A cohomology for Lie algebras

By U. SHUKLA

(Received Dec. 8, 1965)

1. Introduction.

Dixmier [1] has proposed a cohomology for Lie rings (that is, Lie algebras over the ring of integers). In this paper we propose a cohomology for Lie algebras over a ring in which the element 2 is invertible. First we construct a complex over a Lie algebra and then define a cohomology. We then show that the 0-cohomology module is isomorphic to the submodule of invariant elements of the module of coefficients, the 1-cohomology module is the module of crossed homomorphisms of the Lie algebra into the module of coefficients modulo the principal homomorphisms, and the 2-cohomology module is in one-one correspondence with the set of equivalence classes of special (or singular) extensions of the Lie algebra with the module of coefficients as kernel. While trying to interpret the 3-cohomology module the task of showing that every element of it is indeed an obstruction becomes too difficult and it has not been possible to accomplish it.

There is a great similarity between the constructions and proofs given in this paper and those given in [2], but they do need working out since the structure of a Lie algebra, thanks to the Jacobi identity, is not as simple as that of an associative algebra and one cannot be sure of the truth of a theorem without a comprehensive proof. Those definitions which have not been given here formally can be obtained from [2] with obvious changes (e.g. for an associative algebra substitute a Lie algebra).

2. Definition of cohomology.

Let K be a commutative ring with unit element $1 \ (\neq 0)$ such that there exists an element $k \in K$ for which 2k = 1. Throughout this paper we shall consider Lie algebras over the ring K. A differential graded Lie algebra over the ring K is a graded K-module $U = \sum_{n \geq 0} U_n$ together with (i) a K-homomorphism $U \bigotimes_{K} U \to U$ given by $u_i \bigotimes u_j \to [u_i, u_j]$, where $u_i \in U_i$, $u_j \in U_j$ and $[u_i, u_j] \in U_{i+j}$, satisfying the following relations:

(2.1) [u, u] = 0, where $u \in U$ is homogeneous element of even degree;

U. SHUKLA

(2.2)
$$[u_i, u_j] = (-1)^{ij+1} [u_j, u_i], \text{ where } u_i \in U_i, u_j \in U_j;$$

$$(2.3) \qquad (-1)^{ki} [u_i, [u_j, u_k]] + (-1)^{ij} [u_j, [u_k, u_i]] + (-1)^{jk} [u_k, [u_i, u_j]] = 0,$$

where $u_i \in U_i$, $u_j \in U_j$, $u_k \in U_k$; and (ii) K-homomorphism $d: U \to U$ such that

(2.4)
$$dd = 0, \ d(U_n) \subset U_{n-1}, \ d[u_i, u_j] = [du_i, u_j] + (-1)^i [u_i, du_j],$$

where $u_i \in U_i$, $u_j \in U_j$. We denote the restriction of d to U_n by d_n . (Actually since there exists an element $k \in K$ such that 2k = 1 the relation (2.1) follows from (2.2) but we shall find it convenient to retain it separately.)

A (left) U-representation of U is a K-module M together with a K-homomorphism $U \bigotimes M \to M$ given by $u \otimes m \to u \cdot m$, where $u \in U$, $m \in M$ such that

$$u_i \cdot (u_j \cdot m) - (-1)^{ij} u_j \cdot (u_i \cdot m) = [u_i, u_j] \cdot m,$$

where $u_i \in U_i$, $u_j \in U_j$ and $m \in M$. For brevity we call M a (left) U-module.

Let \mathfrak{g} be a Lie algebra. We shall construct a differential graded Lie algebra $U = \sum_{n \ge 0} U_n$ and a homomorphism of differential graded Lie algebras $\varepsilon: U \to \mathfrak{g}$ (the differential and the grading in \mathfrak{g} being trivial) such that

- (i) the sequence of K-modules $\dots \to U_n \xrightarrow{d_n} U_{n-1} \to \dots \to U_1 \xrightarrow{d_1} U_0 \xrightarrow{\varepsilon} \mathfrak{g} \to 0$ is exact, and
- (ii) there is a map $\sigma: \mathfrak{g} \to U_0$ for which $\sigma([x, y]) = [\sigma(x), \sigma(y)]$, where $x, y \in \mathfrak{g}$ and $\varepsilon \sigma =$ identity map.

Let X_0 be a set in one-to-one correspondence with g and let a multiplication be defined in X_0 such that the product of any two elements in X_0 is the element in X_0 which corresponds to the product of their images in g. Let $K(X_0)$ be the K-free module with X_0 as base. The multiplication in X_0 induces on $K(X_0)$ the structure of a non-associative algebra. The one-to-one correspondence $X_0 \to \mathfrak{g}$ induces a K-homomorphism of non-associative algebras $\overline{\varepsilon}: K(X_0) \to \mathfrak{g}$. The inverse map $\mathfrak{g} \to X_0$ gives a map $\overline{\sigma}: \mathfrak{g} \to K(X_0)$ such that $\overline{\varepsilon}\overline{\sigma} =$ identity map. We define sets X_1, \dots, X_n, \dots by induction over n. Suppose we have defined the sets X_0, X_1, \dots, X_n and an exact sequence of K-modules

$$K(X_n) \xrightarrow{\tilde{d}_n} K(X_{n-1}) \to \cdots \to K(X_1) \xrightarrow{\tilde{d}_1} K(X_0) \xrightarrow{\tilde{\mathfrak{s}}} \mathfrak{g} \to 0$$

such that (i) $K(X_p)$ is a K-free module with X_p as base $(0 \le p \le n)$ and (ii) X_p is a set in one-to-one correspondence with the kernel N_{p-1} of the K-homomorphism $\overline{d}_{p-1}: K(X_{p-1}) \to K(X_{p-2})$ for $2 \le p \le n$, while X_1 is a set in one-to-one correspondence with the kernel N_0 of the K-homomorphism $\overline{\varepsilon}: K(X_0) \to \mathfrak{g}$. Let X_{n+1} be a set in one-to-one correspondence with the kernel N_n of the K-homomorphism $\overline{d}_n: K(X_n) \to K(X_{n-1})$. Let $K(X_{n+1})$ be the K-free module with X_{n+1} as base. The kernel N_n being a K-submodule of $K(X_n)$ the bijective map

276

 $X_{n+1} \to N_n$ induces a K-homomorphism $K(X_{n+1}) \to N_n$ which when composed with the inclusion map $N_n \to K(X_n)$ gives a K-homomorphism $\bar{d}_{n+1}: K(X_{n+1}) \to K(X_n)$ such that the sequence

$$K(X_{n+1}) \xrightarrow{\overline{d}_{n+1}} K(X_n) \xrightarrow{\overline{d}_n} K(X_{n-1}) \to \cdots \to K(X_1) \xrightarrow{\overline{d}_1} K(X_0) \xrightarrow{\overline{\mathfrak{s}}} \mathfrak{g} \to 0$$

is exact.

The direct sum $\sum_{n\geq 0} K(X_n)$ is a K-free differential graded module. We shall define inductively maps

$$X_i \times X_j \to X_{i+j} \qquad (i \ge 0, \ j \ge 0)$$

(the image of (x_i, x_j) being denoted by $[x_i, x_j]$) which when extended by Klinearity give to $\sum_{n \ge 0} K(X_n)$ the structure of a K-free non-associative differential graded algebra. For i=0, j=0 the map $X_0 \times X_0 \to X_0$ has already been defined. Suppose that the maps have been defined for $i+j \le n$ such that

(2.5)
$$\bar{d}_{i+j}[x_i, x_j] = [\bar{d}_i x_i, x_j] + (-1)^i [x_i, \bar{d}_j x_j].$$

We take $\bar{d}_0 = 0$. In order to define the map for i+j = n+1, consider the expression

$$[\bar{d}_i x_i, x_j] + (-1)^i [x_i, \bar{d}_j x_j] \in K(X_n).$$

It is annulled by \overline{d}_n and so belongs to N_n . The element in X_{n+1} which corresponds to it under the one-to-one correspondence $X_{n+1} \rightarrow N_n$ is defined to be the product $[x_i, x_j]$. By this definition the relation (2.5) is true for i+j=n+1. We observe that $K(X_n)$ is not only a K-free module but also a $K(X_0)$ -module.

Let X be the sum set $\sum_{n\geq 0} X_n$. Then $\sum_{n\geq 0} K(X_n) = K(X)$, the K-free module with X as base; indeed it is a K-free differential graded non-associative algebra. Let \mathfrak{p} be the two-sided ideal generated by the following elements

 $\bar{\sigma}(0), [x_{2p}, x_{2p}], [x_i, x_j] + (-1)^{ij} [x_j, x_i], \text{ and } (-1)^{ki} [x_i, [x_j, x_k]] + (-1)^{ij} [x_j, [x_k, x_i]] + (-1)^{ij} [x_i, x_j], \text{ where } x_{2p} \in X_{2p} (p \ge 0), x_i \in X_i, x_j \in X_j, x_k \in X_k.$ The quotient algebra $U = K(X)/\mathfrak{p}$ is a differential graded Lie algebra. If U_n denotes the image of $K(X_n)$ under the canonical map $K(X) \to K(X)/\mathfrak{p}$, we have $U = \sum_{n \ge 0} U_n$ with maps $d_n: U_n \to U_{n-1}$ $(n \ge 1), d_0 = 0$ induced by \bar{d}_n $(n \ge 0)$. The homomorphism $\bar{\varepsilon}: K(X_0) \to \mathfrak{g}$ yields a Lie algebra homomorphism $\varepsilon: U_0 \to \mathfrak{g}$ and the map $\bar{\sigma}: \mathfrak{g} \to K(X_0)$ gives a map $\sigma: \mathfrak{g} \to U_0$ which is such that $\sigma([x, y]) = [\sigma(x), \sigma(y)]$ for $x, y \in \mathfrak{g}$ and $\varepsilon \sigma =$ identity map. We can also define maps $x_0: \text{Ker } \varepsilon \to U_1$ and $s_{n-1}: \text{Ker } d_{n-1} \to U_n$ (n > 1) with the help of the bijective maps $X_n \to N_{n-1}$ $(n \ge 1)$ such that d_1s_0 and d_ns_{n-1} are identity maps.

Let us define with Dixmier [1, p. 63] the algebra G(U) of the graded K-module U. We recall that G(U) is the (associative) quotient algebra of the

tensor algebra (over K) of U by the two-sided ideal generated by the elements of the form

$$u \otimes v + (-1)^{\alpha\beta} v \otimes u$$
, where $u \in U_{\alpha}$, $v \in U_{\beta}$;

and $w \otimes w$, where w is a homogeneous element of *even* degree in U. Every element of G(U) is a K-linear combination of the elements of the form $\langle u_1 | \cdots | u_n \rangle$, $u_i \in U_{\alpha_i}$, $1 \leq i \leq n$, where $\langle u_1 | \cdots | u_n \rangle$ denotes the image of $u_1 \otimes \cdots \otimes u_n$ in G(U). The image of the unit element 1 of K in G(U) is denoted by $\langle \rangle$. In particular $\langle u \rangle$ denotes the image in G(U) of the homogeneous element u of U. Indeed U can also be identified with its image in G(U). We say that the element $\langle u_1 | \cdots | u_n \rangle$ is of degree $\alpha_1 + \cdots + \alpha_n$ and order n. We define the total degree of $\langle u_1 | \cdots | u_n \rangle$ in G(U) to be the sum of the degree and the order, namely, $n + \alpha_1 + \cdots + \alpha_n$. We note that G(U) possesses a unit element, namely, $\langle \rangle$ which is taken to be of zero degree and zero order. If u (resp. v) is a homogeneous element of G(U) of degree α (resp. β) and order α' (resp. β') we have

$$\langle v | u \rangle = (-1)^{\alpha\beta + \alpha'\beta'} \langle u | v \rangle.$$

If U^+ denotes the sum of U_n for n even and U^- denotes the sum of U_n for n odd, then

$$G(U) = E(U^+) \bigotimes S(U^-),$$

where $E(U^+) = G(U^+)$ is the exterior algebra of the K-module U^+ and $S(U^-) = G(U^-)$ is the symmetric algebra of the K-module U^- .

Let *M* be a (left) g-module. The *K*-linear combination of the elements of the form $\langle u_1 | \cdots | u_n \rangle$, $u_i \in U_{\alpha_i}$, $i = 1, \dots, n$ form a sub-*K*-module of G(U) which we denote by $U_{\alpha_1, \dots, \alpha_n}$. For n = 0 we take *K* instead of $U_{\alpha_1, \dots, \alpha_n}$. Let

$$\operatorname{Hom}_{K}(G(U), M) = \sum_{(\alpha_{1}, \dots, \alpha_{n})} \operatorname{Hom}_{K}(U_{\alpha_{1}, \dots, \alpha_{n}}, M)$$

the sum being taken over all finite monotonic increasing sequences of nonnegative integers $(\alpha_1, \dots, \alpha_n)$ including the case n = 0. The degree, the order and the total degree in G(U) induce degree, order and total degree in $\operatorname{Hom}_{K}(G(U), M)$. We define a differential δ in $\operatorname{Hom}_{K}(G(U), M)$ such that for $f \in \operatorname{Hom}_{K}(G(U), M)$ we have

$$(2.6) \qquad \delta f \langle u_1 | \cdots | u_n \rangle = (-1)^{n+1} \left[\sum_{i=1}^n (-1)^{\alpha_1 + \cdots + \alpha_{i-1}} f \langle u_1 | \cdots | du_i | \cdots | u_n \rangle \right. \\ \left. + \sum_{i=1}^n (-1)^{i-1} (\varepsilon u_i) f \langle u_i | \cdots | \hat{u}_i | \cdots | u_n \rangle \right. \\ \left. - \sum_{1 \le i < j \le n} (-1)^{\varepsilon_{ij}} f \langle [u_i, u_j] | u_1 | \cdots | \hat{u}_i | \cdots | \hat{u}_j | \cdots | u_n \rangle \right],$$

where $\varepsilon_{ij} = \sum_{p < q} (\alpha_p \alpha_q + 1)$, $p \in \{1, \dots, i-1, i+1, \dots, j-1\}$, $q \in \{i, j\}$ and a_i means that u_i has to be omitted.

It can be verified that $\delta \delta f = 0$. Indeed we can write $\delta = \delta_1 + \delta_2$, where

$$\begin{split} \delta_1 f \langle u_1 | \cdots | u_n \rangle &= (-1)^{n+1} \sum_{i=1}^n (-1)^{\alpha_1 + \cdots + \alpha_{i-1}} f \langle u_1 | \cdots | du_i | \cdots | u_n \rangle ,\\ \delta_2 f \langle u_1 | \cdots | u_n \rangle &= (-1)^{n+1} \left[\sum_{i=1}^n (-1)^{i-1} (\varepsilon u_i) f \langle u_1 | \cdots | u_i | \cdots | u_n \rangle \right] \\ &- \sum_{1 \leq i < j \leq n} (-1)^{\varepsilon_{ij}} f \langle [u_i, u_j] | u_1 | \cdots | u_i | \cdots | u_j | \cdots | u_n \rangle] \end{split}$$

and verify that $\delta_1^2 = 0$, $\delta_2^2 = 0$ and $\delta_1 \delta_2 = -\delta_2 \delta_1$.

DEFINITION. The graded cohomology module H^* (Hom_K (G(U), M)) is called the cohomology module of the Lie algebra g with coefficients in the g-module M. We write

$$H^{n}(\mathfrak{g}, M) = H^{n}(\operatorname{Hom}_{K}(G(U), M)).$$

3. Interpretations of $H^{0}(\mathfrak{g}, M)$ and $H^{1}(\mathfrak{g}, M)$.

We write $\sigma(x) = (x)$ for $x \in \mathfrak{g}$ and $s_1(n) = (n)$ for $n \in \operatorname{Ker} d_1$, etc.. An element $n \in \operatorname{Ker} \varepsilon$ is of the form $\sum_i k_i(x_i)$, where $k_i \in K$, $x_i \in \mathfrak{g}$ and $\sum_i k_i x_i = 0$. An element $n \in \operatorname{Ker} d_1$ is of the form $\sum_j k_j(n_j)$, where $k_j \in K$, $n_j \in \operatorname{Ker} \varepsilon$ and $\sum_i k_j n_j = 0$.

A 0-cochain is an element of $\operatorname{Hom}_{K}(K, M)$ and so may be identified with an element of M. If $f \in M$, then $\delta f \in \operatorname{Hom}_{K}(U, M)$ and

(3.1)
$$\delta f \langle (x) \rangle = x \cdot f$$
, where $x \in \mathfrak{g}$ and $(x) \in U_0$.

To avoid cumbersome notation we shall write $\langle x \rangle$ instead of $\langle (x) \rangle$, $\langle x_1 | x_2 \rangle$ instead of $\langle (x_1) | (x_2) \rangle$ etc.. If f is a 0-cocycle, we have $x \cdot f = 0$ for every $x \in \mathfrak{g}$. A 0-coboundary being the zero element of M it follows that $H^{\mathfrak{o}}(\mathfrak{g}, M)$ is isomorphic to the sub-K-module of M consisting of the *invariant* elements of M.

A 1-cochain is an element $f \in \operatorname{Hom}_{K}(U_{0}, M)$ and $\delta f \in \operatorname{Hom}_{K}(U_{0,0}, M)$ + $\operatorname{Hom}_{K}(U_{1}, M)$ such that

(3.2)
$$\delta f \langle x_1 | x_2 \rangle = -x_1 f \langle x_2 \rangle + x_2 f \langle x_1 \rangle + f \langle [x_1, x_2] \rangle,$$

$$(3.3) \qquad \qquad \delta f\langle n \rangle = \sum k_i f\langle x_i \rangle,$$

where $x_1, x_2, x_i \in \mathfrak{g}, k_i \in K$ and $\sum_i k_i x_i = 0$. It should be noted that we have made use of the relation $[\sigma x_1, \sigma x_2] = \sigma[x_1, x_2]$ in expressing the coboundary δf over $\langle x_1 | x_2 \rangle$. If f is a 1-cocycle and if $\varphi : \mathfrak{g} \to M$ is the restriction of

U. SHUKLA

 $f: U_0 \rightarrow M$ to g, we have

(i)
$$\varphi([x_1, x_2]) = x_1 \varphi(x_2) - x_2 \varphi(x_1)$$

and

(ii)
$$\sum_{i} k_{i} x_{i} = 0 \Longrightarrow \sum_{i} k_{i} \varphi(x_{i}) = 0.$$

Moreover, if $f = \delta g$ where $g \in M$, then

$$\varphi(x) = xg$$
, where $x \in \mathfrak{g}$.

Hence $H^1(\mathfrak{g}, M)$ is the K-module of the crossed homomorphisms of \mathfrak{g} into M reduced modulo the principal homomorphisms.

4. Interpretation of $H^2(\mathfrak{g}, M)$.

A 2-cochain is an element $f \in \operatorname{Hom}_{K}(U_{0,0}, M) + \operatorname{Hom}_{K}(U_{1}, M)$. Then $\delta f \in \operatorname{Hom}_{K}(U_{0,0,0}, M) + \operatorname{Hom}_{K}(U_{0,1}, M) + \operatorname{Hom}_{K}(U_{2}, M)$. We have

(4.1)
$$\delta f\langle x_1 | x_2 | x_3 \rangle = x_1 f\langle x_2 | x_3 \rangle - x_2 f\langle x_1 | x_3 \rangle + x_3 f\langle x_1 | x_2 \rangle - f\langle [x_1, x_2] | x_3 \rangle + f\langle [x_1, x_3] | x_2 \rangle - f\langle [x_2, x_3] | x_1 \rangle,$$

(4.2)
$$\delta f\langle x | n \rangle = -\sum_{i} k_{i} f\langle x | x_{i} \rangle - x f\langle n \rangle + f\langle [x, n] \rangle;$$

(4.3)
$$\delta f \langle n' \rangle = \sum_{j} k'_{j} f \langle n_{j} \rangle,$$

where $x_1, x_2, x_3, x \in \mathfrak{g}$, $n = \sum_i k_i(x_i)$, $k_i \in k$, $x_i \in \mathfrak{g}$ such that $\sum_i k_i x_i = 0$ and n' $= \sum_{j} k'_{j}(n_{j}), k'_{j} \in k, n_{j} \in \ker \varepsilon \text{ such that } \sum_{j} k'_{j}n_{j} = 0.$ If f is a 2-cocycle, it determines two maps

$$\gamma_1:\mathfrak{g}\times\mathfrak{g}\to M$$
$$\gamma_2:N_0\to M$$

satisfying the following identities.

$$(4.4) \qquad \qquad \gamma_1(x, x) = 0$$

(4.5)
$$\gamma_1(x_1, x_2) = -\gamma_1(x_2, x_1),$$

(4.6)
$$x_1\gamma_1(x_2, x_3) - x_2\gamma_1(x_1, x_3) + x_3\gamma_1(x_1, x_2) - \gamma_1([x_1, x_2], x_3)$$

$$+\gamma_1([x_1, x_3], x_2)-\gamma_1([x_2, x_3], x_1)=0$$
,

(4.7)
$$\sum_{i} k_i \gamma_1(x, x_i) = -x \gamma_2(n) + \gamma_2([x, n]),$$

(4.8)
$$\sum_{j} k_{j} \gamma_{2}(n_{j}) = 0,$$

where x_1, x_2, x_3, x, x_i, n and n_j are as before.

280

Let \mathcal{E}_f be the set of all pairs (m, x), where $m \in M$, $x \in \mathfrak{g}$. We define addition, multiplication and scalar multiplication by elements of K as follows:

(4.9)
$$(m_1, x_1) + (m_2, x_2) = (m_1 + m_2 + \gamma_2(x_1, x_2), x_1 + x_2);$$

(4.10)
$$[(m_1, x_1), (m_2, x_2)] = (x_1 m_2 - x_2 m_1 + \gamma_1(x_1, x_2), [x_1, x_2]);$$

(4.11)
$$k(m, x) = (km + \gamma_2(k, x), kx),$$

where by $\gamma_2(x_1, x_2)$ we mean $\gamma_2((x_1+x_2)-(x_1)-(x_2))$ and by $\gamma_2(k, x)$ we mean $\gamma_2((kx)-k(x))$; $x_1, x_2, x \in g, m \in M, k \in K$. After proving the associative law for the addition defined above the relations (4.9) and (4.11) can be combined into a single relation

(4.12)
$$\sum_{i} k_{i}(m_{i}, x_{i}) = (\sum_{i} k_{i}m_{i} + \gamma_{2}(n), \sum_{i} k_{i}x_{i}),$$

where $k_i \in K$, $m_i \in M$, $x_i \in \mathfrak{g}$ and $n = (\sum_i k_i x_i) - \sum_i k_i (x_i) \in N_0$.

We shall show that with these operations \mathcal{E}_f is a Lie algebra. We have to verify the following relations.

1. $\xi + \eta = \eta + \xi$, 2. $(\xi + \eta) + \zeta = \xi + (\eta + \zeta)$, 3. $[\xi, \eta + \zeta] = [\xi, \eta] + [\xi, \zeta]$, 4. $[\xi + \eta, \zeta] = [\xi, \zeta] + [\eta, \zeta]$, 5. $[\xi, \xi] = 0$, 6. $[\xi, [\eta, \zeta]] + [\eta, [\zeta, \xi]] + [\zeta, [\xi, \eta]] = 0$, 7. $[k\xi, \eta] = k[\xi, \eta]$, 8. $[\xi, k\eta] = k[\xi, \eta]$, 9. $k_1(k_2\xi) = (k_1k_2)\xi$, 10. $k(\xi + \eta) = k\xi + k\eta$, 11. $(k_1 + k_2)\xi = k_1\xi + k_2\xi$,

where ξ , η , $\zeta \in \mathcal{E}_f$ and k, k_1 , $k_2 \in K$.

Let $\xi = (m_1, x_1)$, $\eta = (m_2, x_2)$ and $\zeta = (m_3, x_3)$, where $m_1, m_2, m_3 \in M$ and $x_1, x_2, x_3 \in \mathfrak{g}$. The relation $\xi + \eta = \eta + \xi$ is trivially verified. To verify (2) we have

$$\{(m_1, x_1) + (m_2, x_2)\} + (m_3, x_3) = (m_1 + m_2 + \gamma_2(x_1, x_2), x_1 + x_2) + (m_3, x_3)$$
$$= (m_1 + m_2 + m_3 + \gamma_2(x_1, x_2) + \gamma_2(x_1 + x_2 + x_3), x_1 + x_2 + x_3)$$

and

$$(m_1, x_1) + \{(m_2, x_2) + (m_3, x_3)\} = (m_1, x_1) + (m_2 + m_3 + \gamma_2(x_2, x_3), x_2 + x_3)$$

$$=(m_1+m_2+m_3+\gamma_2(x_2, x_3)+\gamma_2(x_1, x_2+x_3), x_1+x_2+x_3).$$

We have to show that

U. Shukla

$$\gamma_2((x_1+x_2)-(x_1)-(x_2))+\gamma_2((x_1+x_2+x_3)-(x_1+x_2)-(x_3))$$

= $\gamma_2((x_2+x_3)-(x_2)-(x_3))+\gamma_2((x_1+x_2+x_3)-(x_1)-(x_2+x_3))$

But this follows from (4.8) by taking

$$n_1 = (x_1 + x_2) - (x_1) - (x_2), \quad n_2 = (x_1 + x_2 + x_3) - (x_1 + x_2) - (x_3),$$

$$n_3 = (x_2 + x_3) - (x_2) - (x_3), \quad n_4 = (x_1 + x_2 + x_3) - (x_1) - (x_2 + x_3)$$

and $k'_1 = 1$, $k'_2 = 1$, $k'_3 = -1$, $k'_4 = -1$.

To verify (3) we have

$$[(m_1, x_1), (m_2, x_2) + (m_3, x_3)] = [(m_1, x_1), (m_2 + m_3 + \gamma_2(x_2, x_3), x_2 + x_3)]$$

= $(x_1m_2 + x_1m_3 + x_1\gamma_2(x_2, x_3) - x_2m_1 - x_3m_1 + \gamma_1(x_1, x_2 + x_3), [x_1, x_2 + x_3])$

and

$$\begin{bmatrix} (m_1, x_1), (m_2, x_2) \end{bmatrix} + \begin{bmatrix} (m_1, x_1), (m_3, x_3) \end{bmatrix}$$

= $(x_1m_2 - x_2m_1 + \gamma_1(x_1, x_2), [x_1, x_2]) + (x_1m_3 - x_3m_1 + \gamma_1(x_1, x_3), [x_1, x_3])$
= $(x_1m_2 - x_2m_1 + x_1m_3 - x_3m_1 + \gamma_1(x_1, x_2) + \gamma_1(x_1, x_3) + \gamma_2([x_1, x_2], [x_1, x_3]), [x_1, x_2] + [x_1, x_3])$.

We have to show that

$$x_1\gamma_2(x_2, x_3) + \gamma_1(x_1, x_2 + x_3) = \gamma_1(x_1, x_2) + \gamma_1(x_1, x_3) + \gamma_2([x_1, x_2], [x_1, x_3])$$

or what is the same thing

$$\gamma_1(x_1, x_2+x_3) - \gamma_1(x_1, x_2) - \gamma_1(x_1, x_3) = -x_1\gamma_2(x_2, x_3) + \gamma_2([x_1, x_2], [x_1, x_3]).$$

But this follows from (4.7) by taking $x = x_1$ and $n = (x_2 + x_3) - (x_2) - (x_3)$. The relation (4) can be verified in a similar manner.

The relation (5) follows from the fact that $\gamma_1(x, x) = f\langle x | x \rangle = 0$. To verify Jacobi's identity we calculate

$$\begin{bmatrix} (m_1, x_1), [(m_2, x_2), (m_3, x_3)] \end{bmatrix} = [(m_1, x_1), (x_2m_3 - x_3m_2 + \gamma_1(x_2, x_3), [x_2, x_3])] \\ = (x_1x_2m_3 - x_1x_3m_2 - [x_2, x_3]m_1 + x_1\gamma_1(x_2, x_3) \\ + \gamma_1(x_1, [x_2, x_3]), [x_1, [x_2, x_3]]).$$

Permuting circularly and adding we see that Jacobi's identity is satisfied if

$$\begin{aligned} x_1 \gamma_1(x_2, x_3) + x_2 \gamma_1(x_3, x_1) + x_3 \gamma_1(x_1, x_2) + \gamma_1(x_1, [x_2, x_3]) + \\ \gamma_1(x_2, [x_3, x_1]) + \gamma_1(x_3, [x_1, x_2]) + \gamma_2(n) = 0, \end{aligned}$$

where

$$n = (0) - ([x_1, [x_2, x_3]]) - ([x_2, [x_3, x_1]]) - ([x_3, [x_1, x_2]]) = 0$$

since $(0) = \sigma(0) \in \mathfrak{p}$ and

282

$$([x_1, [x_2, x_3]]) + ([x_2, [x_3, x_1]]) + ([x_3, [x_1, x_2]])$$

= $[\sigma x_1, [\sigma x_2, \sigma x_3]] + [\sigma x_2, [\sigma x_3, \sigma x_1]] + [\sigma x_3, [\sigma x_1, \sigma x_2]] \in \mathfrak{p}$

This means $\gamma_2(n) = 0$. Also

$$\begin{aligned} x_1\gamma_1(x_2, x_3) + x_2\gamma_1(x_3, x_1) + x_3\gamma_1(x_1, x_2) + \gamma_1(x_1, [x_2, x_3]) + \gamma_1(x_2, [x_3, x_1]) \\ + \gamma_1(x_3, [x_1, x_2]) = x_1\gamma_1(x_2, x_3) - x_2\gamma_1(x_1, x_3) + x_3\gamma_1(x_1, x_2) - \gamma_1([x_1, x_2], x_3) \\ + \gamma_1([x_1, x_3], x_2) - \gamma_1([x_1, x_2], x_3) = 0 \text{ by virtue of } (4.6). \end{aligned}$$

To verify (7) we note that

$$[k(m_1, x_1), (m_2, x_2)] = [(km_1 + \gamma_2(k, x_1), kx_1), (m_2, x_2)]$$
$$= (kx_1m_2 - kx_2m_1 - x_2\gamma_2(k, x_1) + \gamma_1(kx_1, x_2), [kx_1, x_2])$$

and

$$k[(m_1, x_1), (m_2, x_2)] = k(x_1m_2 - x_2m_1 + \gamma_1(x_1, x_2), [x_1, x_2])$$

= $(kx_1m_2 - kx_2m_1 + k\gamma_1(x_1, x_2) + \gamma_2(k, [x_1, x_2]), k[x_1, x_2])$

So we have to show that

$$-x_2\gamma_2(k, x_1) + \gamma_1(kx_1, x_2) = k\gamma_1(x_1, x_2) + \gamma_2(k, [x_1, x_2])$$

or what is the same thing

$$\gamma_1(kx_1, x_2) - k\gamma_1(x_1, x_2) = x_2\gamma_2(k, x_1) + \gamma_2(k, [x_1, x_2])$$

that is

$$-k\gamma_1(x_2, x_1) + \gamma_1(x_2, kx_1) = -x_2\gamma_2((kx_1) - k(x_1)) + \gamma_2(-([kx_1, x_2]) + k([x_1, x_2])).$$

This is a consequence of (4.7) by taking $x = x_2$ and $n = (kx_1) - k(x_1)$.

The relation (8) can be verified in a similar manner.

The relations (9), (10) and (11) can be verified in a straight-forward fashion. We have shown in this way that \mathcal{E}_f is a Lie algebra, the element (0,0) being the zero of \mathcal{E}_f . If we define $\alpha: M \to \mathcal{E}_f$ and $\beta: \mathcal{E}_f \to \mathfrak{g}$ by $\alpha(m) = (m, 0)$ and $\beta(m, x) = x$, we have an exact sequence of Lie algebras

$$0 \to M \xrightarrow{\alpha} \mathcal{E}_f \xrightarrow{\beta} \mathfrak{g} \to 0 ,$$

where M has the trivial multiplicative structure. We observe that

$$[(m_1, x_1), (m, 0)] = (x_1m, 0)$$

showing that the exact sequence induces on M the given g-module structure.

Let f' be a 2-cocycle which is cohomologous to f. This means $f'=f+\delta g$, where g is a 1-cochain. Let $\mathcal{E}_{f'}$ be the Lie algebra determined by the 2-cocycle f'. Since g is a 1-cochain, it gives a map $\psi: \mathfrak{g} \to M$, which is the restriction of g to \mathfrak{g} . We define a map $\phi: \mathcal{E}_f \to \mathcal{E}_{f'}$ by putting $\phi(m, x) = (m + \psi(x), x)$

where $m \in M$, $x \in \mathfrak{g}$. Then

$$\phi(\sum_{i} k_i(m_i, x_i)) = \phi(\sum_{i} k_i m_i + \gamma_2(n), \sum_{i} k_i x_i)$$
$$= (\sum_{i} k_i m_i + \gamma_2(n) + \psi(\sum_{i} k_i x_i), \sum_{i} k_i x_i),$$

and

$$\sum_{i} k_i \phi(m_i x_i) = \sum_{i} k_i (m_i + \psi(x_i), x_i) = (\sum_{i} k_i m_i + \sum_{i} k_i \psi(x) + \gamma'_2(n), \sum_{i} k_i x_i),$$

where

$$n = (\sum_{i} k_i x_i) - \sum_{i} k_i (x_i) \in N_0, \ m_i \in M, \ x \in \mathfrak{g}.$$

But $\gamma'_2(n) - \gamma_2(n) = \delta g(n) = \psi(\sum_i k_i x_i) - \sum_i k_i \psi(x_i)$ by virtue of (3.3). Therefore

$$\phi(\sum_i k_i(m_i, x_i)) = \sum_i k_i \phi(m_i, x_i),$$

where $m_i \in M$, $x_i \in \mathfrak{g}$. Again,

$$\phi[(m_1, x_1), (m_2, x_2)] = \phi(x_1m_2 - x_2m_1 + \gamma_1(x_1, x_2), [x_1, x_2])$$

= $(x_1m_2 - x_2m_1 + \gamma_1(x_1, x_2) + \phi([x_1, x_2]), [x_1, x_2]),$

while

$$[\phi(m_1, x_1), \phi(m_2, x_2)] = [(m_1 + \psi(x_1), x_1), (m_2 + \psi(x_2), x_2)]$$

= $(x_1m_2 - x_2m_1 + x_1\psi(x_2) - x_2\psi(x_1) + \gamma'_1(x_1, x_2), [x_1, x_2]),$

where $m_1, m_2 \in M$ and $x_1, x_2 \in \mathfrak{g}$. Since by (3.2)

$$\gamma_1'(x_1, x_2) - \gamma_1(x_1, x_2) = \delta g \langle x_1 | x_2 \rangle = -x_1 \psi(x_2) + x_2 \psi(x_1) + \psi([x_1, x_2]),$$

it follows that

$$\phi[(m_1, x_1), (m_2, x_2)] = [\phi(m_1, x_1), \phi(m_2, x_2)]$$

We have now shown that ϕ is a homomorphism of Lie algebras. It is easy to verify that ϕ is bijective.

Conversely, suppose

$$0 \to M \xrightarrow{\alpha} \mathcal{E} \xrightarrow{\beta} \mathfrak{g} \to 0$$

is an exact sequence of Lie algebras, where M is an abelian Lie algebra. Let $\rho: \mathfrak{g} \rightarrow \mathcal{E}$ be a map such that $\beta \rho = \text{identity}$ map, and $\rho(-x) = -\rho(x)$ where $x \in \mathfrak{g}$. This is possible since there exists an element $k \in K$ for which 2k = 1. Let us define two maps

$$\gamma_1:\mathfrak{g}\times\mathfrak{g}\to M$$
,

and

$$\gamma_2: N_0 \to M$$

by the relations

(4.13)
$$\gamma_1(x_1, x_2) = \rho([x_1, x_2]) - [\rho(x_1), \rho(x_2)],$$

and

(4.14)
$$\gamma_2(n) = \sum_i k_i \rho(x_i) ,$$

where $x_1, x_2, x_i \in \mathfrak{g}$, $k_i \in K$ and $n = \sum_i k_i(x_i) \in N_0$ such that $\sum_i k_i x_i = 0$. We observe that the relations (4.4) and (4.5) are satisfied in view of the choice of ρ . Also

$$\begin{aligned} x_1\gamma_1(x_2, x_3) - x_2\gamma_1(x_1, x_3) + x_3\gamma_1(x_1, x_2) - \gamma_1([x_1, x_2], x_3) + \gamma_1([x_1, x_3], x_2) \\ &- \gamma_1([x_2, x_3], x_1) = [\rho(x_1), \rho([x_2, x_3]) - [\rho(x_2), \rho(x_3)]] \\ &- [\rho(x_2), \rho([x_1, x_3]) - [\rho(x_1), \rho(x_3)]] + [\rho(x_3), \rho([x_1, x_2]) - [\rho(x_1), \rho(x_2)]] \\ &- \rho(([x_1, x_2], x_3]) + [\rho([x_1, x_2]), \rho(x_3)] \\ &+ \rho(([x_1, x_3], x_2]) - [\rho([x_1, x_3]), \rho(x_2)] - \rho(([x_2, x_3], x_1]) \\ &+ [\rho([x_2, x_3]), \rho(x_1)] = \rho([x_1, [x_2, x_3]]) + \rho([x_2, [x_3, x_1]]) \\ &+ \rho([x_3, [x_1, x_2]]) = \gamma_2(m), \end{aligned}$$

where

$$m = ([x_1, [x_2, x_3]]) + ([x_2, [x_3, x_1]]) + ([x_3, [x_1, x_2]])$$

with $x_1, x_2, x_3 \in \mathfrak{g}$. Since $m \in \mathfrak{p}, \gamma_2(m) = 0$. Therefore the relation (4.6) is satisfied.

Again,

$$\sum_{i} k_{i} \gamma_{1}(x, x_{i}) + x \gamma_{2}(n) - \gamma_{2}([x, n])$$

$$= \sum_{i} k_{i} \rho([x, x_{i}]) - \sum_{i} k_{i} [\rho(x), \rho(x_{i})] + [\rho(x), \sum_{i} k_{i} \rho(x_{i})]$$

$$- \sum_{i} k_{i} \rho([x, x_{i}]) = 0,$$

where $n = \sum_{i} k_i(x_i)$ such that $\sum_{i} k_i x_i = 0$, $k_i \in K$, $x_i \in \mathfrak{g}$. Therefore the relation (4.7) is satisfied. The relation (4.8) is trivially satisfied.

After the usual arguments we have

THEOREM 1. There exists a natural one-to-one correspondence between the two-dimensional cohomology module $H^2(g, M)$ and the set of equivalence classes of the special extensions of g with kernel M which induce over M the given g-module structure.

5. On $H^{s}(g, M)$.

Let \mathfrak{h} be a Lie algebra, let $D(\mathfrak{h})$ denote the Lie algebra of derivations of \mathfrak{h} and let $I(\mathfrak{h})$ denote the ideal of $D(\mathfrak{h})$ consisting of the inner derivations of \mathfrak{h} . Consider the homomorphism of Lie algebras $\mu: \mathfrak{h} \to D(\mathfrak{h})$ which maps every element of \mathfrak{h} into the inner derivation of \mathfrak{h} induced by it. The kernel of this homomorphism is the centre $C_{\mathfrak{h}}$ of the Lie algebra \mathfrak{h} and the image is $I(\mathfrak{h})$. So we have an exact sequence of Lie algebras

(5.1)
$$0 \to C_{\mathfrak{h}} \to \mathfrak{h} \to D(\mathfrak{h}) \to D(\mathfrak{h})/I(\mathfrak{h}) \to 0 .$$

We call $D(\mathfrak{h})/I(\mathfrak{h})$ the Lie algebra of exterior derivations of \mathfrak{h} . The centre $C_{\mathfrak{h}}$ is a $D(\mathfrak{h})/I(\mathfrak{h})$ -module for the operation $\overline{D}c = Dc$, where $c \in C_{\mathfrak{h}}$, $\overline{D} \in D(\mathfrak{h})/I(\mathfrak{h})$ and D is an element of $D(\mathfrak{h})$ belonging to the coset \overline{D} .

Consider an exact sequence of Lie algebras

(5.2)
$$0 \to \mathfrak{h} \xrightarrow{a} \mathcal{C} \xrightarrow{p} \mathfrak{g} \to 0.$$

Since $\alpha \mathfrak{h}$ is an ideal of \mathcal{E} , the map $e \rightarrow ade$, where ade denotes the inner derivation of \mathcal{E} induced by the element e of \mathcal{E} gives a Lie algebra homomorphism $\nu: \mathcal{E} \rightarrow D(\mathfrak{h})$. Since $\alpha \mathfrak{h}$ is mapped into $I(\mathfrak{h}), \nu$ induces a Lie algebra homomorphism

(5.3)
$$\theta: \mathfrak{g} \to D(\mathfrak{h})/I(\mathfrak{h})$$
.

Conversely, suppose we are given Lie algebras \mathfrak{g} and \mathfrak{h} and a homomorphism of Lie algebras $\theta: \mathfrak{g} \to D(\mathfrak{h})/I(\mathfrak{h})$. Does there exist a Lie algebra \mathcal{E} and an exact sequence of Lie algebras of the type (5.2) such that the induced homomorphism (5.3) is the same as the given homomorphism θ ? We note that θ gives to $C_{\mathfrak{h}}$ a \mathfrak{g} -module structure. We propose to associate with θ an element of $H^{\mathfrak{s}}(\mathfrak{g}, C_{\mathfrak{h}})$ called the *obstruction* of θ and we shall answer the question in terms of the obstruction of θ .

Let $\sigma: \mathfrak{g} \to D(\mathfrak{h})$ be a map such that $\sigma(x)$ is an element of the coset $\theta(x)$, where $x \in \mathfrak{g}$ and $\sigma(-x) = -\sigma(x)$. Since θ is a homomorphism of Lie algebras, we have

(5.4)
$$\sigma([x_1, x_2]) - [\sigma(x_1), \sigma(x_2)] = \mu \gamma_1(x_1, x_2),$$

(5.5)
$$\sum_{i} k_i \sigma(x_i) = \mu \gamma_2(n) ,$$

where $x_1, x_2, x_i \in \mathfrak{g}$, $k_i \in K$, $n = \sum_i k_i(x_i) \in N_0$ so that $\sum_i k_i x_i = 0$, and $\mu \gamma_1(x_1, x_2)$ and $\mu \gamma_2(n)$ are the inner derivations of \mathfrak{h} induced by the elements $\gamma_1(x_1, x_2)$ and $\gamma_2(n)$ of \mathfrak{h} . The elements $\gamma_1(x_1, x_2)$ and $\gamma_2(n)$ are not well-determined but the inner derivations $\mu \gamma_1(x_1, x_2)$ and $\mu \gamma_2(n)$ are well-determined.

We define a 3-cochain of \mathfrak{g} with values in $C_{\mathfrak{h}}$ by the relations

(5.6)
$$f\langle x_1 | x_2 | x_3 \rangle = \sigma(x_1)\gamma_1(x_2, x_3) - \sigma(x_2)\gamma_1(x_1, x_3) + \sigma(x_3)\gamma_1(x_1, x_2) - \gamma_1([x_1, x_2], x_3) + \gamma_1([x_1, x_3], x_2) - \gamma_1([x_2, x_3], x_1),$$

(5.7)
$$f\langle x | n \rangle = -\sum_{i} k_{i} \gamma_{1}(x, x_{i}) - \sigma(x) \gamma_{2}(n) + \gamma_{2}([x, n]),$$

(5.8)
$$f\langle n'\rangle = \sum_{j} k'_{j} \gamma_{2}(n_{j}),$$

where $x_1, x_2, x_3 \in \mathfrak{g}$, $n = \sum_i k_i(x_i) \in N_0$ so that $\sum_i k_i x_i = 0$ and $n' = \sum_j k'_j(n_j) \in N_1$ so that $\sum_j k'_j n_j = 0$, $n_j \in \ker \varepsilon$.

The second member of each of the above three relations belongs to $C_{\mathfrak{z}}$, because if we apply μ to each one of them and calculate their values we get zero. We call f an obstruction of θ .

PROPOSITION 1. An obstruction f of θ is a 3-cocycle and any two obstructions of θ are cohomologous. If f is an obstruction of θ , then a 3-cocycle which is cohomologous to f is also an obstruction.

PROOF. The maps γ_1 and γ_2 define a "2-cochain" h of g with values in \mathfrak{h} , but with this difference that \mathfrak{h} is not a g-module. Also the relations (5.6), (5.7) and (5.8) are similar to the relations (4.1), (4.2) and (4.3) respectively and we may write $f = \delta h$ bearing in mind that h is a "2-cochain" of g with values in \mathfrak{h} , which is not a g-module. If \mathfrak{h} were a g-module we could at once infer that $\delta f = \delta \delta h = 0$; but since we do not have

$$\sigma([x_1, x_2]) = [\sigma(x_1), \sigma(x_2)]$$
 and $\sigma(\sum_i k_i x_i) = \sum_i k_i \sigma(x_i)$,

where $x_1, x_2, x_i \in \mathfrak{g}$, we shall have to verify that in the expressions for δf the terms which involve

$$\sigma([x_1, x_2]) - [\sigma(x_1), \sigma(x_2)]$$
 and $\sigma(\sum_i k_i x_i) - \sum_i k_i \sigma(x_i)$

cancel out, the other terms getting cancelled as in the identity $\delta \delta = 0$ for 2-cochains.

We observe that

$$\delta f \in \operatorname{Hom}_{K}(U_{0,0,0,0}, C_{\mathfrak{h}}) + \operatorname{Hom}_{K}(U_{0,0,1}, C_{\mathfrak{h}}) + \operatorname{Hom}_{K}(U_{0,2}, C_{\mathfrak{h}})$$
$$+ \operatorname{Hom}_{K}(U_{1,1}, C_{\mathfrak{h}}) + \operatorname{Hom}_{K}(U_{\mathfrak{s}}, C_{\mathfrak{h}}).$$

It is a matter of straightforward verification that

$$\delta f\langle x_1 | x_2 | x_3 | x_4 \rangle = 0, \ \delta f\langle x_1 | x_2 | n \rangle = 0, \ \delta f\langle x_1 | n' \rangle = 0, \ \delta f\langle n_1 | n_2 \rangle = 0, \ \delta f\langle n'' \rangle = 0,$$

where $x_1, x_2, x_3, x_4 \in \mathfrak{g}$, $n, n_1, n_2 \in N_0$, $n' \in N_1$, $n'' \in N_2$. Hence f is a 3-cocycle.

In order to show that two obstructions of θ are cohomologous we note

that f depends upon the choice of σ and $h = (\gamma_1, \gamma_2)$. First we shall show that if we choose a second map $\sigma': \mathfrak{g} \to D(\mathfrak{h})$ such that $\sigma'(x)$ is an element of the coset $\theta(x)$, where $x \in \mathfrak{g}$ and $\sigma'(-x) = -\sigma'(x)$, we can choose h in such a way that f remains the same. Indeed $\sigma' - \sigma$ has its values in $\mu\mathfrak{h}$ since $\sigma'(x)$ and $\sigma(x)$ belong to the same coset $\theta(x)$, where $x \in \mathfrak{g}$. Let us write

$$\sigma'(x) = \sigma(x) + \mu \tau(x) ,$$

where $x \in \mathfrak{g}$ and $\tau(x) \in \mathfrak{h}$. Then using (5.4) and (5.5) we have

$$\sigma'([x_1, x_2]) - [\sigma'(x_1), \sigma'(x_2)] = \mu \gamma_1(x_1, x_2) + \mu \{\tau([x_1, x_2]) - [\tau(x_1), \sigma(x_2)] - [\sigma(x_1), \tau(x_2)] - [\tau(x_1), \tau(x_2)] \}$$

and

$$\sum_{i} k_i \sigma'(x_i) = \mu \gamma_2(n) + \mu(\sum_{i} k_i \tau(x_i))$$

where $n = \sum_{i} k_{i}(x_{i}) \in N_{0}$. We choose

$$\gamma'_{1}(x_{1}, x_{2}) = \gamma_{1}(x_{1}, x_{2}) + \tau([x_{1}, x_{2}]) - [\tau(x_{1}), \sigma(x_{2})] - [\sigma(x_{1}), \tau(x_{2})] - [\tau(x_{1}), \tau(x_{2})], \gamma'_{2}(n) = \gamma_{2}(n) + \sum_{i} k_{i}\tau(x_{i}).$$

If f' is the 3-cocycle determined by σ' and (γ'_1, γ'_2) , then straightforward calculations of $f'\langle x_1 | x_2 | x_3 \rangle$, $f'\langle x | n \rangle$ and f'(n') show that f' = f.

If, however, we keep σ fixed and choose $h' = (\gamma'_1, \gamma'_2)$ instead of $h = (\gamma_1, \gamma_2)$ such that $\mu h' = \mu h$, then h' - h = g has values in $C_{\mathfrak{h}}$ and so is a 2-cochain of g with values in $C_{\mathfrak{h}}$. If f' is the 3-cocycle determined by h' (and σ), then

$$f' = \delta h' = \delta(h+g) = f + \delta g$$

showing that the two obstructions f and f' are cohomologous.

Finally, given an obstruction f determined by σ and h and a 3-cocycle f' cohomologous to f we have $f'=f+\delta g$, where g is a 2-cochain with values in C_{\emptyset} . Choose h'=h+g. This choice is permissible since $\mu h'=\mu h+\mu g=\mu h$. Then $f'=f+\delta g=\delta h+\delta g=\delta(h+g)=\delta h'$ showing that f' is also an obstruction. This proves the proposition completely.

The cohomology class ξ_{θ} of $H^{s}(\mathfrak{g}, C_{\mathfrak{h}})$ determined by f is called the *obstruction* of θ . We are now in a position to answer the question raised at the beginning of this section.

THEOREM 2. A homomorphism $\theta: \mathfrak{g} \to D(\mathfrak{h})/I(\mathfrak{h})$ is induced by an extension of \mathfrak{g} with kernel \mathfrak{h} if and only if the obstruction $\xi_{\theta} = 0$.

PROOF. Let

$$0 \longrightarrow \mathfrak{h} \xrightarrow{\alpha} \mathcal{E} \xrightarrow{\beta} \mathfrak{g} \longrightarrow 0$$

be an extension which induces θ . Let $\rho: \mathfrak{g} \to \mathcal{E}$ be a map such that $\rho(-x) = -\rho(x)$, where $x \in \mathfrak{g}$, such that $\beta \rho = \text{identity}$. We take $\sigma: \mathfrak{g} \to D(\mathfrak{h})$ by composing ρ with $\nu: \mathcal{E} \to D(\mathfrak{h})$.

Then we can choose γ_1 and γ_2 such that

$$\gamma_1(x_1, x_2) = \rho([x_1, x_2]) - [\rho(x_1), \rho(x_2)]$$
$$\gamma_2(n) = \sum_i k_i \rho(x_i) ,$$

where $x_1, x_2 \in \mathfrak{g}$, $n \in \text{Ker } \varepsilon$. We note that the restriction of ν to \mathfrak{h} is μ . If we now substitute these values of γ_1 and γ_2 in (5.6), (5.7) and (5.8), we find f=0.

Conversely, suppose $\xi_{\theta} = 0$. Then by virtue of Proposition 1 we can choose σ and $h = (\gamma_1, \gamma_2)$ such that f = 0. Consider the set \mathcal{E} consisting of element of the form (a, x) where $a \in \mathfrak{h}$ and $x \in \mathfrak{g}$ and define the operations as follows

$$\sum_{i} k_{i}(a_{i}, x_{i}) = (\sum_{i} k_{i}a_{i} + \gamma_{2}(n), \sum_{i} k_{i}x_{i}),$$

$$[(a_{1}, x_{1}), (a_{2}, x_{2})] = (a_{1}a_{2} + \sigma(x_{1})a_{2} - \sigma(x_{2})a_{1} + \gamma_{1}(x_{1}, x_{2}), [x_{1}, x_{2}]),$$

where $x_1, x_2, x_i \in \mathfrak{g}, k_i \in K$, $n = (\sum_i k_i x_i) - \sum_i k_i (x_i) \in N_0$. It can be easily verified that these operations satisfy the eleven identities of a Lie algebra, since f = 0. We observe that (0, 0) is the zero of the Lie algebra \mathcal{E} and that θ is induced by the extension

$$0 \longrightarrow \mathfrak{h} \xrightarrow{\alpha} \mathcal{E} \xrightarrow{\beta} \mathfrak{g} \longrightarrow 0,$$

given by $\alpha(a) = (a, 0)$ and $\beta(a, x) = x$, where $a \in \mathfrak{h}$, $x \in \mathfrak{g}$.

REMARK. In order to give a complete interpretation of $H^{\mathfrak{g}}(\mathfrak{g}, M)$ it remains to prove the following theorem: Let \mathfrak{g} be a Lie algebra and let M be a \mathfrak{g} module. Let f be a 3-cocycle of \mathfrak{g} with values in M. Then there exists a Lie algebra \mathfrak{h} having M as centre and a homomorphism $\theta: \mathfrak{g} \to D(\mathfrak{h})/I(\mathfrak{h})$ which induces on M the given \mathfrak{g} -module structure such that f is an obstruction of θ .

University of Bombay

References

- [1] J. Dixmier, Homologie des anneaux de Lie, Ann. Sci. École Norm. Sup., 74 (1957), 25-83.
- [2] U. Shukla, Cohomologie des algèbres associatives, Ann. Sci. École Norm. Sup., 78 (1961), 163-209.