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Let $k$ be an algebraic number field of finite degree, $K$ be a normal exten-
sion of $k$ of degree $n$ , and $\mathfrak{G}$ be its galois group. Denote by $s$ resp. $\hat{s}$ the set
of all primes of $k$ resp. of $K$ which has degree 1 in $K/k$ . We defined in the
preceeding paper [3], which will be referred to as $RI$, the restricted idele
group J. resp. $J_{\hat{s}}$ of $k$ resp. of $K$ . And we proved that there is a one to one
correspondence between some ( $\mathfrak{G}$-invariant s-admissible) closed subgroups $H$

of $J_{\hat{s}}$ and abelian extensions $M$ of $K$ normal over $k$ .
In this paper we shall strengthen the above consequence and the condition

of $H$ to be s-admissible in $RI$, by studying the norm residue mapping of $J_{\hat{s}}$ to
the group of the maximal abelian extension (theorem 1 and 2). Moreover we
shall determine the conductor of the field $M$ corresponding to $H$ (theorem 3).

Since the s-restricted idele group $J_{\hat{s}}$ of $K$ is $\mathfrak{G}$ -isomorphic to the direct pro-
duct $J_{s}^{n}$ of n-folds of the s-restricted idele group $J_{s}$ of $k,$ $H$ is considered a
subgroup of $J_{s}^{n}$ . So it will be interest to characterize the condition of $\hat{s}$ -admis-
sibility by $l$ erIrs of the ground field $k$ . We shall do it for a special case of
$K/k$ , by substantially using the theorem 2 (theorem 4).

\S 1. Norm residue symbols.

Let $k$ be an any algebraic number field of finite degree and $J=J_{k}$ be the
(ordinary) idele group of $k$ . Let $S=S(k)$ be the set of all (finite or infinite)
primes $\mathfrak{p}$ of $k,$ $s$ be a subset of $S$ , and $s^{\prime}$ be its complement in $S;S-s$ . We
defined in $RI$ the s-restricted idele group $J_{\epsilon}$ by the rcstricted direct product of

$\mathfrak{p}$-adic completions $k_{\mathfrak{p}}$ over $\mathfrak{p}$ -adic unit groups Up of $k$ , where $\mathfrak{p}$ runs over $s$ .
Then we have

(1) $J=J_{s}\times J_{s}$, (direct).

We shall fix this isomorphism and embed naturally $J_{s}$ into $J$ . Denote by $\pi_{s}$

the projection of $J$ to J.. The s-restriction $\rho_{s}$ is defined by any subset $A$ of
$J_{\epsilon}$ by

(2) $\rho_{s}(A)=\pi_{s}(A\cap J_{s})$ .
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For any normal extension $K/k$ , denote by $\mathfrak{G}(K/k)$ its galois group. Let
$A_{k}$ be the maximal abelian extension of $k$ and $\mathfrak{G}_{k}$ be its galois group, which
is the projective limit of $\mathfrak{G}(A/k)$ of abelian extensions $A$ over $k$ of finite
degree.

For any $\mathfrak{a}\in J$ and any abelian extension $A/k$ of finite degree, let $(\mathfrak{a}, A/k)$

be the norm residue symbol. Let further $(\mathfrak{a}, k)$ be the (generalized) norm
residue symbol of $k$ , which is defined as an element of $\mathfrak{G}_{k}$ whose $\mathfrak{G}(A/k)$

component is $(\mathfrak{a}, A/k)$ . Then $(\mathfrak{a}, k)$ gives a homomorphism of $J_{k}$ onto $\mathfrak{G}_{k}$ . We
Jenote this homomorphism by $\Phi$ and call the reciprocity map. Denoting by

$\mathfrak{a}_{\mathfrak{p}}$ the $\mathfrak{p}$ -component of $\mathfrak{a}$ , we have
(3) $(\mathfrak{a}, k)=\prod_{\mathfrak{p}\in s}(\mathfrak{a}_{\mathfrak{p}}, k_{\mathfrak{p}})$

where $(\mathfrak{a}_{0}, k_{\mathfrak{p}})$ is the (generalized) local norm residue symbol. For any subset
$s$ of $S$ denote by $\Phi_{s}$ the restriction of $\Phi$ to $J_{s}$ . Then

(4) $\Phi_{s}((r_{s})=(\mathfrak{a}_{s}, k)=\prod_{\mathfrak{v}\in s}(\mathfrak{a}_{\mathfrak{p}}, k_{\mathfrak{p}})$

for any $\mathfrak{a}_{s}\in J_{s}$ . Moreover we have immediately from the definition

(5) $\rho_{s}(\Phi^{-1}(\mathfrak{H}))=\Phi_{s}^{-1}(\mathfrak{H})$

for any subgroup $\mathfrak{H}$ of $\mathfrak{G}_{k^{1)}}$ .
Now let $K$ be a normal extension field of $k$ of finite degree and denote

by $S(K/k)$ the set of all primes of $k$ which are of degree 1 in $K/k$ . Moreover
denote by $\hat{S}$ the set of all primes of $K$ and by $\hat{S}(K/k)$ the set of primes
of $K$ whose norms belong to $S(K/k)$ . Put $S(K/k)=s,\hat{S}(K/k)=\hat{s}$ .

Let $A_{K}$ be as before the maximal abelian extension of $K$, and $\mathfrak{G}_{K}$ its galois
group. Let further $M_{1},$ $M_{2},$ $\cdots$ be a sequence of abelian extensions of $K$ such
that $k\subset M_{1}\subset M_{2}$ , $\cdot$ . , every $M_{i}$ is normal over $k$ , and the union of all $M_{i}$ is
equal to $A_{K}$ . Then $\mathfrak{G}_{K}$ is equal to the projective limit of $\mathfrak{G}(M_{i}/K)$ . So we
denote an element $\sigma$ of $\mathfrak{G}_{K}$ by $\sigma=\{\sigma_{i}\}$ where $\sigma_{i}\in \mathfrak{G}(M_{i}/K)$ . Then $\{\sigma_{i}\}$ be-
longs to $\mathfrak{G}_{K}$ if and only if the restriction of $\sigma_{i}$ to $M_{j}$ is equal to $\sigma_{j}$ when
$i\geqq i$ . Denote by $D_{K}$ the complete inverse image of the connected component
of the unity by the canonical homomorphism of the ordinary idele group $J_{K}$

to the ordinary idele class group $C_{K}$ . Then we have
THEOREM 1. The image of the norm residue mapping $\Phi_{\hat{s}}$ of $J_{\hat{s}}$ is equal to

$\mathfrak{G}_{K}$ , and the kernel of $\Phi_{\hat{s}}$ is equal to $\rho_{\hat{s}}(D_{K})$ . Hence we have $J_{S}/\rho_{\hat{s}}(D)=\mathfrak{G}_{K}$ .
PROOF. Notations being as above, $\{\sigma_{i}\}$ be an any element of $\mathfrak{G}_{K}$ where

$\sigma_{i}\in \mathfrak{G}(M_{i}/K)$ . Let $\mathfrak{a}_{i}$ be an element of $J_{5}$ such that $\sigma_{i}=(\mathfrak{a}_{i}, M_{i}/K)$ , whose
existence follows from theorem 1 in $RI$. Let further $H_{\hat{s}}^{(i)}$ be the subgroup
of $J_{S}$ corresponding to $M_{i}$ by theorem 2 in $RI$. Then $\mathfrak{a}_{i}H_{\hat{s}}^{(i)}\supset \mathfrak{a}{}_{J}H_{\hat{s}^{(j)}}$ when

1) By $\Phi^{-1}$ we mean always the complete converse image.
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$j\geqq i$ . Let $\bigcap_{i}\mathfrak{a}_{i}H_{\hat{s}^{(i)}}=\mathfrak{a}_{s^{\prime}}$, whose existence in $J_{\hat{s}}$ follows from that $H_{\hat{s}}^{c\iota}$
) is open

and $J_{\hat{s}}$ is locally compact. Then $(\mathfrak{a}_{\hat{s}}, M_{i}/K)=(\mathfrak{a}_{i}, M_{i}/K)=\sigma_{i}$ for every $i$ .
Hence we have $\Phi_{\hat{s}}(\mathfrak{a}_{\hat{s}})=\sigma_{i}$ which proves the first assersion of the theorem.
Since the kernel of $\Phi$ is $D_{K}$ , the other assertions of the theorem follows im-
mediately from the definition of $\Phi_{\hat{s}}$ .

We called in $RI$ a subgroup $H_{\hat{s}}$ of $J_{\hat{s}}$ is s-admissible if $H_{s^{\prime}}=\rho_{\hat{s}}\overline{(H_{\hat{s}}D_{K}}$),

where the bar stand for the closure in $J_{K}$ . Now we have
THEOREM 2. Let $H_{S}$ be a closed subgroup of $J_{\hat{s}}$ of finite index. Then $H_{\hat{s}}$

is s-admissible if and only if $H_{\hat{s}}$ contains $p_{S}(D_{K})$ . If $H_{g}$ is s-admissible, then
there exists uniquely the admissible2) subgroup $H$ of $J$ of finite index such that
$\rho_{\hat{s}}(H)=H_{\hat{s}}$ . When that is so we have moreover $\Phi(H)=\Phi_{\hat{s}}(H_{\hat{s}})$ .

PROOF. We first note that $\mathfrak{G}_{K}$ is compact, $J$ resp. $J_{\hat{s}}$ is locally compact,
and $\Phi$ resp. $\Phi_{\hat{s}}$ maps $J$ resp. $J_{\hat{s}}$ onto $\mathfrak{G}_{K}$ . Hence both $\Phi$ and $\Phi_{\hat{s}}$ are open3).

Suppose that $H_{\hat{s}}$ contains $\rho_{\hat{s}}(D_{K})$ , which is the kernel of $\Phi_{\hat{s}}$ . Put $\Phi_{\hat{s}}(H_{\hat{s}})=\mathfrak{H}$

Then since $\Phi_{\hat{s}}$ is an open and onto mapping, $\mathfrak{H}$ is a closed subgroup of $\mathfrak{G}_{K}$

of finite index. Put $H=\Phi^{-1}(\mathfrak{H})$ . Then $H$ is an admissible subgroup of $J$ of
finite index, and $\rho_{i}(H)=\rho_{\hat{s}}(\Phi^{-J}(\mathfrak{H}))=\Phi_{s^{\prime}}^{-1}(\mathfrak{H})=\Phi_{3^{-1}}(\Phi_{\hat{s}}(H_{s^{\prime}}))--$ by (5).

Suppose that $H^{\prime}$ be also an admissible subgroup of $J$ of finite index such
that $\rho_{\hat{s}}(H^{J})=H_{\hat{s}}$ . Put $\Phi(H^{\prime})=\mathfrak{H}^{\prime}$ . Then by using (5), $\Phi_{\hat{s}^{-1}}(\mathfrak{H}^{\prime})=\rho_{\hat{s}}(\Phi^{-1}(\mathfrak{H}^{\prime}))$

$=\rho_{\hat{s}}(H^{\prime})=H_{\hat{s}}$ . Hence $\mathfrak{H}^{\prime}=\Phi_{\hat{s}}(H_{\hat{s}})=\mathfrak{H}$ . Then since both $H$ and $H^{\prime}$ are ad-
missible and closed in $J$ , we have $H=H^{\prime}$ . Thus the last two assertions of
the theorem are proved. The assertion about the s-admissibility is now an
immediate consequence of the definition.

\S 2. Conductor.

Let $K/k$ be as before a normal extension of finite degree, and put
$s=S(K/k),\hat{s}=\hat{S}(K/k)$ . Let further $H_{\dot{s}}$ be an s-admissible subgroup of $J_{\hat{s}}$ of finite
degree. Then by theorem 2 there exists an abelian extension $M$ of $K$ which
corresponds to the admissible subgroup $H$ by means cf the class field theory,
where $\rho_{\hat{s}}(H)=H_{S}$ . We shall call such an $M$ the abelian extension of $K$ cor-
responding to $H_{\xi}$ . In this section we shall study the conductor of $M/K$.

Let $\mathfrak{P}$ be a prime of $K$ and $\nu_{\mathfrak{P}}$ be a non negative integer. If $\mathfrak{P}$ is ar-
chimedean, $\nu_{\mathfrak{P}}=0$ or 1. For $\mathfrak{a}_{\mathfrak{P}}\in K_{\mathfrak{P}}$ we define4) the congruence $\mathfrak{a}_{\S\}}\equiv 1(mod$ .

$\mathfrak{P}^{\nu}\mathfrak{P})$ to mean the usual congruence if $\mathfrak{P}$ finite and $v_{\mathfrak{P}}\geqq 1$ ; $\mathfrak{a}_{\mathfrak{P}}$ is a $\mathfrak{P}$ -unit if
$\mathfrak{P}$ finite and $\nu_{\mathfrak{P}}=0$ ; asp $>0$ if $\mathfrak{P}$ real and $t$) $\mathfrak{P}=1$ ; and if $\mathfrak{P}$ is complex, or if $\mathfrak{P}$

is real but $\nu_{\mathfrak{P}}=0$ , then we put no restriction on $\mathfrak{a}_{\mathfrak{P}}$ . Denote by $\gamma_{\mathfrak{P}}(\mathfrak{P}^{\nu_{\mathfrak{P}}})$ the

2) This means that $H$ is closed and contains $D_{K}$ .
3) See Pontrjagin [4], Ch. 3, Theorem 13.
4) See Artin-Tate [2], Ch. 8, 2,
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group of all elements $\mathfrak{a}_{\mathfrak{P}}$ of $K_{\mathfrak{P}}$ such that $\mathfrak{a}_{\mathfrak{P}}\equiv 1(mod. \mathfrak{P}^{\nu_{\mathfrak{P}}})$ . Furthermore for
an idele $\mathfrak{a}$ and an integral divisor $\mathfrak{m}=\prod_{\mathfrak{P}}\mathfrak{P}^{\nu_{\mathfrak{P}}}$

define $\mathfrak{a}\equiv 1(mod. \mathfrak{m})$ to mean
$\mathfrak{a}_{\mathfrak{P}}\equiv 1(mod. \mathfrak{P}^{\nu_{\mathfrak{P}}})$ for every $\mathfrak{P}$ , and denote by $\gamma(\mathfrak{m})$ the group of all such ideles.
For an integral divisor $\mathfrak{m}$ we denote by $\mathfrak{m}_{\dot{s}}$ resp. $\mathfrak{m}_{\hat{s}}$ , its $\hat{s}$ resp. $\hat{s}^{\prime}$ -part, and
put $\gamma_{\hat{s}}(\mathfrak{m}_{\hat{s}})=\rho_{\hat{s}}(\gamma(\mathfrak{m}_{\hat{s}})),$ $\gamma_{s\prime}(\mathfrak{n}\iota_{S})=\rho_{\hat{s}^{J}}(\gamma(\mathfrak{m}_{\hat{S}^{\prime}}))$ .

Now let $H$ be an admissible subgroup of $I_{K}$ of finite index and $M$ be the
abelian extension of $K$ corresponding to $H$ by means of the class field theory.
Then5) it is well known that the conductor of $M/K$ is equal to an integral

divisor $f=\prod_{\mathfrak{P}}f_{\mathfrak{P}}$ where $f_{\mathfrak{P}}=\mathfrak{P}^{\nu_{\mathfrak{P}}}\nu_{\mathfrak{P}}$ is the smallest non-negative integer such

that $H\supset\gamma_{\mathfrak{P}}(f_{\mathfrak{P}})$ for every prime $\mathfrak{P}$ .
LEMMA 1. Let $A_{\mathfrak{P}}$ be any subgroup of $K_{\mathfrak{P}}$ . Then $\Phi_{\hat{s}^{-1}}(\Phi(A_{\mathfrak{P}}))=A_{\mathfrak{P}}\cdot\rho_{S}(D_{K})$

$or=\pi_{\hat{S}}(D_{K}\cap(J_{\hat{S}}\times A_{\mathfrak{P}}))$ according to $\mathfrak{P}\in\hat{s}$ $or\in\hat{s}^{\prime}$ .
PROOF. If $\mathfrak{P}\in\hat{s}$ , then $\Phi_{\hat{s}}^{-1}(\Phi(A_{\mathfrak{B}}))=\Phi_{\hat{s}^{-1}}(\Phi(A_{\mathfrak{B}}))=A_{Q\}}\cdot\Phi_{\hat{s}^{-1}}(1)=A_{\mathfrak{P}}\cdot\rho_{\xi}(D_{K})$

by theorem 1. If $\mathfrak{P}\in\hat{s}^{\prime}$ , then $\Phi_{\hat{s}^{-1}}(\Phi(A_{\mathfrak{P}}))$ is of all $\mathfrak{a}\in J_{\hat{s}}$ such that $\Phi_{\hat{s}}((\ddagger)=\Phi(\mathfrak{b}_{\mathfrak{P}})$

for some $\mathfrak{a}_{\mathfrak{P}}\in A_{\mathfrak{P}}$ .
This is equivalent to $\mathfrak{a}t$) $\overline{\mathfrak{P}}^{I}\in D_{K}$ , since the kernel of $\Phi$ is $D_{K}$ . Hence

$\Phi_{\hat{s}^{-1}}(\Phi(A_{\mathfrak{P}}))=\pi_{\hat{S}}(D_{K}\cap(J_{\hat{S}}\times A_{\mathfrak{P}}))$ . Thus the lemma is proved.
THEOREM 3. Let $H_{\hat{s}}$ be an s-admissible subgroup of $J_{\hat{s}}$ and $M$ be the abelian

extension of $K$ corresponding to $H_{\hat{s}}$ . Then the conductor of $M/K$ is equal to an
integral divisor $f=\prod_{\mathfrak{P}}f_{\mathfrak{P}}$ where $f_{\mathfrak{P}}=\mathfrak{P}^{\nu_{\mathfrak{P}}}$ , vwr is the smallest non negative integer

such that $H_{\hat{s}}\supset\gamma_{x}\wp(\mathfrak{f}_{\mathfrak{P}})$ $or\supset\pi_{\hat{s}}(D_{K}\cap(J_{s^{\prime}}\times\gamma(f_{\mathfrak{P}})))$ according to $\mathfrak{P}\in s$ or $\in s^{\prime}$ .
PROOF. We have $\Phi^{-1}(\Phi_{\hat{s}}(H_{\hat{s}}))=H$ by theorem 2. Hence $H\supset\gamma_{\mathfrak{P}}(f_{?!})$ if and

only if $\Phi_{s}\langle H_{s}$ ) $\supset\Phi(\gamma_{\mathfrak{P}}(T_{\mathfrak{P}}))$ . This is equivalent that $H_{\hat{s}}\supset\Phi_{\dot{s}^{-1}}(\Phi(\gamma_{\mathfrak{B}}(f_{\mathfrak{P}})))$ , since
$H_{\hat{s}}$ is s-admissible. Then the theorem implies from lemma 1 immediately.

We note that the proposition 5 in $RI$ implies that the condition $H_{\hat{S}}\supset\pi,(D_{K}$

$\cap(J_{\hat{s}}\times\gamma(f_{\mathfrak{P}})))$ can be replaced by $H_{\hat{s}}\supset\pi_{\hat{s}}(K^{\times}\cap(J_{\hat{s}}\times\gamma(f_{\mathfrak{P}})))$ .

\S 3. Condition of the admissibility in the ground field (special case).

Let $K/k$ be a normal extension of finite degree, and put $s=S(K/k)$ ,

$\hat{s}=\hat{S}(K/k)$ . It is easily proved that the number of independent units of $K$ is
equal to that of $k$ if and only if $k$ is totally real and $K$ is totally imaginary
and quadratic over $k$ . In this case we shall characterize in terms of the
ground field $k$ the condition of a subgroup of $J_{\hat{s}}$ to be s-admissible.

We have proved in theorem 2 that a subgroup $H_{\hat{s}}$ of $J_{\hat{s}}$ is s-admissible
if and only if $H_{\hat{s}}$ contains $\rho_{\hat{S}}(D_{K})$ . Therefore our purpose in this section is
to study on $\rho_{\hat{S}}(D_{K})$ . The structure of $D_{K}$ is known by Artin [1] as $follows^{6)}$ :

5) See for instance Artin.Tate [2], Ch. 8, 2.
6) Cf. Artin and Tate [2], Ch. 9,



Notion of restricted ideles 251

Let $U$ be the group of unit ideles of $K$, and $U_{\mathfrak{P}}$ be the group of $\mathfrak{P}$-adic units
of $K_{\mathfrak{P}}$ . Then we have

(6) $U=\overline{U}\tilde{U}$

where $\overline{U}=\prod_{\mathfrak{P}\neq \mathfrak{P}\infty}U_{\mathfrak{P}}$ and $\tilde{U}=\prod_{\mathfrak{P}\infty}U_{\mathfrak{P}_{\infty}}$ . We split each unit idele $\mathfrak{a}$ as a product

(7) $\mathfrak{a}=\overline{\mathfrak{a}}\mathfrak{a}\sim$ ,

where $\mathfrak{a}\in\overline{U},$
$\sim \mathfrak{a}\in\tilde{U}$ and embedded ordinarily in $U$. Denote by $\overline{Z}$ the comple-

tion of the group $Z$ of rational integers under the topology whose fundamental
system of neighborhoods of $0$ consists of all ideals of $Z$. Put $V=\overline{Z}+R$

(direct), where $R$ is the group of real numbers, and denote any element $\lambda\in V$

as $\lambda=(x, h)$ , where $x\in\overline{Z}$ and $h\in R$ . For any element $\mathfrak{a}=U$, the power $\mathfrak{a}^{\lambda}$ is
defined by

(8) $\mathfrak{a}^{\lambda_{=\overline{\mathfrak{a}}\mathfrak{a}^{h},}^{x\sim}}$

where $\overline{\mathfrak{a}}^{x}$ is the generalization of the ordinary power with regard to the above
topology. Let $\phi_{j}(t)$ the idele which has the component $e^{2\pi it}$ at j-th complex
prime and 1 at all other primes. Denote by $T$ the group generated by all
such $\phi_{j}(t),$ $j=1$ , $\cdot$ . , $r_{2}$ . Let $\epsilon_{1},$ $\epsilon_{2}$ , $\cdot$ .. , $\epsilon_{r}$ be a system of independent totally
positive units of $K$, and denote by $E_{K}$ the group of all elements $\epsilon_{1}^{\lambda_{1}}\cdots\epsilon_{r^{\gamma}}^{\lambda}$

where $\lambda_{i}=(x_{i}, h_{i})\in V(i=1, \cdots , r)$ . Furthermore denote by $L$ the group of
ideles which has a real number as the component at the infinite prime fixed
once for all, and 1 at all other primes. Then we have by Artin [1]

(9) $D_{K}=E_{K}\cdot T\cdot L\cdot K^{*}$ ,

where $K^{*}$ is the multiplicative group of non zero elements of $K$ which is
embedded ordinarily in $J_{K}$ .

Now let $k$ be a totally real number field of finite degree, and $K$ be a
totally imaginary and quadratic over $k$ . Then we can take in $k$ the above
system $\epsilon_{1},$ $\epsilon_{2},$

$\cdots$ , $\epsilon_{r}$ of independent units of $K$, and we have
$D_{k}=E\cdot L\cdot k^{*}$ ,

(10)
$D_{K}=E\cdot T\cdot L\cdot K^{*}$ ,

where7) $E=E_{k}=E_{K}$.
LEMMA 2. Let $K/k$ be as above. Then we have

$\rho_{\hat{s}}(D_{K})=\rho_{s}(D_{k})$ .
PROOF. Let $r$ be the number of independent units of $k$ , which is equal

to that of $K$. Generally denote by $\alpha,$ $\mathfrak{e},$
$\phi$ and $\nu$ elements of $K,$ $E,$ $T$ and $L$

respectively. Then $\rho_{\hat{s}}(D_{K})$ is of all $\pi_{\hat{s}}(\mathfrak{e}\phi\nu\alpha)$ such that $\pi_{\hat{s}},(\mathfrak{e}\phi\nu\alpha)=1$ by (10).

7) We always embed $J_{k}$ into $J_{K}$ by ordinal way.
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This is equal to the set of all $\pi_{\hat{s}}(\mathfrak{e}\alpha^{-1})$ such that $\pi_{\hat{s}},(\mathfrak{e})=\pi_{\hat{s}},(\phi\nu\alpha)$ . By the
assumption of $K/k$ , all infinite primes of $K$ is contained in $\hat{s}^{\prime}$ . Hence $\pi_{\hat{s}},(e)$

$=\pi_{\hat{s}},(\phi\nu\alpha)$ is equivalent to $\pi_{\hat{s}}(\overline{\mathfrak{e}})=\pi_{\hat{s}},(\alpha)$ and $\pi_{\hat{s}},(\mathfrak{e}\sim)=\pi_{\hat{s}},(\phi\nu\tilde{\alpha})$ . But the last
condition is unnecessary. Because for any $\alpha\in K$ the equality $\sim t=$

always a solution with respect to $\sim \mathfrak{e},$ $\phi,$ $\nu$ . Now for any $\sigma\in \mathfrak{G}(K/k)$ and $x\in\overline{Z}$

we have easily $(\overline{\epsilon}^{x})^{\sigma}=(\overline{\epsilon}^{\sigma})^{x}$ by the definition of the generalized power. Then
since $\overline{e}=\overline{\epsilon}_{1}^{x_{1}}\cdots\overline{\epsilon}_{r}^{x_{r}}$ where $\epsilon_{i}\in k,$ $\pi_{\hat{s}}(\overline{\mathfrak{e}})=\pi_{\hat{s}}(\alpha)$ implies $\alpha\in k$ . Hence $\rho_{\hat{s}}(D_{K})$ con-
sists of all $\pi_{\hat{s}}(\mathfrak{e}\alpha^{-1})$ such that $\pi_{\hat{s}},(\overline{\mathfrak{e}})=\pi_{\hat{s}},(\alpha)$ where $\alpha\in k$ .

By the same way as above we see $\rho_{s}(D_{k})$ consists of all $\pi_{s}(\mathfrak{e}\alpha^{-1})$ such that
$\pi_{s},(\overline{\mathfrak{e}})=\pi_{s},(\alpha)$ where $\alpha\in k$ . Hence we have the lemma.

Now by theorem 2 and lemma 2 we have
THEOREM 4. Let $k$ be a totally real algebraic number field of finite degree

and $K$ be its quadratic extension which is totally imaginary. Put $s=S(K/k)$ .
We embed $k^{*}$ and $\rho_{s}(D_{k})$ diagonaly into the direct product $J_{s}\times J_{s}$ of s-restricted
idele groups of $k$ . Then there is a following one to one correspondence between
the set of all closed subgroups $H$ of $J_{l}\times J_{s}$ of finite index which contains $\rho_{s}(D_{k})$

and the set of all abelian extensions $M$ of $K$ of finite degree: When $M$ cor-
responds to $H$, a prime $\mathfrak{p}$ of $k$ splits completely in $M$ if and only if $\mathfrak{p}\in s$ and
$k_{\mathfrak{p}}\times k_{\mathfrak{p}}\subset H$.
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