The notion of restricted ideles with application to some extension fields II

By Yoshiomi Furuta

(Received Jan. 10, 1966)

Let k be an algebraic number field of finite degree, K be a normal extension of k of degree n, and (B be its galois group. Denote by s resp. s the set of all primes of k resp. of K which has degree 1 in K / k. We defined in the preceeding paper [3], which will be referred to as $R I$, the restricted idele group J_{s} resp. J_{s} of k resp. of K. And we proved that there is a one to one correspondence between some ($(6$-invariant \hat{s}-admissible) closed subgroups H of J_{s} and abelian extensions M of K normal over k.

In this paper we shall strengthen the above consequence and the condition of H to be \hat{s}-admissible in RI, by studying the norm residue mapping of J_{s} to the group of the maximal abelian extension (theorem 1 and 2). Moreover we shall determine the conductor of the field M corresponding to H (theorem 3). Since the \hat{s}-restricted idele group J_{s} of K is $(\mathcal{G}$-isomorphic to the direct product J_{s}^{n} of n-folds of the s-restricted idele group J_{s} of k, H is considered a subgroup of J_{s}^{n}. So it will be interest to characterize the condition of \hat{s}-admissibility by terms of the ground field k. We shall do it for a special case of K / k, by substantially using the theorem 2 (theorem 4).

§1. Norm residue symbols.

Let k be an any algebraic number field of finite degree and $J=J_{k}$ be the (ordinary) idele group of k. Let $S=S(k)$ be the set of all (finite or infinite) primes \mathfrak{p} of k, s be a subset of S, and s^{\prime} be its complement in $S ; S-s$. We defined in $R I$ the s-restricted idele group J_{s} by the restricted direct product of \mathfrak{p}-adic completions k_{p} over \mathfrak{p}-adic unit groups $U_{\mathfrak{p}}$ of k, where \mathfrak{p} runs over s.

Then we have

$$
\begin{equation*}
J=J_{s} \times J_{s^{\prime}} \quad \text { (direct). } \tag{1}
\end{equation*}
$$

We shall fix this isomorphism and embed naturally J_{s} into J. Denote by π_{s} the projection of J to J_{s}. The s-restriction ρ_{s} is defined by any subset A of J_{s} by

$$
\begin{equation*}
\rho_{s}(A)=\pi_{s}\left(A \cap J_{s}\right) \tag{2}
\end{equation*}
$$

For any normal extension K / k, denote by $\mathbb{C}(K / k)$ its galois group. Let A_{k} be the maximal abelian extension of k and \mathscr{S}_{k} be its galois group, which is the projective limit of $\mathscr{G}(A / k)$ of abelian extensions A over k of finite degree.

For any $\mathfrak{a} \in J$ and any abelian extension A / k of finite degree, let ($\mathfrak{a}, A / k$) be the norm residue symbol. Let further (a, k) be the (generalized) norm residue symbol of k, which is defined as an element of \mathscr{G}_{k} whose $\mathscr{B}(A / k)$ component is $(\mathfrak{a}, A / k)$. Then (\mathfrak{a}, k) gives a homomorphism of J_{k} onto \mathscr{S}_{k}. We denote this homomorphism by Φ and call the reciprocity map. Denoting by a_{p} the \mathfrak{p}-component of \mathfrak{a}, we have

$$
\begin{equation*}
(\mathfrak{a}, k)=\prod_{p \in S}\left(a_{p}, k_{\mathfrak{p}}\right) \tag{3}
\end{equation*}
$$

where ($\mathfrak{a}_{\mathfrak{p}}, k_{\mathfrak{p}}$) is the (generalized) local norm residue symbol. For any subset s of S denote by Φ_{s} the restriction of Φ to J_{s}. Then

$$
\begin{equation*}
\Phi_{s}\left(a_{s}\right)=\left(\mathfrak{a}_{s}, k\right)=\prod_{p \in s}\left(a_{p}, k_{p}\right) \tag{4}
\end{equation*}
$$

for any $\mathfrak{a}_{s} \in J_{s}$. Moreover we have immediately from the definition

$$
\begin{equation*}
\rho_{s}\left(\Phi^{-1}(\mathfrak{g})\right)=\Phi_{s}^{-1}(\mathfrak{F}) \tag{5}
\end{equation*}
$$

for any subgroup $\mathfrak{S g}^{\text {of }} \mathfrak{G}_{k}{ }^{1)}$.
Now let K be a normal extension field of k of finite degree and denote by $S(K / k)$ the set of all primes of k which are of degree 1 in K / k. Moreover denote by \hat{S} the set of all primes of K and by $\hat{S}(K / k)$ the set of primes of K whose norms belong to $S(K / k)$. Put $S(K / k)=s, \hat{S}(K / k)=\hat{s}$.

Let A_{K} be as before the maximal abelian extension of K, and \mathscr{G}_{K} its galois group. Let further M_{1}, M_{2}, \cdots be a sequence of abelian extensions of K such that $k \subset M_{1} \subset M_{2}, \cdots$, every M_{i} is normal over k, and the union of all M_{i} is equal to A_{K}. Then \mathscr{G}_{K} is equal to the projective limit of $\mathbb{C}\left(M_{i} / K\right)$. So we denote an element σ of \mathscr{G}_{K} by $\sigma=\left\{\sigma_{i}\right\}$ where $\sigma_{i} \in \mathbb{G}\left(M_{i} / K\right)$. Then $\left\{\sigma_{i}\right\}$ belongs to \mathscr{G}_{K} if and only if the restriction of σ_{i} to M_{j} is equal to σ_{j} when $i \geqq j$. Denote by D_{K} the complete inverse image of the connected component of the unity by the canonical homomorphism of the ordinary idele group J_{K} to the ordinary idele class group C_{K}. Then we have

Theorem 1. The image of the norm residue mapping Φ_{s} of J_{s} is equal to \mathscr{G}_{K}, and the kernel of Φ_{s} is equal to $\rho_{s}\left(D_{K}\right)$. Hence we have $J_{s} / \rho_{s}(D)=\mathscr{G}_{K}$.

Proof. Notations being as above, $\left\{\sigma_{i}\right\}$ be an any element of \mathscr{G}_{K} where $\sigma_{i} \in \mathbb{G}\left(M_{i} / K\right)$. Let \mathfrak{a}_{i} be an element of J_{s} such that $\sigma_{i}=\left(\mathfrak{a}_{i}, M_{i} / K\right)$, whose existence follows from theorem 1 in RI. Let further $H_{s}^{(i)}$ be the subgroup of J_{s} corresponding to M_{i} by theorem 2 in $R I$. Then $\mathfrak{a}_{i} H_{s}^{(i)} \supset \mathfrak{a}_{j} H_{s}^{(j)}$ when

[^0]$j \geqq i$. Let $\bigcap_{i} a_{i} H_{s}^{(i)}=a_{s}$, whose existence in J_{s} follows from that $H_{s}^{(i)}$ is open and J_{s} is locally compact. Then $\left(a_{s}, M_{i} / K\right)=\left(\mathfrak{a}_{i}, M_{i} / K\right)=\sigma_{i}$ for every i. Hence we have $\Phi_{s}\left(a_{s}\right)=\sigma_{i}$ which proves the first assersion of the theorem. Since the kernel of Φ is D_{K}, the other assertions of the theorem follows immediately from the definition of Φ_{s}.

We called in $R I$ a subgroup H_{s} of J_{s} is \hat{s}-admissible if $H_{s}=\rho_{s}\left(\overline{H_{s} D_{K}}\right)$, where the bar stand for the closure in J_{K}. Now we have

Theorem 2. Let H_{s} be a closed subgroup of J_{s} of finite index. Then H_{s} is \hat{s}-admissible if and only if H_{s} contains $\rho_{s}\left(D_{K}\right)$. If H_{s} is \hat{s}-admissible, then there exists uniquely the admissible ${ }^{2)}$ subgroup H of J of finite index such that $\rho_{s}(H)=H_{s}$. When that is so we have moreover $\Phi(H)=\Phi_{s}\left(H_{s}\right)$.

Proof. We first note that \mathbb{G}_{K} is compact, J resp. J_{s} is locally compact, and Φ resp. Φ_{s} maps J resp. J_{s} onto \mathscr{G}_{K}. Hence both Φ and Φ_{s} are open ${ }^{3}$. Suppose that H_{s} contains $\rho_{s}\left(D_{K}\right)$, which is the kernel of Φ_{s}. Put $\Phi_{s}\left(H_{s}\right)=\mathfrak{y}$. Then since Φ_{s} is an open and onto mapping, \mathscr{J} is a closed subgroup of \mathscr{C}_{K} of finite index. Put $H=\Phi^{-1}(\mathfrak{g})$. Then H is an admissible subgroup of J of finite index, and $\rho_{s}(H)=\rho_{s}\left(\Phi^{-1}\left(\mathfrak{g}^{\prime}\right)\right)=\Phi_{s}^{-1}(\mathfrak{F})=\Phi_{s}^{-1}\left(\Phi_{s}\left(H_{s}\right)\right)=H_{s}$ by (5).

Suppose that H^{\prime} be also an admissible subgroup of J of finite index such that $\rho_{s}\left(H^{\prime}\right)=H_{s}$. Put $\Phi\left(H^{\prime}\right)=\mathfrak{F}^{\prime}$. Then by using (5), $\left.\Phi_{s^{-1}\left(\mathfrak{F}^{\prime}\right)}\right)=\rho_{s}\left(\Phi^{-1}\left(\mathfrak{F}_{g^{\prime}}\right)\right)$ $=\rho_{s}\left(H^{\prime}\right)=H_{s}$. Hence $\mathscr{g}^{\prime}=\Phi_{s}\left(H_{s}\right)=\mathscr{S}$. Then since both H and H^{\prime} are admissible and closed in J, we have $H=H^{\prime}$. Thus the last two assertions of the theorem are proved. The assertion about the \hat{s}-admissibility is now an immediate consequence of the definition.

§ 2. Conductor.

Let K / k be as before a normal extension of finite degree, and put $s=S(K / k), \hat{s}=\hat{S}(K / k)$. Let further H_{s} be an \hat{s}-admissible subgroup of J_{s} of finite degree. Then by theorem 2 there exists an abelian extension M of K which corresponds to the admissible subgroup H by means of the class field theory, where $\rho_{s}(H)=H_{s}$. We shall call such an M the abelian extension of K corresponding to H_{s}. In this section we shall study the conductor of M / K.

Let \mathfrak{B} be a prime of K and $\nu_{\mathfrak{B}}$ be a non negative integer. If \mathfrak{P} is archimedean, $\nu_{\mathfrak{\beta}}=0$ or 1 . For $\mathfrak{a}_{\mathfrak{\beta}} \in K_{\mathfrak{\beta}}$ we define ${ }^{4}$ the congruence $\mathfrak{a}_{\mathfrak{\beta}} \equiv 1$ (mod. $\left.\mathfrak{P}^{\nu} \not{ }^{\mathcal{P}}\right)$ to mean the usual congruence if \mathfrak{F} finite and $\nu_{\mathfrak{B}} \geqq 1 ; \mathfrak{a}_{\mathfrak{F}}$ is a \mathfrak{P}-unit if \mathfrak{B} finite and $\nu_{\mathfrak{\beta}}=0 ; \mathfrak{a}_{\mathfrak{B}}>0$ if \mathfrak{F} real and $\nu_{\mathfrak{B}}=1$; and if \mathfrak{B} is complex, or if \mathfrak{B} is real but $\nu_{\mathcal{\beta}}=0$, then we put no restriction on $\mathfrak{a}_{\mathfrak{\beta}}$. Denote by $\gamma_{\mathfrak{\beta}}\left(\mathfrak{P}_{\mathcal{B}} \nu_{\mathcal{B}}\right)$ the
2) This means that H is closed and contains D_{K}.
3) See Pontrjagin [4], Ch. 3, Theorem 13.
4) See Artin-Tate [2], Ch. 8, 2 .
group of all elements $\mathfrak{a}_{\mathfrak{\beta}}$ of $K_{\mathfrak{\beta}}$ such that $\mathfrak{a}_{\mathfrak{\beta}} \equiv 1$ (mod. $\left.\mathfrak{F}_{\mathfrak{\beta}}{ }^{\nu}\right)$. Furthermore for an idele \mathfrak{a} and an integral divisor $\mathfrak{m}=\prod_{\mathfrak{\beta}} \mathfrak{P}^{\nu_{\mathfrak{F}}}$ define $\mathfrak{a} \equiv 1$ (mod. \mathfrak{m}) to mean $\mathfrak{a}_{\mathfrak{F}} \equiv 1$ (mod. $\mathfrak{P}^{\nu_{\mathfrak{\beta}}}$) for every \mathfrak{F}, and denote by $\gamma(\mathfrak{m})$ the group of all such ideles. For an integral divisor \mathfrak{m} we denote by $\mathfrak{m}_{\mathfrak{s}}$ resp. $\mathfrak{m}_{s^{\prime}}$ its \hat{s} resp. \hat{s}^{\prime}-part, and put $\left.\gamma_{s}\left(\mathfrak{m}_{s}\right)=\rho_{s}\left(\gamma^{(} \mathfrak{m}_{s}\right)\right)$, $\gamma_{s^{\prime}}\left(\mathfrak{m}_{s}\right)=\rho_{s^{\prime}}\left(\gamma\left(\mathfrak{m}_{s_{s}}\right)\right)$.

Now let H be an admissible subgroup of J_{K} of finite index and M be the abelian extension of K corresponding to H by means of the class field theory. Then ${ }^{5)}$ it is well known that the conductor of M / K is equal to an integral divisor $\mathfrak{f}=\prod_{\mathcal{B}} \mathfrak{f}_{\mathfrak{B}}$ where $\mathfrak{f}_{\mathcal{B}}=\mathfrak{B}_{\mathcal{B}}{ }_{\mathfrak{B}}, \nu_{\mathfrak{B}}$ is the smallest non-negative integer such that $H \supset \gamma_{\mathfrak{P}}\left(\mathfrak{F}_{\mathcal{B}}\right)$ for every prime \mathfrak{F}.

Lemma 1. Let $A_{\mathfrak{F}}$ be any subgroup of $K_{\mathfrak{F}}$. Then $\Phi_{s}^{-1}\left(\Phi\left(A_{\mathfrak{F}}\right)\right)=A_{\mathfrak{\beta}} \cdot \rho_{s}\left(D_{K}\right)$ or $=\pi_{s}\left(D_{K} \cap\left(J_{s} \times A_{\mathfrak{B}}\right)\right)$ according to $\mathfrak{B} \in \hat{s}$ or $\in \hat{s}^{\prime}$.

Proof. If $\mathfrak{P} \in \hat{s}$, then $\Phi_{s^{-1}}^{-1}\left(\Phi\left(A_{\mathfrak{B}}\right)\right)=\Phi_{s^{-1}}\left(\Phi_{\mathfrak{s}}\left(A_{\mathfrak{B}}\right)\right)=A_{\mathfrak{F}} \cdot \Phi_{s}^{-1}(1)=A_{\mathfrak{\beta}} \cdot \rho_{s}\left(D_{K}\right)$ by theorem 1. If $\mathfrak{\beta} \in \hat{s}^{\prime}$, then $\Phi_{s^{-1}}\left(\Phi\left(A_{\mathfrak{\beta}}\right)\right)$ is of all $\mathfrak{a} \in J_{s}$ such that $\Phi_{s}(\mathfrak{a})=\Phi\left(\mathfrak{h}_{\mathfrak{\beta}}\right)$ for some $a_{\mathfrak{B}} \in A_{\mathfrak{\beta}}$.

This is equivalent to $\mathfrak{a b}_{\bar{\beta}}{ }^{-1} \in D_{K}$, since the kernel of Φ is D_{K}. Hence $\Phi_{s}^{-1}\left(\Phi\left(A_{\mathfrak{r}}\right)\right)=\pi_{s}\left(D_{K} \cap\left(J_{s} \times A_{\mathfrak{q}}\right)\right)$. Thus the lemma is proved.

Theorem 3. Let H_{s} be an \hat{s}-admissible subgroup of J_{s} and M be the abelian extension of K corresponding to H_{s}. Then the conductor of M / K is equal to an integral divisor $\mathfrak{f}=\prod_{\mathfrak{B}} f_{\mathfrak{B}}$ where $\mathfrak{f}_{\mathfrak{B}}=\mathfrak{W}_{\mathfrak{B}}^{\nu_{B}}, \nu_{\mathfrak{B}}$ is the smallest non negative integer such that $H_{s} \supset \gamma_{\mathfrak{s}}\left(\mathfrak{F}_{\mathfrak{F}}\right)$ or $\supset \pi_{s}\left(D_{K} \cap\left(J_{s} \times \gamma\left(\mathfrak{F}_{\mathfrak{P}}\right)\right)\right)$ according to $\mathfrak{F} \in s$ or $\in s^{\prime}$.

Proof. We have $\Phi^{-1}\left(\Phi_{s}\left(H_{s}\right)\right)=H$ by theorem 2. Hence $H \supset \gamma_{\beta}\left(\mathfrak{f}_{\mathfrak{\beta}}\right)$ if and only if $\Phi_{s}\left(H_{s}\right) \supset \Phi\left(\gamma_{\mathcal{P}}\left(\mathcal{T}_{\mathfrak{\beta}}\right)\right)$. This is equivalent that $H_{s} \supset \Phi_{s}{ }^{-1}\left(\Phi\left(\gamma_{\mathfrak{B}}\left(\mathfrak{F}_{\mathfrak{B}}\right)\right)\right)$, since H_{s} is \hat{s}-admissible. Then the theorem implies from lemma 1 immediately.

We note that the proposition 5 in $R I$ implies that the condition $H_{s} \supset \pi_{\xi}\left(D_{K}\right.$ $\left.\cap\left(J_{s} \times \gamma\left(\mathfrak{F}_{\mathfrak{B}}\right)\right)\right)$ can be replaced by $H_{s} \supset \pi_{s}\left(K^{\times} \cap\left(J_{s} \times \gamma\left(\mathfrak{F}_{\mathcal{F}}\right)\right)\right)$.

§ 3. Condition of the admissibility in the ground field (special case).

Let K / k be a normal extension of finite degree, and put $s=S(K / k)$, $\hat{s}=\hat{S}(K / k)$. It is easily proved that the number of independent units of K is equal to that of k if and only if k is totally real and K is totally imaginary and quadratic over k. In this case we shall characterize in terms of the ground field k the condition of a subgroup of J_{s} to be \hat{s}-admissible.

We have proved in theorem 2 that a subgroup H_{s} of J_{s} is \hat{s}-admissible if and only if H_{s} contains $\rho_{s}\left(D_{K}\right)$. Therefore our purpose in this section is to study on $\rho_{s}\left(D_{K}\right)$. The structure of D_{K} is known by Artin [1] as follows ${ }^{6}$:
5) See for instance Artin-Tate [2], Ch. 8, 2.
6) Cf. Artin and Tate [2], Ch. 9.

Let U be the group of unit ideles of K, and $U_{\mathfrak{\beta}}$ be the group of $\mathfrak{\beta}$-adic units of $K_{\mathfrak{\beta}}$. Then we have

$$
\begin{equation*}
U=\bar{U} \tilde{U} \tag{6}
\end{equation*}
$$

where $\bar{U}=\prod_{\mathfrak{B} \neq \mathfrak{B}_{\infty}} U_{\mathfrak{B}}$ and $\tilde{U}=\prod_{\mathfrak{B}_{\infty}} U_{\mathfrak{B}_{\infty}}$. We split each unit idele \mathfrak{a} as a product

$$
\begin{equation*}
\mathfrak{a}=\tilde{\mathfrak{a}} \tilde{\mathfrak{a}}, \tag{7}
\end{equation*}
$$

where $\overline{\mathfrak{a}} \in \bar{U}, \tilde{\mathfrak{a}} \in \tilde{U}$ and embedded ordinarily in U. Denote by \bar{Z} the completion of the group Z of rational integers under the topology whose fundamental system of neighborhoods of 0 consists of all ideals of Z. Put $V=\bar{Z}+R$ (direct), where R is the group of real numbers, and denote any element $\lambda \in V$ as $\lambda=(x, h)$, where $x \in \bar{Z}$ and $h \in R$. For any element $\mathfrak{a}=U$, the power \mathfrak{a}^{λ} is defined by

$$
\begin{equation*}
\mathfrak{a}^{\lambda}=\overline{\mathfrak{a}}^{2} \tilde{\mathfrak{a}}^{h}, \tag{8}
\end{equation*}
$$

where $\overline{\mathfrak{a}}^{x}$ is the generalization of the ordinary power with regard to the above topology. Let $\phi_{j}(t)$ the idele which has the component $e^{2 \pi i t}$ at j-th complex prime and 1 at all other primes. Denote by T the group generated by all such $\phi_{j}(t), j=1, \cdots, r_{2}$. Let $\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{r}$ be a system of independent totally positive units of K, and denote by E_{K} the group of all elements $\varepsilon_{1}^{\lambda_{1}} \cdots \varepsilon_{r}^{\lambda_{r}}$ where $\lambda_{i}=\left(x_{i}, h_{i}\right) \in V(i=1, \cdots, r)$. Furthermore denote by L the group of ideles which has a real number as the component at the infinite prime fixed once for all, and 1 at all other primes. Then we have by Artin [1]

$$
\begin{equation*}
D_{K}=E_{K} \cdot T \cdot L \cdot K^{*}, \tag{9}
\end{equation*}
$$

where K^{*} is the multiplicative group of non zero elements of K which is embedded ordinarily in J_{K}.

Now let k be a totally real number field of finite degree, and K be a totally imaginary and quadratic over k. Then we can take in k the above system $\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{r}$ of independent units of K, and we have

$$
\begin{gather*}
D_{k}=E \cdot L \cdot k^{*}, \\
D_{K}=E \cdot T \cdot L \cdot K^{*}, \tag{10}
\end{gather*}
$$

where ${ }^{7,} E=E_{k}=E_{K}$.
Lemma 2. Let K / k be as above. Then we have

$$
\rho_{s}\left(D_{K}\right)=\rho_{s}\left(D_{k}\right) .
$$

Proof. Let r be the number of independent units of k, which is equal to that of K. Generally denote by α, e, ϕ and ν elements of K, E, T and L respectively. Then $\rho_{s}\left(D_{K}\right)$ is of all $\pi_{s}(\mathrm{e} \phi \nu \alpha)$ such that $\pi_{s^{\prime}(\mathrm{e} \phi \nu \alpha)=1}$ by (10).
7) We always embed J_{k} into J_{K} by ordinal way.

This is equal to the set of all $\pi_{s}\left(\mathrm{e} \alpha^{-1}\right)$ such that $\pi_{s^{\prime}}(\mathrm{e})=\pi_{s^{\prime}}(\phi \nu \alpha)$. By the assumption of K / k, all infinite primes of K is contained in \hat{s}^{\prime}. Hence $\pi_{s^{\prime}(\mathrm{e})}$ $=\pi_{3^{\prime}}(\phi \nu \alpha)$ is equivalent to $\pi_{s^{\prime}}(\overline{\mathfrak{e}})=\pi_{\xi^{\prime}}(\alpha)$ and $\pi_{s^{\prime}(\mathfrak{P})}=\pi_{s^{\prime}}(\phi \nu \tilde{\alpha})$. But the last condition is unnecessary. Because for any $\alpha \in K$ the equality $\tilde{\mathfrak{r}}=$ always a solution with respect to $\tilde{\mathfrak{e}}, \phi, \nu$. Now for any $\sigma \in \mathbb{G}(K / k)$ and $x \in \bar{Z}$ we have easily $\left(\bar{\varepsilon}^{x}\right)^{\sigma}=\left(\bar{\varepsilon}^{\sigma}\right)^{x}$ by the definition of the generalized power. Then since $\bar{e}=\bar{\varepsilon}_{1}^{x_{1}} \cdots \bar{\varepsilon}_{r}^{x_{r}}$ where $\varepsilon_{i} \in k, \pi_{s}(\bar{e})=\pi_{s}(\alpha)$ implies $\alpha \in k$. Hence $\rho_{s}\left(D_{K}\right)$ consists of all $\pi_{s^{\prime}}\left(\imath \alpha^{-1}\right)$ such that $\pi_{s^{\prime}}(\overline{\mathrm{l}})=\pi_{s^{\prime}}(\alpha)$ where $\alpha \in k$.

By the same way as above we see $\rho_{s}\left(D_{k}\right)$ consists of all $\pi_{s}\left({ }^{(e} \alpha^{-1}\right)$ such that $\pi_{s^{\prime}}(\bar{e})=\pi_{s^{\prime}}(\alpha)$ where $\alpha \in k$. Hence we have the lemma.

Now by theorem 2 and lemma 2 we have
Theorem 4. Let k be a totally real algebraic number field of finite degree and K be its quadratic extension which is totally imaginary. Put $s=S(K / k)$. We embed k^{*} and $\rho_{s}\left(D_{k}\right)$ diagonaly into the direct product $J_{s} \times J_{s}$ of s-restricted idele groups of k. Then there is a following one to one correspondence between the set of all closed subgroups H of $J_{s} \times J_{s}$ of finite index which contains $\rho_{s}\left(D_{k}\right)$ and the set of all abelian extensions M of K of finite degree: When M corresponds to H, a prime \mathfrak{p} of k splits completely in M if and only if $\mathfrak{p} \in s$ and $k_{\mathrm{p}} \times k_{\mathrm{p}} \subset H$.

Mathematical Institute
Kanazawa University

References

[1] E. Artin, Representatives of the connected component of the idele class group, Proc. Int. Symp. Algebraic Number Theory, Tokyo-Nikko (1955), Science Council of Japan, Tokyo, 1956.
[2] E. Artin and J. Tate, Class field theory, Princeton notes (1951), destributed by Harvard University.
[3] Y. Furuta, The notion of restricted ideles with application to some extension fields, Nagoya Math. J., 27 (1966), 121-132.
[4] L.S. Pontrjagin, Topological groups, Princeton, 1946.

[^0]: 1) By Φ^{-1} we mean always the complete converse image.
