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1. Introduction.

Dixmier [1] has proposed a cohomology for Lie rings (that is, Lie alge-
bras over the ring of integers). In this paper we propose a cohomology for
Lic algebras over a ring in which the element 2 is invertible. First we con-
struct a complex over a Lie algebra and then define a cohomology. We then
show that the O-cohomology module is isomorphic to the submodule of in-
variant elements of the module of coefficients, the l-cohomology module is
the module of crossed homomorphisms of the Lie algebra into the module of
coefficients modulo the principal homomorphisms, and the 2-cohomology module
is in one-one correspondence with the set of equivalence classes of special (or
singular) extensions of the Lie algebra with the module of coefficients as
kernel. While trying to interpret the 3-cohomology module the task of show-
ing that every element of it is indeed an obstruction becomes too difficult
and it has not been possible to accomplish it.

$\Gamma here$ is a great similarity between the constructions and proofs given in
this paper and those given in [2], but they do need working out since the
structure of a Lie algebra, thanks to the Jacobi identity, is not as simple as
that of an associative algebra and one cannot be sure of the truth of a
theorem without a comprehensive proof. Those definitions which have not
been given here formally can be obtained from [2] with obvious changes
($e$ . $g$ . for an associative algebra substitute a Lie algebra).

2. Definition of cohomology.

Let $K$ be a commutative ring with unit element 1 $(\neq 0)$ such that there
exists an element $k\in K$ for which $2k=1$ . Throughout this paper we shall
consider Lie algebras over the ring $K$. A differential graded Lie algebra over
the ring $K$ is a graded K-module $U=\sum_{n\geqq 0}U_{n}$ together with (i) a K-homomor-

phism $U\bigotimes_{K}U\rightarrow U$ given by $u_{i}\otimes u_{j}\rightarrow[u_{i}, u_{j}]$ , where $u_{i}\in U_{i},$ $u_{j}\in U_{j}$ and $[u_{i}, u_{j}]$

$\in U_{i+j}$, satisfying the following relations:

(2.1) $[u, u]=0$ , where $u\in U$ is homogeneous element of even degree;
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(2.2) $[u_{i}, u_{j}]=(-1)^{ij+1}[u_{j}, u_{i}]$ , where $u_{i}\in U_{i},$ $u_{j}\in U_{j}$ ;

(2.3) $(-1)^{ki}[u_{i}, [u_{j}, u_{k}]]+(-1)^{ij}[u_{j}, [u_{k}, u_{i}]]+(-1)^{jk}[u_{k}, [u_{i}, u_{j}]]=0$ ,

where $u_{i}\in U_{i},$ $u_{j}\in U_{j},$ $u_{k}\in U_{k}$ ; and (ii) K-homomorphism $d:U\rightarrow U$ such that

(2.4) $dd=0,$ $d(U_{n})\subset U_{n-1},$ $d[u_{t}, u_{j}]=[du_{i}, u_{j}]+(-1)^{i}[u_{i}, du_{j}]$ ,

where $u_{i}\in U_{i},$ $u_{j}\in U_{j}$ . We denote the restriction of $d$ to $U_{n}$ by $d_{n}$ . (Actually
since there exists an element $k\in K$ such that $2k=1$ the relation (2.1) follows
from (2.2) but we shall find it convenient to retain it separately.)

A (left) U-representation of $U$ is a K-module $M$ together $W_{\wedge}^{i}th$ a $K$-homo-
morphism $U\bigotimes_{K}M-M$ given by $u\otimes m\rightarrow u\cdot m$ , where $u\in U,$ $m\in M$ such that

$u_{i}\cdot(u_{j}\cdot m)-(-1)^{ij}u_{j}\cdot(u_{i}\cdot m)=[u_{i}, u_{j}]\cdot m$ ,

where $u_{i}\in U_{i},$ $u_{j}\in U_{i}$ and $m\in M$. For brevity we call $M$ a (left) U-module.
Let $\mathfrak{g}$ be a Lie algebra. We shall construct a differcntial graded Lie al-

gebra $U=\sum_{n\geqq 0}U_{n}$ and a homomorphism of differential graded Lie algebras

$\epsilon;U\rightarrow \mathfrak{g}$ (the differential and the grading in $\mathfrak{g}$ being trivial) such that

(i) the sequence of K-modules $\ldots\rightarrow U_{n}\rightarrow U_{n-1}a_{n}\rightarrow\ldots\rightarrow U_{1}\rightarrow U_{0}a_{1}\rightarrow \mathfrak{g}g\rightarrow 0$ is
exact, and

(ii) there is a map $\sigma;\mathfrak{g}\rightarrow U_{0}$ for which $\sigma([x, y])=[\sigma(x), \sigma(y)]$ , where
$x,$ $y\in t1$ and $\epsilon\sigma=identity$ map.

Let $X_{0}$ be a set in one-to-one correspondence with $\mathfrak{g}$ and let a multiplica-
tion be defined in $X_{0}$ such that the product of any two elements in $X_{0}$ is the
element in $X_{r}$, which corresponds to the product of their images in $\mathfrak{g}$ . Let
$K(X_{0})$ be the K-free module with $X_{0}$ as base. The multiplication in $X_{0}$ induces
on $K(X_{0})$ the structure of a non-associative algebra. The one-to-one corres-
pondence $ X_{0}\rightarrow\vee\iota$ induces a K-homomorphism of non-associative algebras
$\overline{\epsilon};K(X_{0})\rightarrow \mathfrak{g}$ . The inverse map $\mathfrak{g}\rightarrow X_{0}$ gives a map $\overline{\sigma};\mathfrak{g}\rightarrow K(X_{0})$ such that
$\overline{\epsilon}\overline{\sigma}=identity$ map. We define sets $X_{1},$ $\cdots$ , $X_{n},$ $\cdots$ by induction over $n$ . Suppose
we have defined the sets $X_{0},$ $X_{1},$ $\cdots$ , $X_{n}$ and an exact sequence of K-modules

$K(X_{n})\rightarrow K(X_{n-1})(\overline{t}_{n}\rightarrow\ldots\rightarrow K(X_{1})\rightarrow K(X_{0})d_{1}^{-}\rightarrow \mathfrak{g}\overline{\epsilon}\rightarrow 0$

such that (i) $K(X_{p})$ is a K-free module with $X_{p}$ as base $(0\leqq p\leqq n)$ and (ii) $X_{p}$

is a set in one-to-one correspondence with the kernel $N_{p-1}$ of the K-homomor-
phism $\overline{d}_{p-1}$ : $K(X_{p-1})\rightarrow K(X_{p-2})$ for $2\leqq p\leqq n$ , while $X_{1}$ is a set in one-to-one
correspondence with the kernel $N_{0}$ of the K-homomorphism $\overline{\epsilon};K(X_{0})\rightarrow \mathfrak{g}$ . Let
$X_{n+1}$ be a set in one-to-one correspondence with the kernel $N_{n}$ of the K-
homomorphism $\overline{d}_{n}$ : $K(X_{n})\rightarrow K(X_{n-1})$ . Let $K(X_{n+1})$ be the K-free module with
$X_{n+1}$ as base. The kernel $N_{n}$ being a K-submodule of $K(X_{n})$ the bijective map
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$X_{n+1}\rightarrow N_{n}$ induces a K-homomorphism $K(X_{n+1})\rightarrow N_{n}$ which when composed
with the inclusion map $N_{n}\rightarrow K(X_{n})$ gives a K-homomorphism $\overline{d}_{n+1}$ : $K(X_{n+1})$

$\rightarrow K(X_{n})$ such that the sequence

$K(X_{n+1})\rightarrow K(X_{n})\overline{a}_{n+1}\rightarrow^{a_{n}\overline}K(X_{n-1})\rightarrow\cdots\rightarrow K(X_{1})\rightarrow K(X_{0})\overline{d}_{1}\rightarrow^{-}\mathfrak{g}\rightarrow 06$

is exact.
The direct sum $\sum_{n\geqq 0}K(X_{n})$ is a K-free differential graded module. We shall

define inductively maps

$X_{t}\times X_{j}\rightarrow X_{i+j}$ $(i\geqq 0, j\geqq 0)$

(the image of $(x_{i},$ $x_{j})$ being denoted by $[x_{i},$ $x_{j}]$) which when extended by K-
linearity give to $\sum_{n\geqq 0}K(X_{n})$ the structure of a K-free non-associative differential

graded algebra. For $i=0,$ $j=0$ the map $X_{0}\times X_{0}\rightarrow X_{0}$ has already been de-
fined. Suppose that the maps have been defined for $i+j\leqq n$ such that

(2.5) $\overline{d}_{i+j}[x_{i}, x_{j}]=[\overline{d}_{i}x_{i}, x_{j}]+(-1)^{i}[x_{i},\overline{d}_{j}x_{j}]$ .
We take $\overline{d}_{6}=0$ . In order to define the map for $i+j=n+1$ , consider the ex-
pression

$[\overline{d}_{i}x_{i}, x_{j}]+(-1)^{i}[x_{i},\overline{d}_{j}x_{j}]\in K(X_{n})$ .
It is annulled by $\overline{d}_{n}$ and so belongs to $N_{n}$ . The element in $X_{n+1}$ which corres-
ponds to it under the one-to-one correspondence $X.+1\rightarrow N_{n}$ is defined to be
the product $[x_{i}, x_{j}]$ . By this definition the relation (2.5) is true for $i+j=n+1$ .
We observe that $K(X_{n})$ is not only a K-free module but also a $K(X_{0})$ -module.

Let $X$ be the sum set $\sum_{n\geqq 0}X_{n}$ . Then $\sum_{n\geqq 0}K(X_{n})=K(X)$ , the K-free module

with $X$ as base; indeed it is a K-free differential graded non-associative al-
gebra. Let $\mathfrak{p}$ be the two-sided ideal generated by the following elements

$\overline{\sigma}(0),$ $[x_{2p}, x_{zp}],$ $[x_{i}, x_{j}]+(-1)^{ij}[x_{j}, x_{i}]$ , and $(-1)^{ki}[x_{i}, [x_{j}, x_{k}]]+(-1)^{ij}[x_{j},$ $[x_{k}$ ,
$x_{l}]]+(-1)^{jk}[x_{k}, [x_{i}, x_{j}]]$ , where $x_{2p}\in X_{2p}(p\geqq 0),$ $x_{i}\in X_{i},$ $x_{j}\in X_{j},$ $x_{k}\in X_{k}$ . The
quotient algebra $U=K(X)/p$ is a differential graded Lie algebra. If $U_{n}$ de-
notes the image of $K(X_{n})$ under the canonical map $K(X)\rightarrow K(X)/\mathfrak{p}$ , we have
$U=\sum_{n\geqq 0}U_{n}$ with maps $d_{n}$ : $U_{n}\rightarrow U_{n-1}(n\geqq 1),$ $d_{0}=0$ induced by $\overline{d}_{n}(n\geqq 0)$ . The
homomorphism $\overline{\epsilon};K(X_{0})\rightarrow \mathfrak{g}$ yields a Lie algebra homomorphism $\epsilon;U_{0}\rightarrow \mathfrak{g}$ and
the map $\overline{\sigma};\mathfrak{g}\rightarrow K(X_{0})$ gives a map $\sigma;\mathfrak{g}\rightarrow U_{0}$ which is such that $\sigma([x, y])$

$=[\sigma(x), \sigma(y)]$ for $x,$ $y\in \mathfrak{g}$ and $\epsilon\sigma=identity$ map. We can also define maps
$s_{0}$ : $Ker\epsilon\rightarrow U_{1}$ and $s_{n-1}$ : $Kerd_{n-1}\rightarrow U_{n}(n>1)$ with the help of the bijective maps
$X_{n}\rightarrow N_{n-1}(n\geqq 1)$ such that $d_{1}s_{0}$ and $d_{n}s_{n-1}$ are identity maps.

Let us define with Dixmier [1, p. 63] the algebra $G(U)$ of the graded
K-module $U$ . We recall that $G(U)$ is the (associative) quotient algebra of the
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tensor algebra (over $K$ ) of $U$ by the two-sided ideal generated by the ele-
ments of the form

$u\otimes v+(-1)^{\alpha\beta}v\otimes u$ , where $u\in U_{\alpha},$ $v\in U_{\beta}$ ;

and $w\otimes w$ , where $w$ is a homogeneous element of even degree in $U$ . Every
element of $G(U)$ is a K-linear combination of the elements of the form
$\langle u_{1}|\cdots|u_{n}\rangle,$ $u_{i}\in U_{\alpha_{i}},$ $1\leqq i\leqq n$ , where $\langle u_{1}| |u_{n}\rangle$ denotes the image of
$u_{1}\otimes\cdots\otimes u_{n}$ in $G(U)$ . The image of the unit element 1 of $K$ in $G(U)$ is de-
noted by $\langle\rangle$ . In particular $\langle u\rangle$ denotes the image in $G(U)$ of the homogeneous
element $u$ of $U$ . Indeed $U$ can also be identified with its image in $G(U)$ .
We say that the elem-nt $\langle u_{1}|\ldots|u_{n}\rangle$ is of degree $\alpha_{1}+\cdots+\alpha_{n}$ and order $n$ .
We define the total degree of $\langle u_{1}| |u_{n}\rangle$ in $G(U)$ to be the sum of the de-
gree and the order, namely, $n+\alpha_{1}+\cdots+\alpha_{n}$ . We note that $G(U)$ possesses a
unit element, namely, $\langle\rangle$ which is taken to be of zero degree and zero order.
If $u$ (resp. v) is a homogeneous element of $G(U)$ of degree $\alpha$ (resp. $\beta$) and
order $\alpha^{\prime}$ (resp. $\beta^{\prime}$ ) we have

$\langle v|u\rangle\subset(-1)^{\alpha\beta+\alpha\beta^{J}}’\langle u|v\rangle$ .

If $U^{+}$ denotes the sum of $U_{n}$ for $n$ even and $U^{-}$ denotes the sum of $U_{n}$ for
$n$ odd, then

$G(U)=E(U^{+})\bigotimes_{K}S(U^{-})$ ,

where $E(U^{+})=G(U^{+})$ is the exterior algebra of the K-module $U^{+}$ and $S(U^{-})$

$=G(U^{-})$ is the symmetric $alg^{\Delta}.bra$ of the K-module $U^{-}$ .
Let $M$ be a (left) $!t- mod_{J}1e$ . $Th_{\vee}^{\circ}$ K-linear combination of the elements of

the form $\langle u_{1}| |u_{n}\rangle,$ $u_{i}\in U_{\alpha_{i}},$ $i=1$ , $\cdot$ .. , $n$ form a sub-K-module of $G(U)$ which
we denote by $U_{\alpha_{1},\cdots,an}$ . For $7\iota=0$ we take $K$ instead of $U_{a_{1}\ldots.,a_{n}}$ . Let

$Hom_{K}(G(U), M)=(\wedge\sum_{1\prime}\cdot, n^{)}Hom_{K}(U_{\alpha_{1},\cdots,\alpha_{n\prime}}M)$

the $s$ um being taken over all finite monotonic increasing sequences of non-
negative integers $(\alpha_{1}, \cdots , \alpha_{n})$ including the case $n=0$ . The degree, the order
and the total degree in $G(U)$ induce degree, order and total degree in
$Hom_{K}(G(U), M)$ . We define a differential $\delta$ in $Hom_{K}(G(U), M)$ such that for
$f\in Hom_{K}(G(U), M)$ we have

(2.6) $\delta f\langle u_{1}|\cdots|u_{n}\rangle=(-1)^{n+1}[\sum_{-,i-1}^{n}(-1)^{n_{1}+\cdots+\alpha_{i}-1}f\langle u_{1}| , |du_{i}|\cdots|u_{n}\rangle$

$+\sum_{i=1}^{n}(-1)^{i-1}(\epsilon u_{i})f\langle u_{i}|\cdots|\theta_{i}|\cdots|u_{n}\rangle$

$-\sum_{\leqq 1\leqq i\triangleleft-},$ $(-1)^{s_{ij}}f\langle[u_{i}, u_{j}]|u_{1}| |a_{i}| |O_{j}|\cdots|u_{n}\rangle]$ ,
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where $\epsilon_{ij}=\sum_{p<q}(\alpha_{p}\alpha_{q}+1)$ . $p\in\{1, \cdots , i-1, i+1, \cdots , j-1\},$ $q\in\{i, j\}$ and $\theta_{i}$ means
that $u_{i}$ has to be omitted.

It can be verified that $\delta\delta f=0$ . Indeed we can write $\delta=\delta_{1}+\delta_{2}$ , where

$\delta_{1}f\langle u_{1}^{1}\cdots|u_{n}\rangle=(-1)^{n+1}\sum_{i=1}^{n}(-1)^{\alpha_{J}+\cdots+\alpha_{i}-1}f\langle u_{1}|\cdots|du_{i}|\cdots|u_{n}\rangle$ ,

$\delta_{2}f\langle u_{1}|\cdots|u_{n}\rangle=(-1)^{n+1}[\sum_{i1}^{n}(-1)^{t-1}(\epsilon u_{i})f\langle u_{1}|\cdots|a_{i}| |u_{n}\rangle$

$-\sum_{1\leqq l<\dot{\uparrow}\leqq\prime\prime}(-1)^{\epsilon_{ij}}f\langle[u_{i}, u_{j}]|u_{1}|\ldots|\hat{\text{{\it \^{u}}}}_{i}|\cdots|a_{j}|\cdots|u_{n}\rangle]$

and verify that $\delta_{1}^{2}=0,$ $\delta_{2}^{2}=0$ and $\delta_{1}\delta_{2}=-\delta_{2}\delta_{1}$ .
DEFINITION. The graded cohomology module $H^{*}(Hom_{R}(G(U), M))$ is called

the cohomology module of the Lie algebra $\mathfrak{g}$ with coefficients in the g-module
$M$. We write

$H^{n}(\mathfrak{g}, M)=H^{n}(Hom_{K}(G(U), M))$ .

3. Interpretations of $H^{0}(\mathfrak{g},M)$ and $H^{1}(\mathfrak{g},M)$ .
We write $\sigma(x)=(x)$ for $x\in \mathfrak{g}$ and $s_{1}(n)=(n)$ for $n\in Kerd_{1}$ , etc.. An

element $ n\in Ker\epsilon$ is of the form $\sum_{j}k_{i}(x_{i})$ , where $k_{i}\in K,$ $x_{i}\in \mathfrak{g}$ and $\sum k_{i}x_{i}=0$ .
An element $n\in Kerd_{1}$ is of the form $\sum_{j}k_{j}(n_{j})$ , where $k_{j}\in K,$ $ n_{j}\in Ker\epsilon$ and

$\sum_{j}k_{j}n_{j}=0$ .

A O-cochain is an element of $Hom_{K}(K, M)$ and so may be identified with
an element of $M$. If $f\in M$, then $\delta f\in Hom_{K}(U, M)$ and

(3.1) $\delta f\langle(x)\rangle=x\cdot f$, where $x\in \mathfrak{g}$ and $(x)\in U_{0}$ .

To avoid cumbersome notation we shall write $\langle x\rangle$ instead of $\langle(\iota)\rangle,$ $\langle x_{1}|x_{2}\rangle$

instead of $\langle(x_{1})|(x_{2})\rangle$ etc.. If $f$ is a O-cocycle, we have $x\cdot f=0$ for every
$x\in \mathfrak{g}$ . A O-coboundary being the zero element of $M$ it follows tllat $H^{0}(\mathfrak{g}, M)$

is isomorphic to the sub-K-module of $M$ consisting of the invariant elements
of $M$.

A l-cochain is an element $f\in Hom_{K}(U_{0}, M)$ and $\delta f\in Hom_{K}(U_{0.0}, M)$

$+Hom_{K}(U_{1}, M)$ such that

(3.2) $\delta f\langle x_{1}|x_{2}\rangle=-x_{1}f\langle x_{2}\rangle+x_{2}f\langle x_{1}\rangle\dashv-f\langle[x_{1}, x_{2}]\rangle$ ,

(3.3) $\delta f\langle n\rangle=\sum_{i}k_{i}f\langle x_{i}\rangle$ ,

where $x_{1},$ $x_{2},$ $x_{i}\in \mathfrak{g},$ $k_{i}\in K$ and $\sum_{i}k_{i}x_{i}=0$ . It should be noted that we have
made use of the relation $[\sigma x_{1}, \sigma x_{2}]=\sigma[x_{1}, x_{2}]$ in expressing the coboundary
$\delta f$ over $\langle x_{1}|x_{2}\rangle$ . If $f$ is a l-cocycle and if $\varphi:\mathfrak{g}\rightarrow M$ is the restriction of
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$f:U_{0}\rightarrow M$ to $\mathfrak{g}$ , we have

(i) $\varphi([x_{1}, x_{2}])=x_{1}\varphi(x_{2})-x_{2}\varphi(x_{1})$

and

(ii) $\sum_{\ell}k_{i}x_{i}=0\Rightarrow\sum_{i}k_{i}\varphi(x_{i})=0$ .
Moreover, if $f=\delta g$ where $g\in M$, then

$\varphi(x)=xg$, where $x\in \mathfrak{g}$ .
Hence $H^{1}(\mathfrak{g}, M)$ is the K-module of the crossed homomorphisms of $\mathfrak{g}$ into $M$

reduced modulo the principal homomorphisms.

4. Interpretation of $H^{2}(\mathfrak{g},M)$ .
A 2-cochain is an element $f\in Hom_{K}(U_{0,0}, M)+Hom_{K}(U_{1}, M)$ . Then

$\delta f\in Hom_{K}(U_{0,0,0}, M)+Hom_{K}(U_{0,1}, M)+Hom_{K}(U_{2}, M)$ . We have

(4.1) $\delta f\langle x_{1}|x_{2}|x_{3}\rangle=x_{1}f\langle x_{2}|x_{\theta}\rangle-x_{2}f\langle x_{1}|x_{3}\rangle+x_{3}f\langle x_{1}|x_{2}\rangle-f\langle[x_{1}. x_{2}]|x_{3}\rangle$

$+f\langle[x_{1}, x_{s}]|x_{2}\rangle-f\langle[x_{2}, x_{s}]|x_{1}\rangle$ ,

(4.2) $\delta f\langle x|n\rangle=-\sum_{i}k_{i}f\langle x|x_{i}\rangle-xf\langle n\rangle+f\langle[x, n]\rangle$ ;

(4.3) $\delta f\langle n^{\prime}\rangle=\sum_{j}k_{j}^{\prime}f\langle n_{j}\rangle$ ,

where $x_{1},$ $x_{2},$ $x_{3},$ $x\in \mathfrak{g},$ $n=\sum_{i}k_{i}(x_{i}),$
$k_{i}\in k,$ $\chi_{i}\in \mathfrak{g}$ such that $\sum_{l}k_{i}x_{i}=0$ and $n^{\prime}$

$=\sum_{j}k_{i}^{\prime}(n_{j}),$
$k_{j}^{\prime}\in k,$ $ n_{j}\in ker\epsilon$ such that $\sum_{j}k_{j}^{\prime}n_{j}=0$ .

If $f$ is a 2-cocycle, it determines two maps

$\gamma_{1}$ : $\mathfrak{g}\times \mathfrak{g}\rightarrow M$

$\gamma_{2}$ : $N_{0}\rightarrow M$

satisfying the following identities.

(4.4) $\gamma_{1}(x, x)=0$

(4.5) $\gamma_{1}(x_{1}, x_{2})=-\gamma_{1}(x_{2}, x_{1})$ ,

(4.6) $x_{1}\gamma_{1}(x_{2}, x_{s})-x_{2}\gamma_{1}(x_{1}, x_{a})+x_{3}\gamma_{1}(x_{1}, x_{2})-\gamma_{1}([x_{1}, x_{2}], x_{\$})$

$+\gamma_{1}([x_{1}, x_{3}], x_{2})-\gamma_{1}([x_{2}, x_{3}], x_{1})=0$ ,

(4.7) $\sum_{i}k_{i}\gamma_{1}(x, x_{i})=-x\gamma_{2}(n)+\gamma_{2}([x, n])$ ,

(4.8)
$\sum_{i}k_{j}^{\prime}\gamma_{2}(n_{j})=0$ ,

where $x_{1},$ $x_{2},$ $x_{s},$ $x,$ $x_{i},$ $n$ and $n_{j}$ are as before.
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Let $\mathcal{E}_{f}$ be the set of all pairs $(m, x)$ , where $m\in M,$ $x\in \mathfrak{g}$ . We define addi-
tion, multiplication and scalar multiplication by elements of $K$ as follows:

(4.9) $(m_{1}, x_{1})+(m_{2}, x_{2})=(m_{1}+m_{2}+\gamma_{2}(x_{1}, x_{2}),$ $x_{1}+x_{2}$);

(4.10) $[(m_{1}, x_{1}), (m_{2}, x_{2})]=(x_{1}m_{2}-x_{2}m_{1}+\gamma_{1}(x_{1}, x_{2}),$ $[x_{1}, x_{2}]$);

(4.11) $k(m, x)=(km+\gamma_{2}(k, x),$ $kx$),

where by $\gamma_{2}(x_{1}, x_{2})$ we mean $\gamma_{2}((x_{1}+x_{2})-(x_{1})-(x_{2}))$ and by $\gamma_{2}(k, x)$ we mean
$\gamma_{2}((kx)-k(x));x_{1},$ $x_{2},$ $x\in \mathfrak{g},$ $m\in M,$ $k\in K$. After proving the associative law
for the addition defined above the relations (4.9) and (4.11) can be combined
into a single relation

(4.12) $\sum_{i}k_{i}(m_{i}, x_{i})=(\sum_{l}k_{i}m_{i}+\gamma_{2}(n), \sum_{i}k_{i}x_{i})$ ,

where $k_{i}\in K,$ $m_{i}\in M,$ $x_{i}\in \mathfrak{g}$ and $n=(\Sigma k_{i}x_{i})-\sum_{i}k_{i}(x_{i})\in N_{0}$ .
We shall show that with these operations $\mathcal{E}_{f}$ is a Lie algebra. We have

to verify the following relations.
1. $\xi+\eta=\eta+\xi$ ,

2. $(\xi+\eta)+\zeta=\xi+(\eta+\zeta)$ ,

3. $[\xi, \eta+\zeta]=[\xi, \eta]+[\xi, \zeta]$ ,

4. $[\xi+\eta, \zeta]=[\xi, \zeta]+[\eta, \zeta]$ ,

5. $[\xi, \xi]=0$ ,

6. $[\xi, [\eta, \zeta]]+[\eta, [\zeta, \xi]]+[\zeta, [\xi, \eta]]=0$ .
7. $[k\xi, \eta]=k[\xi, \eta]$ ,

8. $[\xi, k\eta]=k[\xi, \eta]$ ,

9. $ k_{1}(k_{2}\xi)=(k_{\iota}k_{2})\xi$ ,

10. $ k(\xi+\eta)=k\xi+k\eta$ ,

11. $(k_{1}+k_{2})\xi=k_{1}\xi+k_{2}\xi$ ,

where $\xi,$
$\eta,$ $\zeta\in \mathcal{E}_{f}$ and $/_{\iota^{\supset}},$ $k_{1},$ $k_{2}\in K$.

Let $\xi=(m_{1}, x_{1}),$ $\eta=(m_{2}, x_{2})$ and $\zeta=(m_{3}, x_{3})$ , where $m_{1},$ $m_{2},$ $m_{s}\in M$ and
$x_{1},$ $x_{2},$ $x_{3}\in \mathfrak{g}$ . The relation $\xi+\eta=\eta+\xi$ is trivially verified. To verify (2) we
have

$\{(m_{1}, x_{1})+(m_{2}, x_{2})\}+(m_{3}, x_{3})=(m_{1}+m_{2}+\gamma_{2}(x_{1}, x_{2}),$ $x_{1}+x_{2}$) $+(m_{3}, x_{3})$

$=(m_{1}+m_{2}+m_{8}+\gamma_{2}(x_{1}, x_{2})+\gamma_{2}(x_{1}+x_{2}+x_{3}),$ $x_{1}+x_{2}+x_{3}$)

and

$(m_{1}, x_{1})+\{(m_{2}, x_{2})+(m_{3}, x_{3})\}=(m_{1}, x_{1})+(m_{2}+m_{3}+\gamma_{2}(x_{2}, x_{3}),$ $x_{2}+x_{8}$)

$=(m_{1}+m_{2}+m_{3}+\gamma_{2}(x_{2}, x_{3})+\gamma_{2}(x_{1}, x_{2}+x_{3}),$ $x_{1}+x_{2}+x_{3}$).

$W_{\vee^{3}}$, have to show that
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$\gamma_{2}((x_{1}\dashv- x_{2})-(x_{1})-(x_{2}))+\gamma_{2}((x_{1}+x_{2}+x_{3})-(x_{1}+x_{2})-(x_{3}))$

$=\gamma_{2}((x_{2}+x_{3})-(x_{2})-(x_{3}))+\gamma_{2}((x_{1}+x_{2}+x_{3})-(x_{1})-(x_{2}+x_{3}))$

But this follows from (4.8) by taking

$n_{1}=(x_{1}+x_{2})-(x_{1})-(x_{2})$ , $n_{2}=(x_{1}+x_{2}+x_{3})-(x_{1}+x_{2})-(x_{3})$ ,

$n_{3}=(x_{2}+x_{3})-(x_{2})-(x_{3})$ , $n_{4}=(x_{1}+x_{2}+x_{S})-(x_{1})-(x_{2}+x_{3})$

and $k_{1}^{\prime}=1,$ $k_{2}^{\prime}=1,$ $k_{3}^{\prime}=-1,$ $k_{4}^{\prime}=-1$ .
To verify (3) we have
$[(m_{1}, x_{1}), (m_{2}, x_{2})+(m_{3}, x_{s})]=[(m_{1}, x_{1}), (m_{2}+m_{3}+\gamma_{2}(x_{2}, x_{3}), x_{2}+x_{3})]$

$=(x_{1}m_{2}+x_{1}m_{3}+x_{1}\gamma_{2}(x_{2}, x_{3})-x_{2}m_{1}-x_{3}m_{1}+\gamma_{1}(x_{1}, x_{2}+x_{3}),$ $[x_{1}, x_{2}+x_{3}]$)

and

$[(m_{1}, x_{1}), (m_{2}, x_{2})]+[(m_{1}, x_{1}), (m_{s}, x_{3})]$

$=(x_{1}m_{2}-x_{2}m_{1}+\gamma_{1}(x_{1}, x_{2}),$ $[x_{1}, x_{2}]$) $+(x_{1}m_{3}-x_{3}m_{1}+\gamma_{1}(x_{1}, x_{8}),$ $[x_{1}, x_{3}]$)

$=(x_{1}m_{2}-x_{2}m_{1}+x_{1}m_{\theta}-x_{8}m_{1}+\gamma_{1}(x_{1}, x_{2})+\gamma_{1}(x_{1}, x_{3})$

$+\gamma_{2}([x_{1}, x_{2}], [x_{1}, x_{3}]),$ $[x_{1}, x_{2}]+[x_{1}, x_{3}]$).

We have to show that

$x_{1}\gamma_{2}(x_{2}, x_{3})+\gamma_{1}(x_{1}, x_{2}+x_{3})=\gamma_{1}(x_{1}, x_{2})+\gamma_{1}(x_{1}, x_{3})+\gamma_{2}([x_{1}, x_{2}], [x_{1}, x_{3}])$

or what is the same thing

$\gamma_{1}(x_{1}, x_{2}+x_{3})-\gamma_{1}(x_{1}, x_{2})-\gamma_{1}(x_{1}, x_{3})=-x_{1}\gamma_{2}(x_{2}, x_{3})+\gamma_{2}([x_{1}, x_{2}], [x_{1}, x_{3}])$ .
But this follows from (4.7) by taking $x=x_{1}$ and $n=(x_{2}+x_{3})-(x_{2})-(x_{3})$ . The
relation (4) can be verified in a similar manner.

The relation (5) follows from the fact that $\gamma_{1}(x, x)=f\langle x|x\rangle=0$ . To verify
Jacobi’s identity we calculate

$[(m_{1}, x_{1}), [(m_{2}, x_{2}), (m_{3}, x_{3})]]=[(m_{1}, x_{1}), (x_{2}m_{3}-x_{3}m_{2}+\gamma_{1}(x_{2}, x_{3}), [x_{2}, x_{3}])]$

$=(x_{1}x_{2}m_{3}-x_{1}x_{3}m_{2}-[x_{2}, x_{3}]m_{1}+x_{1}\gamma_{1}(x_{2}, x_{3})$

$+\gamma_{1}(x_{1}, [x_{2}, x_{s}]),$ $[x_{1}, [x_{2}, x_{8}]]$).

Permuting circularly and adding we see that Jacobi’s identity is satisfied if

$x_{1}\gamma_{1}(x_{2}, x_{8})+x_{2}\gamma_{1}(x_{8}, x_{1})+x_{3}\gamma_{1}(x_{1}, x_{2})+\gamma_{1}(x_{1}, [x_{2}, x_{3}])+$

$\gamma_{1}(x_{2}, [x_{3}, x_{1}])+\gamma_{1}(x_{s}, [x_{1}, x_{2}])+\gamma_{2}(n)=0$ ,

where
$n=(O)-([x_{1}, [x_{2}, x_{3}]])-([x_{2}, [x_{s}, x_{1}]])-([x_{3}, [x_{1}, x_{2}]])=0$

since (0) $=\sigma(0)\in \mathfrak{p}$ and
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$([x_{1}, [x_{2}, x_{\theta}]])+([x_{2}, [x_{3}, x_{1}]])+([x_{3}, [x_{1}, x_{2}]])$

$=[\sigma x_{1}, [\sigma x_{2}, \sigma x_{3}]]+[\sigma x_{2}, [\sigma x_{8}, \sigma x_{1}]]+[\sigma x_{\$}, [\sigma x_{1}, \sigma x_{2}]]\in \mathfrak{p}$ .
This means $r_{2}(n)=0$ . Also

$x_{1}\gamma_{1}(x_{2}, x_{\theta})\dashv- x_{2}\gamma_{1}(x_{3}, x_{1})+x_{\theta}\gamma_{1}(x_{1}, x_{2})+\gamma_{\iota}(x_{1}, [x_{2}, x_{s}])+\gamma_{1}(x_{2}, [\chi_{Q}., \chi_{1}])$

$+\gamma_{1}(x_{3}, [x_{1}, x_{2}])=x_{1}\gamma_{1}(x_{2}, x_{3})-x_{2}\gamma_{1}(x_{1}, x_{3})+x_{S}\gamma_{1}(x_{1}, x_{2})-\gamma_{1}([x_{1}, x_{2}], x_{8})$

$+\gamma_{1}([x_{1}, x_{3}], x_{2})-\gamma_{1}([x_{1}, x_{2}], x_{s})=0$ by virtue of (4.6).

To verify (7) we note that

$[k(m_{1}, x_{1}), (m_{2}, x_{2})]=[(km_{1}+\gamma_{2}(k, x_{1}), kx_{1}), (m_{2}, x_{2})]$

$=(kx_{1}m_{2}-kx_{2}m_{1}-x_{2}\gamma_{2}(k, x_{1})+\gamma_{1}(kx_{1}, x_{2}),$ $[kx_{1}, x_{2}]$)

and

$k[(m_{1}, x_{1}), (m_{2}, x_{2})]=k(x_{1}m_{2}-x_{2}m_{1}+\gamma_{1}(x_{1}, x_{2}),$ $[x_{1}, x_{2}]$)

$=(kx_{1}m_{2}-kx_{2}m_{1}+k\gamma_{1}(x_{1}, x_{2})+\gamma_{2}(k, [x_{1}, x_{2}]),$ $k[x_{1}, x_{2}]$).

So we have to show that

$-x_{2}\gamma_{2}(k, x_{1})+\gamma_{1}(kx_{1}, x_{2})=k\gamma_{1}(x_{1}, x_{2})+\gamma_{2}(k, [x_{1}, x_{2}])$

or what is the same thing

$\gamma_{1}(kx_{1}, x_{2})-k\gamma_{1}(x_{1}, x_{2})=x_{2}\gamma_{2}(k, x_{1})+\gamma_{2}(k, [x_{1}, x_{2}])$

that is

$-k\gamma_{1}(x_{2}, x_{1})+\gamma_{1}(x_{2}, kx_{1})=-x_{2}\gamma_{2}((kx_{1})-k(x_{1}))+\gamma_{2}(-([kx_{1}, x_{2}])+k([x_{1}, x_{2}]))$ .

This is a consequence of (4.7) by taking $x=x_{2}$ and $n=(kx_{1})-k(x_{1})$ .
The relation (8) can be verified in a similar manner.
The relations (9), (10) and (11) can be verified in a straight-forward

fashion. We have shown in this way that $\mathcal{E}_{f}$ is a Lie algebra, the element
$(0,0)$ being the zero of $\mathcal{E}_{f}$ . If we define $\alpha:M\rightarrow \mathcal{E}_{f}$ and $\beta;\mathcal{E}_{f}\rightarrow \mathfrak{g}$ by $\alpha(m)$

$=(m, 0)$ and $\beta(m, x)=x$ , we have an exact sequence of Lie algebras

$0\rightarrow M^{\alpha\beta}\rightarrow \mathcal{E}_{f}\rightarrow \mathfrak{g}\rightarrow 0$ ,

where $M$ has the trivial multiplicative structure. We observe that

$[(m_{1}, x_{1}), (m, 0)]=(x_{1}m, 0)$

showing that the exact sequence induces on $M$ the given g-module structure.
Let $f^{\prime}$ be a 2-cocycle which is cohomologous to $f$. This means $f^{J}=f+\delta g$,

where $g$ is a l.cochain. Let $\mathcal{E}_{f}$ , be the Lie algebra determined by the 2-cocycle
$f^{\prime}$ . Since $g$ is a l-cochain, it gives a map $\psi:\mathfrak{g}\rightarrow M$, which is the restriction
of $g$ to $\mathfrak{g}$ . We define a map $\phi;\mathcal{E}_{f}\rightarrow \mathcal{E}_{f}$, by putting
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$\phi(m, x)=(m+\psi(x), x)$

where $m\in M,$ $x\in \mathfrak{g}$ . Then

$\phi(\sum_{i}k_{i}(m_{i}, x_{i}))=\phi(\sum_{i}k_{i}m_{i}+\gamma_{2}(n), \sum_{i}k_{i}x_{i})$

$=(\sum_{:}k_{i}m_{i}+\gamma_{2}(n)+\psi(\sum_{*}k_{i}x_{i}), \sum_{i}k_{i}x_{i})$ ,

and

$\sum_{i}k_{i}\phi(m_{\dot{t}}x_{i})=\sum_{i}k_{\dot{t}}(m_{i}+\psi(x_{i}), x_{i})=(\sum_{j}k_{i}m_{i}+\sum_{i}k_{i}\psi(x)+\gamma_{2}^{\prime}(n), \sum_{i}k_{i}x_{i})$ ,

where
$n=(\sum_{i}k_{i}x_{i})-\sum_{i}k_{i}(x_{i})\in N_{0},$ $m_{i}\in M,$ $x\in \mathfrak{g}$ .

But $\gamma_{2}^{\prime}(n)-\gamma_{2}(n)=\delta g(n)=\psi(\sum_{:}k_{i}x_{i})-\sum_{t}k_{i}l(x_{i})$ by virtue of (3.3). Therefore

$\phi(\sum_{:}k_{i}(m_{iz}x_{i}))=\sum_{i}k_{i}\phi(m_{i}, x_{i})$ ,

where $m_{i}\in M,$ $x_{i}\in \mathfrak{g}$ . Again,

$\phi[(m_{1}, x_{1}), (m_{2}, x_{2})]=\phi(x_{1}m_{2}-x_{2}m_{1}+\gamma_{1}(x_{1}, x_{2}),$ $[x_{1}, x_{2}]$)

$=(x_{1}m_{2}-x_{2}m_{1}+\gamma_{1}(x_{1}, x_{2})+\psi([x_{1}, x_{2}]),$ $[x_{1}, x_{2}]$),

while

$[\phi(m_{1}, x_{1}), \phi(m_{2}, x_{2})]=[(m_{1}+\psi(x_{1}), x_{1}), (m_{2}+\psi(x_{2}), x_{2})]$

$=(x_{1}m_{2}-x_{2}m_{1}+x_{1}\psi(x_{2})-x_{2}\psi(x_{1})+\gamma\{(x_{1}, x_{2}), [x_{1}, x_{2}])$ ,

where $m_{1},$ $m_{2}\in M$ and $x_{1},$ $x_{2}\in \mathfrak{g}$ . Since by (3.2)

$\gamma_{1}^{\prime}(x_{1}, x_{2})-\gamma_{1}(x_{1}, x_{2})=\delta g\langle x_{1}|x_{2}\rangle=-x_{1}\psi(x_{2})+x_{2}\psi(x_{1})+\psi([x_{1}, x_{2}])$ ,

it follows that

$\phi[(m_{1}, x_{1}), (m_{2}, x_{2})]=[\phi(m_{1}, x_{1}), \phi(m_{2}, x_{2})]$ .
We have now shown that $\phi$ is a homomorphism of Lie algebras. It is

easy to verify that $\phi$ is bijective.
Conversely, suppose

$0\rightarrow M^{\alpha\beta}\rightarrow \mathcal{E}\rightarrow \mathfrak{g}\rightarrow 0$

is an exact sequence of Lie algebras, where $M$ is an abelian Lie algebra. Let
$\rho;\mathfrak{g}\rightarrow 8$ be a map such that $\beta\rho=identity$ map, and $\rho(-x)=-\rho(x)$ where
$x\in \mathfrak{g}$ . This is possible since there exists an element $k\in K$ for which $2k=1$ .
Let us define two maps

$\gamma_{1}$
; $\mathfrak{g}\times \mathfrak{g}\rightarrow M$ ,

and
$\gamma_{2}$ : $N_{0}\rightarrow M$
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by the relations

(4.13) $\gamma_{1}(x_{1}, x_{2})=\rho([x_{1}, x_{2}])-[\rho(x_{1}), \rho(x_{2})]$ ,

and

(4.14) $\gamma_{2}(n)=\sum_{i}k_{i}\rho(x_{t})$ ,

where $x_{1},$ $x_{2},$ $x_{i}\in \mathfrak{g},$ $k_{i}\in K$ and $n=\sum_{t}k_{i}(x_{i})\in N_{0}$ such that $\sum_{i}k_{i}x_{i}=0$ . We ob-

serve that the relations (4.4) and (4.5) are satisfied in view of the choice of
$\rho$ . Also

$x_{1}(\chi_{2}x_{3})-x_{2}(x_{1}, x_{3})+x_{3}(x)-\gamma_{1}([x_{1}, x_{2}], x_{3})+\gamma_{1}([x_{1}, x_{3}], x_{2})$

$-\gamma_{1}([x_{2}, x_{3}], x_{1})=[\rho(x_{1}), \rho([x_{2}, x_{3}])-[\rho(x_{2}), \rho(x_{3})]]$

$-[\rho(x_{2}), \rho([x_{1}, x_{3}])-[\rho(x_{1}), \rho(x_{3})]]+[\rho(x_{3}), \rho([x_{1}, x_{2}])-[\rho(x_{1}), \rho(x_{2})]]$

$-\rho([[x_{1}, x_{2}], x_{3}])+[\rho([x_{1}, x_{2}]), \rho(x_{s})]$

$+\rho([[x_{1}, x_{3}], x_{2}])-[\rho([x_{1}, x_{3}]), \rho(x_{2})]-\rho([[x_{2}, x_{3}], x_{1}])$

$+[\rho([x_{2}, x_{8}]), \rho(x_{1})]=\rho([x_{1}, [x_{2}, x_{3}]])+\rho([x_{2}, [x_{3}, x_{1}]])$

$+\rho([x_{8}, [x_{1}, x_{2}]])=\gamma_{2}(m)$ ,

where
$m=([x_{1}, [x_{2}, x_{8}]])+([x_{2}, [x_{3}, x_{1}]])+([x_{3}, [x_{1}, x_{2}]])$

with $x_{1},$ $x_{2},$ $x_{3}\in \mathfrak{g}$ . Since $m\in \mathfrak{p},$ $\gamma_{2}(m)=0$ . Therefore the relation (4.6) is
satisfied.

Again,

2 $k_{i}\gamma_{1}(x, x_{i})+x\gamma_{2}(n)-\gamma_{2}([x, n])$

$=\sum_{1}k_{i}\rho([x, x_{i}])-\sum_{l}k_{i}[\rho(x), \rho(x_{i})]+[\rho(x), \sum_{\iota}k_{i}\rho(x_{i})]$

$-\sum_{i}k_{i}\rho([x, x_{i}])=0$ ,

where $n=\sum_{i}k_{i}(x_{i})$ such that $\sum_{t}k_{i}x_{i}=0,$
$k_{i}\in K,$ $x_{i}\in \mathfrak{g}$ . Therefore the relation

(4.7) is satisfied. The relation (4.8) is trivially satisfied.
After the usual arguments we have
THEOREM 1. There exists a natural one-to-one correspondence between the

two-dimensional cohomology module $H^{2}(g, M)$ and the set of equivalence classes

of the special extensions of $\mathfrak{g}$ with kernel $M$ which induce over $M$ the given $\mathfrak{g}-$

module structure.
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5. On $H^{a}(\mathfrak{g}, M)$ .

Let $\mathfrak{h}$ be a Lie algebra, let $D(\mathfrak{h})$ denote the Lie algebra of derivations of
$\mathfrak{h}$ and let $I(\mathfrak{h})$ denote the ideal of $D(\mathfrak{h})$ consisting of the inner derivations of
$\mathfrak{h}$ . Consider the homomorphism of Lie algebras $\mu:\mathfrak{h}\rightarrow D(\mathfrak{h})$ which maps every
element of $\mathfrak{h}$ into the inner derivation of $\mathfrak{h}$ induced by it. The kernel of this
homomorphism is the centre $C_{I)}$ of the Lie algebra $\mathfrak{h}$ and the image is $I(\mathfrak{h})$ .
So we have an exact sequence of Lie algebras

(5.1) $0\rightarrow C_{\mathfrak{h}}\rightarrow \mathfrak{h}\rightarrow/D(\mathfrak{h})\rightarrow D(\mathfrak{h})/I(l))\rightarrow 0$ .
We call $D_{(\mathfrak{h})}^{\prime}/I(\mathfrak{h})$ the Lie algebra of exterior derivations of $\mathfrak{h}$ . The centre $C_{\mathfrak{h}}$

is a $D(\mathfrak{h})/I(\mathfrak{h})$ -module for the operation $\overline{D}c=Dc$, where $c\in C_{\mathfrak{h}},\overline{D}\in D(\mathfrak{h})/I(\mathfrak{h})$

and $D$ is an element of $D(\mathfrak{h})$ belonging to the coset $\overline{D}$ .
Consider an exact sequence of Lie algebras

(5.2) $ 0\rightarrow \mathfrak{h}\rightarrow \mathcal{E}\rightarrow \mathfrak{g}\rightarrow 0a\beta$ .
Since $\alpha \mathfrak{h}$ is an ideal of $\mathcal{E}$, the map $e\rightarrow ade$ , where $ade$ denotes the inner deri-
vation of $\mathcal{E}$ induced by the element $e$ of 8 gives a Lie algebra homomorphism
$\nu;\mathcal{E}\rightarrow D(\mathfrak{h})$ . Since $\alpha \mathfrak{h}ismappedintol(\mathfrak{h}),$ $1$) inducesa Lie algebra homomorphism

(5.3) $\theta:\mathfrak{g}\rightarrow D(\mathfrak{h})/l(\mathfrak{h})$ .
Conversely, suppose we are given Lie algebras $\mathfrak{g}$ and $\mathfrak{h}$ and a homomor-

phism of Lie algebras $\theta:\mathfrak{g}\rightarrow D(\mathfrak{h})/I(\mathfrak{h})$ . Does there exist a Lie algebra $\mathcal{E}$ and
an exact sequence of Lie algebras of the type (5.2) such that the induced
homomorphism (5.3) is the same as the given homomorphism $\theta$ ? We note
that $\theta$ gives to $C_{\mathfrak{h}}$ a g-module structure. We propose to associate with $\theta$ an
element of $H^{8}(\mathfrak{g}, C_{\mathfrak{y}})$ called the obstruction of $\theta$ and we shall answer the ques-
tion in terms of the obstruction of $\theta$ .

Let $\sigma;\mathfrak{g}\rightarrow D(\mathfrak{h})$ be a map such that $\sigma(x)$ is an element of the coset $\theta(x)$ ,
where $\chi\in \mathfrak{g}$ and $\sigma(-x)=-\sigma(x)$ . Since $\theta$ is a homomorphism of Lie algebras,
we have

(5.4) $\sigma([x_{1}, x_{2}])-[\sigma(x_{1}), \sigma(x_{2})]=\mu\gamma_{1}(x_{1}, x_{2})$ ,

(5.5) $\sum_{i}k_{i}\sigma(x_{i})=\mu\gamma_{2}(n)$ ,

where $x_{1},$ $x_{2},$ $x_{\ell}\in \mathfrak{g},$ $k_{i}\in K,$
$n=\sum_{i}k_{i}(x_{i})\in N_{0}$ so that $\sum_{\iota}k_{i}x_{i}=0$ , and $\mu\gamma_{1}(x_{1}, x_{2})$

and $\mu\gamma_{2}(n)$ are the inner derivations of $\mathfrak{h}$ induced by the elements $\gamma_{1}(x_{1}, x_{2})$

and $\gamma_{2}(n)$ of $\mathfrak{h}$ . The elements $\gamma_{1}(x_{1}, x_{2})$ and $\gamma_{2}(n)$ are not well-determined but
the inner derivations $\mu\gamma_{1}(x_{1}, x_{2})$ and $\mu\gamma_{2}(n)$ are well-determined.

We define a 3-cochain of $\mathfrak{g}$ with values in $C_{\mathfrak{h}}$ by the relations
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(5.6) $f\langle x_{I}|x_{2}|x_{3}\rangle=\sigma(x_{1})\gamma_{1}(x_{z}, x_{\sigma}.)-\sigma(x_{2})\gamma_{1}(x_{1}, x_{s})+\sigma(x_{s})\gamma_{1}(x_{1}, x_{2})$

$-\gamma_{1}([x_{1}, x_{r}.], x_{3})+\gamma_{1}([x_{1}, x_{3}], x_{2})-\gamma_{1}([x_{2}, x_{a}], x_{1})$ ,

(5.7) $f\langle x|n\rangle=-\sum_{l}k_{i}\gamma_{1}(x, x_{i})-\sigma(x)\gamma_{2}(n)+\gamma_{2}([x, n])$ ,

(5.8)
$f\langle n^{\gamma}\rangle=\sum_{j}k_{j}^{\prime}\gamma_{2}(n_{j})$ ,

where $x_{1},$ $x_{2},$ $x_{3}\in tJ,$ $n=\sum_{i}k_{i}(x_{i})\in N_{0}$ so that $\sum_{i}k_{i}x_{i}=0$ and $n^{\prime}=\sum_{j}k_{j}^{r}(n_{j})\in N_{1}$

so that $\sum_{j}k_{j}^{\prime}n_{j}=0,$
$ n_{j}\in ker\epsilon$ .

The second member of each of the above three relations belongs to $C_{\mathfrak{h}}$ ,
because if we apply $\mu$ to each one of them and calculate their values we get
zero. We call $f$ an obstruction of $\theta$ .

PROPOSITION 1. An obstruction $f$ of $\theta$ is a 3-cocycle and any two obstruc-
tions of $\theta$ are cohomologous. If $f$ is an obstruction of $\theta$ , then a 3-cocycle
which is cohomologous to $f$ is also an obstruction.

PROOF. The maps $\gamma_{1}$ and $\gamma_{2}$ define a “ 2-cochain ” $h$ of $\mathfrak{g}$ with values in
$\mathfrak{h}$ , but with this difference that $\mathfrak{h}$ is not a g-module. Also the relations (5.6),
(5.7) and (5.8) are similar to the relations (4.1), (4.2) and (4.3) respectively and
we may write $f=\delta h$ bearing in mind that $h$ is a ” 2-cochain ” of $\mathfrak{g}$ with values
in $\mathfrak{h}$ , which is not a g-module. If $\mathfrak{h}$ were a g-module we could at once infer
that $\delta f=\delta\delta h=0_{i}$ but since we do not have

$\sigma([x_{1}, x_{2}])=[\sigma(x_{1}), \sigma(x_{2})]$ and $\sigma(\sum_{i}k_{i}x_{i})=\sum_{i}k_{i}\sigma(x_{i})$ ,

where $x_{1},$ $x_{2},$ $x_{i}\in \mathfrak{g}$ , we shall have to verify that in the expressions for $\delta f$ the
terms which involve

$\sigma([x_{1}, x_{2}])-[\sigma(x_{1}), \sigma(x_{2})]$ and $\sigma(\sum_{i}k_{i}x_{i})-\sum_{\ell}k_{i}\sigma(x_{i})$

cancel out, the other terms getting cancelled as in the identity $\delta\delta=0$ for 2-
cochains.

We observe that

$\delta f\in Hom_{K}(U_{0,0,0},{}_{0}C_{\mathfrak{h}})+Hom_{K}(U_{0.0},{}_{1}C_{\mathfrak{h}})+Hom_{K}(U_{0},{}_{z}C_{\mathfrak{h}})$

$+Hom_{K}(U_{1,1}, C_{\mathfrak{h}})+Hom_{K}(U_{S}, C_{\mathfrak{h}})$ .
It is a matter of straightforward verification that

$\delta f\langle x_{1}|x_{2}|x_{3}|x_{4}\rangle=0,$ $\delta f\langle x_{1}|x_{2}|n\rangle=0,$ $\delta f\langle x_{1}|n^{\prime}\rangle=0,$ $\delta f\langle n_{1}|n_{2}\rangle=0,$ $\delta f\langle n^{\prime\prime}\rangle=0$ ,

where $x_{1},$ $x_{2},$ $x_{3},$ $x_{4}\in \mathfrak{g},$ $n,$ $n_{1},$ $n_{2}\in N_{0},$ $n^{\prime}\in N_{1},$ $n^{\prime\prime}\in N_{2}$ . Hence $f$ is a 3-cocycle.
In order to show that two obstructions of $\theta$ are cohomologous we note
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that $f$ depends upon the choice of $\sigma$ and $h=(\gamma_{1}, \gamma_{2})$ . First we shall show
that if we choose a second map $\sigma^{\prime}$ : $\mathfrak{g}\rightarrow D(\mathfrak{h})$ such that $\sigma^{\prime}(x)$ is an element of
the coset $\theta(x)$ , where $x\in \mathfrak{g}$ and $\sigma^{\prime}(-x)=-\sigma^{\prime}(x)$ , we can choose $h$ in such a
way that $f$ remains the same. Indeed $\sigma^{\prime}-\sigma$ has its values in $\mu \mathfrak{h}$ since $\sigma^{\prime}(x)$

and $\sigma(x)$ belong to the same coset $\theta(x)$ , where $\chi\in \mathfrak{g}$ . Let us write
$\sigma^{\prime}(x)=\sigma(x)+\mu\tau(x)$ ,

where $x\in \mathfrak{g}$ and $\tau(x)\in \mathfrak{h}$ . Then using (5.4) and (5.5) we have
$\sigma^{\prime}([x_{1}, x_{2}])-[\sigma^{\prime}(x_{1}), \sigma^{\prime}(x_{2})]=\mu\gamma_{1}(x_{1}, x_{2})+\mu\{\tau([x_{1}, x_{2}])$

$-[\tau(x_{1}), \sigma(x_{2})]-[\sigma(x_{1}), \tau(x_{2})]-[\tau(x_{1}), \tau(x_{2})]\}$

and
2 $k_{i}\sigma^{\prime}(x_{i})=\mu\gamma_{2}(n)+\mu(\sum_{i}k_{t}\tau(x_{i}))$ ,

where $n=\sum_{i}k_{t}(x_{i})\in N_{0}$ . We choose

$\gamma_{1}^{\prime}(x_{1}, x_{2})=\gamma_{1}(x_{1}, x_{2})+\tau([x_{1}, x_{2}])-[\tau(x_{1}), \sigma(x_{2})]$

$-[\sigma(x_{1}), \tau(x_{2})]-[\tau(x_{1}), \tau(x_{2})]$ ,

$\gamma_{2}^{\prime}(n)=\gamma_{2}(n)+\sum_{t}k_{i}\tau(x_{i})$ .

If $f^{\prime}$ is the 3-cocycle determined by $\sigma^{\prime}$ and $(\gamma_{1}^{\prime}, \gamma_{2}^{\prime})$ , then straightforward cal-
culations of $f^{\prime}\langle x_{1}|x_{2}|x_{3}\rangle,$ $ f^{\prime}\langle x|n\rangle$ and $f^{\prime}(n^{\prime})$ show that $f^{\prime}=f$.

If, however, we keep $\sigma$ fixed and choose $h‘=(\gamma_{1}^{\prime}, \gamma_{2}^{\prime})$ instead of $h=(\gamma_{1}, \gamma_{2})$

such that $\mu h^{\prime}=\mu h$ , then $h^{\prime}-h=g$ has values in $C_{\mathfrak{h}}$ and so is a 2-cochain of
$\mathfrak{g}$ with values in $C_{\mathfrak{h}}$ . If $f^{\prime}$ is the 3-cocycle determined by $h^{\prime}$ (and $\sigma$), then

$f^{\prime}=\delta h^{\prime}=\delta(h+g)=f+\delta g$

showing that the two obstructions $f$ and $f^{\prime}$ are cohomologous.
Finally, given an obstruction $f$ determined by $\sigma$ and $h$ and a 3-cocycle $f^{\prime}$

$coh_{om)}logous$ to $f$ we have $f^{\prime}=f+\delta g$, where $g$ is a 2-cochain with values in
$C_{l)}$ . Choose $h^{\gamma}=h+g$ . This choice is permissible since $\mu h^{\prime}=\mu h+\mu g=\mu h$ .
Then $f^{\prime}=f+\delta g=\delta h+\delta g=\delta(h+g)=\delta h$ ‘ showing that $f^{\prime}$ is also an obstruction.
This proves the proposition completely.

The cohomology class $\xi_{\theta}$ of $H^{s}(\mathfrak{g}, C_{\mathfrak{h}})$ determined by $f$ is called the ob-
struction of $\theta$ . We are now in a position to answer the question raised at the
beginning of this section.

THEOREM 2. A homomorphism $\theta:\mathfrak{g}\rightarrow D(\mathfrak{h})/I(\mathfrak{h})$ is induced by an extension
of $\mathfrak{g}$ with kernel $\mathfrak{h}$ if and only if the $obs$ truction $\xi_{\theta}=0$ .

PROOF. Let

$ 0\rightarrow \mathfrak{h}\rightarrow \mathcal{E}\rightarrow \mathfrak{g}\rightarrow 0a\beta$
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be an extensien which induces $\theta$ . Let $\rho:\mathfrak{g}\rightarrow C$ be a map such that $\rho(-x)$

$=-\rho(x)$ , where $x\in \mathfrak{g}$ , such that $\beta\rho=identity$ . We take $\sigma;\mathfrak{g}\rightarrow D(\mathfrak{h})$ by com-
posing $\rho$ with $\nu;\mathcal{E}\rightarrow D(\mathfrak{h})$ .

Then we can choose $\gamma_{1}$ and $\gamma_{2}$ such that

$\gamma_{1}(x_{1}, x_{2})=\rho([x_{1}, x_{2}])-[\rho(x_{1}), \rho(x_{2})]$

$\gamma_{2}(n)=\sum_{i}k_{i}\rho(x_{i})$ ,

where $x_{1},$ $x_{2}\in \mathfrak{g},$
$ n\in Ker\epsilon$ . We note that the restriction of $\nu$ to $\mathfrak{h}$ is $\mu$ . If we

now substitute these values of $\gamma_{1}$ and $\gamma_{2}$ in (5.6), (5.7) and (5.8), we find $f=0$ .
Conversely, suppose $\xi_{\theta}=0$ . Then by virtue of Proposition 1 we can choose

$\sigma$ and $h=(\gamma_{1}, \gamma_{2})$ such that $f=0$ . Consider the set $\mathcal{E}$ consisting of element of
the form $(a, x)$ where $a\in \mathfrak{h}$ and $x\in \mathfrak{g}$ and define the operations as follows

2 $k_{i}(a_{i}, x_{i})=(\sum_{i}k_{t}a_{i}+\gamma_{2}(n), \sum_{i}k_{i}x_{i})$ ,

$[(a_{1}, x_{1}), (a_{2}, x_{2})]=(a_{1}a_{2}+\sigma(x_{1})a_{2}-\sigma(x_{2})a_{1}+\gamma_{1}(x_{1}, x_{2}),$ $[x_{1}, x_{2}]$),

where $x_{1},$ $x_{2},$ $x_{i}\in \mathfrak{g},$ $k_{i}\in K,$
$n=(\sum_{\iota}k_{i}x_{i})-\sum_{l}k_{i}(x_{i})\in N_{0}$ . It can be easily verified

that these operations satisfy the eleven identities of a Lie algebra, since $f=0$ .
We observe that $(0,0)$ is the zero of the Lie algebra $\mathcal{E}$ and that $\theta$ is induced
by the extension

$ 0\rightarrow \mathfrak{h}\rightarrow \mathcal{E}\rightarrow \mathfrak{g}\rightarrow 0a\beta$

given by $\alpha(a)=(a, 0)$ and $\beta(a, x)=x$ , where $a\in \mathfrak{h},$ $x\in \mathfrak{g}$ .
REMARK. In order to give a complete interpretation of $H^{3}(\mathfrak{g}, M)$ it remains

to prove the following theorem: Let $\mathfrak{g}$ be a Lie algebra and let $M$ be a $\mathfrak{g}-$

module. Let $f$ be a 3-cocycle of $\mathfrak{g}$ with values in $M$. Then there exists a
Lie algebra $\mathfrak{h}$ having $M$ as centre and a homomorphism $\theta:\mathfrak{g}\rightarrow D(\mathfrak{h})/I(\mathfrak{h})$ which
induces on $M$ the given $t\dagger$ -module structure such that $f$ is an obstruction of $\theta$ .
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