A cohomology for Lie algebras

By U. Shukla

(Received Dec. 8, 1965)

1. Introduction.

Dixmier [1] has proposed a cohomology for Lie rings (that is, Lie algebras over the ring of integers). In this paper we propose a cohomology for Lie algebras over a ring in which the element 2 is invertible. First we construct a complex over a Lie algebra and then define a cohomology. We then show that the 0 -cohomology module is isomorphic to the submodule of invariant elements of the module of coefficients, the 1 -cohomology module is the module of crossed homomorphisms of the Lie algebra into the module of coefficients modulo the principal homomorphisms, and the 2 -cohomology module is in one-one correspondence with the set of equivalence classes of special (or singular) extensions of the Lie algebra with the module of coefficients as kernel. While trying to interpret the 3 -cohomology module the task of showing that every element of it is indeed an obstruction becomes too difficult and it has not been possible to accomplish it.

There is a great similarity between the constructions and proofs given in this paper and those given in [2], but they do need working out since the structure of a Lie algebra, thanks to the Jacobi identity, is not as simple as that of an associative algebra and one cannot be sure of the truth of a theorem without a comprehensive proof. Those definitions which have not been given here formally can be obtained from [2] with obvious changes (e. g. for an associative algebra substitute a Lie algebra).

2. Definition of cohomology.

Let K be a commutative ring with unit element $1(\neq 0)$ such that there exists an element $k \in K$ for which $2 k=1$. Throughout this paper we shall consider Lie algebras over the ring K. A differential graded Lie algebra over the ring K is a graded K-module $U=\sum_{n \geqq 0} U_{n}$ together with (i) a K-homomorphism $U \bigotimes_{K} U \rightarrow U$ given by $u_{i} \otimes u_{j} \rightarrow\left[u_{i}, u_{j}\right]$, where $u_{i} \in U_{i}, u_{j} \in U_{j}$ and $\left[u_{i}, u_{j}\right]$ $\in U_{i+j}$, satisfying the following relations:
(2.1) $\quad[u, u]=0, \quad$ where $u \in U$ is homogeneous element of even degree ;

$$
\begin{equation*}
\left[u_{i}, u_{j}\right]=(-1)^{i j+1}\left[u_{j}, u_{i}\right], \text { where } u_{i} \in U_{i}, u_{j} \in U_{j} ; \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
(-1)^{k i}\left[u_{i},\left[u_{j}, u_{k}\right]\right]+(-1)^{i j}\left[u_{j},\left[u_{k}, u_{i}\right]\right]+(-1)^{j k}\left[u_{k},\left[u_{i}, u_{j}\right]\right]=0, \tag{2.3}
\end{equation*}
$$

where $u_{i} \in U_{i}, u_{j} \in U_{j}, u_{k} \in U_{k}$; and (ii) K-homomorphism $d: U \rightarrow U$ such that

$$
\begin{equation*}
d d=0, d\left(U_{n}\right) \subset U_{n-1}, d\left[u_{i}, u_{j}\right]=\left[d u_{i}, u_{j}\right]+(-1)^{i}\left[u_{i}, d u_{j}\right], \tag{2.4}
\end{equation*}
$$

where $u_{i} \in U_{i}, u_{j} \in U_{j}$. We denote the restriction of d to U_{n} by d_{n}. (Actually since there exists an element $k \in K$ such that $2 k=1$ the relation (2.1) follows from (2.2) but we shall find it convenient to retain it separately.)

A (left) U-representation of U is a K-module M together with a K-homomorphism $U \bigotimes_{K} M \rightarrow M$ given by $u \otimes m \rightarrow u \cdot m$, where $u \in U, m \in M$ such that

$$
u_{i} \cdot\left(u_{j} \cdot m\right)-(-1)^{i j} u_{j} \cdot\left(u_{i} \cdot m\right)=\left[u_{i}, u_{j}\right] \cdot m,
$$

where $u_{i} \in U_{i}, u_{j} \in U_{j}$ and $m \in M$. For brevity we call M a (left) U-module.
Let g be a Lie algebra. We shall construct a differential graded Lie algebra $U=\sum_{n \geqq 0} U_{n}$ and a homomorphism of differential graded Lie algebras $\varepsilon: U \rightarrow \mathrm{~g}$ (the differential and the grading in g being trivial) such that
(i) the sequence of K-modules $\cdots \rightarrow U_{n} \xrightarrow{d_{n}} U_{n-1} \rightarrow \cdots \rightarrow U_{1} \xrightarrow{d_{1}} U_{n} \xrightarrow{\stackrel{g}{g} \rightarrow 0}$ is exact, and
(ii) there is a map $\sigma: \Omega \rightarrow U_{0}$ for which $\sigma([x, y])=[\sigma(x), \sigma(y)]$, where $x, y \in \mathfrak{g}$ and $\varepsilon \sigma=$ identity map.
Let X_{0} be a set in one-to-one correspondence with \mathfrak{g} and let a multiplication be defined in X_{0} such that the product of any two elements in X_{0} is the element in X_{0} which corresponds to the product of their images in g . Let $K\left(X_{0}\right)$ be the K-free module with X_{0} as base. The multiplication in X_{0} induces on $K\left(X_{0}\right)$ the structure of a non-associative algebra. The one-to-one correspondence $\left.X_{0} \rightarrow\right\}$ induces a K-homomorphism of non-associative algebras $\bar{\varepsilon}: K\left(X_{0}\right) \rightarrow \mathfrak{g}$. The inverse map $\mathfrak{g} \rightarrow X_{0}$ gives a map $\bar{\sigma}: \mathfrak{g} \rightarrow K\left(X_{0}\right)$ such that $\bar{\varepsilon} \bar{\sigma}=$ identity map. We define sets $X_{1}, \cdots, X_{n}, \cdots$ by induction over n. Suppose we have defined the sets $X_{0}, X_{1}, \cdots, X_{n}$ and an exact sequence of K-modules

$$
K\left(X_{n}\right) \xrightarrow{\bar{d}_{n}} K\left(X_{n-1}\right) \rightarrow \cdots \rightarrow K\left(X_{1}\right) \xrightarrow{\bar{d}_{1}} K\left(X_{0}\right) \xrightarrow{\bar{\varepsilon}} \mathfrak{g} \rightarrow 0
$$

such that (i) $K\left(X_{p}\right)$ is a K-free module with X_{p} as base ($0 \leqq p \leqq n$) and (ii) X_{p} is a set in one-to-one correspondence with the kernel N_{p-1} of the K-homomorphism $\bar{d}_{p-1}: K\left(X_{p-1}\right) \rightarrow K\left(X_{p-2}\right)$ for $2 \leqq p \leqq n$, while X_{1} is a set in one-to-one correspondence with the kernel N_{0} of the K-homomorphism $\bar{\varepsilon}: K\left(X_{0}\right) \rightarrow \mathfrak{g}$. Let X_{n+1} be a set in one-to-one correspondence with the kernel N_{n} of the K homomorphism $\bar{d}_{n}: K\left(X_{n}\right) \rightarrow K\left(X_{n-1}\right)$. Let $K\left(X_{n+1}\right)$ be the K-free module with X_{n+1} as base. The kernel N_{n} being a K-submodule of $K\left(X_{n}\right)$ the bijective map
$X_{n+1} \rightarrow N_{n}$ induces a K-homomorphism $K\left(X_{n+1}\right) \rightarrow N_{n}$ which when composed with the inclusion map $N_{n} \rightarrow K\left(X_{n}\right)$ gives a K-homomorphism $\bar{d}_{n+1}: K\left(X_{n+1}\right)$ $\rightarrow K\left(X_{n}\right)$ such that the sequence

$$
K\left(X_{n+1}\right) \xrightarrow{\bar{d}_{n+1}} K\left(X_{n}\right) \xrightarrow{\bar{d}_{n}} K\left(X_{n-1}\right) \rightarrow \cdots \rightarrow K\left(X_{1}\right) \xrightarrow{\bar{d}_{1}} K\left(X_{0}\right) \xrightarrow{\bar{\varepsilon}} g \rightarrow 0
$$

is exact.
The direct sum $\sum_{n \geq 0} K\left(X_{n}\right)$ is a K-free differential graded module. We shall define inductively maps

$$
X_{i} \times X_{j} \rightarrow X_{i+j} \quad(i \geqq 0, j \geqq 0)
$$

(the image of (x_{i}, x_{j}) being denoted by $\left[x_{i}, x_{j}\right]$) which when extended by K linearity give to $\sum_{n \geq 0} K\left(X_{n}\right)$ the structure of a K-free non-associative differential graded algebra. For $i=0, j=0$ the map $X_{0} \times X_{0} \rightarrow X_{0}$ has already been defined. Suppose that the maps have been defined for $i+j \leqq n$ such that

$$
\begin{equation*}
\bar{d}_{i+j}\left[x_{i}, x_{j}\right]=\left[\bar{d}_{i} x_{i}, x_{j}\right]+(-1)^{i}\left[x_{i}, \bar{d}_{j} x_{j}\right] . \tag{2.5}
\end{equation*}
$$

We take $\bar{d}_{\theta}=0$. In order to define the map for $i+j=n+1$, consider the expression

$$
\left[\bar{d}_{i} x_{i}, x_{j}\right]+(-1)^{i}\left[x_{i}, \bar{d}_{j} x_{j}\right] \in K\left(X_{n}\right) .
$$

It is annulled by \bar{d}_{n} and so belongs to N_{n}. The element in X_{n+1} which corresponds to it under the one-to-one correspondence $X_{n+1} \rightarrow N_{n}$ is defined to be the product $\left[x_{i}, x_{j}\right]$. By this definition the relation (2.5) is true for $i+j=n+1$. We observe that $K\left(X_{n}\right)$ is not only a K-free module but also a $K\left(X_{0}\right)$-module.

Let X be the sum set $\sum_{n \geq 0} X_{n}$. Then $\sum_{n \geqq 0} K\left(X_{n}\right)=K(X)$, the K-free module with X as base; indeed it is a K-free differential graded non-associative algebra. Let \mathfrak{p} be the two-sided ideal generated by the following elements
$\bar{\sigma}(0),\left[x_{2 p}, x_{2 p}\right],\left[x_{i}, x_{j}\right]+(-1)^{i j}\left[x_{j}, x_{i}\right]$, and $(-1)^{k i}\left[x_{i},\left[x_{j}, x_{k}\right]\right]+(-1)^{i j}\left[x_{j},\left[x_{k}\right.\right.$, $\left.\left.x_{i}\right]\right]+(-1)^{j k}\left[x_{k},\left[x_{i}, x_{j}\right]\right]$, where $x_{2 p} \in X_{2 p}(p \geqq 0), x_{i} \in X_{i}, x_{j} \in X_{j}, x_{k} \in X_{k}$. The quotient algebra $U=K(X) / \mathfrak{p}$ is a differential graded Lie algebra. If U_{n} denotes the image of $K\left(X_{n}\right)$ under the canonical map $K(X) \rightarrow K(X) / \mathfrak{p}$, we have $U=\sum_{n \geqq 0} U_{n}$ with maps $d_{n}: U_{n} \rightarrow U_{n-1}(n \geqq 1), d_{0}=0$ induced by $\bar{d}_{n}(n \geqq 0)$. The homomorphism $\bar{\varepsilon}: K\left(X_{0}\right) \rightarrow \mathfrak{g}$ yields a Lie algebra homomorphism $\varepsilon: U_{0} \rightarrow \mathfrak{g}$ and the map $\bar{\sigma}: g \rightarrow K\left(X_{0}\right)$ gives a map $\sigma: g \rightarrow U_{0}$ which is such that $\sigma([x, y])$ $=[\sigma(x), \sigma(y)]$ for $x, y \in g$ and $\varepsilon \sigma=$ identity map. We can also define maps $s_{0}: \operatorname{Ker} \varepsilon \rightarrow U_{1}$ and $s_{n-1}: \operatorname{Ker} d_{n-1} \rightarrow U_{n}(n>1)$ with the help of the bijective maps $X_{n} \rightarrow N_{n-1}(n \geqq 1)$ such that $d_{1} s_{0}$ and $d_{n} s_{n-1}$ are identity maps.

Let us define with Dixmier [1, p. 63] the algebra $G(U)$ of the graded K-module U. We recall that $G(U)$ is the (associative) quotient algebra of the
tensor algebra (over K) of U by the two-sided ideal generated by the elements of the form

$$
u \otimes v+(-1)^{\alpha \beta} v \otimes u, \quad \text { where } \quad u \in U_{\alpha}, v \in U_{\beta} ;
$$

and $w \otimes w$, where w is a homogeneous element of even degree in U. Every element of $G(U)$ is a K-linear combination of the elements of the form $\left\langle u_{1}\right| \cdots\left|u_{n}\right\rangle, u_{i} \in U_{u_{i}}, 1 \leqq i \leqq n$, where $\left\langle u_{1}\right| \cdots\left|u_{n}\right\rangle$ denotes the image of $u_{1} \otimes \cdots \otimes u_{n}$ in $G(U)$. The image of the unit element 1 of K in $G(U)$ is denoted by \rangle. In particular $\langle u\rangle$ denotes the image in $G(U)$ of the homogeneous element u of U. Indeed U can also be identified with its image in $G(U)$. We say that the elemənt $\left\langle u_{1}\right| \cdots\left|u_{n}\right\rangle$ is of degree $\alpha_{1}+\cdots+\alpha_{n}$ and order n. We define the total degree of $\left\langle u_{1}\right| \cdots\left|u_{n}\right\rangle$ in $G(U)$ to be the sum of the degree and the order, namely, $n+\alpha_{1}+\cdots+\alpha_{n}$. We note that $G(U)$ possesses a unit element, namely, \rangle which is taken to be of zero degree and zero order. If u (resp. v) is a homogeneous element of $G(U)$ of degree α (resp. β) and order α^{\prime} (resp. β^{\prime}) we have

$$
\langle v \mid u\rangle=(-1)^{\alpha \beta+\alpha^{\prime} \beta^{\prime}}\langle u \mid v\rangle .
$$

If U^{+}denotes the sum of U_{n} for n even and U^{-}denotes the sum of U_{n} for n odd, then

$$
G(U)=E\left(U^{+}\right) \otimes \otimes_{K} S\left(U^{-}\right),
$$

where $E\left(U^{+}\right)=G\left(U^{+}\right)$is the exterior algebra of the K-module U^{+}and $S\left(U^{-}\right)$ $=G\left(U^{-}\right)$is the symmetric algebra of the K-module U^{-}.

Let M be a (left) \mathfrak{q}-module. The K-linear combination of the elements of the form $\left\langle u_{1}\right| \cdots\left|u_{n}\right\rangle, u_{i} \in U_{\alpha_{i}}, i=1, \cdots, n$ form a sub- K-module of $G(U)$ which we denote by $U_{\alpha_{1}, \cdots, \alpha_{n}}$. For $n=0$ we take K instead of $U_{\alpha_{1}, \ldots, \alpha_{n}}$. Let

$$
\operatorname{Hom}_{K}(G(U), M)=\sum_{\left(\Omega_{1}, \cdots, n_{n}\right)} \operatorname{Hom}_{K}\left(U_{\alpha_{1}, \cdots, \alpha_{n}}, M\right)
$$

the sum being taken over all finite monotonic increasing sequences of nonnegative integers ($\alpha_{1}, \cdots, \alpha_{n}$) including the case $n=0$. The degree, the order and the total degree in $G(U)$ induce degree, order and total degree in $\operatorname{Hom}_{K}(G(U), M)$. We define a differential δ in $\operatorname{Hom}_{K}(G(U), M)$ such that for $f \in \operatorname{Hom}_{K}(G(U), M)$ we have

$$
\begin{align*}
& \delta f\left\langle u_{1}\right| \cdots\left|u_{n}\right\rangle=(-1)^{n+1}\left[\sum_{i=1}^{n}(-1)^{\alpha_{1}+\cdots+\alpha_{i}-1} f\left\langle u_{1}\right| \cdots\left|d u_{i}\right| \cdots\left|u_{n}\right\rangle\right. \tag{2.6}\\
&+\sum_{i=1}^{n}(-1)^{i-1}\left(\varepsilon u_{i}\right) f\left\langle u_{i}\right| \cdots\left|\hat{u}_{i}\right| \cdots\left|u_{n}\right\rangle \\
&\left.-\sum_{1 \leqq i<j \leqq n}(-1)^{s_{i j}}\left\langle\left\langle\left[u_{i}, u_{j}\right]\right| u_{1}\right| \cdots\left|\hat{u}_{i}\right| \cdots\left|\hat{u}_{j}\right| \cdots\left|u_{n}\right\rangle\right],
\end{align*}
$$

where $\varepsilon_{i j}=\sum_{p<q}\left(\alpha_{p} \alpha_{q}+1\right), p \in\{1, \cdots, i-1, i+1, \cdots, j-1\}, q \in\{i, j\}$ and \hat{u}_{i} means that u_{i} has to be omitted.

It can be verified that $\delta \delta f=0$. Indeed we can write $\delta=\delta_{1}+\delta_{2}$, where

$$
\begin{aligned}
\delta_{1} f\left\langle u_{1}\right| \cdots\left|u_{n}\right\rangle= & (-1)^{n+1} \sum_{i=1}^{n}(-1)^{\alpha_{1}+\cdots+\alpha_{i-1}} f\left\langle u_{1}\right| \cdots\left|d u_{i}\right| \cdots\left|u_{n}\right\rangle, \\
\delta_{2} f\left\langle u_{1}\right| \cdots\left|u_{n}\right\rangle= & (-1)^{n+1}\left[\sum_{i=1}^{n}(-1)^{i-1}\left(\varepsilon u_{i}\right) f\left\langle u_{1}\right| \cdots\left|\hat{u}_{i}\right| \cdots\left|u_{n}\right\rangle\right. \\
& \left.\left.-\sum_{1 \leqq i<j \leqq n}(-1)^{\varepsilon_{i j} f} f\left\langle\left[u_{i}, u_{j}\right]\right| u_{1}|\cdots| \hat{u}_{i}|\cdots| \hat{u}_{j}|\cdots| u_{n}\right\rangle\right]
\end{aligned}
$$

and verify that $\delta_{1}^{2}=0, \delta_{2}^{2}=0$ and $\delta_{1} \delta_{2}=-\delta_{2} \delta_{1}$.
Definition. The graded cohomology module $H^{*}\left(\operatorname{Hom}_{K}(G(U), M)\right)$ is called the cohomology module of the Lie algebra g with coefficients in the \mathfrak{g}-module M. We write

$$
H^{n}(\mathrm{~g}, M)=H^{n}\left(\operatorname{Hom}_{K}(G(U), M)\right)
$$

3. Interpretations of $H^{0}(!, M)$ and $H^{1}(g, M)$.

We write $\sigma(x)=(x)$ for $x \in g$ and $s_{1}(n)=(n)$ for $n \in \operatorname{Ker} d_{1}$, etc.. An element $n \in \operatorname{Ker} \varepsilon$ is of the form $\sum_{i} k_{i}\left(x_{i}\right)$, where $k_{i} \in K, x_{i} \in \mathrm{~g}$ and $\sum_{i} k_{i} x_{i}=0$. An elem n nt $n \in \operatorname{Ker} d_{1}$ is of the form $\sum_{j} k_{j}\left(n_{j}\right)$, where $k_{j} \in K, n_{j} \in \operatorname{Ker} \varepsilon$ and $\sum_{j} k_{j} n_{j}=0$.

A 0 -cochain is an element of $\operatorname{Hom}_{K}(K, M)$ and so may be identified with an element of M. If $f \in M$, then $\delta f \in \operatorname{Hom}_{K}(U, M)$ and

$$
\begin{equation*}
\delta f\langle(x)\rangle=x \cdot f, \quad \text { where } \quad x \in g \quad \text { and } \quad(x) \in U_{0} \tag{3.1}
\end{equation*}
$$

To avoid cumbersome notation we shall write $\langle x\rangle$ instead of $\langle(x)\rangle,\left\langle x_{1} \mid x_{2}\right\rangle$ instead of $\left\langle\left(x_{1}\right) \mid\left(x_{2}\right)\right\rangle$ etc.. If f is a 0 -cocycle, we have $x \cdot f=0$ for every $x \in \mathrm{~g}$. A 0 -coboundary being the zero element of M it follows that $H^{0}(\mathfrak{a}, M)$ is isomorphic to the sub- K-module of M consisting of the invariant elements of M.

A 1 -cochain is an element $f \in \operatorname{Hom}_{K}\left(U_{0}, M\right)$ and $\delta f \in \operatorname{Hom}_{K}\left(U_{0,0}, M\right)$ $+\operatorname{Hom}_{K}\left(U_{1}, M\right)$ such that

$$
\begin{gather*}
\delta f\left\langle x_{1} \mid x_{2}\right\rangle=-x_{1} f\left\langle x_{2}\right\rangle+x_{2} f\left\langle x_{1}\right\rangle+f\left\langle\left[x_{1}, x_{2}\right]\right\rangle, \tag{3.2}\\
\delta f\langle n\rangle=\sum_{i} k_{i} f\left\langle x_{i}\right\rangle, \tag{3.3}
\end{gather*}
$$

where $x_{1}, x_{2}, x_{i} \in \mathrm{~g}, k_{i} \in K$ and $\sum_{i} k_{i} x_{i}=0$. It should be noted that we have made use of the relation $\left[\sigma x_{1}, \sigma x_{2}\right]=\sigma\left[x_{1}, x_{2}\right]$ in expressing the coboundary δf over $\left\langle x_{1} \mid x_{2}\right\rangle$. If f is a 1 -cocycle and if $\varphi: g \rightarrow M$ is the restriction of
$f: U_{0} \rightarrow M$ to g , we have
(i)

$$
\varphi\left(\left[x_{1}, x_{2}\right]\right)=x_{1} \varphi\left(x_{2}\right)-x_{2} \varphi\left(x_{1}\right)
$$

and
(ii)

$$
\sum_{i} k_{i} x_{i}=0 \Rightarrow \sum_{i} k_{i} \varphi\left(x_{i}\right)=0
$$

Moreover, if $f=\delta g$ where $g \in M$, then

$$
\varphi(x)=x g, \quad \text { where } \quad x \in g .
$$

Hence $H^{1}(\mathfrak{g}, M)$ is the K-module of the crossed homomorphisms of g into M reduced modulo the principal homomorphisms.

4. Interpretation of $H^{2}(\mathrm{~g}, M)$.

A 2 -cochain is an element $f \in \operatorname{Hom}_{K}\left(U_{0,0}, M\right)+\operatorname{Hom}_{K}\left(U_{1}, M\right)$. Then $\delta f \in \operatorname{Hom}_{K}\left(U_{0,0,0}, M\right)+\operatorname{Hom}_{K}\left(U_{0,1}, M\right)+\operatorname{Hom}_{K}\left(U_{2}, M\right)$. We have

$$
\begin{gather*}
\delta f\left\langle x_{1}\right| x_{2}\left|x_{3}\right\rangle=x_{1} f\left\langle x_{2} \mid x_{3}\right\rangle-x_{2} f\left\langle x_{1} \mid x_{3}\right\rangle+x_{3} f\left\langle x_{1} \mid x_{2}\right\rangle-f\left\langle\left[x_{1}, x_{2}\right] \mid x_{3}\right\rangle \tag{4.1}\\
+f\left\langle\left[x_{1}, x_{3}\right] \mid x_{2}\right\rangle-f\left\langle\left[x_{2}, x_{3}\right] \mid x_{1}\right\rangle, \\
\delta f\langle x \mid n\rangle=-\sum_{i} k_{i} f\left\langle x \mid x_{i}\right\rangle-x f\langle n\rangle+f\langle[x, n]\rangle ; \tag{4.2}\\
\delta f\left\langle n^{\prime}\right\rangle=\sum_{j} k_{j}^{\prime} f\left\langle n_{j}\right\rangle, \tag{4.3}
\end{gather*}
$$

where $x_{1}, x_{2}, x_{3}, x \in \mathfrak{g}, n=\sum_{i} k_{i}\left(x_{i}\right), k_{i} \in k, x_{i} \in \mathfrak{g}$ such that $\sum_{i} k_{i} x_{i}=0$ and n^{\prime} $=\sum_{j} k_{j}^{\prime}\left(n_{j}\right), k_{j}^{\prime} \in k, n_{j} \in \operatorname{ker} \varepsilon$ such that $\sum_{j} k_{j}^{\prime} n_{j}=0$.

If f is a 2 -cocycle, it determines two maps

$$
\begin{aligned}
& \gamma_{1}: g \times g \rightarrow M \\
& \gamma_{2}: N_{0} \rightarrow M
\end{aligned}
$$

satisfying the following identities.

$$
\begin{gather*}
\gamma_{1}(x, x)=0 \tag{4.6}\\
\gamma_{1}\left(x_{1}, x_{2}\right)=-\gamma_{1}\left(x_{2}, x_{1}\right), \\
x_{1} \gamma_{1}\left(x_{2}, x_{3}\right)-x_{2} \gamma_{1}\left(x_{1}, x_{3}\right)+x_{3} \gamma_{1}\left(x_{1}, x_{2}\right)-\gamma_{1}\left(\left[x_{1}, x_{2}\right], x_{3}\right) \tag{4.4}\\
+\gamma_{1}\left(\left[x_{1}, x_{3}\right], x_{2}\right)-\gamma_{1}\left(\left[x_{2}, x_{3}\right], x_{1}\right)=0, \tag{4.5}
\end{gather*}
$$

$$
\begin{equation*}
\sum_{i} k_{i} \gamma_{1}\left(x, x_{i}\right)=-x \gamma_{2}(n)+\gamma_{2}([x, n]) \tag{4.7}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j} k_{i}^{\prime} r_{2}\left(n_{j}\right)=0 \tag{4.8}
\end{equation*}
$$

where $x_{1}, x_{2}, x_{3}, x, x_{i}, n$ and n_{j} are as before.

Let \mathcal{E}_{f} be the set of all pairs (m, x), where $m \in M, x \in \mathfrak{g}$. We define addition, multiplication and scalar multiplication by elements of K as follows:

$$
\begin{equation*}
\left(m_{1}, x_{1}\right)+\left(m_{2}, x_{2}\right)=\left(m_{1}+m_{2}+\gamma_{2}\left(x_{1}, x_{2}\right), x_{1}+x_{2}\right) ; \tag{4.9}
\end{equation*}
$$

$$
\begin{gather*}
{\left[\left(m_{1}, x_{1}\right),\left(m_{2}, x_{2}\right)\right]=\left(x_{1} m_{2}-x_{2} m_{1}+\gamma_{1}\left(x_{1}, x_{2}\right),\left[x_{1}, x_{2}\right]\right) ;} \tag{4.10}\\
k(m, x)=\left(k m+\gamma_{2}(k, x), k x\right), \tag{4.11}
\end{gather*}
$$

where by $\gamma_{2}\left(x_{1}, x_{2}\right)$ we mean $\gamma_{2}\left(\left(x_{1}+x_{2}\right)-\left(x_{1}\right)-\left(x_{2}\right)\right)$ and by $\gamma_{2}(k, x)$ we mean $\gamma_{2}((k x)-k(x)) ; x_{1}, x_{2}, x \in \mathrm{~g}, m \in M, k \in K$. After proving the associative law for the addition defined above the relations (4.9) and (4.11) can be combined into a single relation

$$
\begin{equation*}
\sum_{i} k_{i}\left(m_{i}, x_{i}\right)=\left(\sum_{i} k_{i} m_{i}+\gamma_{2}(n), \sum_{i} k_{i} x_{i}\right), \tag{4.12}
\end{equation*}
$$

where $k_{i} \in K, m_{i} \in M, x_{i} \in \mathfrak{g}$ and $n=\left(\sum_{i} k_{i} x_{i}\right)-\sum_{i} k_{i}\left(x_{i}\right) \in N_{0}$.
We shall show that with these operations \mathcal{E}_{f} is a Lie algebra. We have to verify the following relations.

1. $\xi+\eta=\eta+\xi$,
2. $(\xi+\eta)+\zeta=\xi+(\eta+\zeta)$,
3. $[\xi, \eta+\zeta]=[\xi, \eta]+[\xi, \zeta]$,
4. $[\xi+\eta, \zeta]=[\xi, \zeta]+[\eta, \zeta]$,
5. $[\xi, \xi]=0$,
6. $[\xi,[\eta, \zeta]]+[\eta,[\zeta, \xi]]+[\zeta,[\xi, \eta]]=0$,
7. $[k \xi, \eta]=k[\xi, \eta]$,
8. $[\xi, k \eta]=k[\xi, \eta]$,
9. $k_{1}\left(k_{2} \xi\right)=\left(k_{1} k_{2}\right) \xi$,
10. $k(\xi+\eta)=k \xi+k \eta$,
11. $\left(k_{1}+k_{2}\right) \xi=k_{1} \xi+k_{2} \xi$,
where $\xi, \eta, \zeta \in \mathcal{E}_{f}$ and $k, k_{1}, k_{2} \in K$.
Let $\xi=\left(m_{1}, x_{1}\right), \eta=\left(m_{2}, x_{2}\right)$ and $\zeta=\left(m_{3}, x_{3}\right)$, where $m_{1}, m_{2}, m_{3} \in M$ and $x_{1}, x_{2}, x_{3} \in g$. The relation $\xi+\eta=\eta+\xi$ is trivially verified. To verify (2) we have

$$
\begin{aligned}
\left\{\left(m_{1}, x_{1}\right)+\left(m_{2}, x_{2}\right)\right\} & +\left(m_{3}, x_{3}\right)=\left(m_{1}+m_{2}+\gamma_{2}\left(x_{1}, x_{2}\right), x_{1}+x_{2}\right)+\left(m_{3}, x_{3}\right) \\
& =\left(m_{1}+m_{2}+m_{3}+\gamma_{2}\left(x_{1}, x_{2}\right)+\gamma_{2}\left(x_{1}+x_{2}+x_{3}\right), x_{1}+x_{2}+x_{3}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(m_{1}, x_{1}\right)+\left\{\left(m_{2}, x_{2}\right)\right. & \left.+\left(m_{3}, x_{3}\right)\right\}=\left(m_{1}, x_{1}\right)+\left(m_{2}+m_{3}+\gamma_{2}\left(x_{2}, x_{3}\right), x_{2}+x_{3}\right) \\
= & \left(m_{1}+m_{2}+m_{3}+\gamma_{2}\left(x_{2}, x_{3}\right)+\gamma_{2}\left(x_{1}, x_{2}+x_{3}\right), x_{1}+x_{2}+x_{3}\right) .
\end{aligned}
$$

We have to show that

$$
\begin{aligned}
& \gamma_{2}\left(\left(x_{1}+x_{2}\right)-\left(x_{1}\right)-\left(x_{2}\right)\right)+\gamma_{2}\left(\left(x_{1}+x_{2}+x_{3}\right)-\left(x_{1}+x_{2}\right)-\left(x_{3}\right)\right) \\
& \quad=\gamma_{2}\left(\left(x_{2}+x_{3}\right)-\left(x_{2}\right)-\left(x_{3}\right)\right)+\gamma_{2}\left(\left(x_{1}+x_{2}+x_{3}\right)-\left(x_{1}\right)-\left(x_{2}+x_{3}\right)\right)
\end{aligned}
$$

But this follows from (4.8) by taking

$$
\begin{array}{ll}
n_{1}=\left(x_{1}+x_{2}\right)-\left(x_{1}\right)-\left(x_{2}\right), & n_{2}=\left(x_{1}+x_{2}+x_{3}\right)-\left(x_{1}+x_{2}\right)-\left(x_{3}\right), \\
n_{3}=\left(x_{2}+x_{3}\right)-\left(x_{2}\right)-\left(x_{3}\right), & n_{4}=\left(x_{1}+x_{2}+x_{3}\right)-\left(x_{1}\right)-\left(x_{2}+x_{3}\right)
\end{array}
$$

and $k_{1}^{\prime}=1, k_{2}^{\prime}=1, k_{3}^{\prime}=-1, k_{4}^{\prime}=-1$.
To verify (3) we have

$$
\begin{aligned}
& {\left[\left(m_{1}, x_{1}\right),\left(m_{2}, x_{2}\right)+\left(m_{3}, x_{3}\right)\right]=\left[\left(m_{1}, x_{1}\right),\left(m_{2}+m_{3}+\gamma_{2}\left(x_{2}, x_{3}\right), x_{2}+x_{3}\right)\right]} \\
& \quad=\left(x_{1} m_{2}+x_{1} m_{3}+x_{1} \gamma_{2}\left(x_{2}, x_{3}\right)-x_{2} m_{1}-x_{3} m_{1}+\gamma_{1}\left(x_{1}, x_{2}+x_{3}\right),\left[x_{1}, x_{2}+x_{3}\right]\right)
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[\left(m_{1}, x_{1}\right)\right.} & \left.\left(m_{2}, x_{2}\right)\right]+\left[\left(m_{1}, x_{1}\right),\left(m_{3}, x_{3}\right)\right] \\
= & \left(x_{1} m_{2}-x_{2} m_{1}+\gamma_{1}\left(x_{1}, x_{2}\right),\left[x_{1}, x_{2}\right]\right)+\left(x_{1} m_{3}-x_{3} m_{1}+\gamma_{1}\left(x_{1}, x_{3}\right),\left[x_{1}, x_{3}\right]\right) \\
= & \left(x_{1} m_{2}-x_{2} m_{1}+x_{1} m_{3}-x_{3} m_{1}+\gamma_{1}\left(x_{1}, x_{2}\right)+\gamma_{1}\left(x_{1}, x_{3}\right)\right. \\
& \left.+\gamma_{2}\left(\left[x_{1}, x_{2}\right],\left[x_{1}, x_{3}\right]\right),\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{3}\right]\right) .
\end{aligned}
$$

We have to show that

$$
x_{1} \gamma_{2}\left(x_{2}, x_{3}\right)+\gamma_{1}\left(x_{1}, x_{2}+x_{3}\right)=\gamma_{1}\left(x_{1}, x_{2}\right)+\gamma_{1}\left(x_{1}, x_{3}\right)+\gamma_{2}\left(\left[x_{1}, x_{2}\right],\left[x_{1}, x_{3}\right]\right)
$$

or what is the same thing

$$
\gamma_{1}\left(x_{1}, x_{2}+x_{3}\right)-\gamma_{1}\left(x_{1}, x_{2}\right)-\gamma_{1}\left(x_{1}, x_{3}\right)=-x_{1} \gamma_{2}\left(x_{2}, x_{3}\right)+\gamma_{2}\left(\left[x_{1}, x_{2}\right],\left[x_{1}, x_{3}\right]\right) .
$$

But this follows from (4.7) by taking $x=x_{1}$ and $n=\left(x_{2}+x_{3}\right)-\left(x_{2}\right)-\left(x_{3}\right)$. The relation (4) can be verified in a similar manner.

The relation (5) follows from the fact that $\gamma_{1}(x, x)=f\langle x \mid x\rangle=0$. To verify Jacobi's identity we calculate

$$
\begin{aligned}
& {\left[\left(m_{1}, x_{1}\right),\left[\left(m_{2}, x_{2}\right),\left(m_{3}, x_{3}\right)\right]\right]=\left[\left(m_{1}, x_{1}\right),\left(x_{2} m_{3}-x_{3} m_{2}+\gamma_{1}\left(x_{2}, x_{3}\right),\left[x_{2}, x_{3}\right]\right)\right]} \\
& = \\
& \quad\left(x_{1} x_{2} m_{3}-x_{1} x_{3} m_{2}-\left[x_{2}, x_{3}\right] m_{1}+x_{1} \gamma_{1}\left(x_{2}, x_{3}\right)\right. \\
& \left.\quad+\gamma_{1}\left(x_{1},\left[x_{2}, x_{3}\right]\right),\left[x_{1},\left[x_{2}, x_{3}\right]\right]\right) .
\end{aligned}
$$

Permuting circularly and adding we see that Jacobi's identity is satisfied if

$$
\begin{aligned}
& x_{1} \gamma_{1}\left(x_{2}, x_{3}\right)+x_{2} \gamma_{1}\left(x_{3}, x_{1}\right)+x_{3} \gamma_{1}\left(x_{1}, x_{2}\right)+\gamma_{1}\left(x_{1},\left[x_{2}, x_{3}\right]\right)+ \\
& \gamma_{1}\left(x_{2},\left[x_{3}, x_{1}\right]\right)+\gamma_{1}\left(x_{3},\left[x_{1}, x_{2}\right]\right)+\gamma_{2}(n)=0
\end{aligned}
$$

where

$$
n=(0)-\left(\left[x_{1},\left[x_{2}, x_{3}\right]\right]\right)-\left(\left[x_{2},\left[x_{3}, x_{1}\right]\right]\right)-\left(\left[x_{3},\left[x_{1}, x_{2}\right]\right]\right)=0
$$

since $(0)=\sigma(0) \in \mathfrak{p}$ and

$$
\begin{aligned}
& \left(\left[x_{1},\left[x_{2}, x_{3}\right]\right]\right)+\left(\left[x_{2},\left[x_{3}, x_{1}\right]\right]\right)+\left(\left[x_{3},\left[x_{1}, x_{2}\right]\right]\right) \\
& \quad=\left[\sigma x_{1},\left[\sigma x_{2}, \sigma x_{3}\right]\right]+\left[\sigma x_{2},\left[\sigma x_{3}, \sigma x_{1}\right]\right]+\left[\sigma x_{3},\left[\sigma x_{1}, \sigma x_{2}\right]\right] \in \mathfrak{p} .
\end{aligned}
$$

This means $\gamma_{2}(n)=0$. Also

$$
\begin{aligned}
& x_{1} \gamma_{1}\left(x_{2}, x_{3}\right)+x_{2} \gamma_{1}\left(x_{3}, x_{1}\right)+x_{3} \gamma_{1}\left(x_{1}, x_{2}\right)+\gamma_{1}\left(x_{1},\left[x_{2}, x_{3}\right]\right)+\gamma_{1}\left(x_{2},\left[x_{3}, x_{1}\right]\right) \\
& \quad+\gamma_{1}\left(x_{3},\left[x_{1}, x_{2}\right]\right)=x_{1} \gamma_{1}\left(x_{2}, x_{3}\right)-x_{2} \gamma_{1}\left(x_{1}, x_{3}\right)+x_{3} \gamma_{1}\left(x_{1}, x_{2}\right)-\gamma_{1}\left(\left[x_{1}, x_{2}\right], x_{3}\right) \\
& \quad+\gamma_{1}\left(\left[x_{1}, x_{3}\right], x_{2}\right)-\gamma_{1}\left(\left[x_{1}, x_{2}\right], x_{3}\right)=0 \text { by virtue of (4.6), }
\end{aligned}
$$

To verify (7) we note that

$$
\begin{aligned}
{\left[k\left(m_{1}, x_{1}\right),\left(m_{2}, x_{2}\right)\right] } & =\left[\left(k m_{1}+\gamma_{2}\left(k, x_{1}\right), k x_{1}\right),\left(m_{2}, x_{2}\right)\right] \\
& =\left(k x_{1} m_{2}-k x_{2} m_{1}-x_{2} \gamma_{2}\left(k, x_{1}\right)+\gamma_{1}\left(k x_{1}, x_{2}\right),\left[k x_{1}, x_{2}\right]\right)
\end{aligned}
$$

and

$$
\begin{aligned}
k\left[\left(m_{1}, x_{1}\right),\left(m_{2}, x_{2}\right)\right] & =k\left(x_{1} m_{2}-x_{2} m_{1}+\gamma_{1}\left(x_{1}, x_{2}\right),\left[x_{1}, x_{2}\right]\right) \\
& =\left(k x_{1} m_{2}-k x_{2} m_{1}+k \gamma_{1}\left(x_{1}, x_{2}\right)+\gamma_{2}\left(k,\left[x_{1}, x_{2}\right]\right), k\left[x_{1}, x_{2}\right]\right) .
\end{aligned}
$$

So we have to show that

$$
-x_{2} \gamma_{2}\left(k, x_{1}\right)+\gamma_{1}\left(k x_{1}, x_{2}\right)=k \gamma_{1}\left(x_{1}, x_{2}\right)+\gamma_{2}\left(k,\left[x_{1}, x_{2}\right]\right)
$$

or what is the same thing

$$
\gamma_{1}\left(k x_{1}, x_{2}\right)-k \gamma_{1}\left(x_{1}, x_{2}\right)=x_{2} \gamma_{2}\left(k, x_{1}\right)+\gamma_{2}\left(k,\left[x_{1}, x_{2}\right]\right)
$$

that is

$$
-k \gamma_{1}\left(x_{2}, x_{1}\right)+\gamma_{1}\left(x_{2}, k x_{1}\right)=-x_{2} \gamma_{2}\left(\left(k x_{1}\right)-k\left(x_{1}\right)\right)+\gamma_{2}\left(-\left(\left[k x_{1}, x_{2}\right]\right)+k\left(\left[x_{1}, x_{2}\right]\right)\right) .
$$

This is a consequence of (4.7) by taking $x=x_{2}$ and $n=\left(k x_{1}\right)-k\left(x_{1}\right)$.
The relation (8) can be verified in a similar manner.
The relations (9), (10) and (11) can be verified in a straight-forward fashion. We have shown in this way that \mathcal{E}_{f} is a Lie algebra, the element $(0,0)$ being the zero of \mathcal{E}_{f}. If we define $\alpha: M \rightarrow \mathcal{E}_{f}$ and $\beta: \mathcal{E}_{f} \rightarrow \mathfrak{g}$ by $\alpha(m)$ $=(m, 0)$ and $\beta(m, x)=x$, we have an exact sequence of Lie algebras

$$
0 \rightarrow M \xrightarrow{\alpha} \mathcal{E}_{f} \xrightarrow{\beta} \mathfrak{g} \rightarrow 0,
$$

where M has the trivial multiplicative structure. We observe that

$$
\left[\left(m_{1}, x_{1}\right),(m, 0)\right]=\left(x_{1} m, 0\right)
$$

showing that the exact sequence induces on M the given \mathfrak{g}-module structure.
Let f^{\prime} be a 2-cocycle which is cohomologous to f. This means $f^{\prime}=f+\delta g$, where g is a 1 -cochain. Let \mathcal{E}_{f}, be the Lie algebra determined by the 2 -cocycle f^{\prime}. Since g is a 1 -cochain, it gives a map $\psi: g \rightarrow M$, which is the restriction of g to g. We define a map $\phi: \mathcal{E}_{f} \rightarrow \mathcal{E}_{f}$ by putting

$$
\phi(m, x)=(m+\phi(x), x)
$$

where $m \in M, x \in \mathfrak{g}$. Then

$$
\begin{aligned}
\phi\left(\sum_{i} k_{i}\left(m_{i}, x_{i}\right)\right) & =\phi\left(\sum_{i} k_{i} m_{i}+\gamma_{2}(n), \sum_{i} k_{i} x_{i}\right) \\
& =\left(\sum_{i} k_{i} \dot{m}_{i}+\gamma_{2}(n)+\phi\left(\sum_{i} k_{i} x_{i}\right), \sum_{i} k_{i} x_{i}\right),
\end{aligned}
$$

and

$$
\sum_{i} k_{i} \phi\left(m_{i} x_{i}\right)=\sum_{i} k_{i}\left(m_{i}+\phi\left(x_{i}\right), x_{i}\right)=\left(\sum_{i} k_{i} m_{i}+\sum_{i} k_{i} \phi(x)+\gamma_{2}^{\prime}(n), \sum_{i} k_{i} x_{i}\right)
$$

where

$$
n=\left(\sum_{i} k_{i} x_{i}\right)-\sum_{i} k_{i}\left(x_{i}\right) \in N_{0}, m_{i} \in M, x \in \mathrm{~g}
$$

But $\gamma_{2}^{\prime}(n)-\gamma_{2}(n)=\delta g(n)=\phi\left(\sum_{i} k_{i} x_{i}\right)-\sum_{i} k_{i} \psi\left(x_{i}\right)$ by virtue of (3.3). Therefore

$$
\phi\left(\sum_{i} k_{i}\left(m_{i}, x_{i}\right)\right)=\sum_{i} k_{i} \phi\left(m_{i}, x_{i}\right),
$$

where $m_{i} \in M, x_{i} \in \mathrm{~g}$. Again,

$$
\begin{aligned}
\phi\left[\left(m_{1}, x_{1}\right),\left(m_{2}, x_{2}\right)\right] & =\phi\left(x_{1} m_{2}-x_{2} m_{1}+\gamma_{1}\left(x_{1}, x_{2}\right),\left[x_{1}, x_{2}\right]\right) \\
& =\left(x_{1} m_{2}-x_{2} m_{1}+\gamma_{1}\left(x_{1}, x_{2}\right)+\phi\left(\left[x_{1}, x_{2}\right]\right),\left[x_{1}, x_{2}\right]\right)
\end{aligned}
$$

while

$$
\begin{aligned}
{\left[\phi\left(m_{1}, x_{1}\right), \phi\left(m_{2}, x_{2}\right)\right] } & =\left[\left(m_{1}+\psi\left(x_{1}\right), x_{1}\right),\left(m_{2}+\psi\left(x_{2}\right), x_{2}\right)\right] \\
& =\left(x_{1} m_{2}-x_{2} m_{1}+x_{1} \psi\left(x_{2}\right)-x_{2} \psi\left(x_{1}\right)+\gamma_{1}^{\prime}\left(x_{1}, x_{2}\right),\left[x_{1}, x_{2}\right]\right),
\end{aligned}
$$

where $m_{1}, m_{2} \in M$ and $x_{1}, x_{2} \in g$. Since by (3.2)

$$
\gamma_{1}^{\prime}\left(x_{1}, x_{2}\right)-\gamma_{1}\left(x_{1}, x_{2}\right)=\delta g\left\langle x_{1} \mid x_{2}\right\rangle=-x_{1} \psi\left(x_{2}\right)+x_{2} \psi\left(x_{1}\right)+\psi\left(\left[x_{1}, x_{2}\right]\right),
$$

it follows that

$$
\phi\left[\left(m_{1}, x_{1}\right),\left(m_{2}, x_{2}\right)\right]=\left[\phi\left(m_{1}, x_{1}\right), \phi\left(m_{2}, x_{2}\right)\right] .
$$

We have now shown that ϕ is a homomorphism of Lie algebras. It is easy to verify that ϕ is bijective.

Conversely, suppose

$$
0 \rightarrow M \xrightarrow{\alpha} \mathcal{E} \xrightarrow{\beta} \mathfrak{g} \rightarrow 0
$$

is an exact sequence of Lie algebras, where M is an abelian Lie algebra. Let $\rho: g \rightarrow \mathcal{E}$ be a map such that $\beta \rho=$ identity map, and $\rho(-x)=-\rho(x)$ where $x \in \mathrm{~g}$. This is possible since there exists an element $k \in K$ for which $2 k=1$. Let us define two maps

$$
r_{1}: g \times g \rightarrow M
$$

and

$$
\gamma_{2}: N_{0} \rightarrow M
$$

by the relations

$$
\begin{equation*}
\gamma_{1}\left(x_{1}, x_{2}\right)=\rho\left(\left[x_{1}, x_{2}\right]\right)-\left[\rho\left(x_{1}\right), \rho\left(x_{2}\right)\right], \tag{4.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{2}(n)=\sum_{i} k_{i} \rho\left(x_{i}\right), \tag{4.14}
\end{equation*}
$$

where $x_{1}, x_{2}, x_{i} \in \mathrm{~g}, k_{i} \in K$ and $n=\sum_{i} k_{i}\left(x_{i}\right) \in N_{0}$ such that $\sum_{i} k_{i} x_{i}=0$. We observe that the relations (4.4) and (4.5) are satisfied in view of the choice of ρ. Also

$$
\begin{aligned}
& x_{1} \gamma_{1}\left(x_{2},\right.\left.x_{3}\right)-x_{2} \gamma_{1}\left(x_{1}, x_{3}\right)+x_{3} \gamma_{1}\left(x_{1}, x_{3}\right)-\gamma_{1}\left(\left[x_{1}, x_{2}\right], x_{3}\right)+\gamma_{1}\left(\left[x_{1}, x_{3}\right], x_{2}\right) \\
&-\gamma_{1}\left(\left[x_{2}, x_{3}\right], x_{1}\right)=\left[\rho\left(x_{1}\right), \rho\left(\left[x_{2}, x_{3}\right]\right)-\left[\rho\left(x_{2}\right), \rho\left(x_{3}\right)\right]\right] \\
&-\left[\rho\left(x_{2}\right), \rho\left(\left[x_{1}, x_{3}\right]\right)-\left[\rho\left(x_{1}\right), \rho\left(x_{3}\right)\right]\right]+\left[\rho\left(x_{3}\right), \rho\left(\left[x_{1}, x_{2}\right]\right)-\left[\rho\left(x_{1}\right), \rho\left(x_{2}\right)\right]\right] \\
&-\rho\left(\left[\left[x_{1}, x_{2}\right], x_{3}\right]\right)+\left[\rho\left(\left[x_{1}, x_{2}\right]\right), \rho\left(x_{3}\right)\right] \\
& \quad+\rho\left(\left[\left[x_{1}, x_{3}\right], x_{2}\right]\right)-\left[\rho\left(\left[x_{1}, x_{3}\right]\right), \rho\left(x_{2}\right)\right]-\rho\left(\left[\left[x_{2}, x_{3}\right], x_{1}\right]\right) \\
& \quad+\left[\rho\left(\left[x_{2}, x_{3}\right]\right), \rho\left(x_{1}\right)\right]=\rho\left(\left[x_{1},\left[x_{2}, x_{3}\right]\right]\right)+\rho\left(\left[x_{2},\left[x_{3}, x_{1}\right]\right]\right) \\
& \quad+\rho\left(\left[x_{3},\left[x_{1}, x_{2}\right]\right]\right)=\gamma_{2}(m),
\end{aligned}
$$

where

$$
m=\left(\left[x_{1},\left[x_{2}, x_{3}\right]\right]\right)+\left(\left[x_{2},\left[x_{3}, x_{1}\right]\right]\right)+\left(\left[x_{3},\left[x_{1}, x_{2}\right]\right]\right)
$$

with $x_{1}, x_{2}, x_{3} \in \mathfrak{g}$. Since $m \in \mathfrak{p}, \gamma_{2}(m)=0$. Therefore the relation (4.6) is satisfied.

Again,

$$
\begin{aligned}
& \sum_{i} k_{i} \gamma_{1}\left(x, x_{i}\right)+x \gamma_{2}(n)-\gamma_{2}([x, n]) \\
& \quad=\sum_{i} k_{i} \rho\left(\left[x, x_{i}\right]\right)-\sum_{i} k_{i}\left[\rho(x), \rho\left(x_{i}\right)\right]+\left[\rho(x), \sum_{i} k_{i} \rho\left(x_{i}\right)\right] \\
& \quad-\sum_{i} k_{i} \rho\left(\left[x, x_{i}\right]\right)=0,
\end{aligned}
$$

where $n=\sum_{i} k_{i}\left(x_{i}\right)$ such that $\sum_{i} k_{i} x_{i}=0, k_{i} \in K, x_{i} \in \mathfrak{g}$. Therefore the relation (4.7) is satisfied. The relation (4.8) is trivially satisfied.

After the usual arguments we have
THEOREM 1. There exists a natural one-to-one correspondence between the two-dimensional cohomology module $H^{2}(\mathrm{~g}, M)$ and the set of equivalence classes of the special extensions of g with kernel M which induce over M the given g module structure.

5. On $H^{3}(\mathrm{~g}, M)$.

Let \mathfrak{h} be a Lie algebra, let $D(\mathfrak{h})$ denote the Lie algebra of derivations of \mathfrak{h} and let $I(\mathfrak{h})$ denote the ideal of $D(\mathfrak{h})$ consisting of the inner derivations of \mathfrak{h}. Consider the homomorphism of Lie algebras $\mu: \mathfrak{h} \rightarrow D(\mathfrak{h})$ which maps every element of \mathfrak{k} into the inner derivation of \mathfrak{h} induced by it. The kernel of this homomorphism is the centre $C_{\mathfrak{b}}$ of the Lie algebra \mathfrak{h} and the image is $I(\mathfrak{h})$. So we have an exact sequence of Lie algebras

$$
\begin{equation*}
0 \rightarrow C_{\mathfrak{h}} \rightarrow \mathfrak{h} \xrightarrow{\prime} D(\mathfrak{h}) \rightarrow D(\mathfrak{h}) / I(\mathfrak{h}) \rightarrow 0 . \tag{5.1}
\end{equation*}
$$

We call $D(\mathfrak{h}) / I(\mathfrak{h})$ the Lie algebra of exterior derivations of \mathfrak{h}. The centre $C_{\mathfrak{\xi}}$ is a $D(\mathfrak{h}) / I(\mathfrak{h})$-module for the operation $\bar{D} c=D c$, where $c \in C_{\mathfrak{h}}, \bar{D} \in D(\mathfrak{h}) / I(\mathfrak{h})$ and D is an element of $D(\mathfrak{h})$ belonging to the coset \bar{D}.

Consider an exact sequence of Lie algebras

$$
\begin{equation*}
0 \rightarrow \mathfrak{h} \xrightarrow{\alpha} \mathcal{E} \xrightarrow{\beta} \mathfrak{g} \rightarrow 0 . \tag{5.2}
\end{equation*}
$$

Since $\alpha \mathfrak{h}$ is an ideal of \mathcal{E}, the map $e \rightarrow a d e$, where ade denotes the inner derivation of \mathcal{E} induced by the element e of \mathcal{E} gives a Lie algebra homomorphism $\nu: \mathcal{E} \rightarrow D(\mathfrak{h})$. Since $\alpha \mathfrak{h}$ is mapped into $I(\mathfrak{h}), \nu$ induces a Lie algebra homomorphism

$$
\begin{equation*}
\theta: \mathfrak{g} \rightarrow D(\mathfrak{h}) / l(\mathfrak{h}) . \tag{5.3}
\end{equation*}
$$

Conversely, suppose we are given Lie algebras \mathfrak{g} and \mathfrak{h} and a homomorphism of Lie algebras $\theta: \mathfrak{g} \rightarrow D(\mathfrak{h}) / I(\mathfrak{h})$. Does there exist a Lie algebra \mathcal{E} and an exact sequence of Lie algebras of the type (5.2) such that the induced homomorphism (5.3) is the same as the given homomorphism θ ? We note that θ gives to $C_{\text {b }}$ a g-module structure. We propose to associate with θ an element of $H^{3}\left(\mathfrak{g}, C_{\mathfrak{G}}\right)$ called the obstruction of θ and we shall answer the question in terms of the obstruction of θ.

Let $\sigma: \mathfrak{g} \rightarrow D(\mathfrak{h})$ be a map such that $\sigma(x)$ is an element of the coset $\theta(x)$, where $x \in g$ and $\sigma(-x)=-\sigma(x)$. Since θ is a homomorphism of Lie algebras, we have

$$
\begin{gather*}
\sigma\left(\left[x_{1}, x_{2}\right]\right)-\left[\sigma\left(x_{1}\right), \sigma\left(x_{2}\right)\right]=\mu \gamma_{1}\left(x_{1}, x_{2}\right), \tag{5.4}\\
\sum_{i} k_{i} \sigma\left(x_{i}\right)=\mu \gamma_{2}(n), \tag{5.5}
\end{gather*}
$$

where $x_{1}, x_{2}, x_{i} \in \mathfrak{g}, k_{i} \in K, n=\sum_{i} k_{i}\left(x_{i}\right) \in N_{0}$ so that $\sum_{i} k_{i} x_{i}=0$, and $\mu \gamma_{1}\left(x_{1}, x_{2}\right)$ and $\mu \gamma_{2}(n)$ are the inner derivations of \mathfrak{h} induced by the elements $\gamma_{1}\left(x_{1}, x_{2}\right)$ and $\gamma_{2}(n)$ of \mathfrak{h}. The elements $\gamma_{1}\left(x_{1}, x_{2}\right)$ and $\gamma_{2}(n)$ are not well-determined but the inner derivations $\mu \gamma_{1}\left(x_{1}, x_{2}\right)$ and $\mu \gamma_{2}(n)$ are well-determined.

We define a 3 -cochain of g with values in C_{5} by the relations

$$
\begin{gather*}
f\left\langle x_{1}\right| x_{2}\left|x_{3}\right\rangle=\sigma\left(x_{1}\right) \gamma_{1}\left(x_{2}, x_{2}\right)-\sigma\left(x_{2}\right) \gamma_{1}\left(x_{1}, x_{3}\right)+\sigma\left(x_{3}\right) \gamma_{1}\left(x_{1}, x_{2}\right) \tag{5.6}\\
-\gamma_{1}\left(\left[x_{1}, x_{2}\right], x_{3}\right)+\gamma_{1}\left(\left[x_{1}, x_{3}\right], x_{2}\right)-\gamma_{1}\left(\left[x_{2}, x_{3}\right], x_{1}\right), \\
f\langle x \mid n\rangle=-\sum_{\imath} k_{i} \gamma_{1}\left(x, x_{i}\right)-\sigma(x) \gamma_{2}(n)+\gamma_{2}([x, n]), \tag{5.7}\\
f\left\langle n^{\prime}\right\rangle=\sum_{j} k_{j}^{\prime} \gamma_{2}\left(n_{j}\right), \tag{5.8}
\end{gather*}
$$

where $x_{1}, x_{2}, x_{3} \in \mathfrak{g}, n=\sum_{i} k_{i}\left(x_{i}\right) \in N_{0}$ so that $\sum_{i} k_{i} x_{i}=0$ and $n^{\prime}=\sum_{j} k_{j}^{\prime}\left(n_{j}\right) \in N_{1}$ so that $\sum_{j} k_{j}^{\prime} n_{j}=0, n_{j} \in \operatorname{ker} \varepsilon$.

The second member of each of the above three relations belongs to C_{5}, because if we apply μ to each one of them and calculate their values we get zero. We call f an obstruction of θ.

Proposition 1. An obstruction f of θ is a 3-cocycle and any two obstructions of θ are cohomologous. If f is an obstruction of θ, then a 3-cocycle which is cohomologous to f is also an obstruction.

Proof. The maps γ_{1} and γ_{2} define a " 2 -cochain" h of g with values in \mathfrak{h}, but with this difference that \mathfrak{h} is not a \mathfrak{g}-module. Also the relations (5.6), (5.7) and (5.8) are similar to the relations (4.1), (4.2) and (4.3) respectively and we may write $f=\delta h$ bearing in mind that h is a " 2 -cochain" of \mathfrak{g} with values in \mathfrak{h}, which is not a \mathfrak{g}-module. If \mathfrak{h} were a \mathfrak{g}-module we could at once infer that $\delta f=\delta \delta h=0$; but since we do not have

$$
\sigma\left(\left[x_{1}, x_{2}\right]\right)=\left[\sigma\left(x_{1}\right), \sigma\left(x_{2}\right)\right] \quad \text { and } \quad \sigma\left(\sum_{i} k_{i} x_{i}\right)=\sum_{i} k_{i} \sigma\left(x_{i}\right)
$$

where $x_{1}, x_{2}, x_{i} \in \mathfrak{g}$, we shall have to verify that in the expressions for δf the terms which involve

$$
\sigma\left(\left[x_{1}, x_{2}\right]\right)-\left[\sigma\left(x_{1}\right), \sigma\left(x_{2}\right)\right] \quad \text { and } \quad \sigma\left(\sum_{i} k_{i} x_{i}\right)-\sum_{i} k_{i} \sigma\left(x_{i}\right)
$$

cancel out, the other terms getting cancelled as in the identity $\delta \delta=0$ for 2 cochains.

We observe that

$$
\begin{aligned}
\delta f \in \operatorname{Hom}_{K}\left(U_{0,0,0,0}, C_{\mathfrak{F}}\right) & +\operatorname{Hom}_{K}\left(U_{0,0,1}, C_{\mathfrak{\xi}}\right)+\operatorname{Hom}_{K}\left(U_{0,2}, C_{\mathfrak{\xi}}\right) \\
& +\operatorname{Hom}_{K}\left(U_{1,1}, C_{\mathfrak{\xi}}\right)+\operatorname{Hom}_{K}\left(U_{3}, C_{\mathfrak{\xi}}\right) .
\end{aligned}
$$

It is a matter of straightforward verification that
$\left.\delta f\left\langle x_{1}\right| x_{2}\left|x_{3}\right| x_{4}\right\rangle=0, \delta f\left\langle x_{1}\right| x_{2}|n\rangle=0, \delta f\left\langle x_{1} \mid n^{\prime}\right\rangle=0, \delta f\left\langle n_{1} \mid n_{2}\right\rangle=0, \delta f\left\langle n^{\prime \prime}\right\rangle=0$,
where $x_{1}, x_{2}, x_{3}, x_{4} \in \mathfrak{g}, n, n_{1}, n_{2} \in N_{0}, n^{\prime} \in N_{1}, n^{\prime \prime} \in N_{2}$. Hence f is a 3-cocycle.
In order to show that two obstructions of θ are cohomologous we note
that f depends upon the choice of σ and $h=\left(\gamma_{1}, \gamma_{2}\right)$. First we shall show that if we choose a second map $\sigma^{\prime}: g \rightarrow D(\mathfrak{h})$ such that $\sigma^{\prime}(x)$ is an element of the coset $\theta(x)$, where $x \in \mathfrak{g}$ and $\sigma^{\prime}(-x)=-\sigma^{\prime}(x)$, we can choose h in such a way that f remains the same. Indeed $\sigma^{\prime}-\sigma$ has its values in μ) since $\sigma^{\prime}(x)$ and $\sigma(x)$ belong to the same coset $\theta(x)$, where $x \in g$. Let us write

$$
\sigma^{\prime}(x)=\sigma(x)+\mu \tau(x),
$$

where $x \in g$ and $\tau(x) \in \mathfrak{h}$. Then using (5.4) and (5.5) we have

$$
\begin{aligned}
& \sigma^{\prime}\left(\left[x_{1}, x_{2}\right]\right)-\left[\sigma^{\prime}\left(x_{1}\right), \sigma^{\prime}\left(x_{2}\right)\right]=\mu \gamma_{1}\left(x_{1}, x_{2}\right)+\mu\left\{\tau\left(\left[x_{1}, x_{2}\right]\right)\right. \\
&-\left.-\left[\tau\left(x_{1}\right), \sigma\left(x_{2}\right)\right]-\left[\sigma\left(x_{1}\right), \tau\left(x_{2}\right)\right]-\left[\tau\left(x_{1}\right), \tau\left(x_{2}\right)\right]\right\}
\end{aligned}
$$

and

$$
\sum_{i} k_{i} \sigma^{\prime}\left(x_{i}\right)=\mu \gamma_{2}(n)+\mu\left(\sum_{i} k_{i} \tau\left(x_{i}\right)\right),
$$

where $n=\sum_{i} k_{i}\left(x_{i}\right) \in N_{0}$. We choose

$$
\begin{aligned}
\gamma_{1}^{\prime}\left(x_{1}, x_{2}\right)=\gamma_{1}\left(x_{1}, x_{2}\right)+ & \tau\left(\left[x_{1}, x_{2}\right]\right)-\left[\tau\left(x_{1}\right), \sigma\left(x_{2}\right)\right] \\
& -\left[\sigma\left(x_{1}\right), \tau\left(x_{2}\right)\right]-\left[\tau\left(x_{1}\right), \tau\left(x_{2}\right)\right], \\
\gamma_{2}^{\prime}(n)= & \gamma_{2}(n)+\sum_{i} k_{i} \tau\left(x_{i}\right)
\end{aligned}
$$

If f^{\prime} is the 3 -cocycle determined by σ^{\prime} and $\left(\gamma_{1}^{\prime}, \gamma_{2}^{\prime}\right)$, then straightforward calculations of $f^{\prime}\left\langle x_{1}\right| x_{2}\left|x_{3}\right\rangle, f^{\prime}\langle x \mid n\rangle$ and $f^{\prime}\left(n^{\prime}\right)$ show that $f^{\prime}=f$.

If, however, we keep σ fixed and choose $h^{\prime}=\left(\gamma_{1}^{\prime}, \gamma_{2}^{\prime}\right)$ instead of $h=\left(\gamma_{1}, \gamma_{2}\right)$ such that $\mu h^{\prime}=\mu h$, then $h^{\prime}-h=g$ has values in C_{5} and so is a 2 -cochain of \mathfrak{g} with values in $C_{\mathfrak{\emptyset}}$. If f^{\prime} is the 3 -cocycle determined by h^{\prime} (and σ), then

$$
f^{\prime}=\delta h^{\prime}=\delta(h+g)=f+\delta g
$$

showing that the two obstructions f and f^{\prime} are cohomologous.
Finally, given an obstruction f determined by σ and h and a 3 -cocycle f^{\prime} cohom logous to f we have $f^{\prime}=f+\delta g$, where g is a 2 -cochain with values in C_{η}. Choose $h^{\prime}=h+g$. This choice is permissible since $\mu h^{\prime}=\mu h+\mu g=\mu h$. Then $f^{\prime}=f+\delta g=\delta h+\delta g=\delta(h+g)=\delta h^{\prime}$ showing that f^{\prime} is also an obstruction. This proves the proposition completely.

The cohomology class ξ_{θ} of $H^{3}\left(\mathrm{~g}, C_{5}\right)$ determined by f is called the obstruction of θ. We are now in a position to answer the question raised at the beginning of this section.

Theorem 2. A homomorphism $\theta: g \rightarrow D(\mathfrak{G}) / I(\mathfrak{h})$ is induced by an extension of \mathfrak{g} with kernel \mathfrak{h} if and only if the obstruction $\xi_{\theta}=0$.

Proof. Let

$$
0 \rightarrow \mathfrak{h} \xrightarrow{\alpha} \stackrel{\beta}{\rightarrow} \mathfrak{g} \rightarrow 0
$$

be an extension which induces θ. Let $\rho: g \rightarrow \mathcal{E}$ be a map such that $\rho(-x)$ $=-\rho(x)$, where $x \in \mathfrak{g}$, such that $\beta \rho=$ identity. We take $\sigma: g \rightarrow D(\mathfrak{g})$ by composing ρ with $\nu: \mathcal{E} \rightarrow D(\mathfrak{h})$.

Then we can choose γ_{1} and γ_{2} such that

$$
\begin{gathered}
\gamma_{1}\left(x_{1}, x_{2}\right)=\rho\left(\left[x_{1}, x_{2}\right]\right)-\left[\rho\left(x_{1}\right), \rho\left(x_{2}\right)\right] \\
\gamma_{2}(n)=\sum_{i} k_{i} \rho\left(x_{i}\right),
\end{gathered}
$$

where $x_{1}, x_{2} \in \mathfrak{g}, n \in \operatorname{Ker} \varepsilon$. We note that the restriction of ν to \mathfrak{h} is μ. If we now substitute these values of γ_{1} and γ_{2} in (5.6), (5.7) and (5.8), we find $f=0$.

Conversely, suppose $\xi_{\theta}=0$. Then by virtue of Proposition 1 we can choose σ and $h=\left(\gamma_{1}, \gamma_{2}\right)$ such that $f=0$. Consider the set \mathcal{E} consisting of element of the form (a, x) where $a \in \mathfrak{h}$ and $x \in g$ and define the operations as follows

$$
\begin{gathered}
\sum_{i} k_{i}\left(a_{i}, x_{i}\right)=\left(\sum_{i} k_{i} a_{i}+\gamma_{2}(n), \sum_{i} k_{i} x_{i}\right), \\
{\left[\left(a_{1}, x_{1}\right),\left(a_{2}, x_{2}\right)\right]=\left(a_{1} a_{2}+\sigma\left(x_{1}\right) a_{2}-\sigma\left(x_{2}\right) a_{1}+\gamma_{1}\left(x_{1}, x_{2}\right),\left[x_{1}, x_{2}\right]\right),}
\end{gathered}
$$

where $x_{1}, x_{2}, x_{i} \in \mathfrak{g}, k_{i} \in K, n=\left(\sum_{i} k_{i} x_{i}\right)-\sum_{i} k_{i}\left(x_{i}\right) \in N_{0}$. It can be easily verified that these operations satisfy the eleven identities of a Lie algebra, since $f=0$. We observe that $(0,0)$ is the zero of the Lie algebra \mathcal{E} and that θ is induced by the extension

$$
0 \rightarrow \mathfrak{h} \xrightarrow{\alpha} \mathcal{E} \xrightarrow{\beta} \mathfrak{g} \rightarrow 0,
$$

given by $\alpha(a)=(a, 0)$ and $\beta(a, x)=x$, where $a \in \mathfrak{h}, x \in g$.
Remark. In order to give a complete interpretation of $H^{3}(g, M)$ it remains to prove the following theorem: Let \mathfrak{g} be a Lie algebra and let M be a \mathfrak{g} module. Let f be a 3 -cocycle of g with values in M. Then there exists a Lie algebra \mathfrak{g} having M as centre and a homomorphism $\theta: \mathfrak{g} \rightarrow D(\mathfrak{h}) / I(\mathfrak{h})$ which induces on M the given \mathfrak{g}-module structure such that f is an obstruction of θ.

University of Bombay

References

[1] J. Dixmier, Homologie des anneaux de Lie, Ann. Sci. École Norm. Sup., 74 (1957), 25-83.
[2] U. Shukla, Cohomologie des algèbres associatives, Ann. Sci. École Norm. Sup., 78 (1961), 163-209.

