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§1. Introduction.

The notion of the (exponential) distribution semi-group of operators in a
Banach space was defined by Lions [1]. He characterized the infinitesimal
generator of an exponential distribution semi-group by proving generalizel
Hille-Yosida theorem (cf. also Foias [2], Yoshinaga [3] and Peetre [5]).

In this paper we shall show another characterisation of exponential dis-
tribution semi-group. By virtue of this characterisation, we shall define and
characterize holomorphic- exponential distribution semi-groups. Finally we
shall prove a regularity property of holomorphic distribution semi-groups.

The author wishes to express his gratitude to Professor K. Yosida who
kindly gave him many advices in the preparation of this paper.

§2. Summary for Lions’ results.

We use the following notations: ¢ represents a real variable; @, is the
space of C{° functions which vanish in < 0; .«#is the space of rapidly de-
creasing C* functions; & is the space of distributions with compact support.
Let E be a Banach space. If x is an element of E, || x| is the norm of x.
L(E, E) is the Banach space of bounded linear operators in E. 0, is the Dirac
distribution concentrated at {=r<.

DEFINITION 1. A distribution semi-group (D. S. G. in short) G is an L(F, E)-
valued distribution such that

(i) the support of G is contained in [0, o),
(i) Gle * ¢)=Gp)G(Y), for any ¢ and ¢ in 9,
(ii) if o €9, and xe FE, and if y=G(p)x, the distribution Gy defined by
Gy(p)=G(p)y is almost everywhere equal to a function u(f) which
is continuous for t =0, u(+0)=1y and u()=0 for t <0,

(iv) the set £R:{ % Gle)x; | @i € Dy, x; € E} is dense in F,
i=1

(v) if x€ E, Glp)x=0 for any ¢ € 9,, then x=0.
DEFINITION 2. A D.S.G. G is called an exponential distribution semi-



268 D. Funiwara

group (E.D.S. G. in short) if there is a &, such that ¢~¢%G is a tempered dis-
tribution.

DEFINITION 3. (Cf. Yoshinaga [3]) If G is a D.S.G. and S in &/, then
we define G(S) on R by the formula

G(S) i‘ Glo)x;= :V‘_l_, G(S * @g)x; for any x;€ E, ;= 9,.
=1 i=1

Then G(S) is densely defined and closable. G(S) represents the minimal closed
extension of G(S).

DEFINITION 4. A=G(—0’) is called the infinitesimal generator of G.

The following theorem is due to Lions.

THEOREM 1. A closed linear operator A in E generates an E.D.S.G., if
and only if the following conditions hold:

(i) the domain D, of A is dense in E;

(ii) there exists a real constant &, such that, for any p==§&-+in with £>§&,

(pI-A)*e L(E, E),
(1) (D) | PI—A) | = CA+|pHY
for any p==E-+in with £ > &, where C and N are independent of p.

§3. A characterisation of E.D.S. G.

Let I', be a parametrix for the operator _Ud}c— such that there is an w, € 9,

satisfying
(2) —56*F1:50+w1.

We may assume ', € LY(R".
LEMMA 1. If G is an E.D.S.G. then for any &> &, there exist a con-
stant C>0 and an integer N >0 such that, for any ¢, ¢ € D,,

Q) le G« HISCCE 9@ ) AL+ @l +Hlorx § ).

RRALN/

PROOF. As ¢ 2 G is a continuous linear map from _/to L(E, E) and,
_g-¢
for any polynomial Q(f), e 7 O(f) is bounded in ¢ >0,

@ leGlpx DISC TN x @ x Pl
From (2) we have
® 1Pl 10 5 gl s Tt 195 gl oy x ¢l

so that (3) follows from (4) and (5).
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COROLLARY. If G is an E.D.S.G. for which &, is negative and ¢ is a CV-
Sfunction with compact support contained in t >0, where N is the integer intro-

duced in lemma 1, then the operator G(p) is a bounded linear operator on E
with the estimate

©® IG@HI=C (2191

where C is a constant independent of ¢.
Proor. Let p, be a mollifier, then

1G(on* ) =Glon* @) || = C(é Fe@ )W % (00— o) L1+ 1l @1 % (P — ) I 21) -

When 7n and m tend to infinity, the right-hand side tends to zero. Therefore
{G(p, * ©)}, converges in norm to G(p). The inequallity

1G(on @) | = C( EVO TP 1) Ly * pullz+l @1 % pallze)

gives
1G@) = CA T ar+ o 1) 2 162 1 -
For any densely defined closed linear operator A, define D,~ by
D o= ,51 D,

where D,» is the domain of the operator A®. This becomes a Fréchet space
with respect to the system of semi-norms | x|,=|A"x| (n=0,1,2,---). The
operator A maps D,~ into itself continuously. We denote by L(D,»~, D =) the
space of continuous linear operators from D,~ into itself.
The following two theorems will characterize the structure of E.D.S.G.
THEOREM 2. If a closed linear operator A in E generates an E.D.S.G. G,
then there exist a positive constant 2p and a linear set FC D, such that
(D @pI—A)y*e L(E, E),
(D F is dense in E,
(IlT)  F constitutes a closed linear subspace in D 4,
V) (A—-2pI) generates an equi-continuous semi-group T, t=0 of con-
tinuous linear operators of F with respect to the topology of F induced
from that of D .
REMARK. About equi-continuous semi-groups of bounded linear operators
in a Fréchet space, see K. Yosida [6].
PrROOF OF THEOREM 2. Let F be the closure of ® (given in (iv)) in D,
then (I) is satisfied for 2p > &, Considering ¢~?*'G instead of G, it can be re-
duced to the case in which &, <0, p=0. To prove (ID~(IV) we must define
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T,;t=0 in F. First we define them on R as

) T, 21 Glp)x;= 2 G0, * @)%, >0, o, 9, x;€ E),

T, ZZ Glp)x,= ; G(px;.
Let I', be a parametrix such that,
® 0N 4 ', =0y +w, ,
where N is the integer in lemma 1, w, € 9,, and I', belongs to C{(R*). From

(8 we have, for any integer 2>0 and y= % G(py)x;
I (= AT, 2 Gl | = | 2 GOF * 0, * x|
S X GO« Iy 6% @) x|+ 1 2 GOP * wp * @) x4 -

As I',xd,€ CY(R"), we can apply Corollary to Lemma 1 in which ¢ is replaced
by I',x0,, Thus we obtain

) 1Ty 1= CUL A S Glpdx D BT 12)+C1 S Gl

=CUy leewst0yD
where C’ is independent of t.
Thus we can extend 7T, continuously to F. The inequality (9) shows that
{T;} is equi-continuous. For any 3 G(¢,)x; in R, we have

lim | 7, 3 Glpox,— 3 6%y = lim |GG * 0,00 x )]

As 0 % (0,—0,) x p—0 in 9,, the left-hand side tends to zero. R being dense
in F, the equi-continuity implies the strong continuity at the origin. The
semi-group property of T, is easily proved. In fact,

Tt+s(; Glp)x;) = 22 G045 * Q) x; = 12 G0, * 05 * @)x;
=T, z GO+ 9)x; =T, T Zf Glp)x;.

It is easily verified that A generates 7,. Thus theorem 2 is proved.

Conversely, we can prove

THEOREM 3. A closed linear operator A in E generates an E.D.S.G. if
there exist 2p, and a linear set F in Dy~ satisfying (1) through (IV) of Theo-
rem 2.

Proor. Considering A—2p,/ instead of A, we may assume p,=0. From
(I) and (IV) we can find an integer N and a constant C, such that, for any x
in F,
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(10) ITx| =Clx|y=Cl AVx]l .
For any x in F and p=¢£+iy, & being sufficiently large,

(p1—Ay = “e T dt .
0
(Cf. K. Yosida p. 240.) Thus

(pI—A)ix = j TP ANT, AV dt
0

co dN
:jo e_ptEF(TtA_NX) dt.
Integrating by part, we obtain
o N-1
(pI— Ay x=p¥| e PTAVxdt+ 3 prA+*1x.
0 p=0
Remembering (1), and the trivial inzquality || A=¥x||y < C| x|, we have
oo N-1
11— x| S 1pIf e TA x| di+ 3] pl| Ax |

1

=CIpl* g xl+ 2 21l %),

Hence we have proved that for any x = F,
(11) | (pI—A)~'x|| = CA+pIN x|, p=E+1in, & is sufficiently large.

Since F is dense in E, (p/—-A)"' = L(E, E) and (11) holds for any x in E. This
completes the proof.

§4. Holomerphic E.D. S. G.

Theorem 2 and 3 suggest us to generalize the notion of holomorphic semi-
group (cf. Yosida [6] to that of holomorphic E.D.S.G.
DEFINITION 5. An E.D.S.G. G is said to be holomorphic in the sector

= {t: largt|<a, 0<a< —g ,,}’ if G induces an equi-continuous holomorphic

semi-group 7T, in F in this sector, where F is the Fréchet space introduced in
Theorem 2 and 3.

THEOREM 4. A closed linear operator A in E generates an E.D.S.G. G

which is holomorphic in the sector ¥ =<t:|argt|<a,0< a < z , if and only
2

iff A satisfies the following two conditions:
(1°) there exists a real B such that, for any ¢ >0 and any p in the sector

Z”:{p:]arg(p—ﬁ)i<<9=~g—+a—s} we have (pI—A)'e L(E, E) with the



272 D. FujiwaRrA

estimate
| (pI— A = CA+|pDY,
where C and N are positive constants independent of pe 3.
(2°) Dy, the domain of A, is dense in E.
Proor. Necessity of (1°) and (2°).
Multiplying T, by exp (—S—7)t, 7 >0, we can reduce the problem to the

case in which §<0. Let T,:t=0 be the equi-continuous semi-group of opera-
tors in F generated by A. Thus for x in F, and p in 2, we have

(pI—Ayx= | Owe—ptT,xdt .

As T,x is holomorphic in 2 and ¢ ?'T,x rapidly tends to zero at infinity, we
can change the path of integration and obtain the following

@I Ay = e P T xdt
0
where
{ et if Imp=0,
S, ==
T len i Imp<0.

As in the proof of Theorem 3, by partial integration, we have
(pI— A)x = pNj see P50 T, AN xdt+ L PEs, A" 1x .
Since Re pts, >0, we have
E N-1
[pI— Ay x| < 1p¥i({ e memndt) 214 B 1pH | x| SCA+H P x1

F being dense in F, this inequality holds for any x in E. The necessity of
(2°) is trivial.

Sufficiency of (1°) and (2°).

By Theorem 1, A generates an E.D.S.G. Let F be the linear subspace
introduced in Theorem 2 and {T,;t=0} be the equi-continuous semi-group
on F generated by A. We have only to show the analyticity of T,x for x €F.

For xe FC D,

@I—A)—lx:%w—;‘z Xt - +7N+3 P pm (P~ A) 1AMy

Hence, inverting (pI——A)“lx::roe‘f”Ttxdt, we obtain by (1°)
0

N+3 Alc 1

Tox= 2’m j em( A pm -(pI— Ay AV+ix)dp
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where the curve C is as in the figure:

Im
c
0
>
0 8 Re
Thus we obtain
N+3 k-1 Ak-1 1
12) Tyx= El—tT’%S" g | eptp—%;s—(pI—A)"A””xdp.

By (i) we have

| ves 1Ay amn
Because of [(12), this implies that T,x is holomorphic in 2.

COROLLARY. Let G be an E.D.S.G. holomorphic in the sector
2 ={t:|argt|< a}, in the sense of definition 4. Then G is equal to a func-
tion holomorphic in 2.

Proor. If x is in F and if ¢ is in the sector, then

ZCIpI7¥-3 A+ p M) x| for any integer [>0.
4

1
Ta=— | P (pI— A xdp
where the curve C is as in the proof of Theorem 4. From (1°) of theorem 4,

I Tl Clxlf, e =Pt pM)dl ] = OO 2]

where C(f) depends on ¢ but not on x.

Since F is dense in E, {T,:t=0} can be extended to the whole space E
continuously. Similar argument proves that the extended T, is a holomorphic
function of ¢ in that sector 2.

REMARK. This corollary does not give any information about the be-
haviour of the semi-group at the origin.

REMARK added during the proof reading:
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Professor J.L. Lions kindly noticed to the author’s attention that G. Da
Prato and U. Mosco [7], [8], had already introduced the notion of holomorphic
distribution semi-groups. Their definition of analytic E.D.S.G. is not the
same as ours. But from [Theorem 4 of this paper, it is easy to see that
these two different definitions are equivalent. See G. Da Prato and U. Mosco

[71 &1
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