A characterisation of exponential distribution semi-groups

By Daisuke FUJIWARA

(Received March 30, 1966)

§ 1. Introduction.

The notion of the (exponential) distribution semi-group of operators in a Banach space was defined by Lions [1]. He characterized the infinitesimal generator of an exponential distribution semi-group by proving generalized Hille-Yosida theorem (cf. also Foias [2], Yoshinaga [3], [4] and Peetre [5]).

In this paper we shall show another characterisation of exponential distribution semi-group. By virtue of this characterisation, we shall define and characterize holomorphic exponential distribution semi-groups. Finally we shall prove a regularity property of holomorphic distribution semi-groups.

The author wishes to express his gratitude to Professor K. Yosida who kindly gave him many advices in the preparation of this paper.

§ 2. Summary for Lions' results.

We use the following notations: t represents a real variable; \mathcal{D}_0 is the space of C_0^{∞} functions which vanish in t < 0; \mathscr{S} is the space of rapidly decreasing C^{∞} functions; \mathscr{E}' is the space of distributions with compact support. Let E be a Banach space. If x is an element of E, ||x|| is the norm of x. L(E,E) is the Banach space of bounded linear operators in E. δ_{τ} is the Dirac distribution concentrated at $t=\tau$.

DEFINITION 1. A distribution semi-group (D. S. G. in short) G is an L(E, E)-valued distribution such that

- (i) the support of G is contained in $[0, \infty)$,
- (ii) $G(\varphi * \psi) = G(\varphi)G(\psi)$, for any φ and ψ in \mathcal{D}_0 ,
- (iii) if $\varphi \in \mathcal{D}_0$ and $x \in E$, and if $y = G(\varphi)x$, the distribution Gy defined by $Gy(\varphi) = G(\varphi)y$ is almost everywhere equal to a function u(t) which is continuous for $t \ge 0$, u(+0) = y and u(t) = 0 for t < 0,
- (iv) the set $\mathcal{R} = \left\{ \sum_{i=1}^m G(\varphi_i) x_i \mid \varphi_i \in \mathcal{D}_0, x_i \in E \right\}$ is dense in E,
- (v) if $x \in E$, $G(\varphi)x = 0$ for any $\varphi \in \mathcal{D}_0$, then x = 0.

DEFINITION 2. A D. S. G. G is called an exponential distribution semi-

group (E. D. S. G. in short) if there is a ξ_0 such that $e^{-\xi_0 t}G$ is a tempered distribution.

DEFINITION 3. (Cf. Yoshinaga [3].) If G is a D.S.G. and S in \mathcal{E}' , then we define G(S) on \mathcal{R} by the formula

$$G(S)\sum_{i=1}^m G(\varphi_i)x_i = \sum_{i=1}^m G(S*\varphi_i)x_i$$
 for any $x_i \in E$, $\varphi_i \in \mathcal{D}_0$.

Then G(S) is densely defined and closable. $\overline{G(S)}$ represents the minimal closed extension of G(S).

DEFINITION 4. $A = \overline{G(-\delta')}$ is called the infinitesimal generator of G.

The following theorem is due to Lions.

THEOREM 1. A closed linear operator A in E generates an E.D.S.G., if and only if the following conditions hold:

- (i) the domain D_A of A is dense in E;
- (ii) there exists a real constant ξ_0 such that, for any $p = \xi + i\eta$ with $\xi > \xi_0$

$$(pI - A)^{-1} \in L(E, E)$$
,

(1) (iii)
$$||(pI-A)^{-1}|| \le C(1+|p|)^N$$

for any $p = \xi + i\eta$ with $\xi > \xi_0$, where C and N are independent of p.

§ 3. A characterisation of E. D. S. G.

Let Γ_1 be a parametrix for the operator $\frac{d}{dx}$ such that there is an $\omega_1 \in \mathcal{D}_0$ satisfying

$$-\delta_0' * \Gamma_1 = \delta_0 + \omega_1.$$

We may assume $\Gamma_1 \in L^1(R^1)$.

LEMMA 1. If G is an E.D.S.G. then for any $\xi > \xi_0$, there exist a constant C > 0 and an integer N > 0 such that, for any $\varphi, \psi \in \mathcal{D}_0$,

(3)
$$\|e^{-\xi t}G(\varphi * \psi)\| \leq C(\sum_{p=0}^{N} \|\varphi^{(p)}\|_{L^{1}}) (\|\Gamma_{1} * \varphi\|_{L^{1}} + \|\omega_{1} * \psi\|_{L^{1}}).$$

PROOF. As $e^{-\frac{\xi+\xi_0}{2}t}G$ is a continuous linear map from \mathscr{S} to L(E,E) and, for any polynomial Q(t), $e^{-\frac{\xi-\xi_0}{2}t}Q(t)$ is bounded in t>0,

(4)
$$\|e^{-\xi t}G(\varphi * \psi)\| \leq C \sum_{l=0}^{N-1} \|\delta_0^{(l)} * \varphi * \psi\|_{L^1}.$$

From (2) we have

(5)
$$\|\delta_0^{(l)} * \varphi * \psi\|_{L^1} \le \|\delta_0^{(l+1)} * \varphi\|_{L^1} \cdot \|\psi * \Gamma_1\|_{L^1} + \|\delta^{(l)} * \varphi\|_{L^1} \cdot \|\omega_1 * \psi\|_{L^1}$$
 so that (3) follows from (4) and (5).

COROLLARY. If G is an E.D.S.G. for which ξ_0 is negative and φ is a C^N -function with compact support contained in t>0, where N is the integer introduced in lemma 1, then the operator $\overline{G(\varphi)}$ is a bounded linear operator on E with the estimate

(6)
$$\|\overline{G(\varphi)}\| \leq C \cdot (\sum_{l=0}^{N} \|\varphi^{(l)}\|_{L^{1}})$$

where C is a constant independent of φ .

PROOF. Let ρ_n be a mollifier, then

$$\|G(\rho_n * \varphi) - G(\rho_m * \varphi)\| \leq C(\sum_{l=0}^N \|\varphi^{(l)}\|_{L^1})(\|\Gamma_1 * (\rho_n - \rho_m)\|_{L^1} + \|\omega_1 * (\rho_n - \rho_m)\|_{L^1}).$$

When n and m tend to infinity, the right-hand side tends to zero. Therefore $\{G(\rho_n * \varphi)\}_n$ converges in norm to $G(\varphi)$. The inequality

$$\|G(\rho_n * \varphi)\| \leq C(\sum_{l=0}^{N} \|\varphi^{(l)}\|_{L^1})(\|\Gamma_1 * \rho_n\|_{L^1} + \|\omega_1 * \rho_n\|_{L^1})$$

gives

$$||G(\varphi)|| \le C(||\Gamma_1||_{L^1} + ||\omega_1||_{L^1})(\sum_{l=0}^N ||\varphi^{(l)}||_{L^1}).$$

For any densely defined closed linear operator A, define $D_{A^{\infty}}$ by

$$D_{A^{\infty}} = \bigcap_{n=1}^{\infty} D_{A^n}$$
 ,

where D_{A^n} is the domain of the operator A^n . This becomes a Fréchet space with respect to the system of semi-norms $||x||_n = ||A^nx||$ $(n = 0, 1, 2, \cdots)$. The operator A maps $D_{A^{\infty}}$ into itself continuously. We denote by $L(D_{A^{\infty}}, D_{A^{\infty}})$ the space of continuous linear operators from $D_{A^{\infty}}$ into itself.

The following two theorems will characterize the structure of E. D. S. G.

THEOREM 2. If a closed linear operator A in E generates an E.D.S.G. G, then there exist a positive constant 2p and a linear set $F \subset D_{A^{\infty}}$ such that

- (I) $(2pI-A)^{-1} \in L(E, E)$,
- (II) F is dense in E,
- (III) F constitutes a closed linear subspace in $D_{\mathbf{A}}^{\infty}$,
- (IV) (A-2pI) generates an equi-continuous semi-group T_t , $t \ge 0$ of continuous linear operators of F with respect to the topology of F induced from that of D_A^{∞} .

REMARK. About equi-continuous semi-groups of bounded linear operators in a Fréchet space, see K. Yosida [6].

PROOF OF THEOREM 2. Let F be the closure of \mathcal{R} (given in (iv)) in $D_{A^{\infty}}$, then (I) is satisfied for $2p > \xi_0$ Considering $e^{-2pt}G$ instead of G, it can be reduced to the case in which $\xi_0 < 0$, p = 0. To prove (II) \sim (IV) we must define

 T_t ; $t \ge 0$ in F. First we define them on \mathcal{R} as

(7)
$$T_t \sum_{i=1} G(\varphi_i) x_i = \sum_i G(\delta_t * \varphi_i) x_i \qquad (t > 0, \ \varphi_i \in \mathcal{D}_0, \ x_i \in E),$$
$$T_0 \sum_i G(\varphi_i) x_i = \sum_i G(\varphi_i) x_i.$$

Let Γ_2 be a parametrix such that,

$$\delta^{(N+2)} * \Gamma_2 = \delta_0 + \omega_2$$

where N is the integer in lemma 1, $\omega_2 \in \mathcal{D}_0$, and Γ_2 belongs to $C_0^N(R^1)$. From (8) we have, for any integer k > 0 and $y = \sum_{i=1}^m G(\varphi_i)x_i$

$$\begin{split} \| (-A)^k T_t & \sum_i G(\varphi_i) x_i \| = \| \sum_i G(\delta_0^{(k)} * \delta_t * \varphi_i) x_i \| \\ & \leq \| \sum_i G(\delta^{(k+N+2)} * \Gamma_2 * \delta_t * \varphi_i) x_i \| + \| \sum_i G(\delta^{(k)} * \omega_2 * \varphi_i) x_i \| . \end{split}$$

As $\Gamma_2 * \delta_t \in C_0^N(R^1)$, we can apply Corollary to Lemma 1 in which φ is replaced by $\Gamma_2 * \delta_t$. Thus we obtain

(9)
$$||T_{t}y||_{k} \leq C(||A^{k+N+2}\sum_{i}G(\varphi_{i})x_{i}||)(\sum_{t=0}^{N}||\Gamma_{2}^{(t)}||_{L^{1}}) + C||\sum_{i}G(\varphi_{i})x_{i}||$$

$$\leq C'(||y||_{k+N+2} + ||y||)$$

where C' is independent of t.

Thus we can extend T_t continuously to F. The inequality (9) shows that $\{T_t\}$ is equi-continuous. For any $\sum_i G(\varphi_i)x_i$ in \mathcal{R} , we have

$$\lim_{t \downarrow 0} \| T_t \sum_i G(\varphi_i) x_i - \sum_i G(\varphi_i) x_i \|_{(k)} = \lim_{t \downarrow 0} \| G(\delta_0^{(k)} * (\delta_t - \delta_0) * \varphi) x \|.$$

As $\delta_0^{(k)}*(\delta_t-\delta_0)*\varphi\to 0$ in \mathcal{D}_0 , the left-hand side tends to zero. \mathcal{R} being dense in F, the equi-continuity implies the strong continuity at the origin. The semi-group property of T_t is easily proved. In fact,

$$T_{t+s}(\sum_{i} G(\varphi_{i})x_{i}) = \sum_{i} G(\delta_{t+s} * \varphi_{i})x_{i} = \sum_{i} G(\delta_{t} * \delta_{s} * \varphi_{i})x_{i}$$
$$= T_{t} \sum_{i} G(\delta_{s} * \varphi_{i})x_{i} = T_{t} \cdot T_{s} \sum_{i} G(\varphi_{i})x_{i}.$$

It is easily verified that A generates T_t . Thus theorem 2 is proved.

Conversely, we can prove

THEOREM 3. A closed linear operator A in E generates an E.D.S.G. if there exist $2p_0$ and a linear set F in $D_{A^{\infty}}$ satisfying (I) through (IV) of Theorem 2.

PROOF. Considering $A-2p_0I$ instead of A, we may assume $p_0=0$. From (I) and (IV) we can find an integer N and a constant C, such that, for any x in F,

$$||T_t x|| \le C ||x||_N = C ||A^N x||.$$

For any x in F and $p = \xi + i\eta$, ξ being sufficiently large,

$$(pI-A)^{-1}x = \int_0^\infty e^{-pt}T_tx \, dt$$
.

(Cf. K. Yosida [6] p. 240.) Thus

$$(pI - A)^{-1}x = \int_0^\infty e^{-pt} A^N T_t A^{-N}x \, dt \,,$$

$$= \int_0^\infty e^{-pt} \frac{d^N}{dt^N} (T_t A^{-N}x) \, dt \,.$$

Integrating by part, we obtain

$$(pI-A)^{-1}x = p^N \int_0^\infty e^{-pt} T_t A^{-N}x dt + \sum_{p=0}^{N-1} p^k A^{-k-1}x$$
.

Remembering (I), (10) and the trivial inequality $||A^{-N}x||_N \le C||x||$, we have

$$\begin{split} \| (pI - A)^{-1} x \| & \leq |p|^{N} \int_{0}^{\infty} e^{-\xi t} \| T_{t} A^{-N} x \| dt + \sum_{k=0}^{N-1} |p|^{k} \| A^{-k-1} x \| \\ & \leq C \|p\|^{N} \frac{1}{\xi} \| x \| + \sum_{k=0}^{N-1} |p|^{k} \| x \|. \end{split}$$

Hence we have proved that for any $x \in F$,

(11) $\|(pI-A)^{-1}x\| \le C(1+|p|^N)\|x\|, p=\xi+i\eta, \quad \xi \text{ is sufficiently large.}$

Since F is dense in E, $(pI-A)^{-1} \in L(E, E)$ and (11) holds for any x in E. This completes the proof.

§ 4. Holomorphic E. D. S. G.

Theorem 2 and 3 suggest us to generalize the notion of holomorphic semigroup (cf. Yosida $\lceil 6 \rceil$) to that of holomorphic E. D. S. G.

DEFINITION 5. An E. D. S. G. G is said to be holomorphic in the sector $\Sigma = \left\{t: |\arg t| < \alpha, \ 0 < \alpha < \frac{\pi}{2}\right\}$, if G induces an equi-continuous holomorphic semi-group T_t in F in this sector, where F is the Fréchet space introduced in Theorem 2 and 3.

THEOREM 4. A closed linear operator A in E generates an E.D.S.G. G which is holomorphic in the sector $\Sigma = \{t : |\arg t| \le \alpha, 0 < \alpha < \frac{\pi}{2} \}$, if and only if A satisfies the following two conditions:

(1°) there exists a real β such that, for any $\varepsilon > 0$ and any p in the sector $\Sigma' = \left\{ p : |\arg(p - \beta)| < \theta = \frac{\pi}{2} + \alpha - \varepsilon \right\} \text{ we have } (pI - A)^{-1} \in L(E, E) \text{ with the } E$

estimate

$$\|(pI-A)^{-1}\| \leq C(1+|p|)^N$$
,

where C and N are positive constants independent of $p \in \Sigma'$.

(2°) D_A , the domain of A, is dense in E.

PROOF. Necessity of (1°) and (2°).

Multiplying T_t by $\exp(-\beta - \gamma)t$, $\gamma > 0$, we can reduce the problem to the case in which $\beta < 0$. Let $T_t : t \ge 0$ be the equi-continuous semi-group of operators in F generated by A. Thus for x in F, and p in Σ' , we have

$$(pI-A)^{-1}x = \int_0^\infty e^{-pt} T_t x dt$$
.

As $T_t x$ is holomorphic in Σ and $e^{-pt}T_t x$ rapidly tends to zero at infinity, we can change the path of integration and obtain the following

$$(pI-A)^{-1}x = \int_0^\infty s_0 e^{-pts_0} T_{ts_0} x dt$$

where

$$s_0 = \begin{cases} e^{-i\alpha} & \text{if } \operatorname{Im} p \ge 0, \\ e^{i\alpha} & \text{if } \operatorname{Im} p < 0. \end{cases}$$

As in the proof of Theorem 3, by partial integration, we have

$$(pI-A)^{-1}x = p^N \int_0^\infty s_0 e^{-pts_0} T_{ts_0} A^{-N}x dt + \sum_{k=0}^{N-1} p^k s_0 A^{-k-1}x$$
.

Since Re $pts_0 > 0$, we have

$$\|(pI - A)^{-1}x\| \le \|p^N\| \left(\int_0^\infty e^{-\operatorname{Re} pts_0} dt \right) \|x\| + \sum_{k=0}^{N-1} \|p^k\| \|x\| \le C(1 + \|p\|^N) \|x\|.$$

F being dense in E, this inequality holds for any x in E. The necessity of (2°) is trivial.

Sufficiency of (1°) and (2°) .

By Theorem 1, A generates an E.D.S.G. Let F be the linear subspace introduced in Theorem 2 and $\{T_t; t \ge 0\}$ be the equi-continuous semi-group on F generated by A. We have only to show the analyticity of $T_t x$ for $x \in F$.

For
$$x \in F \subset D_A^{\infty}$$
,

$$(pI-A)^{-1}x = \frac{I}{p}x + \frac{A}{p^2}x + \cdots + \frac{A^{N+2}}{p^{N+3}}x + \frac{I}{p^{N+3}}(pI-A)^{-1}A^{N+3}x.$$

Hence, inverting $(pI-A)^{-1}x = \int_0^\infty e^{-pt}T_txdt$, we obtain by (1°)

$$T_t x = \frac{1}{2\pi i} \int_C e^{pt} \left(\sum_{k=1}^{N+3} \frac{A^{k-1}}{p^k} x + \frac{1}{p^{N+3}} (pI - A)^{-1} A^{N+3} x \right) dp$$

where the curve C is as in the figure:

Thus we obtain

(12)
$$T_{\iota}x = \sum_{k=1}^{N+3} \frac{t^{k-1}A^{k-1}}{\Gamma(k)} x + \frac{1}{2\pi i} \int_{C} e^{pt} \frac{1}{p^{N+3}} (pI - A)^{-1}A^{N+3}x dp.$$

By (i) we have

$$\left\| \frac{1}{p^{N+3}} (pI - A)^{-1} A^{N+3} x \right\|_{l} \le C \|p\|^{-N-3} (1 + \|p\|^{N}) \|x\| \quad \text{for any integer } l > 0.$$

Because of (12), this implies that $T_t x$ is holomorphic in Σ .

COROLLARY. Let G be an E.D.S.G. holomorphic in the sector $\Sigma = \{t : |\arg t| < \alpha\}$, in the sense of definition 4. Then G is equal to a function holomorphic in Σ .

PROOF. If x is in F and if t is in the sector, then

$$T_t x = \frac{1}{2\pi i} \int_{\Omega} e^{pt} (pI - A)^{-1} x dp$$

where the curve C is as in the proof of Theorem 4. From (1°) of theorem 4,

$$||T_t x|| \le C ||x|| \int_0^\infty e^{-\operatorname{Re}(tp)} (1+|p|^N) d|p| \le C(t) ||x||.$$

where C(t) depends on t but not on x.

Since F is dense in E, $\{T_t: t \ge 0\}$ can be extended to the whole space E continuously. Similar argument proves that the extended T_t is a holomorphic function of t in that sector Σ .

REMARK. This corollary does not give any information about the behaviour of the semi-group at the origin.

REMARK added during the proof reading:

Professor J. L. Lions kindly noticed to the author's attention that G. Da Prato and U. Mosco [7], [8], had already introduced the notion of holomorphic distribution semi-groups. Their definition of analytic E. D. S. G. is not the same as ours. But from Theorem 4 of this paper, it is easy to see that these two different definitions are equivalent. See G. Da Prato and U. Mosco [7], [8].

Department of Mathematics, University of Tokyo

Bibliography

- [1] J. Lions, Les semi-groupes distributions, Portugal. Math., 19 (1960), 141-164.
- [2] C. Foias, Remarques sur les semi-groupes distributions d'operateurs normaux, Portugal. Math., 19 (1960), 227-242.
- [3] K. Yoshinaga, Ultra-distributions and semi-group distributions, Bull. Kyushu Inst. Tech. Math. Nat. Sci., 10 (1963), 1-24.
- [4] K. Yoshinaga, Values of vector-valued distributions and smoothness of semigroup distributions, Bull. Kyushu Inst. Tech. Math. Nat. Sci., 12 (1965), 1-27.
- [5] J. Peetre, Sur la théorie des semi-groupes distributions, Seminaire sur les équations au derivées partielles, Collège de France, 1963-1964.
- [6] K. Yosida, Functional Analysis, Springer, Berlin, 1965.
- [7] G. Da Prato and U. Mosco, Semigruppi Distribuzioni Analitici, Ann. Scuola Norm. Sup. Pisa, 19 (1965), 367-396.
- [8] G. Da Prato and U. Mosco, Regolarizzazione dei Semigruppi Distribuzioni Analitici, Ann. Scuola Norm. Sup. Pisa, 19 (1965), 563-576.