = G(x, ¥,), x € 2, because G(x, y) is harmonic (X) in
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R*—{y}, we get E,G(x-g, ) =G(x, 3. Thus (3.3) was proved. The property
(G. 3) follows from the remark of §1.

REMARK. Let A* be the strong infinitesimal operator of X*. Then a
function u(x) € Cy(£2) such that

A*u(x) = —f(x) in Q for f = Cy(2)

is a weak solution of D*u(x)=/f(x) in W. Littman’s sense, that is: u(x) is lo-
cally integrable in £ and it satisfies

j w(®) Do(x)dx = — j Fw(x)dx
2 2

for all v in C%(Q) with compact support in Q.

§4. Wiener test and regular points.

Throughout this section, we shall assume that we are given a Green
function G(x,y) which satisfies the condition (S) and the standard process
X=(x, &, M,, P,) corresponding to G by Theorem 1.1. In addition we shall
assume the following condition (R).

(R). If A is an analylic set with compact closure, there exists a finite
measure p, concentrating on A such that

P04 <= [_G(x, )pady),

where c,=inf (t >0, x,€ A)=C{ if x,& A for every ¢ > 0.
The condition (R) corresponds to the so-called Riesz’s representation theorem.
We shall discuss the validity of (R) in §5. A point x is said to be a regular
point of an analytic set B for the process X, if it holds

P lopg=0)=1

for the probability law P, of the path of the process X starting at x.

Our aim of this section is to prove the following results:

THEOREM 4.1. The Wiener test which determines whether a point is regular
or not holds for the above standard process X = (x,, {, M,, P,), that is: let B be
an analytic set and let x be its boundary point and set

1 1
Bk={y$ i < Iy“xlé“zk—_f}f\B .
Then, x is a regular point of B for the process X, if and only if
4.1 S recBy=co,
=1

where C(Bk)zygk(g) (capacity of B,).
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THEOREM 4.2. Let X¢ and X§ be two standard processes corresponding to
the Green functions G, and G, which satisfy the condition (S) for the same «
and assume the condition (R). Then a point x< Q2 is a regular point of an
analytic set BC 82 for the process X¢, if and only if it is a regular point of B
for the process X§.

To prove Theorem 4.1 we shall first prepare several lemmas.

LEMMA 4.1. Let 0, be a sequence of balls with the common center z such
that 0, z as n1oco. Then

(4.2) lim sup P,(¢,, < {)=0.

n-oox € N—01

Proor. We fix a compact set K £ which contains every 0,. Then by
the conditions (S) and (R), we have

Cora® 10 @) = |Gz, Dpton(@) = P00, <O =1,

where 7, is the radius of 0,. Hence we have p,,(0,)]0 as n]co. On the
otherhand, it holds

Sup Px(O'On < C) é Cl I rl”rnl—a#()n((—)n)_*_a#o”(ﬁn) »
rEHN—01
where ¢ is a constant such that sgp G(x, y)=a. Hence we have
xEQ-K
yE0;

sup P,(0,, <0< —Cl%lf—;;—t— +ap,,0,)—0 as n—oo.
zER—-01 2Vn

REMARK 1. We see easily that a point x is not a regular point of {x}
for X.
LEMMA 4.2. A point x is a regular point of B for X, if and only if

(*3) P.(m BY) >0,

where B = {op, <(}.
PROOF. 1) Suppose that x is not a regular point of B for X and that
(4.3) holds. Noting that

P UQ<VE<op, %€ B)} = Puloy > 0%,

where 0, = {y: ly—x] < —%n—}m!?, we see that for any given ¢ > 0 there exists

a number 7, such that

4.4 P0<Vt<0p , % & B)z1—c*®,

*) Notice that Pg(ge | 0)=1 and see remark 1.
**) Po(og>0)=1 if x is not a regular point of B by Blumenthal’s 0—1 law.
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On the other hand, it holds that
P06, <0)=P,(0<Vt<oy , %,&B, 06, <O+ P0<3t<0y , % EB, 06<0)

= EuPs (06,0, 0< V< , & B)+P0<3t< aps , 5,E B, 06,<0)

for each n > n, where Gn:{y; ly—x| < %}mB. Hence, by (4.4) and lemma
4.1, we have

4.5) P06, <O)=_sup Piloq,<O+e=2e
22— no

for sufficiently large n. As ¢ is arbitrary, (4.5) contradicts (4.3). Hence x is
a regular point of B for X, if (4.3) holds.
ii) Suppose that

P, (im B¥=0.

N0

Then we can easily show that x is not a regular point of B for X.
The following Lamperti’s lemma is used to prove the next lemma.
Let the sequence of events {E,, k=1, 2, ---} satisfy the following conditions,

i S} Pu(E)=co,

il) there exist positive constants N and C such that P (E,NE,)=
CPE)PAE,) for all n>m>N. Then P,(Iim E;) > 0.

k=0

LEMMA 4.3. A point x is a regular point of B for X, if and only if
4.7) S PABH=co.
=1

PrROOF. We first notice that ¢(r)=r-% posseses the following properties;
a) @) is continuous except at r=0.

B ¢@) T ooasr]O.

7) There exists a positive constant M independent of r such that

“9 T
i) If 3 P.(BY)<co, we have
k=1
P,im BH) =0
ktoo
by Borel-Cantelli lemma. Hence x is not a regular point of B.

i) If ﬁ}”Px(B;f):oo, either §P$(B§“k) or §PI(B§§C+1) diverges. We sup-
k=1 k=1 k=1
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pose that the former diverges. When %k >j, we have
P(Bfi N B%) = Pu(05,;, <{, 055; <)
- Pw(ong < OByj < C)+Px(0132j < ) 3% < C)
= Ex(deBZk(O-BZJ < C): 0'sz < asz: Ung < C)
+Ez(anB2j(aB2k < C)r Usz < 0'3275; O'sz < C)
= EuPagy, (737 < 0, 95y < O+ EePayy, (033 < 0, 030y < 0.

Noting that the distance between B,; and B,, exceeds Z%ﬁ, ZT%_;, we get

by the condition (R)

49 PyB®= [ G, Dpe(d2)

1
= G, (1 y—2pemald2) = Cug () OB
for each ye B,;. Similarly we have
(4.10) PBIH=C ¢( sagir ) C(Ba))
for each y< B,;. On the other hand it holds
(411) Po(BE) > Cu (s ) CBad ZCad (g ) CBa)
and similarly
(412) P.BY) > Cap (g ) C(Ba.

Therefore, we have by (4.9) and (4.11)

C1 (2% >
(g

for each y & B,;. Similarly we have by (4.10) and (4.12)

(i)

P, (B%¥), for'each y & B,;.

* 9 i)

Hence by (4.9) and (4.1) we obtain

(4.13) Py(B) < P(B

y(B 27

PABY (1) = 2-&-M*P(Bf)P(BY,
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{B%.} satisfies ii) of Lamperti’s lemma and so
P, (lim B¥) >0.
kToo
By lemma 4.2, we see that x is a regular point of B for X.

PROOF OF THEOREM 4.1. By using the computation in Lemma 2.3, we get

G (L )CBY = PABYH = Cih(— ) B -

Hence (4.1) is equivalent to (4.7). This proves the Theorem.

In the sequel we shall prove Theorem 4.2. Let C; (=1, 2) be the capacity
of X¢ =1, 2).

LEMMA 4.4. Let A be an open set with compact closure, and K be a com-
pact set containing A in the condition (S). Then there exist positive constants
depending only on K such that

—yCi(S) < Co(A) < RiCi(G)

for an open set GD A and a compact set SC A.
Proor. If we set

L* = {measure p, jGI(x, Neldy) £1
on K, support of*xC A}, then we have

1@ = [_Piog < Oud)

for every g e L* and an open set G such that K DG D A. Noting the condi-
tions (K) and (S), we obtain

@14y #A = [ G.(x )b d)pe(dn)
<-G-.f 6.y, Dyxtadpisdy)

C, , C,
< [ =G0
On the other hand, we can show that there exist constants %, 2, >0 such that

415 L/RG (%, ) < Go(x, 3) <1/RJGy(x, 3), %, yE K
from the condition (S). Therefore, 1/k{¢%(dy) belongs to L* and so it holds
Cu(A) < FrGECL(G) by (414). Hence we have
2

(4.16) Co(A) = £, C(G)

for any open set G D A. If we set
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L**:{measure J7N jGI(x, Nu(dy) =1 inside A, support of Iu,g_]l-},
then we have for every g < L** and a compact set SC A

MM 2 [_Pio. < Ou(d),

and by the same reason as in (4.14), we get

#D = [_f G, ()

C
=G iy >-GeS).

As 1/kip%(dy) belongs to L** by (4.15), we see
4.17) Co(A) = k,Ci(S)

where %, = g?' k5. The conclusion follows from (4.16) and (4.17).
1

PROOF OF THEOREM 4.2. As we may assume that X¢ (i=1, 2) is a standard

process in a bounded domain £, E,(C):L)G(x, y)dy is finite, and so we have

Pl <o0)=1, (remark { <7gy). Hence we can take open sets Gy, G Gy for
each B, such that B,C G, G Gy, G Gy

(4.19) Pi(og, < C)+2—}c > P05, <0 > P05, <),

PY0n, <Ot > PUo%, <> Piog, <0,

and, if we denote the distance between @ and R by |Q, R|,
A 1
6%, Gul) <26 ()
(4.20)
1 1
$sup | x—31)> 59t ) -

(l]EGk
For each G, which satisfies (4.19), §PQ(B,;") diverges, if and only if §P {06, <0
k=1 k=1

(1=1, 2) diverges. Furthermore, from (4.20) we can see that i ¢(~§1,,—)Ci((;k)
k

diverges, if and only %Pg((rak<C) diverges. As it follows from lemma 4.4
k
that

S36(1/29C,(G) = 00— £ §(1/29C, G = 0= S $(1/2CG = o0,
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we obtain
(42D) B PUBD == PH0g,<)=00= X PHoE,<D=00.
Hence by (4.19) and we have
SPUBY =0 SPUBY =0

This means that x is a regular point of B for X, if and only if x is a re-
gular point of B for X%.

§5. Regular points for the multi-dimensional standard processes connected
with the differential operator of second order.

In this section we are concerned with the canonical diffusion process X
connected with D, its dual process constructed by theorem 3.1 and the minimal
diffusion process X° connected with the self-adjoint operator D® in §2.

Our aim is to prove the following theorem.

THEOREM 5.1. Let B be an analytic set with compact closure. Then a
point is a regular point of B for X, X* or X%, if and only if x is a regular
point of B for the Brownian motion,

ProOF. To prove this by theorem 4.2, we have only to show that the
condition (R) is satisfied. For X* and X9, the condition (R) is easily verified
by using Hunt’s theory because of their dual property (under the condition
(L), the dual process of X* is X and the dual process of X® is X° itself).
But without the condition (L), it is not obvious in the case of a canonical
diffusion process. Hence we need to prove the following lemma.

LEMMA 51. Let X be a canonical diffusion process in R* (d=3). Then
the condition (R) is satisfied for X, that is:

Pylo4 < 0)= fZG(x, Neady), for every

analytic set A with compact closure, where p, is a uniquely determined measure
concentrating on A.

PrROOF. Remark that P,(o, <o) is X-excessive (see. Dynkin [27]) and
harmonic (X) in R*—A. First we have for every open set Q with compact
closure

G.D P9, <o0)=g00)+[ G, pudy), xQ,

where g(x) is harmonic (X) in R? and g is a measure on Q.
Indeed, the proof of (5.1) follows the same lines as that of Schur [14], if
we prove the following proposition.
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PROPOSITION 5.1. Choose an open ball Q containing a fixed point x and

let {T$} be a semi-group of a stopped canonical diffusion process X? on Q (see,
Dynkin [20). Then
h(x, ) = TEG,(x)

is continuous in y.

ProOF. Since hy(x, 3) =T G () —E.G (x:g) ]+ TELE,Gy(x:¢)], we shall
show that the rigth-hand side is continous.

i) We first prove that T¢ E,G,(x-o)] is continuous in y. If we fix a point
x € Q, we have

T EG ()] = ELE, G, (), s < Tg]
+EY G(xcg, 1)y S Z 7o) = E E;G(Xeg, 1), s < Tg]
+E[G(xegy 1), s = Tol= E[G(xq, ¥)].

Hence it suffices to show that E,G(x-, y) is continuous. If we fix a point
ye R*—@, then G(-,y) is harmonic (X) in R?—y, and so we have G(x, y)
= E,G(xry, ), where xe @ and y& R?—@Q. Therefore E,G(xz, ») is continuous
in R?*—(Q. From (3.6), we have

lim EZG(X«:Q, Vm) = ExG(er: N=G(x, ),

Ym=Y

where y, € R*—Q, y€0Q. Thus E,G(x<, 3 is continuous in R*—Q. If y, y,
belong to @, we have

| Ea{G(rg 3)— G(¥rg )} | = SUP |G (2, y)— Gz, 3) | — 0 a8 33—
as and from (3.2) we obtain
lim ExG(xTQ; ym) == G(X, y); ImEQ,VE aQ .
Ym-Y

Therefore E,G(x- ¥) is continuous in R
ii) For each x, y= @, we have

TGy (D) —E.Gy(x:9)=THGF(N)]= f Gz, Y)P(s, x, 2)dz

= [Pet+s, x, ydt=[ Pett, x, y)dt .
0 s

When y e Q°, we see that G (x)= E,G,(x-p) and for an arbitrary sequence {yy,}
in @ such that y,—ye0dQ, we have lim {G(x, y,)—E,G,, (g} =0. Thus

TY Gy (x)—E,G,(x:9)] is continuous in R% We have proved the lemma.
Hence Schur’s argument [157] carries over to the present case of the can-

onical diffusion process, if only we prove the following proposition.
PROPOSITION 5.2. Let Q be a bounded domain with sufficiently smooth
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boundary and p,1=1, 2 be finite measures with the same compact support in
Q. Then if

§ 6o @) = [ GO, Dl

holds for all x= Q, we have
= g -

Proor. It suffices to show that for any open set w— Q, we have

{ G Mpldy) = | G D).

Let A(x)= quQ(x, N (dy) = jQGQ(x, Mps(dy) and h, be defined as ifrégf(x) where
H={f; positive superharmonic (Xy in @, f—h; superharmonic (X, in w}.
If we set If,,(x):j‘ Gx, Mp(dy) =1, 2), we have

’ It=h, (=12

following Hervé [4] Prop. |7.]. As the proof is short, we repeat it here:

h—I%, is harmonic (Xy) in w, so I, belongs to H. Hence we have I}, = h,.
Let K be a compact set included in w. Then for any i/ e G, h/—Ix is super-
harmonic (X in Q—K. As h’—h is superharmonic (Xg) in w, W'—Ig=h'—h
+Ip_g is superharmonic (X,) in w. Hence h’'—I; is superharmonic (X in Q.
Noting liminf A'—I =0, x= Q, a = 0Q, we have h’' = I,.

r—a

Thus, we have proved the theorem.
REMARK. When d =2, theorem 5.1 is hold by taking G9x, v) (Q ;sufficiently
smooth bounded domain) instead of G(x, y).

§6. Regular points for some isotropic diffusions.

In this section we shall treat a uniformly elliptic differential operator on
a closed ball O with radius 4 such that

d 02
(6.1) DM(JC) = zg_‘,:la”(]o*a—xza—x? u(.x) ,

where x=(x,, x,, -+, ¥z) € 2 and the coefficients a;; are bounded continuous
and symmetric. H. Tanaka has shown that there exists a continuous
standard process X=(x,, , M,, P,) with semigroup {7,} such that

Sy f— _ _ < B 0%
lim £ T~/ W= 3 a9 25—, for each feC?

with compact support in £.
In what follows we shall treat this process. We shall assume d =2 or 3



66 M. KaNDa

for simplicity.
By isotropy it is meant that transition probabilities are invariant under
all orthogonal transformations {g} that leave the origin fixed; that is

P@, x, Ey=P(t, gx, gE).

The following lemma was proved in a little different form by Wentzell
in the case of the differential operator such that

D= d az 2] b a
__i,jzﬂaij axiaxj +i:1 L ox;
where x=(x,, --+, x;). In the case of (6.1) we get more detailed results.

LEMMA 6.1. Assume that the process X defined above is isotropic. In case
d=3,

1 0% | cosf@ of
Tsin®g 9¢* " sing 96/

where x=(xy, X5, X5) = (7, 0, ©)* = (0, 8, ©)

a;5(X) = 05;0()+{a()—b(r)}

XiXs
re

In case d=2, under the assumptions of isotropy and reflection invariance, we
have

(6.3) f@, 6)=a<r)—g-?;+ bi” “gé*Jr bg) gjﬂfz ‘

where x=(xy, x,)=(r, 6) + (0, 0)

a4 = B+ {a)—br}—51- .
Moreover, by the continuity and boundedness of the cofficients a;; and uniform
ellipticity, we can show that a(r) and b(r) are positive bounded continuous func-
tion of v on [0, h), and

lirrol {a()—b(r)}=0.

When the operator D is expressed by polar coordinates, the form of in-
finitesimal operator is given by (6.2) and [(6.3) except at the origin. Hence, in
order to see the behaviour of the process X at the origin, it is necessary to
investigate the boundary conditions of the radial process X, on [0, ), which
is defined by X,.(#)=|x,|. It is known that the infinitesimal operator A, of X,

*) (r) is a point on the radial coordinate space (0, k).
(8, ¢) is a point on the spherical coordinate space S"~1,
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has a form

6.4) A =a) 95 D ) U

r2
for f < c2(0, h).

'THEOREM 6.1. Consider the radial process X, defined above on [0, h). Then
the boundary 0 can be neither “ natural” nor “ exit” in Feller’s sense.

ProOF. If we assume that it is natural or exit, we find that the point 0
is a trap with respect to the original process X, as 0 is a reflecting barrier.
Hence we have Af(0)=0 for every function f = D(A)®». On the other hand, a
function f(x) = x}+x%-+x} where x=(x,, x,, x,) belongs to D(A), obviously and
Df(0) = 2(a,,(0)+a.(0)+a;33(0)) >0 by uniform ellipticity of D. This yields a
contradiction.

When d=2, we shall show by an example that there exists a process X
whose radial process X, has a regular boundary 0. Consider the operator D
on the disk 2 with radius e¢® such that

g2
(6.5) D= $Z_lazj m‘g, x=(xy, %),

logr ) xxj *)

aij(x> u+< 2+10g 7,_

Then the generator of X, has the form

log 1 0
2+logr r(logr)® or {r(log i kh}

D,=
Hence it holds

R _x(log x)* dy
g = jo jy (2+ log X) “1687'¥d?€4"(16g y)2 < o0

y:j”f” dx__ y(og y)*

b

iogxp logy GTIOENdy<eo,

which shows that the boundary 0 is regular in Feller’s sense. This example
illustrates the following important remark; the point 0 is a regular point of
the set {0} for the original process X which corresponds to (6.5). In the case
of Brownian motion, this never occurs. Hence we see that the Holder con-
tinuity of a;; plays an essential role in the proof of Theorem 5.1. However,
in case d =23, we cannot construct such type of counter examples, as is shown
by the following.

THEOREM 6.2. In case d=23, the boundary 0 is always entrance.

Proor. Keeping (6.4) in mind, we see that the boundery 0 is entrance, if

*) D(A) denotes the domain of definitions of A.
**% Remark that D is uniformliy elliptic in £.
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and only if 0 =00 and p < oo where

o= jj dm(x)ds(y)

0<ylx<lc

p={f . dstodm(y),

s(x) = f :e"B(”dy ,

1

m<x>:f: 16 eB9(y
= [ 2 o

c: some fixed constant in (0, &).

By Theorem 6.1, 0 cannot be natural nor exit. Hence it suffices to show 6=co.
Without loss of generality we may assume

1 b(r)
2 STa) <

3
2 ’

for any » = (0, ¢, because ¢ can be chosen sufficiently small. (It is here that
we use the properties of a(») and b(r) mentioned in Lemma 6.1.)) Hence, noting

x<c¢, we have

3log x—3logc < B(x) < 2—%—5 m_)l)‘dy .

Therefore, it holds that

o= “' dm(x)eleevtlogcqy
T Y oy<a<e

¢ pe
g gIOgchj jZ‘lj_eslog-26‘—310gca'x e—logydy
oy

e—-zlog ¢ nc

1., &1
= —— | — —_— 7d =00,
17 P R
where M is an upper bound of a(r). This completes the proof of Theorem 6.2.

Nagoya University
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